
Radiophysics and Quantum Electronics, Vol. 64, Nos. 8–9, January–February, 2022
(Russian Original Vol. 64, Nos. 8–9, August–September, 2021)

MICROWAVE RADIOMETRIC SENSING OF CUMULUS CLOUDINESS
FROM SPACE

D.P.Egorov,1∗ Ya.A. Ilyushin,2 and B.G.Kutuza1 UDC 504.32

We consider the Planck model for generating random discontinuous cloud fields in a three-
dimensional computation domain. An algorithm for calculating a two-dimensional pattern of the
brightness temperature of the upwelling microwave radiation of the smooth water surface–cloudy
atmosphere system taking into account the altitude profiles of the main meteorological parameters
and an arbitrary distribution of the water content is developed. The inverse problem of retrieving
the distributions of the integral water-content parameters by the two-frequency radiometric method
using the obtained brightness temperatures is discussed. Systematic errors in the estimated in-
tegral water content of the clouds associated with the use of a homogeneous plane-layered model
of the cloud field, which ignores its actual, i.e., discontinuous and heterogeneous structure, are
studied.

1. INTRODUCTION

The super-high frequency (SHF) radiometric method allows one to estimate such integral parameters
as the total mass of water vapor and the water content of clouds using the brightness temperature of
atmospheric radiation [1–3]. During ground-based observations of downwelling radiation, the element of the
spatial resolution of the SHF radiometer is usually much smaller than the cloud size, which allows us to
study the spatiotemporal variability of the atmospheric moisture-content field [4–6]. At the same time, the
spatial resolution of modern satellite-borne SHF radiometers in the frequency range 10–40 GHz amounts
to 12–30 km, which considerably exceeds horizontal dimensions of the cumulus clouds. When solving the
inverse problem, we usually use a homogeneous plane-layered model, which ignores the properties of the
discontinuous and inhomogeneous structure of the cloud field. With allowance for the nonlinear dependence
of the brightness temperature of the atmosphere on the cloud water content, this feature leads to systematic
errors when determining the above-given integral parameters.

This work considers the Planck model of a cloud field [7], which allows one to take the discontinuous
structure of the cumulus cloudiness into account. The possibilities of its application in the problems of
remote atmospheric sensing are discussed. Direct numerical simulation of the upwelling radiation of the
discontinuous atmospheric cloud fields, which are generated under various values of the model parameters,
is performed. In particular, this allows us to estimate the influence of the cloud cover and the size of the
chosen antenna-resolution element on the error when determining the integral water content averaged over
the scanning region.
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2. SIMULATION OF RANDOM CLOUD FIELDS AND BRIGHTNESS TEMPERATURES

The field of random discontinuous cloudiness can be generated according to the Planck model [7] with
specified cloud distribution over the diameters and single-valued coupling of the vertical extent of each cloud
with its diameter. Using the results of processing of a large base of stereoscopic photographs of cloudiness
in the region of Florida peninsula, USA, Planck proposed the following formula in 1969:

n(D) = K exp(−αD), 0 ≤ D ≤ Dm. (1)

Here, D is the cloud diameter, n(D) is the number of the clouds with the diameters ranging from D to dD,
Dm is the maximum diameter of a cloud in the set, K is the normalization coefficient, and α is a parameter
depending on the time of the day and various local climatic environments.

The relation between the vertical length H and the diameter D of the cloud has the form

H = η

(
D

Dm

)β

, (2)

where η and β are the dimensionless parameters [7].
Note that there also exist other models of the fields of discontinuous cloudiness. Thus, the following

distribution of the clouds by the diameters is proposed in [8] on the basis of the results of processing the
aircraft-borne measurements carried out in Ukraine:

n(D) = KD

(
1− D

Dm

)p0

, 0 ≤ D ≤ Dm, (3)

where p0 is the distribution parameter which amounts to 4.35 on the average. Here, the coefficient K has
the dimension of the inverse square of the length as distinct from (1) in which it has the dimension of the
inverse length.

We confine ourselves to considering convective clouds of the cumulus type. The average values of
the effective temperature, water content, thickness, and the altitude of the lower boundary of the clouds Cu
hum/med/cong are given in [1, 9]. The altitude profile of the water content of such a cloud can be calculated
using the following formula [10–12]:

w̃(ξ) = w̃(ξ0)
ξμ0(1− ξ)ψ0

ξμ0
0 (1− ξ0)ψ0

=
W

H

Γ(2 + μ0 + ψ0)

Γ(1 + μ0)Γ(1 + ψ0)
ξμ0 (1− ξ)ψ0 , (4)

where ξ = h/H is the reduced height inside the cloud, H is the cloud thickness, W is the (integral) water
content of the cloud, w̃(ξ) is the water-content profile inside the cloud, w̃(ξ0) is the maximum water content
of the cloud, with ξ0 as the reduced altitude of the maximum water content, μ0 and ψ0 are the dimensionless
parameters, and Γ(ζ) is the gamma function. According to [1], μ0 = 3.27, ψ0 = 0.67, and ξ0 = 0.83, and
the dependence of the water content W on the extent H of a cumulus cloud is roughly approximated by the
following formula using the tabulated data, which are given in [1]:

W [kg/m2] = 0.132574(N [km])2.30215. (5)

To carry out the calculation experiment, we specify the calculation region Ω ∈ Oxyz with an area of
50×50 km (the scanning region), the altitude 10 km (along the Oz axis) and a grid of 300×300×500 nodes.
The cloud shape is assumed to be cylindrical. The location C of any cloud in Ω is given by the coordinates
of the center of its lower base OC = xC , yC , zC . It is also assumed that the cloud boundaries do not intersect
and cannot be located one above another. In this case, according to Eqs. (1) and (2), we conclude that the
plane structure of the cloud field (in its vertical projection onto the plane Oxy) depends only on the values of
the model parameters K, Dm, and α with accuracy up to the chosen coordinates xC and yC for each cloud.
The three-dimensional structure of the cloud field is influenced not only by the above-given parameters, but

565



also β, η, and zC , which is the altitude of the lower boundary of the cloud. However, within the framework
of this study, the coordinate zC is assumed to be the same and equal to 1.5 km for all clouds for the sake of
simplicity.

Having specified the values of the model parameters K, Dm, α, β, and η, we generate the field of the
discontinuous cumulus cloudiness. The quantitative distribution of the clouds over the diameters is obtained
from Eq. (1) replacing D by the quantity kDmr

−1, where k is the integer, 1 ≤ k ≤ r, and r is chosen using
the parameters of the available computation grid. For example, it may be assumed that r =

√
i2∗ + j2∗ , where

i∗ and j∗ are the numbers of the grid nodes falling within the distance Dm along the directions Ox and Oy,
respectively.

The selection of the coordinates xC and yC , i.e., the location, is carried out sequentially for each cloud
C using a random-number generator (with uniform distribution), but with allowance for the verification of
the condition of nonintersection of the boundaries of C with all other clouds for which the location has al-
ready been found. In this case, the clouds are sorted in advance in descending order of their diameters. The
numerical experiment shows that with such an iterative filling of the area Ω with clouds, in an acceptable
time of searching for a suitable random location for each new cloud, it is possible to achieve the maximum
percentage of coverage of the plane h = 0 with clouds (intensity) at a level of 60–65% without the involve-
ment of the specialized algorithms for optimal packaging. However, we have failed to reach a higher filling
percentage.

Having generated the cloudiness field, at each point of the plane of the zero height, h = 0, we define
the water-content profile w(h), such that w(h) = w̃[(h−H0)/H] (see Eq. (4)), if h is located inside the cloud
with the lower-boundary height H0 and thickness H and w(h) = 0, if h is located outside the cloud. To
calculate the brightness temperatures, in addition to the water-content profile, one should know the altitude
profiles of the thermodynamic temperature T (h), the atmospheric pressure P (h), and the air humidity ρ(h).
Let us use the standard atmospheric model with the exponential laws of the altitude distribution of the
temperature, pressure, and humidity. The brightness temperature of the thermal radio radiation of the
system atmosphere–underlying surface (upwelling in the direction θ, 0 ≤ θ ≤ 0.4π), which is recorded for the
horizontal (h) or vertical (v) polarization at a certain frequency ν, can be written as follows (the subscripts
ν in the formula are omitted for simplification):

T ∗
j (θ) = T ↑(θ) + Tsκj(θ) exp[−τ(0) sec θ] + T ↓(θ)Rj(θ) exp[−τ(0) sec θ]. (6)

Here, j = v,h and the atmosphere is assumed to be a layered and horizontally homogeneous medium,

T ↓(θ) =
∞∫
0

T (h)γ(h) sec θ exp

⎡
⎣−

h∫
0

γ(z) sec θ dz

⎤
⎦ dh (7)

is the brightness temperature of the atmospheric downwelling radiation (the corresponding expression for
the upwelling radiation differs only by the integration limits), h is the height, γ(h) is the linear absorption
coefficient, which is combined over all atmospheric components, T (h) is the height profile of the thermody-
namic temperature, τ(0) is the total absorption in zenith (θ = 0◦), Rj(θ) is the reflection coefficient of the
surface (a function of polarization), κj(θ) is the radiation coefficient of the surface (κj(θ) = 1−Rj(θ) on the
assumption of local thermodynamic equilibrium), and Ts is the thermodynamic temperature of this surface.

In the case of a smooth water surface [1, 13], the reflection coefficient Rj(θ) can be expressed in terms
of the complex permittivity ε of water. Introducing the sliding angle ψ = 90◦ − θ, we write

Rj(θ) = Rj(90
◦ − ψ) = |Mj(ψ)|2 , (8)

where
Mh(ψ) =

[
sinψ − (

ε− cos2 ψ
)0.5] [

sinψ +
(
ε− cos2 ψ

)0.5]−1
, (9)
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Mv(ψ) =
[
ε sinψ − (

ε− cos2 ψ
)0.5] [

ε sinψ +
(
ε− cos2 ψ

)0.5]−1
. (10)

If θ = 0◦ and, obviously, ψ = 90◦ then (9) and (10) degenerate:

Mv = −Mh =
(
ε0.5 − 1

) (
ε0.5 + 1

)−1
. (11)

The permittivity ε is a function of the radiation frequency ν (or the wavelength λ) and the thermodynamic
temperature t of water (in the case under consideration, t = Ts) and can be written in the following form [1,
14]:

ε = εO +
εS − εO
1 + Δλ2

− iΔλ
εS − εO
1 + Δλ2

, Δλ =
λS

λ
. (12)

Here, εO is the “optical” component of permittivity, εS = εS(t) is the “static” component, λS = λS(t) is the
characteristic wavelength, which is related to the relaxation time of the water molecules. The temperature
dependences for the parameters εO, εS, and λS can be found, e.g., in [1, 15], which also have corrections to
the values of these parameters for nonzero salinity.

The combined linear absorption coefficient γ(ν, h) can be written as the sum

γ[Np/km](ν, h) = γ∗O[Np/km](ν, h) + γ∗ρ [Np/km](ν, h) + γ∗w[Np/km](ν, h), (13)

where γ∗O and γ∗ρ are the linear absorption coefficients in oxygen and water vapor, respectively, and
γ∗w is the linear absorption in a cloud. The former two coefficients can be approximated by the
theoretical-empirical dependences γO[dB/km](ν, h) = γO[dB/km][ν, T (h), P (h)] and γρ[dB/km](ν, h) =
γρ[dB/km][ν, T (h), P (h), ρ(h)], which have been borrowed from the recommendations of the International
Telecommunication Union [16], such that γ∗O = χγO, whereas γ∗ρ = χγρ, where χ = 0.23255814 is the
coefficient of transition from decibels to Nepers (energy units).

The linear absorption γw in a cloud comprising only homogeneous spherical particles can be written
as [17]

γw = 10−3

∞∫
0

Qo(a[m])N [m−4](a[m])π(a[m])2 da[m], (14)

where a is the particle size (radius), N(a) is the function of the particle distribution over the sizes, Qo(a) =
Qo(a, λ, tw) is the factor of the attenuation efficiency, which also depends on the wavelength λ and the
average effective temperature tw of the cloud. For small particles when the wavelength in a particle is much
greater than its size, Qo has the following form [17]:

Qo(a) =
8πa

λ
Im

(
ε− 1

ε+ 2

)
. (15)

Substituting (15) into (14), we obtain

γw[nP/km] =
0.6π

λ[cm]
Im

(
ε− 1

ε+ 2

) ∞∫
0

4π

3
(a[m])3N [m−4](a[m]) da[m] = kw(λ, tw)w, (16)

where
kw(λ, tw) =

0.6π

λ[cm]
KC , KC = Im

(
ε− 1

ε+ 2

)
=

3 (εS − εO)Δλ

(εS + 2)2 + (εO + 2)2 Δλ2
, (17)

KC is the multiplier, which determines the temperature variation in a cloud. When calculating ε according
to (12), it is assumed that t = tw. At the same time, w is a dimensionless quantity and is understood as
the liquid-droplet water content in unit volume, i. e., water content can, therefore, be expressed in kg/m3.
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Thus, speaking of the altitude distribution of this water
3
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Fig. 1. The difference of the values ΔTb(ν) for the
frequency range ν from 10 to 350 GHz for various
thicknesses H of the layer of continuous cloudiness:
(H = 1 km 1, H = 2 km 2, and H = 3 km
3) for the standard profiles T (h), P (h), and ρ(h),
smooth water surface, Ts = 15 ◦C, and the average
effective temperature of the clouds tw = −2 ◦C.

content and absorption, we can write the absorption co-
efficient γ∗w(ν, h) as the product of the weight function
k∗w(ν, tw) = kw(cν

−1, tw) and the water content w(h).
Let us consider a continuous layer of clouds of the

thickness H = 1, 2, and 3 km with the corresponding (5)
integral water content. Let us compare the constant alti-
tude profile of the water content (the water content is not
changed with the height inside the cloud) and the pro-
file specified according to Mazin (4). Let us calculate the
model values of the brightness temperatures of the radi-
ation of the system “smooth water surface–atmosphere,”
which upwells in the zenith direction, for both cases. Fig-
ure 1 shows the difference ΔTb(ν) between these values
for the frequency range from 10 to 350 GHz. The surface
temperature Ts is assumed equal to 15 ◦C, the salinity is
zero, and the average effective temperature of the cloud is
tw = −2 ◦C. According to Fig. 1, for the same integral wa-
ter content, the brightness temperature for a cloud with
a constant altitude profile of the water content always ex-
ceeds the brightness temperature of the cloud whose water

content is distributed in accordance with (4).

3. RETRIEVAL OF THE INTEGRAL PARAMETERS OF WATER CONTENT

The two-frequency radiometric method for determining the integral parameters of water content is
given in [1, 9]. Using the atmospheric brightness temperature, which was measured only at two frequencies,
it allows one to estimate the values of the total mass Q of water vapor and the water content W of the
clouds. If the effective temperature tw of the clouds is known and the total absorption in the atmospheric
thickness is comparatively low (τ � 1 Np), it is sufficient to write and solve the system of two equations,
which are linear with respect to Q and W

τνi [Np] = τO(νi) + kρ(νi)Q[{g/cm2] + k∗w(νi, tw)W [kg/m2], i = 1, 2, (18)

where τν is the estimate of the total coefficient of the atmospheric absorption in the zenith direction, τO(ν)
is the model coefficient of total absorption in oxygen [16], k∗w(ν, tw) is the previously introduced (see (17))
weight function of absorption in the cloud, and the expression for kρ(ν) can, e.g., be found in [1, 18].

In this case, the key point is to estimate the total atmospheric absorption τνi at the zenith (or τ(0)
in the previous notations) using the known brightness temperatures at the selected frequencies. Let us use
the following expressions as the approximations for the brightness temperatures of the upwelling (T ↑(θ)) and
downwelling (T ↓(θ)) radiation in the direction θ:

T ↑(θ) = T ↑
av

{
1− exp[τ(0) sec θ]

}
, T ↓(θ) = T ↓

av

{
1− exp[τ(0) sec θ]

}
, (19)

where T ↑
av and T ↓

av are the average effective atmospheric temperatures for the upwelling and downwelling
radiation, respectively, 0 ≤ θ ≤ 0.4π. Using these approximations, we substitute (19) into (6) and obtain

T ∗
j (θ) = T ↑

av {1− exp[−τ(θ)]}+ Tsκj(θ) exp[−τ(θ)] + T ↓
av {1− exp[−τ(θ)]}Rj(θ) exp[−τ(θ)]. (20)

Here, j = v,h and τ(θ) is understood as τ(0) sec θ. Note that Eq. (20) is quadratic with respect to exp[−τ(θ)].
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Solving this equation for fixed polarization, we obtain an estimate for the coefficient of total absorption

exp[−τ(θ)] =
−b+

√
D

2a
or τ(0) = ln

(
2a

−b+
√
D

)
cos θ, (21)

where a = T ↓
av Rj(θ), b = T ↑

av − T ↓
av Rj(θ)− Tsκ(θ), and D = b2 − 4a [T ∗(θ)− T ↑

av].

To estimate the total absorption in the zenith, one should first estimate the average effective temper-
atures T ↑

av and T ↓
av, the reflection coefficient Rj(θ), and the temperature Ts of the underlying surface. The

errors when estimating these four parameters lead to an error in determining the total-absorption coefficient
and, therefore, influence the Q and W retrieval accuracy. In actual experiments, the retrieval accuracy of
these integral parameters is also influenced by the conceptual impossibility of an accurate calculation of τO
and kρ because of the discrepancy between the standard model profiles T (h), P (h), and ρ(h) and the actually
observed.

With allowance for Eqs. (1)–(14), we calculate two-
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Fig. 2. The integral water content retrieved by the
two-frequency (22.2 and 27.2 GHz) method using
the model values of the brightness temperature of
the upwelling radiation of the system “smooth wa-
ter surface–cloudy atmosphere” for the standard
profiles T (h), P (h), and ρ(h), smooth water sur-
face, Ts = 15 ◦C, the average effective temperature
tw = −2 ◦C of the clouds, and the Planck-model
parameters Dm = 3 km, α = 1, β = 0.5, η = 1,
and K = 205.

dimensional patterns of the brightness temperature distri-
bution of the radiation (going in the zenith direction) of
the “smooth water surface–cloudy atmosphere” system at
the frequencies ν = 22.2 and 27.2 GHz for K = 205,
Dm = 3 km, α = 1, β = 0.5, and μ = 1. The surface tem-
perature Ts is assumed to be equal to 15 ◦C. The height
of the lower boundary of the clouds is fixed (1.5 km). The
average effective temperature of the clouds is tw = −2 ◦C.
Using the obtained brightness-temperature distributions,
we also retrieve the integral water-content pattern (see
Fig. 2) with the help of the two-frequency method (15)–
(18). The percentage (cover) of the cloudiness (i.e., the
fraction of the h = 0 plane coverage by the clouds in their
projection to this plane) amounted to 57.78 %. The value
of the water content W ∗ averaged over the scanning region
(50 × 50 km over the entire region), which was obtained
by integrating the profile w(h) over h at each point of the
plane h = 0 and the subsequent averaging over all points,
amounted to 0.31 kg/m2. According to (5), a continuous
cloud layer with such a water content would have a thick-
ness of 1.44 km. However, the cloud thickness averaged
over the entire area amounted only to 0.92 km.

Assuming θ = 0◦, Ts = 15 ◦C, and tw = −2 ◦C, we
generate the cloud fields for various K, Dm, α, β, and η
and calculate the arrays T ν

b = T ν
b (k, l) of the brightness-

temperature values for fixed frequencies ν. Varying the state of the random-number generator (with uniform
distribution), which determines the horizontal locations of the clouds, we obtain several {T ν

b } for the same
parameter set. To study systematic errors of retrieval of the water content (averaged over the scanning
region), emerging because of using the homogeneous plane-layered model of the cloud field, which ignores
its actual (discontinuous) structure, we subject the arrays of the brightness temperatures T ν

b to unit-by-unit
averaging (22) with the units of n × n nodes successively for n = 1, 2, 3 . . . 300 and follow the dynamics of
the average values of the water content, which was retrieved according to (18)–(21):

T̃ ν
b (i, j) =

∑
k,l

T ν
b (k, l)

n2
, (22)
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Fig. 3. The relative error Werr as a function of
the cloudiness percent δ for the fixed resolution-
element size n × n, n = 30 nodes (curves 1
and 3) and n = 150 nodes (curves 2 and 4).
The two-frequency method was used. The follow-
ing frequency combinations were used: 22.2 and
27.2 GHz (curves 1 and 2) and 22.2 and 37.5 GHz
(curves 3 and 4). The calculations were performed
for the standard profiles T (h), P (h), and ρ(h), the
smooth water surface, Ts = 15 ◦C, the effective
cloud temperature tw = −2 ◦C and the Planck-
model parameters Dm = 3 km, α = 1, β = 0.5,
η = 1, and 44 ≤ K ≤ 205.

Fig. 4. The relative error Werr as a function of
the cloudiness percent δ for the fixed resolution-
element size n × n, n = 30 nodes (curves 1
and 3), n = 150 nodes (curves 2 and 4). The
two-frequency method was used. The follow-
ing frequency combinations were used: 22.2 and
27.2 GHz (curves 1 and 2), 22.2 and 90.8 GHz
(curves 3 and 4). The calculations were performed
for the standard profiles T (h), P (h), and ρ(h), the
smooth water surface, Ts = 15 ◦C, the effective
cloud temperature tw = −2 ◦C and the Planck-
model parameters Dm = 3 km, α = 1, β = 0.5,
η = 1, and 44 ≤ K ≤ 205.

where n i∗ ≤ k < n (i∗ + 1), n j∗ ≤ l < n (j∗ + 1), and i∗ = [i/n], j∗ = [j/n]. The square brackets
denote integer division. Thus, the units have no intersections and are understood as resolution elements
(averaging), with the help of which the pattern of discontinuous clouds T ν

b is reduced to a set of the plane-
layered approximations T̃ ν

b .
Let us fix the frequency combination (ν1, ν2) and, using the corresponding arrays T̃ ν1

b and T̃ ν2
b retrieve

the two-dimensional distribution of the integral water content W (i, j). The average value Wa = 〈W (i, j)〉i,j
(here, the operation 〈·〉i,j denotes averaging over all i, j), which is calculated for various n by the two-
frequency method, is compared with the “actual” average water content W ∗, which, as previously, is obtained
by direct integration of the profile w(h) over h at each point of the plane h = 0 and subsequent averaging
over all points. The relative error Werr is introduced by the standard method:

Werr =
|W ∗ −Wa|

W ∗ · 100 %. (23)

The dependence of the relative error Werr on the cloudiness percent is given in Figs. 3 and 4 for various
frequency pairs (ν1andν2) for the fixed resolution element n×n, i.e., 30×30 nodes (correspond to the region
5× 5 km), curves 1 and 3 and 150× 150 nodes (25× 25 km), curves 2 and 4. The Planck-model parameters
are Dm = 3 km, α = 1, β = 0.5, and η = 1. The altitude of the lower boundary for all clouds amounts to
1.5 km. The parameter K controls the cloudiness percent and varies in the interval from 44 to 205. For each
iteration over K, the random-number generator, which determines the horizontal locations of the clouds,
was started 100 times for various initial conditions. The confidence intervals in Figs. 3 and 4 reflect the
corresponding spread of the values.

According to the numerical experiment, as the cloudiness percent decreases, i.e., as the cloudiness-field
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discontinuity increases, starting from n ≥ 10 nodes, one can observe a pronounced increase in the value of
the relative error Werr when determining the integral water content, such that this error increases at a higher
rate for a larger resolution element. An increase in the resolution element n always leads to an increase in
Werr for any fixed percentage (cover) of the clouds.

4. CONCLUSIONS

We have realized the Planck model for generating the discontinuous cloud fields in the three-
dimensional calculation region [19]. The numerical experiment on calculating the two-dimensional distri-
butions of the brightness temperature of the upwelling (in the zenith direction) radiation of the “smooth
water surface–cloudy atmosphere” system at frequencies of 22.2, 27.2, 37.5, and 90.8 GHz under the condi-
tions of discontinuous cloudiness has been carried out. Systematic errors when retrieving the integral water
content because of the failure to allow for the discontinuous structure of cumulus clouds have been ana-
lyzed. It is shown that the relative error of determining (by the radiometric method) the value of the water
content of the clouds averaged over the scanning region significantly increases with increasing discontinuity
of the cloud field. The size of the chosen element of the spatial resolution (of the antenna), using which,
the discontinuous pattern of the cloudiness is reduced to a set of plane-layered approximations, is of great
importance.

The obtained results testify to a necessity of allowance for the structure and discontinuity of the
clouds when processing the satellite data and solving the inverse problem of determining the atmospheric
characteristics. In the performed experiments under conditions of 60% cloudiness of moderate vertical
development, if the discontinuity factor is ignored, the error of determining the water content (averaged
over the region 50×50 km) using the two-frequency radiometric method with the resolution element 5×5 km
and the frequency combination 22.2 and 27.2 GHz (the best one out of those considered) amounts to about
20%. This is the best indicator since the error still increases with increasing resolution-element sizes and,
especially, decreasing cover. Additional quantitative and qualitative data on the clouds can be obtained
using the satellite measurements in the visible, infrared, and terahertz ranges. Optical instruments observe
the upper layer of the clouds and determine their mask, altitude, and temperature. This helps us allow for
not only the discontinuity of the clouds, but also other factors. Knowledge of the spatial structure of the
upper level also makes it possible to identify the zones of frontal and convective clouds, which can be used
in the subsequent targeted processing of the satellite microwave radiometric data. Nevertheless, the issue of
practical use of the results obtained in the work requires further study.

This work was carried out using the equipment of the Shared core facility of the superhigh-capacity
computational resources of M.V. Lomonosov Moscow State University [20] and under the support of the
Ministry of science and higher education of the Russian Federation (State assignment No. 0030–2019–0008
“Kosmos”).
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