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INFLUENCE OF THE CHOICE OF BOUNDARY CONDITIONS
ON THE DISTRIBUTION OF THE ELECTRIC FIELD
IN MODELS OF THE GLOBAL ELECTRIC CIRCUIT

N.A.Denisova1∗ and A.V.Kalinin2 UDC 537.531.2.098+
537.531.2:524.31.084-337

We obtain a new analytical representation of the solution for the classical model of the Roble—
Hays global electric circuit, where the connection between the values of the electric potential and
the current at magnetically conjugate points of the upper boundary of the atmosphere is allowed
for in the boundary conditions. Using this representation, we analyze the influence of various
boundary conditions at the upper boundary of the atmosphere on the potential distribution and
present an estimate of perturbations of the electric field by thunderstorm sources at magnetically
conjugate points.

1. INTRODUCTION

Studying the distribution of electric currents is a main task of the theory of atmospheric electricity [1–
3]. It is connected with the study of spatial dependences of the electric fields in the atmosphere, which are
due to external currents that model charge separation currents in a thunderstorm cloud. Some basic models
of the global electric circuit and the relevant literature are discussed in [1–9]. In particular, a sufficiently
comprehensive list of references with analytical results is presented in [3].

Problem statements for most of the existing models of the global electric circuit do not allow for the
effect of coupling of electric fields at magnetically conjugate points at the upper boundary of the atmosphere.
Specifically, the models with the equipotential upper boundary neglect this effect inherently.

The problem in which the relationships that relate the electric potential and currents at magnetically
conjugate points were proposed as boundary conditions at the upper boundary of the atmosphere was studied
for the first time in the classical work by Roble and Hays [10]. The Roble—Hays model is still relevant, since
it was an attempt to allow for the influence of the magnetosphere on the global electric circuit. However,
in [10] the distributions of the potential and the field were studied only numerically, and the influence of
the conditions at the upper boundary on the distribution of the electric field was not analyzed.

The purpose of this work is to study analytically the influence of the choice of the boundary conditions
(first of all, at the upper boundary of the atmosphere) on the distributions of the electric potential and the
field in the models of the global electric circuit and to estimate the perturbations introduced by thunderstorm
generators at magnetically conjugate points.
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2. PROBLEM STATEMENT AND MAIN RESULTS

In this paper, we consider a problem about the distribution of the electric potential for the atmosphere
in the form of a spherical layer with r1 < r < rm, whose conductivity grows exponentially along its radius,
with a distributed stationary vertical current. Its mathematical formulation has the form [10]

div(σgradφ) = divJext, (1)

φ(r, θ, ϕ)|r=rm = φ(r, π − θ, ϕ)|r=rm , (2)

(2)
∂φ(r, θ, ϕ)

∂r

∣
∣
∣
r=rm

= −∂φ(r, π − θ, ϕ)

∂r

∣
∣
∣
r=rm

, (3)
(

φ−ΔRσ1
∂φ

∂r

) ∣
∣
∣
r=r1

= 0. (4)

Here, σ(r) = σ0 exp[(r− r0)/H] is the electric conductivity of the atmosphere, σ0 is the electric conductivity
near the spherical surface of the Earth, r is the distance from the Earth’s center, r0 is the Earth’s radius
(the following values were used in the numerical calculations: r0 = 6370 km, H = 6 km), Jext is the
density of external electric currents created by thunderstorm generators, and r, θ, and ϕ are the spherical
coordinates. Boundary conditions (2) and (3) are written at the bottom boundary of the magnetosphere
over the Earth, where anisotropy of the electric conductivity is significant, and electric currents run along
the lines of the magnetic field. Boundary condition (4) of the third kind relates the potential and the current
at the boundary r = r1 [10]. The column resistance ΔR allows for the orography of the firm land on average,
and σ1 is the value of electric conductivity at a certain r = r1.

It should be noted that problem (1)–(4) is not a classical problem of mathematical physics by virtue
of boundary conditions (2) and (3). The issues of mathematical correctness of this model and other models
of the global electric circuit are discussed in [11–13].

In [10], the numerical algorithm used to solve problem (1)–(4) is based on the expansion of the
solution into a sum with respect to spherical functions with a special method of summation of the series
terms (Cesàro summation). As a result of numerical experiments (allowing for the 37 terms of the series),
the influence of the parameters and positions of the sources on the distribution of the electric potential
in the atmosphere is analyzed under the assumption that the lower boundary of the magnetosphere, at
which the upper boundary conditions are specified, is located at the height hm = 105 km over the Earth’s
surface, where hm = rm − r0. In [14], in the special case, when ΔR = 0, the formulas are obtained for the
coefficients of expansion of the electric potential with respect to the spherical functions, and the questions
of the influence of the source parameters on the electric field are discussed along with the possibility of
allowing for orography within the framework of the considered model.

In this work, analytical consideration is also based on the expansion of the solution and the sources
with respect to spherical functions. At ΔR ≥ 0, the formulas for the series coefficients are obtained, which
are similar to those found in [14]. Using the theorem about summation of associated Legendre polynomials,
we find the new formula for the electric potential in the form of superposition of two fields (see the Appendix),
one of which coincides at hm → ∞ with the field produced by the source of the right-hand side of Eqs. (1)–(4)
for the boundary condition

φ|r→∞ = V∞, (5)

which is used instead of conditions (2) and (3). This expansion allowed us to separate explicitly the ex-
citation of the electric field at points that are conjugate to the source location and compare the solutions
of two different problems for Eq. (1), specifically, the problems with boundary conditions (2)–(4) and with
conditions (4) and (5).

Let us consider an individual source of the external current, which has the number s. In the case of
several current sources (e.g., thunderstorm generators), one should perform summation with respect to the
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variable s in the formulas below. The density of the external radial electric current will be written as

Jext =
Is0

r2 sin θ
[θ(r − rs0)− θ(r − rs1)]δNs(θ, θs0, ϕ, ϕs0)er, (6)

where rs1 and rs0 are the radial distances corresponding to the positive and negative charges of the thunder-
storm generator, while rs0 < rs1, and Is0 is the current strength. The function θ(r) denotes the Heaviside
function, and (1/ sin θ)δNs(θ, θs0, ϕ, ϕs0) is a term of the delta-shaped sequence [16] with the number Ns

that has the form

1

sin θ
δNs(θ, θs0, ϕ, ϕs0) =

Ns∑

n=0

n∑

k=0

Y
(1)
n,k (θ, ϕ)Y

(1)
n,k (θs0, ϕs0) + Y

(2)
n,k (θ, ϕ)Y

(2)
n,k (θs0, ϕs0)

||Yn,k||2

=
1

4π

Ns∑

n=0

(2n + 1)Pn(cos γ). (7)

Here, γ is the angle between the radial direction towards the observation point and the dipole axis, and

cos γ = cos θ cos θs0 + sin θ sin θs0 cos(ϕ− ϕs0).

Sequence (7) converges at Ns → ∞ to the generalized function (sin /θ)δ(θ − θs0)δ(ϕ − ϕs0), where
δ(x) is the Dirac delta function.

The spherical functions Y
(1)
n,k (θ, ϕ) and Y

(2)
n,k (θ, ϕ) are related to the associated Legendre functions by

the formulas
Y

(1)
n,k (θ, ϕ) = P k

n (cos θ) cos(kϕ), Y
(2)
n,k (θ, ϕ) = P k

n (cos θ) sin(kϕ)

and have the form

||Yn,k||2 =
2πεk(n+ k)!

(2n + 1)(n − k)!
,

where εk = 1 at k > 0, and ε0 = 2. Figure 1 shows the plots of two sequence terms at two different values of
N . The amplitudes of these functions take the value (Ns + 1)2/(4π) and are found from formula (7), when
cos γ = 1 is substituted into it.

The boundary-value problems for Eq. (1) have not yet been studied analytically in full detail. As a
rule, one considers the equation whose coefficients are little different from the coefficients of Eq. (1) [10, 14].
In the spherical system of coordinates,

div(σgradφ) = σ

[
∂2φ

∂r2
+

(
2

r
+

1

H

)
∂φ

∂r
+

1

r2 sin θ
Δθ,ϕφ

]

(8)

and in the second summand, the term 2/r is omitted. In this paper, as in [10], we replace 1/r2 in the third
term in Eq. (8) with 1/r20 . In the obtained equation, we perform replacement of variables

σ = σ0 exp[(r − r0)/H], μ = cos θ. (9)

As a result of this replacement, we obtain the equation

1

H2

∂

∂σ

(

σ2 ∂φ

∂σ

)

+
1

r20
Δμ,ϕφ =

1

σ
divJext, σ1 < σ < σm, (10)

where σm = σ(rm) and

Δμ,ϕ =
∂

∂μ

[

(1− μ2)
∂φ

∂μ

]

+
1

1− μ2

∂2φ

∂μ2
.
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Fig. 1. Plot of the function (1/ sin θ)δNs(θ, π/3, ϕ, 0) at Ns = 20 and 50 (a and b, respectively).

In new variables, the right-hand side of the equation has the form

divJext =
Is0
H

[
1

r2s0
δ(σ − σs0)− 1

r2s1
δ(σ − σs1)

]

δNs(μ, μs0, ϕ, ϕs0). (11)

Let us write down transformed boundary conditions (3)–(5):

φ(σm, μ, ϕ) = φ(σm,−μ,ϕ), (12)

∂φ(σm, μ, ϕ)

∂σ
= −∂φ(σm,−μ,ϕ)

∂σ
, (13)

(

φ− ΔRσ2
1

H

∂φ

∂σ

) ∣
∣
∣
σ=σ1

= 0. (14)

The solution of problem (10)–(14), which generalizes the solution of the corresponding problem in [14] for the
case of ΔR ≥ 0, is presented in the Appendix. Using the theorem about summation of associated Legendre
polynomials, a new formula is obtained for the electric potential, which has the form of a superposition of two
fields (Eqs. (A10)–(A16)). Further simplification of the formula for it depends on the problem parameters
H, r0, h1, hs0, hs1, hm, ΔR, and Ns, where the height h is determined from the formula h = r − r0, so
that h1 = r1 − r0, hs1 = rs1 − r0, hs2 = rs2 − r0, and hm = rm − r0. In what follows, we assume that
h1 = 0, ΔR = 0, hs0 = 5km, and hs1 = 10 km (the values of H and r0 have been given above). Below,
formulas (A10)–(A16) are analyzed as a function of the parameter hm. Formulas (A13)–(A16) contain sums
of terms having the form (σsj/σm)

ξn and (ξn − 1)/(ξn +1), where ξn is determined by formula (A7). As the
height hm increases, the first term decreases and, starting with a certain value, becomes significantly less
than the second term, i.e., formulas (A13)–(A16) can be simplified.

The height

h∗m = hs1 + 2H ln

(
r0√
2H

)

+H ln

(

1 +
4H2

r20

)

≈ hs1 + 2H ln

(
r0√
2H

)

(15)

plays an important role for the further study and comparison of Eq. (1) with boundary conditions (2)–(4),
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and (5), (6). For the chosen values of the parameters hs1, H, and r0, the height is h∗m = 89.5 km.

Consider the case of hm = 120 km (hm > h∗m). Then, the following inequalities are valid:

(
σs1
σm

)ξn

<
σs1
σm

� σs1
σ(h∗m)

=
2H2

r20 + 4H2
<

ξ1 − 1

ξ1 + 1
≤ ξn − 1

ξn + 1
. (16)

Therefore, the ratios σ1/σm and σsj/σm in formulas (A13)–(A16) can be neglected. Within this approxi-

mation, T̄
(j)
n (σ) ≈ 0 at all σ1 < σ < σs1, and

¯̄T
(j)
n (σ) ≈ 0, if σs0 < σ < σs1. Therefore, the values of the

potential under the sources and between them do not depend on the choice of the boundary conditions.
Over the sources, in the region σs1 < σ < σm, formula (A10) takes the form

φs = V∞,s +

Ns∑

n=1

(2n+ 1) [An(σ)Pn(cos γ) +Bn(σ)Pn(cos γ1)], (17)

where

An(σ) =
1

ξn

[
1

σ
Cn(σ) +Bn(σ)

]

, Bn(σ) =
1

σ(ξn − 1)

(
σ

σm

)ξn

Cn(σ), (18)

Cn(σ) =
Qs

4π

{
(σs1

σ

)(ξn−1)/2
[

1−
(

σ0
σs1

)ξn
]

−
(σs0

σ

)(ξn−1)/2
[

1−
(

σ0
σs0

)ξn
]}

. (19)

At the ionospheric altitudes, at σ = σm, coefficients (18) are identical and, therefore, electric potential (17)
has identical values at magnetically conjugate points (σm, μs0, ϕs0) and (σm,−μs0, ϕs0). Moreover, since
Cn(σ) > 0, the value of the potential above the sources changes significantly as determined by the choice
of the parameter Ns. Since the inequality Cn(σ) ≤ ξnσ0V∞,s, is valid for the function Cn(σ) at all values
σs1 < σ < σm, we obtain the following estimates for coefficients (18):

Bn(σ) ≤ ξ1
(ξ1 − 1)

σ0
σm

V∞,s, An(σ) ≤
[
1

σ
+

1

(ξ1 − 1)σm

]

σ0V∞,s. (20)

At any fixed Ns in the vicinity of the point (θs0, ϕs0) specified by the inequality cos γ ≥ cos[1/(2Ns + 1)],
all the Legendre polynomials Pn(cos γ), n = 1, . . . , Ns, take positive values [15]. Comparing the coefficients
An(σ) and Bn(σ), one can introduce another parameter,

hp ≈ hm − 2H ln[r0/(2H)], (21)

(21) such that at hs1 < h � hp
1

σ

 1

(ξ1 − 1)σm
.

Then, by virtue of estimates (20), electric-field potential (17) is determined by the expression

φs ≈ V∞,s +
Ns∑

n=1

(2n + 1)
Cn(σ)

σξn
Pn(cos γ). (22)

Function (22) is the solution of Eq. (10) at σ > σs1 and satisfies the boundary condition V |σ→∞ = V∞,s.

All numerical results of work [10] were obtained for the case of Ns = 37. Let us show that the
formulas for potential (22) can be simplified in the range σs1 < σ � σp for Ns < 63 at hm > h∗m: (here, σp
is the conductivity at the height hp). By virtue of the inequality [4n (n + 1)H2]/r20 < 1/100, the variable
ξn ≈ 1+2n (n+1)H2)/r20 ≈ 1 at all 1 ≤ n ≤ Ns. Allowing for the terms of the same order of smallness, we
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Fig. 2. Plot of the function φ0(σ)/V∞,s (a) and the spherical mean of the function φs/V∞,s (b).

obtain a formula for the coefficient Cn(σ), which is independent of the index n:

Tn(σ) ≈ V∞,sσ0/σ. (23)

Using formulas (22), (23), and (7), in the range σs1 < σ � σp we have

φs ≈ V∞,s

[

1− β0σ1
σ

+ 4π
σ0
σ
δNs(μ, μs0, ϕ, ϕs0)

]

. (24)

Similar simplifications of formulas (A11) and (A12) at σ1 < σ < σs0 and σs0 < σ < σs1 yield the following
result (at all σ0 < σ � σp):

φs ≈ φ0(σ) + φ1(σ)δNs(μ, μs0, ϕ, ϕs0). (25)

Here, we introduce the following notations:

φ0(σ) = V∞,s(1− σ0/σ), σ0 < σ � σp, (26)

φ1(σ) =

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

−4πV∞,s(1− σ0/σ), σ0 < σ < σs0;

4πV∞,s
σs0
σ

(
σ0
σ

− σs1 − σ

σs1 − σs0

)

, σs0 < σ < σs1;

4πV∞,sσ0/σ σs1 < σ � σp.

(27)

Figure 2a shows the plot of the function φ0(σ)/V∞,s depending on the height h, and Fig. 2b shows the
spherical mean of function (25) normalized with respect to V∞,s, which is determined by the formula

φ̄s

V∞,s
=

1

4π

2π∫

0

dϕ

π∫

0

(φs/V∞,s) sin θ dθ.

On the radial half-ray μ = μs0, ϕ = ϕs0, the function δNs(μ, μs0, ϕ, ϕs0) takes the maximum value
(Ns + 1)2/(4π). Therefore, the maximum and minimum values of function (25) are determined by not only
the ionospheric potential V∞,s and the values of conductivity, but also by the parameter Ns. Figure 3 shows
the plot of function (25) normalized with respect to V∞,s on the radial half-ray of charge locations depending
on the height h (Ns = 20). It is not difficult to plot functions (25) at a fixed value of the height h. In Fig. 4,
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Fig. 3. Plot of the electric potential φs/V∞,s

(Ns = 20, θ = θs0 = π/3, and ϕ = ϕs0)

the sources, and above the sources for the same values of
the parameters.

Formula (25) yields a rather good approximation
at the heights 0 < h � hp. However, it cannot be used
at hp < h < hm. Extrapolation of formula (25) to this
interval for solving of problem (10)–(14) with the bound-
ary condition at the height hm = 100 km yields the value
of the potential φs ≈ V∞,s. At the same time, numerical
calculations by formulas (A10) show that the potential φs

depends on the angles θ and ϕ in the region hp < h < hm.
It is seen in Fig. 5 that the values of the function

φs/V∞,s differ from unity at almost all θ. Two points are
isolated in the plot, which correspond to the point of the
source locations and the conjugate point. At the height
hm = 100 km, the values of the potential φs coincide at
these points.

Now, consider the case where hm = 70 km (hm <
h∗m). At this value of hm, inequalities (16) are not fulfilled,
and formulas (17) and (25) are inapplicable. Numerical
calculations by formulas (A10)–(A16) show that the values of the electric potential at the center of a
thunderstorm formation under the sources and between the sources are little different from those shown in
Fig. 3 at hm = 120 km. The differences in the potential as compared with the case of hm = 120 km affect the
area over the sources at all θ and ϕ and the vicinity of the conjugate point at all heights. The dependence
of the potential at the conjugate point on the height is presented in Fig. 6.

Figure 7 shows plots of the potential φs/V∞,s calculated as a function of the angle θ by formulas (23)
in the regions below the sources, between the sources, and above the sources. It is seen from the plot that
the variations in the potential at the conjugate point appear at even sufficiently low heights. The solutions
of problems (1)–(4) and (1), (5), and (4) differ significantly.

3. CONCLUSIONS

To conclude, we lay down the main results of this work.
The theorem about summation of associated Legendre polynomials is used to obtain a new formula

for the electric potential in the form of a superposition of two fields (Eqs. (A10)–(A15)), which allows
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Fig. 4. Plots of the electric potential φs/V∞,s as a function of the angles θ and ϕ at fixed heights h = 1, 8,
and 20 km (a, b, and c, respectively), θs0 = π/3 and ϕs0 = 0.
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one to analyze the influence of various boundary condi-
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Fig. 6. Plot of the potential φs/V∞,s at the conju-
gate point θ = π− θs0 as a function of the height
h (Ns = 20, θ = θs0 = π/3, and ϕ = ϕs0).

tions at the upper boundary of the atmosphere on the
distribution of the electric potential and estimate pertur-
bations of the electric field by thunderstorm sources at
magnetically conjugate points.

The fundamental parameters h∗m and hp are deter-
mined, which allow one to estimate the influence of the
boundary conditions at the upper boundary hm on the
distribution of the electric field in the atmosphere. It is
shown that at hm > h∗m, the boundary-value problem for
Eq. (1) with simpler boundary conditions (5) and (4) can
be used to find the electric field at the heights 0 < h < hp.
At hm < h∗m, boundary-value problems (1)–(4) and (1),
(4) and (5) yield different results (for the case of h∗m = 90
considered in the paper).

It is shown that the ratio between the values of hm
and h∗m also characterizes the perturbation of the electric
field by thunderstorm sources at magnetically conjugate
points. In particular, the perturbation of the electric field
at hm < h∗m will be significant at the magnetically conju-
gate point and at all heights below it.

The obtained results can be used to model the global electric circuit with allowance for the influence
of the magnetosphere on the distribution of the electric field in the atmosphere.

The authors are grateful to E.A.Mareev, S. S.Davydenko, and N.N. Slunyaev for useful discussions
of the results. This work was supported by the Russian Science Foundation (project No. 18–12–00441).
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APPENDIX

The solution of problem (1)–(4), (6) is similar to that obtained in [2] and has the following form:

φs = V∞,s +

Ns∑

n=1

n∑

k=0

R̃
(1)
n,k(σ)− R̃

(0)
n,k(σ)

||Yn,k||2 P k
n (μ)P

k
n (μs0) cos[k (ϕ− ϕs0)], σs1 < σ < σm; (A1)

φs =
Qs

4π

(
1

σs0
− 1

σ

)

+

Ns∑

n=1

n∑

k=0

R
(1)
n,k(σ)− R̃

(0)
n,k(σ)

||Yn,k||2 P k
n (μ)P

k
n (μs0) cos[k (ϕ− ϕs0)], σs0 < σ < σs1; (A2)

φs =

Ns∑

n=1

n∑

k=0

R
(1)
n,k(σ)−R

(0)
n,k(σ)

||Yn,k||2 P k
n (μ)P

k
n (μs0) cos[k (ϕ− ϕs0)], σ1 < σ < σs0. (A3)

Here,

V∞,s =
Qs

4π

(
1

σs0
− 1

σs1

)

, Qs =
Is0H

r20
, (A4)

and V∞,s is the ionospheric potential. The functions depending on the variable σ have the form

R̃
(j)
n,k(σ) =

Qs√
σσsj

(σsj/σ)
ξn/2[τn,k + (σ/σm)

ξn ] [1− βn (σ1/σsj)
ξn ]

ξn[τn,k + βn (σ1/σm)ξn ]
, j = 0, 1; (A5)

R
(j)
n,k(σ) =

Qs√
σσsj

(σ/σsj)
ξn/2[τn,k + (σsj/σm)

ξn ] [1− βn (σ1/σ)
ξn ]

ξn[τn,k + βn (σ1/σm)ξn ]
, j = 0, 1; (A6)

where

βn =
2H +ΔRσ1 (1 − ξn)

2H +ΔRσ1 (1 + ξn)
, ξn =

√

1 + 4n (n+ 1)H2/r20, (A7)

τn,k =

{

(ξn − 1)/(ξn + 1), n+ k(iseven;

−1, n+ k(isodd.

Solving of Eqs. (A1)–(A6) can be simplified. All functions R
(j)
n,k(σ) are subdivided into two forms, specifically,

those, for which the numbers n+k are even or odd. Therefore, one can represent the inner sum with respect
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to k in formulas (A1)–(A6) in the form of two sums and use the formula

n∑

k=0

1

||Yn,k||2P
k
n (μ)P

k
n (μs0) cos[k (ϕ− ϕs0)] =

2n+ 1

8π
[Pn(cos γ) + Pn(cos γ1)], (A8)

if in the summation with respect to k, only such values of the variable k are used at which the numbers
n+ k are even, and the formula

n∑

k=0

1

||Yn,k||2P
k
n (μ)P

k
n (μs0) cos[k (ϕ− ϕs0)] =

2n+ 1

8π
[Pn(cos γ)− Pn(cos γ1)], (A9)

if in the summation with respect to k, only such k are used, at which the numbers n+ k are odd. Formulas
(A8) and (A9) follow from the theorem of summation for the associated Legendre functions. Here,

cos γ = μμs0 +
√

1− μ2

√

1− μ2
s0 cos(ϕ− ϕs0), cos γ1 = −μμs0 +

√

1− μ2

√

1− μ2
s0 cos(ϕ− ϕs0),

where γ1 is the angle between the radial half-ray directed towards the observation point, and the radial
half-ray that contains points conjugate with the points where the dipole charges are located. Formula (A8)
contains the Legendre functions, which are even with respect to the variable μ, and formula (A9), those
which are odd. Using formulas (A1)–(A9), we obtain the following expressions for the electric field potential:

φs = V∞,s +

Ns∑

n=1

(2n + 1)[ ¯̄R(1)
n (σ)− ¯̄R(0)

n (σ)]Pn(cos γ) + [ ¯̄T (1)
n (σ) − ¯̄T (0)

n (σ)]Pn(cos γ1) (A10)

in the range σs1 < σ < σm;

φs =
Qs

4π

(
1

σs0
− 1

σ

)

+

Ns∑

n=1

(2n+ 1)[R̄(1)
n (σ) − ¯̄R(0)

n (σ)]Pn(cos γ) + [T̄ (1)
n (σ)− ¯̄T (0)

n (σ)]Pn(cos γ1) (A11)

in the range σs0 < σ < σs1; and

φs =

Ns∑

n=1

(2n + 1)[R̄(1)
n (σ)− R̄(0)

n (σ)]Pn(cos γ) + [T̄ (1)
n (σ)− T̄ (0)

n (σ)]Pn(cos γ1) (A12)

in the range σ1 < σ < σs0. Here, the following notations are introduced:

¯̄R(j)
n (σ) =

Qs

8π
√
σσsj

× (σsj/σ)
ξn/2[1− βn (σ1/σsj)

ξn ]

ξn

[
(σ/σm)

ξn + (ξn − 1)/(ξn + 1)

βn (σ1/σm)ξn + (ξn − 1)/(ξn + 1)
+

(σ/σm)
ξn − 1

βn (σ1/σm)ξn − 1

]

, (A13)

¯̄T (j)
n (σ) =

Qs

8π
√
σσsj

× (σsj/σ)
ξn/2[1− βn (σ1/σsj)

ξn ]

ξn

[
(σ/σm)

ξn + (ξn − 1)/(ξn + 1)

βn (σ1/σm)ξn + (ξn − 1)/(ξn + 1)
− (σ/σm)

ξn − 1

βn (σ1/σm)ξn − 1

]

, (A14)
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R̄(j)
n (σ) =

Qs

8π
√
σσsj

× (σ/σsj)
ξn/2[1− βn (σ1/σ)

ξn ]

ξn

[
(σsj/σm)

ξn + (ξn − 1)/(ξn + 1)

βn (σ1/σm)ξn + (ξn − 1)/(ξn + 1)
+

(σsj/σm)
ξn − 1

βn (σ1/σm)ξn − 1

]

, (A15)

T̄ (j)
n (σ) =

Qs

8π
√
σσsj

× (σ/σsj)
ξn/2[1− βn (σ1/σ)

ξn ]

ξn

[
(σsj/σm)

ξn + (ξn − 1)/(ξn + 1)

βn (σ1/σm)ξn + (ξn − 1)/(ξn + 1)
− (σsj/σm)

ξn − 1

βn (σ1/σm)ξn − 1

]

. (A16)
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