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CHIMERA STRUCTURES IN THE ENSEMBLES OF NONLOCALLY COUPLED
CHAOTIC OSCILLATORS

V. S.Anishchenko∗and G. I. Strelkova UDC 517.9+621.372

We study the structure and properties of the chimera states in the ensembles of chaotic oscillators
with nonlocal coupling. It is shown that the phase and amplitude chimera states in the ensembles
of chaotic oscillators with nonhyperbolic and hyperbolic attractors can be obtained using the
models in the forms of two-dimensional Hénon and Lozi maps. The mechanisms of birth, the
structure, and the lifetime of the phase and amplitude chimeras and the regime of solitary states
are studied. The chimera states in two coupled ensembles of chaotic maps are considered. The
possibility of realizing a new type of the chimera structure, namely, the chimera consisting of the
solitary states is demonstrated. The effects of the external and mutual synchronizations of the
chimera states are described by an example of two coupled ensembles of logistic maps with nonlocal
coupling. A qualitative analogy of the obtained results with the classical effect of synchronization
of periodic self-sustained oscillations is discussed.

1. INTRODUCTION

The studies of collective dynamics of the ensembles of various nature and the dissipative-structure
formation in them have for several decades been in the focus of attention of the specialists in nonlinear
dynamics of complex systems of interacting oscillators [1, 2]. It has been established that appearance of the
synchronization clusters, spatial intermittency, and regular and chaotic spatiotemporal structures is typical
of nonlinear ensembles. As a rule, many works studied the ensembles of identical oscillators with local or
global coupling. New types of structures, called chimeras, have recently been discovered [3–5]. To a large
extent, their appearance is due to introduction of the nonlocal coupling among the ensemble oscillators.
Three types of coupling among the ensemble oscillators are considered in the chimera-state studies, namely,
local, global, and nonlocal. In the case of local coupling, each ensemble element is symmetrically coupled
with P right- and left-hand neighbor oscillators (in the one-dimensional ensemble, we have P = 1). In
the case of global coupling, each oscillator is coupled with all ensemble oscillators on the right- and left-
hand sides (P = N/2, where N is the number of ensemble oscillators). For the nonlocal coupling type,
an individual oscillator is coupled with the finite number P of the neighbor right- and left-hand oscillators
(1 < P < N/2). The chimera structures were observed for the first time in a one-dimensional ensemble of
the nonlocally coupled phase oscillators [3] and then this effect was in more detail described in [4], in which
the notion of the chimera states was proposed. The chimera structures are the clusters of a finite number
of oscillators with incoherent (nonsynchronous) dynamics, which coexist with the clusters with coherent
(synchronous) dynamics. The chimera spatiotemporal structures are characterized by distinct boundaries
in the ensemble and are rather rough formations, i.e., do not disappear in the case of small perturbations
of the ensemble parameters and the initial conditions.
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In recent years, the chimera structures have attracted attention of many researchers. Many works have
been published in which numerical, theoretical [6–32], and experimental [33–38] results of chimera studies
are reported. The chimera structures have been discovered in the ensembles containing various types of
identical discrete and differential nonlinear oscillators [11, 12, 17, 29, 39]. Analysis of various spatiotemporal
structures, including the chimera states in complex ensembles, is not only of fundamental value, but also of
great practical significance. It is important when studying the Josephson-junction arrays [40], large arrays
of the coupled lasers [41], the neural networks [42], the brain dynamics [43], power-supply networks [44, 45],
and other systems.

In this work, we consider the chimera structures in the ensembles of nonlocally coupled chaotic
oscillators with discrete time. Our studies have shown that choosing the ensembles of relatively simple one-
and two-dimensional maps, we can study the phase and amplitude chimera structures, which are also realized
in more complex ensembles of differential systems. However, in this case, the mathematical simulation of
the ensemble dynamics becomes much simpler. This work presents a brief review of the results which have
been obtained in recent years by the Division of Radio Physics and Nonlinear Dynamics at Saratov State
University.

2. BASIC MODELS OF DISCRETE CHAOTIC SYSTEMS WITH HYPERBOLIC
AND NONHYPERBOLIC ATTRACTORS

Detailed studies of the spatiotemporal structures in the ensembles of nonlocally coupled chaotic
systems, both discrete and differential, show the conceptual dependence of the type of the realized structures
on the type of chaotic attractors of the individual oscillators in the ensemble. It was established that certain
spatiotemporal structures, including the chimera ones, are born in the ensembles consisting of chaotic
oscillators with the nonhyperbolic type of chaotic attractors. In this case, the type and characteristics of
the realized structures turn out to be similar for many studied systems. In the ensembles composed of
the oscillators with hyperbolic (or, to be more exact, quasihyperbolic) attractors, other-type structures are
realized and, which is the most important, the chimera structures are not usually born in such ensembles [27].
On the basis of numerous computer experiments, the two-dimensional Hénon and Lozi maps were introduced
as the basic models [17, 46]. It is shown that they can be used to describe formation of the spatiotemporal
structures including the chimera ones in a wide class of ensembles of nonlocally coupled oscillators. The
Hénon and Lozi maps are described by discrete Eqs. (1) and (2), respectively:

xn+1 = 1− αx2n + yn, yn+1 = βxn, (1)

xn+1 = 1− α|xn|+ yn, yn+1 = βxn, (2)

where n is the discrete time. Both maps are two-dimensional, and each map contains two control parameters
α and β. The parameter α controls nonlinearity, while the parameter β characterizes the compression degree
of the phase-space element on the plane of the phase variables (x, y).

Hénon system (1) realizes transition to chaos via the cascade of period-doubling bifurcations in
accordance with the Feigenbaum universality. Born as a result of period doublings, the chaotic attractor is
nonhyperbolic. It contains a theoretically infinite number of stable and unstable fixed points. This is due to
the effects of homoclinic touching of the stable and unstable separatrices of the saddle points. According to
the Afraimovich and Shil’nikov, such a type of chaotic attractor is called a quasi-attractor and characterized
by multistability. The Hénon map qualitatively describes the dynamics of a fairly wide class of chaotic
systems. Therefore, in the case of strong compression (β � 1), we obtain a one-dimensional logistic map.
For spiral attractors in three-dimensional differential systems, the Poincaré map on the two-dimensional
secant turns out to be topologically equivalent to the Hénon map [47]. As is evident from the studies, the
ensembles of the Rössler and the Anishchenko–Astakhov oscillators realize the spatiotemporal structures
from the logistic and cubic maps, such that these structures are similar to those observed in an ensemble of
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Fig. 1. Bifurcation diagrams for the ensembles of nonlocally coupled Hénon (a) and Lozi (b) maps. The
figure inserts demonstrate instantaneous amplitude profiles, namely, a uniform profile (straight line) in the
complete-synchronization region A and the amplitude profiles with one, two, and three maxima, which are
realized with decreasing coupling radius r. Inside the regions C, D, and E, the period-doubling bifurcations
take place with decreasing coupling force σ.

nonlocally coupled Hénon maps [12, 29].

Lozi map (2) demonstrates a hard transition to an almost hyperbolic chaotic attractor, which is the
only one in the system phase space and does not include stable points. Multistability in the Lozi system
is ruled out. For β = 0, the Lozi map is transformed to the one-dimensional tent map and simulates the
dynamics of the differential three-dimensional systems with the Lorenz-type hyperbolic attractor in the
Poincaré secant. Therefore, using the Hénon and Lozi maps as individual oscillators of the ensembles, one
can describe the spatiotemporal structures in a sufficiently wide class of chaotic systems. Let us consider
the dynamic and statistical characteristics of the spatiotemporal structures, which can be realized in the
ensembles of nonlocally coupled Hénon and Lozi maps.

3. ENSEMBLE OF NONLOCALLY COUPLED HÉNON MAPS

Let us consider a one-dimensional ensemble that consists of N nonlocally coupled Hénon or Lozi
maps with periodic boundary conditions, i.e., closed in a ring, and is described by the following equations:

xt+1
i = f(xti, y

t
i) +

σ

2P

i+P∑

j=i−P

[
f(xtj, y

t
j)− f(xti, y

t
i)
]
, yt+1

i = βxti. (3)

Here, xt and yt are the real values of the phase variables, t is the discrete time, σ is the nonlocal-coupling
coefficient, P is the number of the neighbor elements of the ensemble on the right- and left-hand sides of
the element with the number i, i = 1, 2, . . . , N is the serial number of the element in the ensemble, and
N = 1000. The functions f(xi, yi) and f(xj, yj) correspond to the right-hand side of the first equation
of Hénon map (1) or map Lozi (2). The parameters of both maps have fixed values, namely, α = 1.4 and
β = 0.3. The initial conditions for the ensemble elements were chosen randomly distributed in a unit square.

Figure 1 shows the bifurcation diagrams for ensembles of the Hénon (Fig. 1a) and Lozi (Fig. 1b) maps
on the plane of the parameters σ and r = P/N (coupling radius). In Fig. 1a, the regions A, C, D, and E
correspond to the regions of coherent dynamics of the Hénon-map ensemble and the region B characterizes
the regime of spatiotemporal chaos. The gradient variation of color in the region B reflects gradual transition
from the partial-synchronization regime (the white region in Fig. 1a) and the traveling-wave regime (the
white region in Fig. 1b) to the spatiotemporal chaos. In the region A, the coherent regime corresponds to
the regime of complete chaotic synchronization. If the coupling radius is fixed at the level r = 0.16, the
chimera structures emerge in the ensemble for the coupling-coefficient values in the interval 0.20 ≤ σ ≤ 0.35.
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Fig. 2. The profile of the instantaneous amplitude values in the Hénon-map ring (3) with the phase and
amplitude chimeras denoted as 1 and 2, respectively (a) and shows the time realizations of the oscillations of
two neighbor oscillators from the phase-chimera cluster, where the blue and red colors correspond to i = 92
and 93, respectively (b). The coupling parameters are σ = 0.258 and r = 0.16.

The studies have shown that two typical regimes, namely, the phase- and amplitude-chimera regimes are
realized [29, 39].

Figure 2a shows the results of calculations of the instantaneous-amplitude profile for an ensemble of
coupled Hénon maps, which illustrates the phase and amplitude chimeras.

The phase chimeras are the incoherent clusters (the regions 1 in Fig. 2a) and simultaneously coexist
with two incoherent amplitude-chimera clusters (regions 2 ) and several coherent clusters (the smooth-profile
regions in Fig. 2a). The incoherence of the phase-chimera clusters manifests itself in that although the
oscillators inside these clusters are characterized by periodic oscillations, they have the “phase” shift which
is irregular along the cluster. Most frequently, this shift is equal to a half oscillation period (the time shift
by one iteration). This is illustrated in Fig. 2b.

The phase shift among the oscillators inside the phase-chimera clusters is confirmed by the calculations
of the normalized mutual-correlation coefficient, which irregularly varies for the phase-chimera cluster, taking
the values +1 or −1 [20, 48]. Another pattern is observed for the amplitude chimera. The oscillators
of the amplitude-chimera cluster are in the regime of the chaotic oscillations which are not correlated.
Therefore, the amplitude chimera to the full extent corresponds to an uncorrelated (nonsynchronous) cluster
in the ensemble. The oscillators of the amplitude-chimera cluster demonstrate the oscillation irregularity in
time, which manifests itself in the effect of intermittency among several oscillation types [28]. This effect
is represented by the time-irregular toggling among the chaotic oscillations, which reflect the amplitude-
chimera dynamics, and the periodic oscillations, which are typical of the phase-chimera regime. Our studies
have shown that the intermittency regime is observed for a sufficiently long but finite time, which determines
the amplitude-chimera lifetime. Once this process is completed, all the oscillators belonging to the amplitude-
chimera cluster switch to the long-living phase-chimera regime [28]. The fact that the amplitude chimera
is characterized by the irregular toggling from one regime to the other (intermittency) and realized over a
finite time interval refers this chimera type to the so-called transient chimeras [21].

The studies have shown that using the external noise action, one can control the amplitude-chimera
lifetime and, in particular, make it significantly longer [28].

4. AN ENSEMBLE OF NONLOCALLY COUPLED LOZI MAPS

Let us consider the dynamics of ensemble (3), using the Lozi map as an individual oscillator in the
ensemble. The studies [27, 46] show that in this ensemble, one can also observe transition from the regime
of complete chaotic synchronization to that of the spatiotemporal chaos with varying nonlocal-coupling
intensity. However, first, this transition is performed via the regime of the so-called solitary states and,
second, the chimera-state regimes are not observed in this case. Let us consider the bifurcation diagram of
the regimes for the Lozi ring, which is given in Fig. 1b.

662



xi

i i i

0.0

0.4

0.8

1 1 1250 250 250500 500 500750 750 750

b) c)a)

Fig. 3. The solitary-state regimes in the ring of coupled Lozi maps for r = 0.2 and decreasing coupling
parameter σ: σ = 0.226 (a), 0.225 (b), and 0.223 (c). In the first case, one amplitude spike is observed (a)
followed by two (b) and over (c) spikes.

This bifurcation diagram qualitatively resembles the diagram for the Hénon-map ring (see Fig. 1a)
by the presence of the coherence regions A, C, and D and the spatiotemporal-chaos region B. However,
the transition from the chaotic-synchronization region A to the region B is performed via the solitary-state
regime, while the traveling-wave regimes are observed in the white-colored regions as in the ensemble of
nonlocally coupled Lorenz oscillators [49]. Let us consider the solitary-state regime. If the transition from
the region A to the region B is performed by varying the coupling parameter, the pattern shown in Fig. 3
is realized. For σ = 0.226, a sharp amplitude spike for one oscillator (see Fig. 3a) is observed in the
instantaneous profile. A further decrease in the coupling parameter leads to an increase in the number
of oscillators in the amplitude-spike regime (see Figs. 3b and 3c) and is completed by the transition to
the spatiotemporal-chaos regime. It is noteworthy that the chimera structures are not realized during this
transition. The mechanism of birth of the solitary-state regime is due to variation in the properties of the
individual oscillators of the ensemble under the action of the signals from the neighbor oscillators because
of the nonlocal coupling. According to our studies, the dynamics of the individual Lozi oscillator in the
ensemble is considerably changed under the action of P neighbor left- and right-hand oscillators. Under
the external action, the Lozi system ceases to be hyperbolic and becomes bistable. The amplitude jumps in
Fig. 3 correspond to the phase-trajectory jump-over to the second attractor because of the random initial
conditions. The attraction region of the second attractor increases with decreasing coupling coefficient σ.
This results in an increase in the number of solitary states, which is shown in Fig. 3.

Let us consider this issue in more detail. Using simple transformations, Eq. (3) of the ring can be
reduced to the form

xt+1
i = (1− σ)f(xti, y

t
i) +

σ

2P

i+P∑

j=i−P

f(xtj, y
t
j), yt+1

i = βxti. (4)

The obtained system (4) shows that the nonlocal-coupling influence leads to the fact that the coupling
coefficient changes the individual-oscillator form, i.e., the multiplier (1−σ) appears in front of the oscillator
equation (the first term in Eq. (4)) and this oscillator operates in the nonautonomous regime under the action
of the neighbor P oscillators (the second term) due to nonlocal coupling. As a result of these changes, the
individual oscillators in the ensemble acquire essentially other properties. Special studies of the Lozi-map
ring show that the individual oscillators in the ensemble take the following bistability properties due to
action (4): another attractor emerges near the Lozi attractor, such that the attraction region of the new
attractor is sufficiently small and enlarges with decreasing coupling coefficient. The calculation results are
given in Fig. 4.

By virtue of the random nature of specifying the initial conditions, one ensemble oscillator falls
within the narrow attraction basin (see Fig. 4a) and goes over to the solitary-state regime. As the coupling
coefficient decreases, the attraction basins are enlarged (see Fig. 4b) and a still greater number of oscillators
go over to the solitary-state regime. The number of such oscillators increases according to the linear law
with decreasing coupling coefficient and becomes almost equal to N as the coupling coefficient tends to zero.
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Fig. 4. Attractors of system (4) for various values of the coupling coefficient σ: σ = 0.226 (a) and 0.200 (b).
The light-gray color is used to show the attraction basins of the attractors of the solitary states, which were
calculated for the chosen oscillator of ensemble.

In the limiting case σ = 0, as it follows from Eq. (4), the system consists of the isolated Lozi oscillators
such that each oscillator contains only the initial attractor. A new attractor, which corresponds to the
solitary-state regime, disappears and the ensemble goes over the spatiotemporal-chaos regime.

5. CHIMERA OF THE SOLITARY STATES IN THE COUPLED ENSEMBLES
OF HÉNON AND LOZI MAPS

Let us consider a system of two mutually coupled ensembles with nonlocal coupling that consists of
the one-dimensional rings of Hénon and Lozi oscillators. The ensemble equations are written as follows:

xt+1
i = f(xti, y

t
i) +

σ1
2P

j+P∑

j=i−P

[f(xtj, y
t
j)− f(xti, y

t
i)] + γF t

i , yt+1
i = βxti, (5a)

ut+1
i = g(uti, v

t
i) +

σ2
2R

j+R∑

j=i−R

[g(utj , v
t
j)− g(uti, v

t
i)]− γF t

i , vt+1
i = βuti, (5b)

where i = 1, 2, . . . , N and N = 1000. Systems of Eqs. (5a) and (5b) describe the ring of nonlocally coupled
Hénon maps (f(x, y) = 1− αx2 + y) and the ring of nonlocally coupled Lozi maps (g(u, v) = 1− α |u|+ v)
maps, respectively. Two rings are coupled via the coupling function F , which has the following form in the
cases of dissipative and inertial couplings among the rings, respectively:

F t
i = g(uti, v

t
i)− f(xti, y

t
i), F t

i = uti − xti. (6)

The coefficient γ characterizes the force of the symmetric coupling among the ith oscillators of Hénon and
Lozi rings.

As a result of numerical studies, it has been established that all the spatiotemporal structures, which
have been found by present time in the individual (uncoupled) Hénon and Lozi ensembles, can be realized in
the considered system of Eqs. (5a) and (5b) during the parameter variation. Thus, for example, in the case
of variation in the symmetric-coupling parameter γ, the regimes of the phase and amplitude chimeras can
be realized in the Lozi ring, while the solitary-state and traveling-wave regimes in the ensemble space can
be realized in Hénon ring. In addition to the above-mentioned structures, a new type of the chimera states,
which are called the solitary-state chimeras and represents the chimera structure including the solitary
states, can be realized in system of Eqs. (5a) and (5b) for both dissipative and inertial coupling types [50].
A new structure emerges in the ensemble of Hénon oscillators for a small coupling coefficient γ and its form
is shown in Fig. 5.
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Fig. 5. Instantaneous profile of the dynamics of the Hénon-map ensemble in the coupled system of Eqs. (5a)
and (5b), which illustrates the coexistence of the solitary-state chimera and the amplitude chimera for a small
coupling coefficient γ = 0.005.

The incoherent cluster of the solitary-state chimera includes a group of oscillators (300 < i < 500 in
Fig. 5) in the solitary-state regime, which operate in the chaotic regime as distinct from the phase chimera.
The new structure is insensitive to the small variations in the initial conditions and realized in the finite
region of variation in the control parameters of the system of Eqs. (5a) and (5b). The studies of the properties
of the amplitude chimera in the system of Eqs. (5a) and (5b) of the coupled ensembles have shown complete
compliance of its properties with the amplitude-chimera characteristics, which were described above for the
solitary Hénon-map ring. The amplitude chimera is also characterized by the nonstationarity of oscillations
in time for all oscillators the cluster and, as a rule, the lifetime finiteness. However, in a system of two
coupled rings, the amplitude-chimera lifetime can be controlled in the wide range by varying the coupling
coefficient γ. In this case, the lifetime dependence on the coupling parameter γ turns out to be essentially
nonlinear.

6. EXTERNAL AND MUTUAL SYNCHRONIZATIONS OF THE CHIMERA STRUCTURES

The chimera-structure synchronization effects were studied by examples of the systems of coupled
ensembles composed of various oscillators with the chaotic dynamics [50, 51]. For clarity, let us consider an
example of the chimera-structure synchronization in a system of the two simplest coupled ensembles of the
rings of logistic maps with nonlocal coupling using the parameter detuning. The equations of the system
have the form

xt+1
i = f t

i +
σ1
2P

i+P∑

j=i−P

(
f t
j − f t

i

)
+ γ2 1F

t
i , yt+1

i = gti +
σ2
2R

i+R∑

j=i−R

(
gtj − gti

)− γ1 2F
t
i ,

f t
i = α1x

t
i (1− xti), gti = α2y

t
i(1− yti). (7)

Here, α1 and α2 are the logistic-map nonlinearity parameters, σ1 and σ2 are the nonlocal-coupling coeffi-
cients, P = R = 320, N = 1000, F t

i = gti − f t
i is the function of the dissipative coupling of the rings, and

γ2 1 and γ1 2 are the coefficients of coupling of the rings. For the external-synchronization regime, we have
γ2 1 = 0 and γ1 2 = γ, whereas γ2 1 = γ1 2 = γ for the mutual-synchronization regime.

Let us specify the parameters of the first and second rings such that various spatiotemporal structures
can be realized in them in the absence of coupling. Let us fix the parameters, which are the same for the first
and second rings (R = P = 320 and N = 1000), and choose the values α1 = 3.7, σ1 = 0.23, α2 = 3.85, and
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Fig. 6. Spatiotemporal profiles of the amplitude yti in the second ring for the regimes of absence (γ = 0.15;
a) and presence (γ = 0.45b) of the external-synchronization effect.

σ2 = 0.15. In this case, the phase- and amplitude-chimera regimes are realized in the first ring in the absence
of coupling of the rings, while the regime that is close to the spatiotemporal chaos is realized in the second
ring for the above-mentioned parameters in the absence of coupling. The choice of the particular values
of the above-mentioned parameters is not crucial. The main requirement for studying the synchronization
effect is that the chosen parameter values should ensure the difference in the spatiotemporal structures of
the rings in the absence of coupling.

Let us now follow the structure evolution in the second ring when introducing the unidirectional
coupling. The calculations show that the spatial structures in the second ring change with introducing
the coupling and increasing the quantity γ, and gradually approach the form of the initial structure of the
control ring. Once the coupling coefficient reaches the value γ = 0.40 and over, the controlled-ring structure
becomes identical to that in the control ring. This is illustrated in Fig. 6. Note that the dynamics of the
elements of the coupled rings is shown in the figure using the spatiotemporal profiles, which represent the
set of 100 latest instantaneous profiles of the ensemble states [29].

Strictly speaking, the results shown in Fig. 6 are insufficient to ascertain the effect of the chimera-
structure synchronization. One should quantitatively substantiate the identity of the synchronous struc-
tures and demonstrate the existence of the finite synchronization region in the system-parameter space.
The following mutual-correlation coefficient can be one of the possible quantitative characteristics of the

666



synchronous dynamics of two oscillators:

Ri =
〈x̃i(t) ỹi(t)〉√
〈x̃2i (t)〉 〈ỹ2i (t)〉

, (8)

where x̃i(t) = xi(t) − 〈xi(t)〉, ỹi(t) = yi(t) − 〈yi(t)〉, xi and yi are the oscillation amplitudes in the first
and second coupled ensembles, respectively, the angle brackets denote time averaging, and i = 1, 2, . . . , N
are the numbers of the corresponding elements of the interacting ensembles. The synchronous dynamics
of the oscillators corresponds to the equality Ri = 1.0, whereas the coefficient Ri is smaller than unity in
the absence of synchronization. The performed calculations indicate that the structure shown in Fig. 6b is
actually identical to and, thus, synchronous with the initial structure, which is observed in the control ring
in the absence of the inter-ring coupling. In this case, the mutual-correlation coefficient Ri > 0.99 and this
condition is fulfilled in the finite region of the control-parameter variation. Therefore, it can be concluded
that in the case of unidirectional coupling, the chimera structure of the first (control) ring synchronizes the
structure in the second (controlled) ring and the effect of external synchronization of the chimera structures
is realized.

The experiment whose results are given in Fig. 7
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Fig. 7. The region of external synchronization of
the spatiotemporal structures in system (7) on the
parameter plane (α1, γ) for α2 = 3.85, σ1 = 0.23,
and σ2 = 0.15. In the hatched region A, the coef-
ficient of mutual correlation of oscillations of the
oscillators xti and yti is equal to Ri > 0.99.

is more instructive. Let us fix α2 = 3.85 in the controlled
ring and construct the synchronization region on the plane
of two parameters, namely, the coupling coefficient γ and
the nonlinearity parameter α1 of the control ring. The
variations in the parameter α1 change the form of the
spatiotemporal structures in the control ring. Accord-
ing to the calculations, the control-ring structures, which
are realized in the case of variation in the parameter α1,
synchronize the similar structures in the controlled ring
with increasing coupling coefficient γ. Then, varying the
coupling coefficient, we calculate the mutual-correlation
coefficient Ri and construct the synchronization region,
which is shown in Fig. 7. In the hatched region A, we
have Ri > 0.99. Therefore, the structures, which are to-
tally synchronous with the structures in the control ring,
are realized in the A region. In this case, it should be
noted that during variations in the parameters α1 and
γ, different structures are observed inside the A region in
Fig. 7 because of the parameter α1 variation in the control
ring. However, the structures in the first and the second
rings are identical and synchronous everywhere in the A region.

To study the mutual synchronization of the chimera structures, we introduce the symmetric bidirec-
tional coupling to Eq. (7) of the coupled ring by putting γ1 2 = γ2 1 = γ. Introducing a slight detuning for
the parameters α1 and α2 in the ensembles of logistic maps, in the absence of coupling we obtain different
chimera structures in the first and the second rings (see Fig. 8a). As it follows from the calculations, once
the coupling is introduced, the structures start to converge and become synchronized for γ > 0.07 (see
Figs. 8b and 8c).

The calculations of the mutual-correlation coefficient show that this condition is also fulfilled in the
synchronization regime Ri > 0.99 in the finite region of the coupling-coefficient variation. Therefore, one
can speak of realization of the effect of mutual synchronization of the chimera structures in the coupled
ensembles described by Eq. (7). Note that the synchronous structures do not coincide with the structure
forms in the first and the second ensembles in the absence of coupling, which is well seen in Fig. 8.
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The above-described synchronization effect can qualitatively be compared with classical synchroniza-
tion effect of periodic self-sustained oscillations. Indeed, in the case of external and mutual synchronization
of the limit cycle, the spectral line of oscillations at the frequency ω can be considered as the simplest
structure. Then, in the case of external synchronizations, the behavior of the external (master) oscillator
is characterized by the spectral line at the frequency ω1, while the structure of the slave-controlled oscilla-
tor, by the spectral line at the frequency ω0. In the synchronization region, the frequency-locking effect is
realized and these frequencies coincide.

In the case of mutual synchronization of the oscillators with close frequencies ω1 and ω0, a similar
phenomenon is observed with the only difference that the frequency ω1 or ω0 or a certain intermediate
frequency in the range ω1 < ω < ω0 can be set in the synchronization region. According to the results
presented in Sec. 5, a qualitatively similar pattern is realized in the case of interaction of two ensembles
of nonlinear oscillators. For external synchronization, the spatiotemporal structure of the control ensemble
ensures locking of the controlled-ensemble structure, and the synchronous-structure identity is preserved
in the synchronization region. In the case of mutual synchronization, the mutual locking of the structures
in the coupled ensembles is performed. In this case, the synchronized structures differ from the initial
structures in the ensembles in the absence of coupling (see Fig. 8), which is also observed during the mutual
synchronization of the coupled periodic oscillators.

The results shown in Fig. 7 also support the possibility of comparing the effect of synchronization
of the spatiotemporal structures with the classical effect of the limit-cycle synchronization. The external-
synchronization region in Fig. 7 qualitatively resembles the region of external synchronization of the limit
cycle on the external-action amplitude–frequency detuning plane. In the case of the mutually coupled
ensembles, the role of the action amplitude is played by the coupling coefficient γ, while that of the frequency
detuning, by the parameter α1 for the fixed parameter α2. As distinct from the limit-cycle synchronization,
in the case of the ensemble synchronization, we deal with the synchronization threshold with respect to the
coupling parameter γ (see Fig. 7). The threshold presence is explained by the nonidentity of the interacting
ensembles and the threshold level is a function of the nonlocal-coupling radius (the numbers R and P in
Eq. (7)).

The above-performed comparison allows one to consider the results of synchronization of the chimera
states as generalization of the concepts of the classical theory of synchronization of the periodic self-sustained
oscillations to the case of synchronization of the spatiotemporal structures in the systems of the coupled
ensembles of nonlinear oscillators.

7. CONCLUSIONS

In this work, it has been established that the Hénon and Lozi maps can be the basic models for de-
scribing the dynamic properties of the one-dimensional ensembles of chaotic systems with nonlocal coupling.
The results of the analysis of the dynamics of the ensembles composed of Hénon and Lozi maps have been
presented. It has been shown that the phase and amplitude chimera states [29, 39] are realized in the Hénon
ensembles in the regime of nonhyperbolic chaos. The structure, properties, and correlation characteristics
of the phase and amplitude chimeras have been described briefly. In [28], it is shown that the amplitude
chimera in a solitary ensemble is characterized by the finite lifetime, which can be controlled using the
noise action. In the Lozi-map ensembles, the traveling-wave and solitary-state regimes are realized, but the
chimera-state regimes do not emerge [27, 46]. The mechanism of appearance of the solitary-state regime due
to bistable dynamics of the ensemble elements because of the nonlocal-coupling influence has been discussed.

The above-given results totally correspond to the data available in the literature. Thus, all the spa-
tiotemporal structures similar to those emerging in the Hénon ensemble are realized in the one-dimensional
ensembles of nonlocally coupled R’́ossler oscillators, Anishchenko–Astakhov oscillators, and logistic and cu-
bic maps [12, 29]. The results of studying the dynamics of a one-dimensional ensemble of nonlocally coupled
Lorenz oscillators in the regime of almost hyperbolic chaos [17] also totally correspond to the results which
were discussed in this work for the ensemble of the Lozi oscillators. Therefore, the basic models of the
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Fig. 8. Effect of mutual synchronization of the chimera structures in the symmetrically coupled ensembles xti
(the left-hand column) and yti (the right-hand column) for various values of the coupling parameter γ equal
to γ = 0.000 (a), 0.025 (b), and 0.075 (c) for α1 = 3.70, α2 = 3.85, and σ1 = σ2 = 0.28.

chaotic Hénon and Lozi oscillators do allow one to analyze a wide class of ensembles of nonlocally coupled
chaotic oscillators.

We have also considered the case of two mutually coupled one-dimensional ensembles composed of the
nonlocally coupled chaotic maps of various types. In this case, a new chimera-structure type (solitary-state
chimera), which includes a finite number of oscillators in the solitary-state regime as an incoherent cluster,
has been described.
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In Sec. 6, we have considered the effects of external and mutual synchronizations of the chimera
structures by an example of two coupled ensembles of logistic maps. The obtained results have been
compared with and shown to be analogous to the conclusions of the classical theory of synchronization of
the periodic self-sustained oscillations.

This work was supported by the German Physical Society (project No. SFB 910) and the Ministry
of Education and Science of the Russian Federation within the framework of the state assignment (project
No. 3.8616.2017/8.9).
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