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RESONANCE INTERACTION OF RELATIVISTIC ELECTRONS
WITH ION-CYCLOTRON WAVES. I. SPECIFIC FEATURES
OF THE NONLINEAR INTERACTION REGIMES

V. S.Grach1∗ and A.G.Demekhov1,2 UDC 550.385.41+533.9

We analyze the resonant interaction of relativistic electrons with ion-cyclotron waves in the
Earth radiation belts. Finite-length wave packets with variable frequencies and different amplitude
profiles are considered. Specific features of the nonlinear interaction regimes are analyzed on
the basis of solving numerically a system of equations of the particle motion along with the
efficiency of this interaction for a single pass of the particle through the wave packet. In the first
part of this work, the peculiarities of the trajectories of individual particles are analyzed. The
influence of the shape of the wave packet on the well-known regimes, such as particle trapping
by the wave field and particle phase bunching, which leads to a non-zero average variation in
the pitch angle in an inhomogeneous medium, are considered. It is shown that a long stay of a
particle near the separatrix on the phase plane in the region far from the saddle leads to a strong
decrease in the pitch angle of the particle in the absence of the trapping as well. This nonlinear
regime (directed scattering) is possible for comparatively low initial pitch angles. In this case,
the value of the pitch angle decrease depends on the initial phase of the particle. It is shown
that the trajectories corresponding to the directed scattering can be regarded as a transitional
type of trajectories, between the trajectories of the untrapped and trapped particles. Quantitative
estimates of variations in the pitch angle are obtained, and it is confirmed that the directed
scattering and trapping of particles by the wave field can lead to electron precipitation into the
loss cone.

1. INTRODUCTION

Electromagnetic ion-cyclotron waves (ICWs or EMIC waves) are one of the main types of plasma
oscillations in the Earth’s magnetosphere. They are observed in a wide range of the McIlwaine parameters
and longitudes, L = 3–10 and 5 through 21 hours of the magnetic local time, respectively [1–5]. In quiet
times, the maximum of ICW activity occurs at high L-shells (L > 6) and the daytime sector of the mag-
netosphere, i.e., from 9 to 15 hours of the magnetic local time [1, 4, 5]. During perturbations, ICWs are
observed at lower L-shells [4, 6].

Along with the noise ICW bursts, quasimonochromatic wave packets of the pearl or hydromagnetic
chorus types with frequencies of about 1–2 Hz are detected [7–11]. According to the current concepts [7,8,12],
the pearl-type emissions, i.e., periodic sequences of quasimonochromatic wave packets having periods of
about 100 s and increasing frequencies within each wave packet, are excited in the regime of spike-mode
generation in the Alfvén maser. A great role in the formation of the spectrum of such waves is played by the
selective and nonlinear character of reflections from the ionosphere, modulation of the growth rate of the
cyclotron instability by oscillations of the geomagnetic field, and reflection from the regions of gyroresonance
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of heavy ions [8]. In terms of their structure, hydromagnetic chorus events or similar triggered EMIC
signals [11] are similar to chorus emissions in the range of very low frequencies (VLF) in the whistler
mode [13]. Probably, their generation mechanism is similar to that of VLF chorus events [14], i.e., the
backward-wave oscillator regime in the magnetosphere maser [15]. The nonlinear theory of hydromagnetic-
chorus generation was also developed in [16,17].

Observations show that ICW propagation is aligned with the magnetic field mainly, and the ampli-
tudes of the waves can reach 1–7 nT [9,10,18,19]. Scattering in the loss cone caused by resonance interaction
with ICWs is regarded as the main mechanism of precipitation of relativistic electrons from the radiation
belts to the Earth’s atmosphere [20]. This interaction was studied within the framework of the quasilinear
theory [21,22], as well as allowing for the nonlinear effects, both for the monohochromatic wave [23–26] and
for the wave packets having a finite length [27–29].

The authors of [23] studied the influence of phase bunching of particles and particle trapping by
the wave field [30–32] on the efficiency of the scattering into the loss cone . In [26], the probability of
particle trapping by the wave field and stability of the motion in this regime were estimated. It was shown
in [27,28] that the scattering into the loss cone after a single pass of an electron through a variable-frequency
wave packet is more efficient than that for constant-frequency wave packets. In [29], long-term interaction of
electrons with the wave packet during many bounce oscillations was calculated, and the efficiency of electron
precipitation was analyzed for four model wave packets having variable amplitudes. The authors of [29] also
found the regime with an abnormally great drop in the pitch angle for untrapped particles (in what follows,
we will call it directed scattering), which is connected, in their opinion, with the influence of the Lorentz
force, i.e., its projection on the direction aligned with the radius of the Larmore circle, in the absence or
particle trapping or after the particle exit from the trapping regime.

Allowing for the results obtained in [27–29], a comprehensive study of possible nonlinear regimes of
the interaction of relativistic electrons with a finite-length ICW packet (numerical calculations and their
physical interpretation) is still of great interest, since the dynamics of these regimes depending on the
electron energy and the properties of the wave packet should be understood more thoroughly.

In this work, we use numerical calculations as a basis to consider the influence of the wave amplitude
profile on the resonance interaction of relativistic electrons with a finite-length ICW packet having a variable
frequency and study various nonlinear interaction regimes and efficiency of electron scattering in the case
of a single pass through the wave packet. In the first part of the work presented here, specific features of
the trajectories of individual particles are analyzed for three main nonlinear interaction regimes, specifically
(directed scattering, a weak increase in the pitch angle for a greater fraction of untrapped particles due
to their phase bunching, and particle trapping by the wave field. In the second part of the work, we will
consider the dynamics of the interaction regimes and efficiency of electron scattering into the loss cone
depending on the electron energy, spatial position of the wave packet, and the profile of the wave amplitude.

2. PROBLEM STATEMENT AND MAIN EQUATIONS

Consider the interaction of relativistic electrons with a packet of ion-cyclotron waves, which propa-
gates along the magnetic field of the Earth, B0. Since the frequency ω of the ion-cyclotron wave is much
lower than the nonrelativistic gyrofrequency of electrons, Ωc, the resonance interaction is possible only for
the relativistic particles (γ > 1) at the anomalous Doppler effect:

ω − kv|| = −|l|Ωc/γ. (1)

Here, k = |k|, k||B0 is the wave vector, l is the resonance number (for longitudinal propagation, it is possible

only at l = 1), v|| is the longitudinal electron velocity (relative to the field B0) γ =
√

1 + [p/(mc)]2 is the
relativistic factor, m and p are the rest mass and momentum of electron, respectively, and c is the speed of
light.

Under conditions where the inhomogeneity of the magnetic field B0 can be assumed smooth, the
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amplitude of the wave Bw is sufficiently low (Bw � B0), and the wave parameters change with time t slowly
compared with Ω−1

c , the system of equations, which describe the resonance interaction of a relativistic
electron with an ion-cyclotron wave, can be written as

dW

dt
= −ev⊥|Ew| sinΨ, (2)

dI⊥
dt

= − 2e

mB0
p⊥(1− n||β||)|Ew| sinΨ, (3)

dΨ

dt
= −Δ− e

p⊥
(1− n||β||)|Ew| cosΨ, (4)

dz

dt
=

p||
mγ

. (5)

Here, the coordinate z is aligned with B0, e > 0 is the elementary charge, p⊥ and p|| the transverse and
longitudinal (with respect to the field B0) electron momenta, respectively, Ew is the absolute value of the
electric field of the wave, n|| = kc/ω, Ψ is the angle between the vector p⊥ of the transverse momentum and
the vector −Bw, β|| = v||/c, v⊥ is the absolute value of the transverse electron velocity, W = (γ − 1)mc2

and I⊥ = p2⊥/(mB0) are the kinetic energy and the first adiabatic invariant of the electron, respectively,
and Δ = ω− kv||+Ωc/γ is the mismatch from resonance. The first term on the right-hand side of Eq. (4) is
responsible for the so-called inertial, or kinematic, bunching, whereas the second term connected with the
projection of the Lorentz force on the direction of the radius of the Larmor circle is responsible for the force
bunching.

The equatorial electron pitch angle ΘL is expressed in terms of the energy and the adiabatic invariant
by the formula

ΘL = arcsin

√
Ĩ⊥/(γ2 − 1), (6)

where Ĩ⊥ = I⊥B0/(mc2). It is known [12], that at the frequency of the wave being much lower than the
gyrofrequency of the particle, the energy variation rate is much lower than the variation rate of the adiabatic
invariant:

dW̃/dt

dĨ⊥/dt
≈ ω

2Ωc
� 1, (7)

where W̃ = γ−1. Thus, one can assume that under resonant interaction of electron with ICWs, the variation
in the pitch angle ΘL is determined completely by the variation in the value of I⊥.

Many works deal with an analytical study of the resonance interaction of a charged particle with
a wave (including an ion-cyclotron wave), e.g., [23, 26, 30–33], et al. The motion of the particles can be
approximately described by equations of the nonlinear-pendulum type [30]. In this case, the second term
in Eq. (4) is usually neglected. In the presence of the minimum of the effective potential, the particle can
be trapped by the wave field. The trapped particles move along finite trajectories, which correspond to
oscillations in the potential well. The trajectories of the untrapped particles are infinite.

The dimensionless parameter of the effective inhomogeneity can be written in the form R = σRR,
where the term σR = ±1 determines the sign of the efficient inhomogeneity, and

R =
|dΔ/dt|
Ω2
tr

. (8)

Here, Ω2
tr is the squared frequency of electron oscillations in the wave field near the minimum of the effective

wave potential [33]:

Ω2
tr = (1− n−2

|| )
ek2||v⊥|Ew|

mωγ
= (1− n−2

|| )
eωn2

||v⊥|Ew|
mc2γ

. (9)
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Fig. 1. Schematic phase portrait of the considered system on the plane (Ψ,dΨ/dt) for R0 = 1.25, R0 = 1.00,
R0 = 0.25, and R0 = 0.05 (a, b, c, and d, respectively). The separatrices are shown in the red color.

The minimum of the effective potential exists only at R < 1. Correspondingly, the particle can be trapped by
the wave field also at R < 1. In the case, where R � 1, the particle motion can be assumed to be linear: the
particle is untrapped, and the phase at the resonance point Ψres is determined by the unperturbed trajectory
and depends linearly on the initial phase. The total variation in the pitch angle (and energy) is determined
by the initial phase, which can lead to a diffusion in I⊥ (and, correspondingly, pitch angle diffusion) for the
particle ensemble. At R � 1, the nonlinear regime is realized, which is characterized by phase bunching
of the particles and a drift of the values of I⊥, for both the untrapped particles and the particles trapped
by the wave field. Schematic phase portraits for various values of R0 on the plane (Ψ,dΨ/dt) [30–32] are
shown in Fig. 1. Here and in what follows, the superscript 0 denotes the values calculated with respect to
the unperturbed trajectory (with no allowance for the terms proportional to |Ew| in system (2)–(5)).

In the linear case (R � 1, see Fig. 1a; the corresponding values are labeled with the subscript “lin”),
one can use the stationary-phase method [12] to estimate the variation ΔI lin⊥ in the value of I⊥ of the
untrapped particle. This method yields

ΔI lin⊥ = I lin⊥end − I⊥0 = |K0
I⊥ |

√
2π

|Ψ′′
t |0res

sin [Ψres + sgn(Ψ
′′
t |0res)π/4]. (10)

Here, Ψ
′′
t = d2Ψ/dt2, the subscript “res” denotes the values calculated at the resonance point, KI⊥ ≡

−2ep⊥(1 − n||β||)|Ew|/(mB0) is the coefficient in front of the term sinΨ on the right-hand side of Eq. (3),
and I⊥0 and I⊥end are the first adiabatic invariant of the electron before and after trapping, respectively.
The complete variation in the pitch angle can be expressed in terms of ΔI lin⊥ (allowing for γ ≈ const):

ΔΘlin
L = arcsin

⎡
⎢⎢⎣

√√√√ |K0
I⊥ |

√
2π/|Ψ′′

t |0res sin(Ψres ± π/4) + I⊥0

γ2 − 1

⎤
⎥⎥⎦−ΘL0, (11)
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where the subscript 0 corresponds to the initial value.
Schematic phase portraits for the nonlinear case (the NL superscript, R � 1) are shown in Fig. 1c and

Fig. 1d. When the allowance for the inhomogeneity is more accurate, the size and position of the separatrix
vary in the phase space (I⊥,Ψ,dΨ/dt). As the particles approach the separatrix, most of them go round it
on the external side and cross it in the saddle-point area at the resonance moment [23, 31, 32]. The total
variation in the adiabatic invariant for such untrapped particles (between the moments at which the particle
stays far from the separatrix before and after the interaction) can be estimated as follows: [23,31,32]:

ΔINL
⊥ = INL

⊥end − I⊥0 = ± 8

π

|K0
I⊥ |

Ωtr
. (12)

In this case, the total variation in the value I⊥ (and, correspondingly, the angle ΘL) does not depend on
the initial phase, and the resonance phase of the untrapped particles can take values in a narrow range

Ψturn < Ψres < Ψx + 2π, (13)

where the value Ψx corresponds to the saddle of the separatrix in the phase plane (Ψ,dΨ/dt), and sinΨx =
±R0, Ψturn is the opposite point of the separatrix (the turning point), for which the condition dΨ/dt = 0 is
also fulfilled. At R0 → 1, the phases corresponding to the saddle, the state of equilibrium and the turning
point coincide (Ψx ≈ Ψo ≈ Ψturn) and the resonance phase of the transit-type particle can be arbitrary (see
Fig. 1b). At R0 → 0, we have Ψx ≈ −π, Ψturn ≈ π and, according to (13), the resonance phase of the
untrapped particles is approximately equal to Ψres ≈ π (see Fig. 1d).

The sign of the parameter ΔINL
⊥ and the phases Ψx,Ψo and Ψturn are determined by the sign of the

effective inhomogeneity σR, the wave mode, and the resonance type [32]. We consider the interaction of an
electron with an ICW under the anomalous Doppler effect (1) for the case of wave packet propagation away
from the magnetic equator, which corresponds to the assumption about generation of this package in the
equatorial region. In this case, especially allowing for the positive drift of the frequency in the package, σR <
0, so we have ΔINL

⊥ > 0, Ψx = arcsin(R0)−π, Ψo = − arcsin(R0), and cosΨturn−R0Ψturn = cosΨx−R0Ψx.
Thus, in this case the nonlinear regime for untrapped particles can lead to an average increase in

the pitch angle. It is evident that estimate (12) is applicable only in the case, where the transverse kinetic
energy, which is calculated through the use of it, does not exceed the total energy, i.e., when the inequality
p2|| ≥ 0 is fulfilled, or

I⊥end < (γ2 − 1)mc2. (14)

In accordance with [23, 31, 32], this nonlinear effect, specifically, the increase in the pitch angle by an
approximately identical value for a significant fraction of untrapped particles to the phase grouping in the
saddle region, will be termed phase bunching hereafter.

A certain part of the particles at R � 1 can be trapped. The trapped particles oscillate inside
the separatrix, which, allowing for the motion of the separatrix on the plane (Ψ, I⊥), can lead to a strong
decrease in I⊥ [32] in the case under consideration. In what follows, it will be shown that the effect of
the significant decrease in the pitch angle takes place also for the untrapped particles propagating near the
separatrix and far from the saddle (at R � 1).

In the general case, the signs of the variations in the pitch angle of the trapped particles and the
main part of the untrapped particles are determined by the sign of the effective inhomogeneity σR. Thus,
when whistler-mode waves interact with electrons at the fundamental cyclotron resonance, an increase in
the frequency leads to acceleration of the trapped particles by waves [33, 34], and the initial energy of the
waves can be insufficient for this acceleration. The required energy goes into the waves from the untrapped
particles, whose bunching determines the decrease in their energy [35]. The interaction of relativistic elec-
trons with ICWs does not lead to a significant energy exchange between particles and waves, therefore, the
approximation of the given amplitude of the wave package is justified.
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3. NUMERICAL CALCULATIONS

For the interaction of test particles with given initial conditions and an ICW packet having a finite
length, system (2)–(5) was solved numerically by the third-order Runge—Kutta method. A single transit of
the electron through the packet was calculated with allowance for the anomalous cyclotron resonance. Since
the velocity of wave packet propagation is much lower than the electron velocity, the motion and evolution
of the packet are insignificant, although they are allowed for in the equations.

3.1. Parameters of the plasma and the wave packet. Preliminary analysis

The plasma parameters chosen for the calculations correspond to [27], specifically, we consider wave
packets having frequencies, which increase with time (of the hydromagnetic-chorus type) in a frequency
range lower than the gyrofrequency ΩH of protons, but higher than the gyrofrequency of helium ions He+

at the L-shell L = 5.5 under the electron density Ne = 178 cm−3. The ion composition is as follows: ions
of hydrogen (NH+ = 0.81Ne), helium (NHe+ = 0.095Ne), and oxygen (NO+ = 0.095Ne) are present. A
noticeable fraction of helium in the plasma is required to ensure that the resonance electron energies are
relatively low (about 1–3 MeV). The geomagnetic field B0 is calculated within the dipole approximation.

We considered a wave packet having the length Lpt = 7000 km and a linear frequency drift (the packet
frequency decreases linearly from the trailing edge z = z1 towards the leading edge z = z2 in the range from
ω = 0.76ΩH = 2.3 Hz to ω = 0.46ΩH = 1.4 Hz). The calculations were performed for two variants of the
packet shape, specifically, one with a constant amplitude of the electric field Ew (rectangular packet) and
the other, with the amplitude distributed by the Gauss law (Gaussian package), and the following three

variants of the position of the trailing edge of the package: z
(1)
1 = −10c/ΩH = −90 km (almost the equator,

packet 1), z
(2)
1 = z

(1)
1 +Lpt/4 (packet 2), and z

(3)
1 = z

(1)
1 +Lpt/2 (packet 3). The positive direction of the z

axis corresponds to the direction of wave propagation and the motion of resonance electrons. For the third
packet, the leading edge borders on the zone of cyclotron resonance of the He+ ions. Correspondingly, the
positions of the wave packet being farther from the equator were not considered, since in this case, it was
necessary to allow for the influence of cyclotron wave absorption on the shape of the wave packet. The
maximum value of the wave magnetic field is equal to Bw = 2.2 nT (the values of the maximum electric
field Ew for different packet positions are not identical). This set of the packet parameters corresponds to
the characteristics of the waves observed in a real event [19].

The following range of the initial parameters is considered for the electrons: W0 = 0.98–2.2 MeV and
ΘL0 = 30◦–70◦. They were chosen keeping in mind that it is necessary to ensure efficiency of interaction of
the particles with the specified packets in the plasma with the chosen parameters.

The calculations were performed for 8 values of the initial energy in the specified range, 41 values of
the initial pitch angle (with a step of 1◦) and 360 values of the initial phase, which were distributed evenly
within the range [0, 2π].

Figure 2 shows the position of the resonance point z0res (the coordinate z is normalized to the Earth
radius) and the inhomogeneity parameter R0 (8) at this point as functions of the initial values of the pitch
angle at the equator ΘL0 and electron energy W0, which were calculated for the unperturbed trajectory. It
is seen in this figure that the position of the resonance point shifts towards the equator (the point of entry
into the package) as the initial pitch angle increases and the energy decreases. At sufficiently high pitch
angles (ΘL0 > ΘL∗), the resonance condition is not fulfilled in the region of the wave packet (the value ΘL∗
increases with increasing energy). Evidently, the change in the character of the curves depending on the
initial position of the wave packet is due to a variation in the frequency inside the packet.

The parameter R0 for the rectangular packet increases with increasing energy and decreases to the
values R0 ≤ 0.1 as the pitch angle ΘL0 grows up. Note that the decrease in R0 with increasing pitch angle
ΘL0 is connected with the increase in the value Ω2

tr (9), rather than the decrease in the derivative dΔ/dt.
This increase is due to the fact that the greater initial pitch angle at a constant energy is corresponded by
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Fig. 2. Position of the resonance point and the value of the parameter R0 at this point depending on the initial
electron parameters for packets 1 and 2 (left-hand and right-hand columns, respectively). The blue, black,
red, and purple line correspond to W0 = 0.98, 1.30, 1.50, and 2.20 MeV, respectively. The black horizontal
lines in the top panels show the boundaries and the middle of the packet. The solid lines in the bottom panels
correspond to the Gaussian packet, and the dashed lines, to the rectangular packet.

a higher transverse velocity v⊥ and a lower longitudinal velocity v|| and, consequently, greater proximity of
the resonance point Δ = 0 to the equator (see top panels in Fig. 2), where the wave frequency is higher,
and the gyrofrequency is lower, which yields a greater refractive index n||. Qualitatively, the character of
the dependence R0(W0,ΘL0) is the same as for the constant frequency packet [23].

For the Gaussian wave packet, the parameter R0 has a minimum in the pitch angles. The value of
this minimum in the considered energy range decreases as the energy increases (and has a minimum in a
wider energy range). Note that even under the optimal conditions, the ratio R0 is sufficiently great for
the Gaussian packet: R0

min ≈ 0.4–0.5. As the energy increases, the angular dependences shift towards the
greater pitch angles. As the package moves away from the equator at a constant energy, the dependences
z0res(W0,ΘL0) and R0(W0,ΘL0) shift towards the lower pitch angles, and at a constant pitch angle, towards
the higher energies (but in this case, the difference in the dependences R0(W0,ΘL0) for different positions
of the packages is nearly unnoticeable for the rectangular packet).

Basing on the above-said, one can naturally assume that for the Gaussian wave packet, the efficiency of
electron interaction with the packet depends on the electron energy and the packet position much stronger,
than that for the rectangular one. At a fixed position of the packet, the dependence of the interaction
efficiency (i.e., the average variation in the pitch angle and/or number of trapped particles) shifts presumably
towards the higher pitch angles as the electron energy increases. The shift of the packet away from the
equator, in its turn, should lead to a shift of this dependence towards the higher energies (at a constant
pitch angle) or lower pitch angles (at a constant energy).

In the first part of our paper, we will restrict our consideration to the analysis of possible interaction
regimes and presentation of results for individual particles (or particle groups). In the second part, we will
present the integral results for the entire ensemble of the considered test particles and analyze the dynamics
of the interaction regimes depending on the electron energy and properties of the packet.
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Fig. 3. Calculation results for the Gaussian wave packet (packet 2) under the conditions of weak nonlinearity
at W0 = 0.98 MeV, ΘL0 = 30◦ and R0 = 1.56. The blue and black colors correspond to the untrapped
particles with ΔΘL < −15◦ and ΔΘL ≥ −15◦, respectively. The horizontal line in panel a shows the pitch
angle ΘCR which corresponds to the loss cone. The black dashed line in panels b and e corresponds to
the average variation 〈ΔΘL〉, the green solid lines correspond to estimate (11) (the horizontal ones, to the
maximum increase and decrease), and the dash-dotted green lines, to estimate (12). The thin solid line in
panel d corresponds to the dependence Ψres = Ψ0

.

3.2. Calculation results

Figures 3–6 present the results of calculations for the Gaussian packet (packet 2) with four combina-
tions of the parameters W0 and ΘL0 which correspond to four qualitatively different interaction regimes. We
present the time dependences ΘL(t) and Δ(t) and the trajectories on the phase plane Δ(Ψ) for 16 particles
with different initial phases (for clarity, the phase trajectories are constructed in the range −2π ≤ Ψ ≤ 2π),
as well as the dependences ΔΘL(Ψ0,Ψres) and Ψ0(Ψres). In the calculations, the particle is regarded formally
as trapped by the wave field if the number of the points on the trajectory, at which the resonance condition
Δ = 0 is fulfilled exactly, exceeds unity. The resonance phase for the trapped particles is determined at the
first resonance point. Note that the coefficients of the equation system under consideration depend on the
time explicitly, i.e., the system is non-autonomous. Therefore, the trajectories on the phase plane may cross
(different trajectories reach the same point at different time moments).

The initial values of W0,ΘL0 and the unperturbed value of R0 are shown in the figures. The val-
ues corresponding to estimates (11)–(13) are also presented. Analysis of system (2)–(5) for unperturbed
trajectories (at Ew = 0) shows that for the parameters of the plasma and electrons under consideration
and a single transit of the packet, (d2Ψ/dt2)|0 < 0, therefore, the maximum decrease in the pitch angle in
estimate (11) corresponds to Ψres = 7π/4.

The figures demonstrate that under the considered parameters of the wave, the region of resonant
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bunching of untrapped particles at W0 = 1.3 MeV, ΘL0 = 35◦, and R0 = 0.75. The notations are the same as
in Fig. 3. The black dash-dotted lines in panels d and f correspond to the values Ψx+2π and Ψturn (Ψturn ≈ 0
at a given value of R0).

interaction of the package with the electron is determined by the effective length of the package, since it is
shorter than or comparable with the size of the resonance region. Depending on the parameters W0 and
ΘL0, several regimes of electron interaction with the Gaussian package are possible.

For the case shown in Fig. 3 (low pitch angle), the unperturbed value is R0 > 1. There are no trapped
particles in this case. The dependence Ψres(Ψ0) contains both linear intervals, and a pronounced nonlinear
interval, which indicates that there occurs phase bunching of particles during their transit to the resonance
region. The nonlinear interval corresponds to the particles with a great variation in the pitch angle (blue
curves). However, on the phase plane, these curves do not differ qualitatively from the black curves, which
correspond to the “conventional” untrapped particles. The qualitative difference in these trajectories is seen
in Fig. 3c: for them, the derivative dΔ/dt is smaller, i.e., the particles moving along these trajectories stay
longer in the resonance region.

The dependence ΔΘL(Ψres) is close to the sinusoidal one, the average value 〈ΔΘL〉 is little different
from 〈ΔΘL〉lin. In the region ΔΘL < 0, which corresponds to the nonlinear interval of the dependence
Ψres(Ψ0) (blue curves), ΔΘL < ΔΘlin

L , and one can see in Fig. 3a that there are particles for which the
pitch angle ΘL end is close to the loss cone. In what follows, the nonlinear effect corresponding to the
strong decrease in the pitch angle for the untrapped particles (compared with linear estimate (11) and the
maximum increase) will be called directed scattering. In the region ΔΘL > 0 depending on ΔΘL(Ψres),
there is an extended interval (π/2 < Ψres < 5π/4), for which ΔΘL ≈ const < (ΔΘlin

L )max < ΔΘNL
L ; this can

be regarded as an indication of particle bunching.

Figure 4 shows the case with a lower value of R0 (R0 < 1), but there are no trapped particles here
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Fig. 5. Results of calculations for the Gaussian wave packet (packet 2) in the presence of the directed scattering,
bunching of the untrapped particles, and trapping of a small fraction of the particles by the wave field at
W0 = 1.5 MeV, ΘL0 = 50◦, and R0 = 0.78. The notations are the same as in Fig. 4. The red color
corresponds to the trapped particles, and Ψturn ≈ 0 at a given value of R0.

either. In this case, the dependence Ψres(Ψ0) is clearly nonlinear, and the untrapped particles with great
ΔΘL (blue curves) correspond to a narrower region of the phase space (a narrower range of values of Ψ0) and
a sharp increase in the resonance phase Ψres, i.e., the particles with the initial phases near π turned to be
“scattered” over the resonance phases in the interval 5π/4 � Ψres � 2π. In contrast to the previous case, the
blue trajectories in the phase plane differ from the black ones qualitatively. Specifically, a certain dedicated
region is created, where they are located rather rarely (as compared with the black ones). In this case, a
“plateau” in the dependence Δ(t) is typical of the untrapped particles with a strong variation in the pitch
angles (scattered particles), i.e., the second-order resonance condition is fulfilled for them approximately:

d2Ψ

dt2
≈ −dΔ

dt
≈ 0. (15)

Quantitatively, for these particles ΔΘL < ΔΘlin
L , although in the region of the maximum pitch-angle de-

crease, these values are nearly coinciding. As in the case shown in Fig. 3, the maximum decrease in the pitch
angle corresponds to Ψres ≈ 7π/4.

The bunching for the untrapped particles also takes place (the extended interval of the dependence
ΔΘL(Ψres) in the region ΔΘL > 0, for which ΔΘL ≈ const < |ΔΘlin

L |max < ΔΘNL
L ).

The ensemble-average variation 〈ΔΘL〉 of the pitch angle is small in terms of its absolute value, but
positive (for estimate (11) 〈ΔΘL〉lin < 0).

Figures 5 and 6 present the cases for high initial pitch angles (R0 < 1), where many particles satisfy
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Fig. 6. Results of calculations for the Gaussian wave packet (packet 2) in the presence of the directed scattering
(for a small fraction of the particles), bunching of the untrapped particles, and trapping of the particles by
the wave field at W0 = 2.2 MeV, ΘL0 = 60◦, and R0 = 0.56. The notations are the same as in Fig. 4.

the formal condition of trapping by the wave field. In Fig. 5, the fraction of the trapped particles is not great,
specifically, it is less than or comparable with the fraction of the trapped particles with a great variation
in the pitch angle. Qualitatively, the blue and red trajectories have similar shapes: for both types of the
trajectories, there exist sections near the resonance, where condition (15) is fulfilled. In Fig. 6, the wave
traps about half of the resonant particles. In this case, a small interval of values of Ψ0 (about 5π/4) still
exists, which corresponds to the untrapped particles with a strong variation in the pitch angle, for which
second-order resonance condition (15) is approximately fulfilled.

The resonance phases of the untrapped particles with a great decrease in the pitch angle or, as in
Fig. 4, correspond to a sharp variation in the dependence Ψres(Ψ0) and stay in the vicinity of Ψres = 7π/4
(several particles in Fig. 5), or have values in the vicinity of Ψturn. In the latter case, the blue curves nearly
coincide with the separatrix, which separates the trapped particles from the untrapped ones. In other words,
a great decrease in the pitch angle is connected with the particle’s stay near the separatrix (due to which,
the time of efficient interaction of the particle and the wave increases), in the region which is the farthest
from the saddle. It follows from Figs. 5e and 6e that the trapped particles also cross the separatrix at a point
located far from the saddle. Quantitatively, the values of the decrease in the pitch angle for the trapped and
untrapped particles (blue curves) are nearly identical. In this case, a greater part of the untrapped particles
experience bunching, i.e., 0 < ΔΘL ≈ const < (ΔΘlin

L )max < ΔΘNL
L .

Note that Figs. 3–6 present the results for various energies, since not all interaction regimes are
possible for the Gaussian packet at a fixed energy (or they are not sufficiently pronounced for illustration).
The dynamics of the interaction regimes depending on the electron energy and the packet position will be
considered in more detail in the second part of the paper. At very low or very high pitch angles, when
the resonance point is located far from the center of the packet and R0 � 10 (specific values of the pitch
angles depend on the electron energy and packet position), the interaction of the electron with the package
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Fig. 7. Results of calculations for the rectangular package (package 2) in the presence of the directed scattering
and bunching of the transit-type particles at W0 = 1.15 MeV, ΘL0 = 32◦, and R0 = 0.65. The notations are
the same as in Fig. 4.

is described comprehensively (both qualitatively and quantitatively) by linear approximation (10) and (11).

Figures 7–9 present the calculation results for the rectangular wave packet (packet 2) for W0 =
1.15 MeV and three values of the initial pitch angle ΘL0, which correspond to qualitatively different inter-
action regimes (for a rectangular packet, all possible regimes can be observed at one and the same energy
value). The notations are the same as in Figs. 3–6. For all the cases that we considered, R0 < 1. However,
linear estimates (11) are also presented for the sake of comparison for the particles, for which inequality (14)
and the inequality

|ΔI lin⊥ | < I⊥0 (16)

corresponding to the positivity of the adiabatic invariant are fulfilled. Estimate (12) is also presented only
for those particles for which inequality (14) is fulfilled.

It follows from the figures that the chosen amplitude Bw is sufficiently great, such that at low pitch
angles ΘL0 inequality (16) is not fulfilled in the region of negative ΔΘL, and at low angles, it is not fulfilled
in the region of positive ones. For high ΘL0, nonlinear estimates (12) are also inapplicable.

At low initial pitch angles (ΘL0 < 40◦, Fig. 7), the results are close to those analogous for the Gaussian
packet in Fig. 3. However, for the rectangular packet the number of sharp drops in the dependence Ψres(Ψ0),
which correspond to the particles with a great decrease in the pitch angle, can be more than one (three, in
the presented figure). This is due to the fact that the region of the resonance interaction for the rectangular
package is wider than for the Gaussian one. If phase bunching of the particles occurs during one oscillation
in the wave field, this can lead to the formation of a great number of phase bunches corresponding to
qualitatively different intervals in the dependence Ψres(Ψ0).

Consequently, the dependence ΔΘL(Ψres) is not unambiguous, although qualitatively, the shape of
this dependence is close to the sinusoidal one. The fraction of the particles, for which the bunching takes
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Fig. 8. Results of calculations for the rectangular package (package 2) in the presence of the directed scattering
(for a small fraction of the particles) and bunching of the transit-type particles at W0 = 1.15 MeV, ΘL0 = 40◦,
and R0 = 0.4. The notations are the same as in Fig. 4.

place (0 < ΔΘL ≈ const < (ΔΘlin
L )max < ΔΘNL

L , the resonance phases are close to the saddle point Ψx),
is comparable with the fraction of the particles, for which the directed scattering takes place, or exceeds it
slightly. The average variation 〈ΔΘL〉 in the pitch angle is a small positive value in this case.

As the initial pitch angle increases (R0 decreases), the number of phase bunches grows. Then,
the fraction of the scattered particles decreases (the steepness of sharp drops in the dependence Ψres(Ψ0)
increases). In the case shown in Fig. 8 (ΘL0 = 40◦), the fraction of the scattered particles is less than 5%.
At ΘL0 > 40◦, no untrapped particles with great variations in the pitch angle are observed. There are no
trapped particles, therefore, the regions of the phase plane, which correspond to the potential wells, are not
occupied by phase trajectories. Note that, as in the case of the Gaussian packet, the untrapped particles
with the smallest decrease in the pitch angle have resonance phases either in the vicinity of 7π/4, or in the
vicinity of Ψturn.

As the pitch angle increases further (R0 decreases), particle trapping by the wave is possible, starting
at a certain ΘL0 (this case is shown in Fig. 9). Since the value of R0 is then sufficiently small, almost all of
the untrapped particles are characterized by bunching, i.e., similar values of ΔΘL > 0 and resonance phases
in interval (13). The resonance phases of the trapped particles, as in the case of the Gaussian packet, are
bunched in the vicinity of Ψturn.

When ΘL0 ≥ ΘL∗, only part of the considered electrons are in resonance; in this case, all of them are
trapped. If the initial pitch angle is too high (for this electron energy and packet), there are no resonance
electrons (for the majority of the considered energies, this angle exceeds the highest initial pitch angle 70◦).
At low initial pitch angles (their specific values depend on the energy and position of the packet, more details
follow in the second part of the paper), the interaction of the electron with the packet is close to the linear
one.
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Fig. 9. Results of calculations for the rectangular wave packet (packet 2) in the presence of the bunching of
the untrapped particles and trapping of the particles by the wave field at W0 = 1.15 MeV, ΘL0 = 54◦, and
R0 = 0.16. The notations are the same as in Fig. 4.

It should be noted also that the values of the decrease in the pitch angle ΔΘL for the scattered
particles (untrapped particles, for which condition (15) is fulfilled) are comparable for both types of the
packet amplitude profile. This indicates that the region of efficient nonlinear interaction of the particle with
the wave is small in this case compared with the scale of the amplitude variation in the Gaussian packet.
As it should have been expected, the value ΔΘL can be noticeably greater (in its absolute value) for the
trapped particles in the rectangular packet, and the duration of the trapping is longer (the number of zeros
in the time dependence of the mismatch is greater).

4. DISCUSSION

As was noted in the Introduction, the main regimes of resonant interaction of a particle with a
quasimonochromantic wave packet are the linear regime corresponding to scattering with no systematic
variation in the energy and/or pitch angle, the phase bunching regime, where an average variation in the
pitch angle, which is determined by the resonance type, occurs along with the scattering, and the regime
of particle trapping by the wave field, which is characterized by the drift of the particle in the phase space,
with the direction of the drift being determined by the sign of the effective inhomogeneity. In [29], the
regime of directed scattering of untrapped particles is also identified, which is determined, in the authors’
opinion, by the influence of force bunching (the second term in Eq. (4) for the wave phase).

In the region of parameters considered here and corresponding to the experimental data [19], all
three nonlinear regimes specified above are possible. The directed scattering of untrapped particles (strong
decrease in the pitch angle) is observed in the range of initial angles ΘNL

L0 ≤ ΘL0 ≤ Θun
L0, bunching of
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untrapped particles (insignificant increase in the pitch angle, which depends weakly on the initial phase) is
observed at ΘL0 ≥ ΘNL

L0 , and particle trapping by the wave field, at ΘL0 ≥ Θtr
L0 > ΘNL

L0 . Specific values of
ΘNL

L0 , Θ
un
L0, and Θtr

L0 (as well as the ratio of the pitch angles Θun
L0 and Θtr

L0) depend on the electron energy,
the packet amplitude profile, and the packet position.

In [23], where the calculations for the monochromatic wave with a constant amplitude were performed,
directed scattering of untrapped particles was not observed. Probably, the presence of this regime under the
conditions of our calculations is connected with a higher wave amplitude. Additionally, the finite length of
the packet, which limits the zone of the resonance interaction (at high amplitudes), and the frequency drift
can be of importance.

Excluding the scattering of untrapped particles, the results that we obtained agree qualitatively with
the results of [23], namely, starting at a certain pitch angle ΘNL

L0 , the dependences ΔΘL(Ψ0) have an extended
interval with ΔΘL ≈ const > 0, and the resonance phases of the corresponding particles lie in interval (13),
which indicates phase bunching. However, in [23], good qualitative agreement with estimates (12) is also
noted. Under the conditions of our calculations, qualitative estimates (12) are either formally inapplicable or
yield a significantly overstated value. Primarily, this is connected with a higher wave amplitude. However,
as in the case with particle scattering, the finite length of the packet and the frequency drift can also be
significant.

Let us discuss the directed scattering of the untrapped particles in greater detail. In numerical
calculations in [29], where packets with the amplitude profile being close to the real one were considered, the
directed scattering was observed for the particles with a low pitch angle (untrapped particles or particles
escaping from the trapping regime). The authors of [29] explained the nonlinear directed scattering of the
particles with low pitch angles by compensation for the mismatch Δ due to the second term in Eq. (4)
(force bunching), which is proportional to the wave amplitude. The second term is usually neglected in the
analytical consideration [32].

To verify this interpretation, Fig. 10 presents time dependences of the left-hand side of Eq. (4) and
two terms on the right-hand side along the trajectory of the transit-type particle with a great decrease ΔΘL

in the vicinity of the resonance for the cases shown in Fig. 3 and Fig. 7 (for the scattered particle with the
greatest decrease in the pitch angle). For comparison, we also show the results for an arbitrary untrapped
particle with a small ΔΘL (black lines in Fig. 3 and Fig. 7). One can see in the figure that in both cases,
for the untrapped particle with a strong decrease in the pitch angle in the vicinity of the resonance the
second term on the right-hand side of Eq. (4) is indeed of the same order as the mismatch −Δ. In different
realization, the terms can have different signs, both before and after the resonance point (the right and left
columns in Fig. 10, respectively), and this trajectory interval corresponds to the efficient decrease in the
pitch angle. For particles with a small resulting variation in the pitch angle, the second term is negligibly
small even in the vicinity of the resonance, and the curves corresponding to −Δ and dΨ/dt are almost
indistinguishable. However, in this case, the difference between the dependences dΨ/dt, which are shown by
black and blue lines, is pronounced much stronger for both presented examples, than the difference between
the dependences dΨ/dt and −Δ corresponding to the blue lines. It follows from here that the influence
of the force bunching has a quantitative, rather than qualitative character, and the relatively slow change
in the mismatch is determined by the particle’s stay in the vicinity of the separatrix dividing the trapped
and transit-type particles on the phase plane. In this case, the directed scattering is possible also for the
particles with significantly higher pitch angles than it follows from the comparison of the first and second
terms on the right-hand side of Eq. (4).

The distribution of untrapped particles with a strong decrease in the pitch angle over the resonance
phases demonstrates the following (see the right columns in Figs. 3–8). At low pitch angles (those exceeding
R0, i.e. for a weak nonlinearity), a greater fraction of such particles has resonance phases in the vicinity of
7π/4, which corresponds to the maximum decrease in the value ΔΘL in the linear case. The decrease itself
in this case can exceed |ΔΘlin

L | significantly, which is determined by a long-term stay of the particle in the
vicinity of the separatrix (at R0 � 1, when the separatrix is absent, i.e., in the vicinity of the inflexion point
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Fig. 10. Calculation results for the untrapped particles with a great variation in the pitch angle (packet 2) for
the Gaussian packet (left column, W0 = 0.98 MeV, ΘL0 = 30◦) and the rectangular packet (right column,
W0 = 1.15 MeV, ΘL0 = 40◦). The asterisks on panels a and b mark the resonance points. The solid lines in
panels c–f correspond to −Δ (the first term on the right-hand side of Eq. (4)), the dashed lines correspond
to the term proportional to cosΨ (the second term on the right-hand side of Eq. (4)), and the dotted lines,
to the total derivative dΨ/dt.

of the effective potential). At intermediate pitch angles (i.e., smaller than R0), the scattered particles have
resonance phases in the vicinity of Ψturn, which corresponds to the stay of the particles in the vicinity of the
separatrix far from the saddle. It is evident that the noticeable increase in the time of the particle’s stay in
this region on the phase plane takes place under the conditions of a shallow potential well, i.e., in the case
of low probability of the trapping.

Thus, the following can be said about the properties of the directed scattering. At low initial pitch
angles, force bunching [29] can yield a small quantitative effect. At the intermediate initial pitch angles,
the trajectories corresponding to the directed scattering are transitional between the trajectories of the
untrapped and trapped particles. The decrease in or vanishing of the directed scattering at high pitch
angles can be connected both with the transition of the scattered particles to the trapped ones (see Fig. 5
and Fig. 6), and with the enhancement of the bunching effect (see Fig. 8).

It has been noted above that the characteristics of the nonlinear interaction are largely determined
by the frequency drift. Along with the frequency dependence of the resonance interaction region, which can
be regarded as a kinematic effect, the change in the frequency affects strongly the effective-inhomogeneity
parameter R, which determines the probability of the trapping and the motion of the trapping region in the
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phase space, i.e., the value and sign of the change in the pitch angle (and, in the general case, energy) of the
trapped particles. As the parameter |R| increases, the size of the potential well and, correspondingly, the
number of trapped particles decrease, but the rate of variation in the pitch angle and energy of the particles
increases (see, e.g., [30, 33]).

In the absence of the frequency drift, the value of the effective-inhomogeneity parameter decreases
for the considered type of the interaction (due to the term −k||v|| in the mismatch Δ). Correspondingly, for
quasimonochromatic wave packets (with no frequency drift), the number of trapped particles increases, but
the average change in the pitch angle decreases. This was confirmed by test calculations. The calculation
results are omitted for brevity. The directed scattering in the absence of the frequency drift also leads to a
generally smaller variation in the pitch angle and, additionally, takes place for a significantly smaller number
of particles.

The integral characteristics of the efficiency of interaction of electrons with an ICW package depending
on the electron energy and the package properties will be considered in the second part of the work.

5. CONCLUSIONS

Let us summarize the main results obtained here.

The interaction of relativistic electrons with a finite-width packet of ion-cyclotron waves with a
frequency drift has been considered. Three nonlinear interaction regimes, which are possible at R � 1, have
been studied, specifically, bunching, directed scattering of untrapped particles, and particle trapping by the
wave field.

Bunching of untrapped particles is phase grouping of the particles, which results in their crossing the
separatrix separating the untrapped particles and the trapped ones in the vicinity of the saddle point. Under
the considered conditions, where the parameter of the effective inhomogeneity is R < 0, it leads to a slight
increase in the pitch angle by about the same value for a large fraction of the untrapped particles. This regime
was described analytically in [31, 32]. Our results agree with this analysis qualitatively. Quantitatively,
analytical estimates yield an overstated value of ΔΘNL

L , which may be due to a high wave amplitude under
the conditions of our calculations, or with the finite length of the wave packet.

Directed scattering is a strong decrease in the pitch angle of a small fraction of untrapped particles.
It was claimed in [29] that it is possible only for low pitch angles and is determined by the influence of
the azimuthal component of the Lorentz force (force bunching of particles). Our results show that directed
scattering is possible in a noticeable wider range of pitch angles and is determined by a long-term stay of
the particle on the phase plane in the region of the separatrix far from the saddle. Force bunching has a
quantitative and, moreover, comparatively weak influence on this process. This infuence is noticeable at low
initial pitch angles. At intermediate pitch angles, the trajectories corresponding to the directed scattering
constitute the transitional region between the trajectories of the untrapped and trapped particles.

Directed scattering and trapping of particles by the wave field at R < 0 can lead to efficient precipi-
tation of electrons into the loss cone, whereas bunching, by contrast, determines an increase in the electron
pitch angle. Prevalence of this or that nonlinear effect depends on the inhomogeneity parameter R, as well
as on the profile of the packet amplitude.

Integral characteristics of the interaction regimes and efficiency of scattering of electrons into the loss
cone depending on their energy, the profile of the packet amplitude, and the position of the packet in space
will be presented in the second part of this work.

This work was supported by the Russian Science Foundation (project No. 15–12–20005).
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