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ON THE INVERSE PROBLEMS OF NONLINEAR ACOUSTICS AND ACOUSTIC
TURBULENCE

S.N.Gurbatov1 ∗ and O.V.Rudenko1,2,3,4,5 UDC 534.222

We consider the problem of retrieval of the radiated acoustic signal parameters from the measured
wave field in some cross section of the nonlinear medium. The possibilities of solving regular and
statistical inverse problems are discussed on the basis of the solution of the Burgers equation for
zero and infinitesimal viscosities.

1. INTRODUCTION

Retrieval of the radiated-signal parameters from the measured acoustic field far from the source is
one of the important problems in nonlinear acoustics. Generally, the problem consists in retrieval of the
radiated-signal shape or determination of the initial-wave amplitude if the signal shape is known. Among
the inverse nonlinear problems, we mention the problems of nonlinear diagnostics of the medium. The stages
of the formation of the corresponding research line, that is, nonlinear acoustic diagnostics, were discussed
in review papers [1, 2]. Nonlinear diagnostics has acquired a special role as applied to medicine [3].

In this paper, we restrict ourselves to the one-dimensional case where the propagation of a plane
acoustic wave is described by the nonlinear diffusion equation, or Burgers equation [4–7]:
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Here, p(τ, z) is the acoustic pressure, ε and b are the medium nonlinearity and dissipation parameters,
respectively, z is the coordinate along the beam axis, τ = t− z/c0 is the time in the reference frame moving
at the sound speed c0, and ρ0 is the unperturbed density of the medium. In dimensionless variables, this
equation is written as

∂V

∂Z
− V

∂V

∂θ
= Γ

∂2V

∂θ2
. (2)

Here,

Z =
εP0z

c30ρ0t0
, θ =

τ

t0
, V =

p

P0
, Γ =

b

2εt0P0
, (3)

P0 is the characteristic initial amplitude of perturbation, and t0 is the characteristic time of the input-signal
variation.
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The inverse problem of nonlinear acoustics consists in retrieval of the time profile of the source field
p0(τ) = p(τ, z = 0) from the measured field p(τ, z) at a distance z from the source. The nonlinear diffusion
equation in its classical form
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(4)

was proposed by Burgers [8] as a model equation of the turbulence theory and described the effect of the
inertial nonlinearity and viscosity on characteristics of strong hydrodynamic turbulence. Dynamical and
statistical properties of the solution of the one- (and, recently, three-dimensional, too) Burgers equation
have been the subject of many papers (see, e. g., the bibliography in monographs and review papers [4,
9–16]. Despite the fact that the Burgers equation has an exact solution (Hopf–Cole solution), the analysis
of deterministic and, especially, random fields is a complex mathematical problem. In this regard, the first
major results [17] for the cases of the Brownian initial potential was obtained only 39 years after the Burgers
equation itself appeared [8].

It is apparent that by trivial replacement of the variables V → v, Z → t, and θ → −x, Eq. (2)
reduces to its classical form (4). From the point of view of the theory of differential equations, both Eq. (4)
with the initial condition v(x, t = 0) = v0(x) and Eq. (2) with the initial condition V (θ, Z = 0) = V0(θ)
represent the Cauchy problem for the parabolic equation. From the point of view of information transfer,
the problem consists in considering the impact of the nonlinear effects on the information parameters of the
acoustic signal. In particular, if a modulated signal with amplitude and phase (frequency) modulation at
the boundary of a nonlinear medium is specified in the form p0(τ) = a(τ) sin[ω0τ + ϕ(τ)], then the inverse
problem consists in retrieval of the parameters a(τ) and ϕ(τ) of the initial signal from the field p(τ, z)
measured in the cross section z. Correspondingly, for Eq. (4) this problem is formulated as retrieval of the
parameters of the initial quasiperiodic field v0(x) = a(x) sin[k0x+ ϕ(x)] from the field v(x, t) at the instant
t.

For weak perturbations, when the nonlinearity can be neglected, Eq. (4) converts into a linear diffusion
equation. In this case, as have a classical inverse problem for the heat conduction equation [18].

In this paper, on the basis of the classical Burgers equation (4) we consider a fundamental possibility
for retrieval of the v0(x) profile from the field which is known at the instant t. The use of the Burgers equation
in form (4) in the inverse problems is very convenient since for the infinitesimal viscosity (μ → 0) its solution
is equivalent to the evolution of a flow of freely moving particles with absolutely inelastic collisions [9, 10,
14, 15]. The interpretation of the solution of the Burgers equation as a flow of coalescing particles makes it
apparent that the complete solution of the inverse problem is impossible at times after a discontinuity forms
in the initially continuous field. In the second part of the work we will discuss the inverse problem for the
acoustic turbulence, namely, the solution of the Burgers equation for random initial conditions.

2. INVERSE PROBLEM FOR A ZERO VISCOSITY

For a zero viscosity, the Burgers equation (4) converts into the Riemann equation

∂v

∂t
+ v

∂v

∂x
= 0, (5)

which is also known as the Hopf equation, or a simple-wave equation [4, 19]. To consider the inverse problems
of nonlinear acoustics, it is very useful to interpret Eq. (5) as the law of evolution of the Eulerian velocity
of a flow of noninteracting particles. In the Lagrangian representation, Eq. (5) is equivalent to the system
of characteristics

∂V

∂t
= 0,

∂X

∂t
= V, (6)

the solution of which
V (y, t) = v0(y), X(y, t) = y + tv0(y) (7)
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describes the particles moving freely at a constant velocity. Here, y is the Lagrangian coordinate of a particle
(i. e., its initial coordinate at t = 0). Equation (7) specifies the velocity field in parametric form. To find
the Eulerian velocity, it is needed to solve the nonlinear equation

x = y + v0(y)t. (8)

Then the velocity field can be represented in the form

v(x, t) =
x− y(x, t)

t
. (9)

Here, y(x, t) is the Lagrangian coordinate of a particle that entered the point x at the instant t. From
Eqs. (8) and (9), the known implicit solution

v(x, t) = v0[x− tv(x, t)] (10)

of Eq. (5) follows. The solution of the inverse problem can also be represented in parametric form. It follows
from Eqs. (7)–(9) that for the known field v(x, t) at the point x at the instant t the initial velocity field
v0(y) is determined by the relations

v0 = v(x, t), y = x− tv(x, t). (11)

Equation (5) describes the acoustic waves only at limited times until its solution is single-valued. At the
later times, it is necessary to allow for the high-frequency decay and pass from Eq. (5) to the Burgers
equation (4).

3. INVERSE PROBLEM FOR AN INFINITESIMAL VISCOSITY

By the Hopf–Cole replacement, the Burgers equation (4) reduces to the linear diffusion equation, and
therefore has an exact solution. In the limit of an infinitesimal viscosity μ → 0, the integrals in the exact
solution can be calculated by the saddle-point method. As a result, the asymptotic solution of the Burgers
equation can, as previously, be written in form (9):

vw(x, t) =
x− yw(x, t)

t
. (12)

However, now yw(x, t) is the coordinate of the absolute minimum of the function

G(y, x, t) = s0(y) +
(x− y)2

2t
, (13)

where

s0(y) =

y∫

−∞
v0(y

′) dy′,

on the Lagrangian coordinate y [9, 10, 14, 15]. Taking into account that the extremum points of the function
G(y, x, t) on the variable y are determined from the equation

∂G/∂y = v0(y) + (y − x)/t = 0,

it is seen that the asymptotic solution of the Burgers equation for μ → 0 consists of branches of the solution
of the Riemann equation (5), and is therefore a weak solution of the Riemann equation.
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To construct a qualitative pattern of the evolution

Fig. 1. A graphic illustration of the procedure of
seeking the coordinate yw(x, t) of the absolute
minimum of the function G(y, x, t) on the coor-
dinate y; the minimum is reached at the tangent
point of the parabola P (y, x, t) and the initial po-
tential s0(y).

of the velocity field, it is expedient to use a graphic pro-
cedure for seeking the absolute minimum of the function
G(y, x, t) on the variable y. Apparently, the position of
the indicated extremum point coincides with the coordi-
nate of the first point of tangency of the initial potential
s0(y) and the parabola

P (y, x, t) = H − (x− y)2

2t
(14)

when the quantity H increases from very large negative
values (see Fig. 1). Substituting the coordinate of the
tangent point yw(x, t) into Eq. (12), we obtain the velocity
field vw(x, t) at the point x at the instant t. Note that
the dependence vw(x, t) for different values of x will result
when the coordinate x of the vertex of the parabola sliding
along the initial potential s0(y) is varied.

The type of tangency of the parabola and the initial potential depends on their curvature ratio, which
is equal to 1/t and ∂v0(y)/∂y, respectively. If the condition 1+ t∂v0(y)/∂y > 0 is fulfilled for any y, then the
parabola slides along the curve s0(y). In this case, yw(x, t), and therefore vw(x, t), are continuous functions of
x, and the asymptotic solution of the Burgers equation coincides with the solution of the Riemann equation.
Solution (11) of the inverse problem exists, and is single-valued.

As the time t increases, the parabola P (y, x, t) becomes flatter, resulting in the occurrence of such
values of x = xk at which the parabola is tangent to the initial profile of the potential s0(y) at two points at
once, y+k (xk, t) and y−k (xk, t), y

+
k > y−k . In what follows, we call this parabola critical. When the coordinate

of the parabola vertex passes through the point x = xk, the coordinates of the tangent point of the parabola
and the initial profile of the potential, and therefore the field vw(x, t), experience a discontinuity (see Fig. 2).

As was mentioned, the asymptotic solution of the Burgers equation can be interpreted as the law
of evolution of a flow of noninteracting particles with absolutely inelastic collisions. The formation of a
discontinuity corresponds to the coalescence of the particles filling the interval [y+k (xk, t), y

−
k (xk, t)] with a

unit initial density and the formation of a heavy macro particle with the mass mk = y+k (xk, t) − y−k (xk, t),
whose coordinate and velocity coincide with the coordinate and velocity of the discontinuity. Thus, it is
apparent that the formation of a discontinuity results in loss of information on the fine structure of the
initial velocity field in the interval [y+k (xk, t), y

−
k (xk, t)]. Note that the case is the same for the media with

other types of nonlinearity [20, 21].

We now discuss which characteristics of the initial field v0(x) can be retrieved from known charac-
teristics of the field vw(x, t) at the discontinuity stage. If vw(xk − 0, t) and vw(xk + 0, t) are the values
of the velocity field vw(x, t) on the left and on the right of the discontinuity with the coordinate xk, then
the boundaries of the interval [y+k , y

−
k ] of the initial field v0(x), from which the discontinuity formed, are

determined by the equations

y−k = xk − tvw(xk − 0, t), y+k = xk − tvw(xk + 0, t). (15)

The length of the interval is determined by the discontinuity amplitude:

y+k − y−k = tVk = t[vw(xk − 0, t)− vw(xk + 0, t)]. (16)

It follows from Fig. 2 that the arbitrary variation of the initial velocity field v0(x) in the interval [y+k , y
−
k ],

which is limited by the condition that the initial potential s0(y) in this interval is above the critical parabola
P (y, xk, t), does not affect the velocity field at the instant t. Thus, after the formation of discontinuities,
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Fig. 2. Diagrams of the initial distribution of the potential and two critical parabolas (a) and a diagram of
the asymptotic solution of the Burgers equation for μ → 0, whose discontinuity coordinates coincide with the
coordinates of the vertices of the critical parabolas (b).

it is fundamentally impossible to solve the inverse problem over the entire space interval. It can easily be
shown that the discontinuity parameters carry information on only the integral characteristics of the initial
field within the interval [y+k , y

−
k ]. From the condition of double tangency of the initial potential distribution

s0(y) by the parabola P (y, xk, t) it follows that the discontinuity coordinate is equal to

xk(t) =
y+k + y−k

2
+ t

s0(y
+
k )− s0(y

−
k )

y+k − y−k
. (17)

Comparing Eqs. (17) and (15), we find that from the discontinuity velocity

Uk(t) =
vw(xk + 0, t)− vw(xk − 0, t)

2
=

s0(y
+
k )− s0(y

−
k )

y+k − y−k
(18)

it is possible to retrieve the integral of the initial velocity field v0(x) over the interval [y+k , y
−
k ]:

y+k∫

y−k

v0(x) dx = Uk(t)(y
+
k − y−k ). (19)

Note that when the analogy between the solution of the Burgers equation and the evolution of a flow
of coalescing particles is used, relation (19) is exactly the momentum conservation law. It should be borne
in mind that, although the coordinates in Eq. (17) are time dependent, the equality Uk(t) = dxk(t)/dt is
fulfilled.

On intervals between the discontinuities, the retrieval of the initial field is determined by Eqs. (11)
for the Riemann wave. Only the expounding parts of the profile “survive” at sufficiently long times. In the
vicinity of the minimum initial potential x = yk, the velocity field v0(x) can be approximated as

v0(x) ≈ ∂v0(y)

∂y
|y=yk (x− yk) = αk(x− yk). (20)
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Correspondingly, at long times the velocity field on the intervals between the discontinuities has the form

v0(x) =
αk(x− yk)

1 + tαk
= αk(t)(x− yk). (21)

From Eq. (21) it is seen that for tαk � 1 the gradient αk(t) ≈ 1/t is virtually independent of the initial
value of the gradient αk. Let us estimate the possibility of determining the initial gradient of the velocity
field. If the field gradient αk(t) is measured at the instant t, then the initial gradient αk is determined by
the relation

αk =
αk(t)

1− tαk(t)
. (22)

If the field gradient at the instant t is measured with a relative error δ, i. e., α∗
k(t) = αk(t)(1+ δ), then from

Eq. (22) for the relative error ε of the estimate of the initial gradient α∗
k = αk(1 + ε) we have

ε = δ

[
1 +

tαk(1 + δ)

1− tαkδ

]
. (23)

From relation (23) it follows that for δ > 0 the error ε increases with the time, and for t → 1/(αkδ) the error
tends to the infinity, and therefore the initial value of the gradient cannot be determined. For single-scale
input signals with the spatial period L, from the initial gradient αk one can determine the amplitude a0 of
the initial perturbation of the field v0(x) as a0 ≈ αkL.

Let us estimate the possibility of retrieval of the parameters of a quasiharmonic signal v0(x) =
= a0(x) sin[k0x+ϕ(x)] with amplitude and frequency modulation. From the distance between the neighbor-
ing nulls of the signal Lk = yk+1−yk (here, k0yk+ϕ(yk) = 2πk) one can estimate the input-signal frequency:
k(yk) ≈ 2π/Lk. The field gradient at the point of a zero field is equal to αk ≈ a0(yk)k(yk). Consequently, by
measuring the field gradient at the instant t it is possible to retrieve the initial amplitude a0(yk) = αk/k(yk)
and energy of the input signal. The relative error of determining the amplitude is, as previously, determined
by relation (23), where αk = 1/tnl, and tnl is the time of formation of the harmonic-signal discontinuity.

One of the important inverse problems in nonlinear acoustics is determination of the initial-signal
shape minimizing the energy loss of a signal as it propagates to a certain fixed point. For a periodic signal,

the wave energy E(t) =
L∫
0

v2(x, t) dx, according to the Burgers equation, varies as

dE(t)

dt
= −γ(t), γ(t) = μ

L∫

0

(
∂v

∂x

)2

dx, (24)

where L is the wave period. In the case of an infinitesimal viscosity, the rate of decrease in the energy is
determined by the discontinuity amplitude alone [4, 5, 14, 15]:

γ(t) =
2

3
U3(t). (25)

Thus, the maximum absorption of the acoustic-wave energy is reached at the point where the discontinuity
amplitude is the maximum. For a harmonic signal, the time of the discontinuity formation is equal to tnl,
and the maximum of U(t) is equal to the double amplitude of the initial wave.

It has already been mentioned that for an infinitesimal viscosity, the solution of the Burgers equation
can be interpreted as a flow of noninteracting particles with absolutely inelastic collisions. In this case,
the discontinuity formation corresponds to the coalescence of particles and the formation of a heavy macro
particle, whose position and velocity coincide with the position and velocity of the discontinuity and whose
mass is proportional to the discontinuity amplitude. Using the analogy between the solution of the Burgers
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equation and the flow of particles, it can easily be seen that the maximum amplitude of the discontinuity is
reached at the time when all the particles coalesce simultaneously. It follows from Eq. (7) that the distance
between the neighboring particles varies as

J(y, t) =
∂X(y, t)

∂y
= 1 + t∂v0(y)/∂y. (26)

Here, J(y, t) is the Jacobian of transformation from the Lagrangian to Eulerian coordinates. It is seen from
Eq. (26) that all the particles collide at the same instant of time if the initial velocity profile has an inverse
sawtooth form at the period −L/2 < x < L/2:

v0(x) = −βx. (27)

For such a profile, v(x, t) = −βx/(1− tβ), the discontinuity is formed at tnl = 1/β, and its amplitude is the
maximum at this instant and is equal to βL. The inverse sawtooth wave is specific in that a finite-amplitude
discontinuity is formed and the wave profile is universal both before and after the discontinuity formation.
On the basis of these properties, a model of acoustic turbulence as the superposition of inverse sawtooth
waves having different scales with a Weierstrass–Mandelbrot spatial spectrum was constructed in [22].

4. INVERSE PROBLEM FOR NOISE SIGNALS

In what follows, we discuss the inverse problem for the random fields satisfying the Burgers equation.
Namely, we clarify which statistical characteristics of the initial field v0(x) can be retrieved from the known
statistics of the field v(x, t) at the instant t. Such random fields are often called the Burgers turbulence,
or burgulence [23, 24], or acoustic turbulence in application to the evolution of intense acoustic noise. As
was mentioned, the study of statistical properties of the solutions of the Burgers equation have been the
subject of many papers (see, e. g., the bibliography in monographs and reviews [4, 9–16]). Here, we restrict
ourselves to the cases of zero and infinitesimal viscosities.

At the initial stage, the wave propagation is described by the Riemann equation (5), which is equiv-
alent to the Burgers equation (4) for a zero viscosity (μ = 0). In the Lagrangian representation, Eq. (5)
is equivalent to a system of characteristics (6), whose solution (7) describes the particles moving freely at
a constant velocity. Thus, the statistical description of the motion of particles in the Lagrangian repre-
sentation is trivial since the probability density of the velocity of a separate particle does not change with
the time. Using the formulas of connection between the Lagrangian and Eulerian statistics, we are able to
give a comprehensive description of the Eulerian statistics of the Riemann wave field v(x, t), i. e., we find
the evolution of the probability distributions, correlation functions, and energy spectra [9, 10, 14, 15]. To
find the Eulerian statistics of the velocity field, the solution for the velocity and coordinate (7) should be
supplemented with Eq. (26) for the Jacobian of transformation of the Lagrangian to Eulerian coordinates.

First of all, we note that the nonlinear distortion in a statistically uniform random field v(x, t) does
not affect the form of its single-point probability density:

we(v; t) = w0(v). (28)

This statement, which seems unexpected at first glance, can easily be understood by using the well-known
relation between the probability density of a statistically uniform random function and the behavior of
its realizations [14, 15, 25]. As is known, the probability density of the field v(x, t), which is statistically
uniform and ergodic with respect to x, can be expressed through the limit of the relative length of stay of
the realization v(x, t) in the interval [v, v + dv]:

we(v; t) = lim
�→∞

∑
k

dxk
1

� dv
,

where dxk is the length of the x-axis intervals within which the values of the field v(x, t) lie in the interval
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[v, v+dv]. Due to the linear time dependence of the Lagrangian field X(y, t) (26), the length of each interval
dxk changes with the time as dxk(t) = dxk(0)±t dv, where the minus sign corresponds to the intervals on the
steepening parts and the plus sign, to those on the flattening parts of the field profile v(x, t). It is apparent
that until the solution of the Riemann equation (1) is single-valued, the sum of lengths of any of the two
neighboring intervals is retained: dxk + dxk+1 = const, the relative length of stay of the field v(x, t) in any
given interval [v, v+dv] persists, and therefore the single-point probability density of a statistically uniform
field remains unchanged, too. Thus, the solution of the inverse problem for the probability density is trivial:
the probability density of the Riemann waves at the initial instant w0(v) coincides with the probability
density we(v; t) at the time t. However, it should be mentioned that this statement is true only in the case
where the condition J(x, t) ≥ 0 for the Jacobian (26) is fulfilled in all realizations of the velocity field v(x, t).
Note that for the Gaussian statistics of the initial field, this condition is violated for an arbitrarily short time.
Nevertheless, the use of the Riemann-wave approximation is possible until the number of discontinuities per
unit length is small.

Much more information on the evolution of the spatiotemporal properties of random fields is contained
in their spatial spectrum. At the initial stage, when the propagation of the acoustic wave is described by
the Riemann equation, the spatial spectrum of a statistically uniform velocity field

E(k, t) =
1

2π

+∞∫

−∞
B(s, t) exp(−iks) ds, B(s, t) = 〈v(x, t)v(x + s, t)〉, (29)

where the angle brackets denote the statistical averaging, is equal to [9, 10, 14, 15]

E(k, t) =
1

2π(kt)2

+∞∫

−∞
exp(−iks)[θ2(kt,−kt, s)− θ1(kt)θ1(−kt)] ds. (30)

Here,
θ2(k1, k2, s) = 〈exp{i[k1v0(x) + k2v0(x+ s)]}〉, θ1(k) = 〈exp[ikv0(x)]〉 (31)

are the double- and single-point characteristic functions of the initial field v0(x), respectively. Apparently,
the solution of the inverse problem, namely, the retrieval of the characteristic function of the input signal
from the observed-field spectrum, is impossible.

If the initial field v0(x) has the Gaussian statistics with a zero mean and a given correlation function
B0(s), B0(0) = σ2

0 , then the spectral density given by Eq. (30) takes the form [9, 10, 14, 15, 26, 27]

E(k, t) =
1

2π(kt)2
exp[−(σ0kt)

2]

+∞∫

−∞
{exp[B0(s)k

2t2]− 1} exp(−iks) ds. (32)

Even in this case, the general solution of the inverse problem, i. e., the retrieval of the initial correlation
function B0(x) from the field spectrum E(k, t) at the instant t, is impossible. Nevertheless, the partial
retrieval of information on the initial-spectrum characteristics is possible. Note that from Eq. (32) the
relation

E(0, t) =
1

2π

+∞∫

−∞
B0(s) ds = const (33)

follows, i. e., the spatial spectrum at the point x = 0 is retained, and therefore this integral characteristic
of the initial field can be retrieved from the measured value of E(0, t) at the instant t. This invariant
plays a special role in the Burgers turbulence theory since at the discontinuity stage, the evolution of its
spectral–correlation and probabilistic properties is qualitatively different for E(0, t) 	= 0 and E(0, t) = 0.
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We also note that the rate of nonlinear self-action and generation of new harmonics of the field
v(x, t) depends on the spatial frequency k: the smaller k, the slower the processes. From this point of view,
invariant (33) is a consequence of the infinite characteristic time of self-action and harmonic generation at
a zero frequency. At σ0kt 
 1, the exponents in Eq. (32) can be expanded in a Taylor series, allowing for
only several first terms:

E(k, t) = E0(k) +
1

2
(kt)2

[
E0(k)⊗ E0(k)− 2σ2

0E0(k)
]
+ . . . , (34)

where E0(k) is the spectrum of the initial field v0(x) and the ⊗ sign denotes the convolution operation.
Allowance for only the first term on the right-hand side of Eq. (34) corresponds to neglecting the nonlinear
effects, allowance for two terms corresponds to allowance for the nonlinear interaction of pairs of the initial-
field harmonics, which leads to the appearance of spectral components with the difference and sum wave
numbers (single interaction), and so on.

At the initial stage, expression (34) describes the evolution of the spectrum almost over the entire
frequency range. However, even with allowance for the single interaction alone, the retrieval of the initial
spectrum E0(k) from the spectrum E(k, t) at the instant t requires the solution of the nonlinear integral
equation. A method for the initial-spectrum retrieval based on the use of bispectra was proposed in [28,
29]. The equation for the correlation function B(s, t) = 〈v(x, t)v(x+ s, t)〉 of a statistically uniform velocity
field, which satisfies the Riemann equation (5), is a counterpart of the Karman–Howarth equation [30] in
the turbulence theory and contains the third moments of the random field v(x, t). Correspondingly, the
equation for the spectral density of the field has the form

∂E(k, t)

∂t
= T (k, t), (35)

where the function T (k, t) describes the energy transfer over the spectrum and is expressed through the
velocity field bispectra. The bispectrum S2(k1, k2, t) is connected with the Fourier image c(k, t) of the field
v(x, t) by the relation

S2(k1, k2, t)δ(k1 + k2 − k3) = 〈c(k1, t)c(k2, t)c∗(k3, t)〉, (36)

where δ(k) is a Dirac delta function. For the Gaussian field, all the bispectra are equal to zero. From the
definition of bispectrum (36) it is seen that it reflects in a natural way the nonlinear three-wave interaction
of spatial harmonics. At the initial stage of evolution, it is possible to calculate the bispectrum variation
and, therefore, find the function T (k, t), which at this stage increases proportionally to the time t. This
makes it possible to solve the inverse problem of retrieval of the initial spectral density of the velocity field.
From the measured spectrum and bispectra of the velocity field v(x, t) at the instant t using Eq. (35) we
can retrieve the initial spectral density of the field [29]:

E0(k) = E(k, t) − tT (k, t)/2. (37)

We now consider the behavior of the spectral density of the field v(x, t) for large wave numbers k. In
this case, to calculate integral (32) one can make use of the saddle-point technique. Restricting ourselves to
the expansion of the correlation function B0(s) into a Taylor series over s, B0(s) = σ2

0(1 − k21s
2/2! + . . . ),

we find that the spectral density of the Riemann field for k → ∞ decays according to the universal power
law:

E(k, t) =
σ2
0

k1
√
2π (κτ)3

exp

(
− 1

2τ2

)
, τ = σ0k1t, κ = k/k1. (38)

Such an asymptotic form of the spectrum is due to the presence of singularities of the type v(x, t) ∝ √
x in the

realizations of the field v(x, t). Multi-valued solutions of the Riemann equation indeed have such singularities.
Hence, formally, asymptotic form (38) is indicative of a multi-valued solution, and the exponential factor
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exp
[−1/(2τ2)

]
is proportional to the average number of multi-valued parts per unit length. Actually, this

expression describes the spectrum of the single-valued field constructed in some way from the multi-valued
Riemann solution. Expressions (30) and (32) for the spectra were obtained by passing to the Lagrangian
coordinates in the expressions for the Fourier images of the velocity field, followed by averaging of the initial
field velocity v0(x) that is statistically uniform with respect to x. Therefore, it is exactly expression (32) that
describes the spectrum of the single-valued function, which is obtained by summing the branches of the multi-
valued Riemann solution with respective signs [31]. Correspondingly, the Riemann wave energy calculated as
the integral of (32) over spatial frequencies decays with the time. In [32], it was shown that expression (32)
gives a qualitatively correct description of the random-wave decay because of the discontinuity formation.

Let us discuss the behavior of the acoustic turbu-

Fig. 3. Structure of the velocity field at the stage
of developed discontinuities.

lence at times much greater than the characteristic time of
the discontinuity formation. At long times, the parabola
in Eq. (13) becomes a smooth function compared with the
initial distribution of the potential s0(x), and the coordi-
nates of its global maxima virtually coincide with the co-
ordinates of some local minima of the dependence s0(x),
i. e., the nulls of the velocity field v0(x) with a positive
derivative. Consequently, at long times, the continuous

random field transforms into a random sawtooth wave, that is, a sequence of cells with universal behavior
of the field within the cell, v(x, t) = (x− yk)/t, but with a random position of the discontinuities separating
them (Fig. 3).

Thus, as a result of the discontinuity formation, the whole information on the fine structure of the
field is lost, and by the discontinuity velocity it is possible to determine only the integral characteristic of the
initial field, that is, the integral of the initial velocity field over the interval [y+k , y

−
k ] between the nulls of the

initial field (see Eq. (19)). The multiple fusion of cells leads to an increase in the total scale of turbulence L(t)
(average mass of a macro particle) and loss of information on the fine structure of the spectrum. The rate
of coalescence of discontinuities is determined by statistical characteristics of the discontinuity velocities,
which, in turn, depend on the initial potential (see Eq. (18)). A common property of turbulence at large
times is the onset of a statistical self-similarity [9, 10, 14, 15, 33]. In particular, for the energy spectrum
there is a relationship

E(k, t) =
L3(t)

t2
Ẽ[kL(t)]. (39)

For the turbulence energy, from Eq. (39) we obtain

E(t) = 〈v2(x, t)〉 =
+∞∫

−∞
E(k, t) dk = c∗

L2(t)

t2
, (40)

where c∗ is the constant determined by the integral of the dimensionless function Ẽ(z), which describes
the shape of the velocity field spectrum. Thus, at the stage of developed discontinuities, the properties of
the turbulence are determined by a single parameter, namely, the outer scale of turbulence L(t). In what
follows, we discuss which statistical characteristics of the initial field can be retrieved from the turbulence
characteristics at some instant t.

From the solution of the Burgers equation it is seen that at long times, the turbulence properties are
determined by the statistical properties of the increments Δs0 = s0(x+ L)− s0(x) for large separations L.
For the Gaussian statistics of the initial field, the properties of the acoustic turbulence are determined by
the asymptotic behavior of the structure function D0s(x) = 〈[s0(x + y) − s0(y)]

2〉 of the initial potential.
Thus, the scenario of the turbulence development is determined by the behavior of the large-scale part of
the initial energy spectrum of the velocity field. Assume that the spectral density at large scales (i. e., at
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small wave numbers k) is power-law,
E0(k) = α2 |k|n b0(k), (41)

where n is the power-law exponent, the function b0(k) ≈ 1 in the wave-number range k < k0 and decays
rather rapidly for k > k0. The behavior of the structure function at long distances is determined by the low-
frequency part of the velocity field spectrum. For n > 1, the initial potential s0(x) in Eq. (13) is statistically
uniform and has a finite variance:

σ2
s ≡ 〈s20(x)〉 =

+∞∫

−∞

E0(k)

k2
dk. (42)

If n < 1, then the variance of the potential is unbounded, and the potential itself is characterized by a
statistically uniform structure function, which exists only for n > −1:

D0s(x) ≈ α2 |x|1−n, |x| → ∞. (43)

Let us estimate qualitatively the law of increase in the turbulence scale L(t) from the asymptotic
solution of the Burgers equations (12) and (13). The growth rate of the potential s0 can be estimated as
the root of the structure function (43), and the characteristic scale L(t) ≈ |x− y|. For a fixed coordinate x,
the maximum in Eq. (13) corresponds to the point y(x, t), for which the increments of the potential s0(y)
are comparable with the variation in the parabolic term (x− y)2/(2t). This leads ot the following equation
for the turbulence scale L(t): √

D0s(L) ∼ L2/t. (44)

Thus, depending on the exponent n of the initial spectrum (41) for long times, we have two qualitatively
different laws of increase in the spatial scale L(t) and, therefore, decay of the energy E(t). For n > 1, we
have the relations

L(t) ≈ (σst)
1/2, E(t) ≈ σs/t. (45)

In this case, by measurements of the scale L(t) or energy E(t) at the instant t, we can estimate the variance
σ2
s of the initial potential. The spectrum of the velocity field has a universal asymptotic form both in the

range of low (E(k, t) ∝ k2t1/2) and high spatial frequencies (E(k, t) ∝ k−2t−3/2), and information on the
shape of the initial spectrum is completely lost. The initial stage of the onset of the self-similar stage was
observed in the experiments on propagation of intense acoustic noise in the pipes [34]. Note that for the
one-dimensional Burgers turbulence with limited variance of the initial potential distribution (as well as the
three-dimensional Burgers equation, which is used for a model description of the large-scale structure of
the Universe), we are able to give a comprehensive statistical description [9, 10, 14, 15, 35]. In particular,
we found the single- and double-point probability distributions of the velocity field, N -point probability
distributions, and, correspondingly, multi-point moment functions of the velocity field. Such an analysis
can be performed since at long times, the parabola in Eq. (13) becomes a smooth function compared with
the initial distribution of the potential s0(x), and a large number of local minima of the dependence s0(x)
compete for being the absolute minimum in this equation (13). This made it possible to use the statistical
theory of extreme values [36] for analysis of the Burgers turbulence at long times. In a rigorous treatment, a
slowly varying logarithmic factor appears in the expressions for the outer scale of turbulence and its energy
(45).

For the unbounded initial variance (n < 1 ) from Eq. (44) we have the relations

L(t) ≈ (αt)2/(3+n), E(t) ≈ (α)4/(3+n)t−2(n+1)/(3+n). (46)

Thus, both an increase in the spatial scale of turbulence L(t) (a decrease in the width k∗ of the spatial
spectrum E(k, t), k∗(t) ≈ 1/L(t)) and the energy decay occur according to the power law as t increases.
Consequently, by these dependences, it is possible, in principle, to determine which type of initial conditions
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corresponds to these laws of increase in the scale L(t) and decay of the energy E(t), and find both the
exponent n and “amplitude” α2 of the initial spectrum for n < 1. Thus, in this case, we have information only
on the low-frequency part of the spectrum, and the spectrum E(k, t) in the range of low spatial frequencies
repeats the initial spectrum E0(k). Moreover, for n < 1, the high-frequency part of the spectrum almost
does not affect the evolution of the turbulence at long times [37], and not only the energy spectrum in
the range of low spatial frequencies, but also the low-frequency components themselves are thus retained.
In [37], it was shown that at long times, two signals with identical low-frequency part of the spectrum, but
significantly different high-frequency components (such that their cross-correlation coefficient r12(0) ≈ 0)
transforms into sawtooth waves with the cross-correlation coefficient r12(t) ≈ 1. This means that after the
filtering of the sawtooth wave it is possible to retrieve the low-frequency component of the initial field.

A more rigorous treatment shows [38] that the case is nontrivial for 1 < n < 2. At n < 2, the
initial spectrum E(k, t) is retained in the range of small wave numbers k, which is the spectral form of the
“permanence of large eddies” (PLE) principle [23, 38]. In the Fourier space, the assumption of self-similarity
(39) in combination with the PLE yield the same laws of the outer-scale increase and the turbulence-energy
decay as those which follow from Eqs. (46). However, the applicability of this law is limited by the condition
n ≤ 1. Thus, for 1 < n < 2, at long but finite times, the self-similarity is partially lost: an increase in the
outer scale L(t) and a decay of the turbulence energy E(t) are determined, as previously, by expression (45),
and the main part of the spectrum shows the same behavior as for n ≥ 2. However, the low-frequency part of
the spectrum is retained, E(k, t) = E0(k) = α2 |k|n, and transforms into the universal law E(k, t) ∝ k2t1/2.
As the time proceeds, the boundary of the spectrum kink shifts towards the increasingly low spatial spectra
faster than the coordinate of the maximum of the spectrum decreases, km(t) ∝ 1/L(t) ∝ 1/t. Thus, a
self-similar regime is asymptotically established in this case, too, and therefore from the laws of the outer-
scale increase and turbulence-energy decay it is possible to retrieve only the variance of the initial potential
distribution s0(x).

5. CONCLUSIONS

In this paper, we have considered the inverse problems of nonlinear acoustics and acoustic turbulence.
On the basis of a one-dimensional Burgers equation for zero and infinitesimal viscosities, we discuss the
fundamental possibility of retrieval of the input-signal parameters from measurements of the signal far from
the source. At the initial stage, when the field is described by the Riemann equation, the complete retrieval
of the initial wave is possible. At the discontinuity stage, from the field it is possible to retrieve only the
integral characteristics of the initial field, i. e., information on the fine structure of the initial wave is lost.
A common property of the noise signals is the onset of statistical self-similarity and, in particular, loss of
information on the fine structure of the initial spectrum. It is shown that if the large-scale components of
the spectrum are absent in the initial signal, then using the laws of the outer-scale increase and turbulence-
energy decay, one can retrieve only the variance of the initial distribution of the potential, that is, the integral
of the velocity field. If the large-scale components were fairly intense in the initial field, then, despite the
strong nonlinear distortions of the wave profile and the discontinuity formation, it is possible to retrieve the
large-scale components of the initial signal.

This work was supported by the Russian Foundation for Basic Research (Project No. 14–12–00882).
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