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SYNTHESIS OF MODE CONVERTERS ON THE BASIS OF THE FDTD METHOD

S. V.Kuzikov ∗ and M. E. Plotkin UDC 537.876.45

We propose a universal technique for synthesizing mode converters, which is based on numerical
integration of the Maxwell equations on a space-time mesh by the FDTD method. The new tech-
nique is an iterative algorithm, in which the correction to the converter profile at each iteration is
calculated via the fields on the converter surface that are obtained from two conjugate problems,
specifically, by direct and inverse (with an inversion of the time-integration direction) solution of
the equations for electromagnetic fields. The efficiency of the synthesis algorithm is illustrated by
examples that are of practical importance. The technique is compared with that proposed earlier,
which used the solution of a system of equations for coupled waves.

1. INTRODUCTION

In the context of the scalar problem of two phase correctors in free space, which form the specified
field, the concept of iterative synthesis was formulated for the first time in [1]. The proposed concept
allows one to convert a monochromatic paraxial wave beam with a given transverse distribution of the field
amplitude to a beam with a desired distribution by using the correction of only phase distributions of the
above-mentioned fields. Later, this concept was developed further to solve the problems of synthesizing
quasioptical mirrors of complex shapes [2] and weakly irregular waveguides [3, 4]. It is intensely used to
develop millimeter-wave gyrotrons for controlled fusion devices [5]. All these variants of the synthesis are
based on the common iterative scheme formulated for mirrors with weak deviations of the profile from
the plane one (phase-corrector approximation) and for weakly irregular waveguides (approximation of the
perturbation-theory method on the basis of a system of coupled waves). In accordance with this scheme,
the profile of a mirror or a waveguide converter is corrected at each iteration on the basis of the difference
of two types of fields on the synthesized surface, namely, the field obtained by solving the direct diffraction
problem with the source in the form of specified input radiation and the field obtained by solving the
conjugate diffraction problem with the source in the form of the desired output radiation. The conjugate
problem can be interpreted as a solution of the time-inverted Maxwell equations.

All the above-mentioned works discuss synthesis problems, which are mathematically incorrect. First,
one cannot state beforehand whether a solution of the problem exists. Paper [1] contains only a proof of the
fact that the degree of coincidence of the synthesized and desired solutions do not decrease from iteration
to iteration. Second, it remains unproved that the solution is unique. Moreover, convincing examples were
found that demonstrated the existence of several solutions in some cases. In addition, one cannot prove
that the synthesized solution depends continuously on the starting conditions of the problem. Despite this
fact, synthesis methods continue developing rapidly, which can be attributed to both the complexity and the
great practical significance of solving the problems of multimode converter design, when each found solution
is worth literally its weight in gold.
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In this paper, synthesis methodology is developed further in order to widen the class of synthesized
systems and generalize the approach by abandoning the approximations of the phase corrector for mirrors
and weakly irregular waveguides.

In the absence of small parameters in the geometry of an electrodynamic system, the use of calculation
methods of the Finite-Difference Time Domain (FDTD) type becomes adequate. The FDTD method is
currently a powerful tool for calculating a wide class of waveguide systems [6, 7]. It is based on solving the
Maxwell equations directly on a space–time mesh. In the case of the Cartesian coordinate system, various
components of the electric and magnetic fields are calculated in an elementary cell of the space mesh at
different corners of the parallelepiped formed by the mesh nodes. Here, the entire volume of the analyzed
object is filled with this mesh. The field at each mesh node is calculated via the field at this node at the
previous iterative step and the fields at the adjacent nodes at the current time step. For example, at the
nodes which fall within a perfect conductor, the field is identically zero, which ensures automatically the
required boundary conditions at the surface of this conductor.

High accuracy of field calculations by the FDTD method requires a mesh whose spacing is one or
two orders of magnitude smaller than the wavelength. Therefore, the computation time needed to design
multimode systems becomes a major obstacle to using this method. The latter fact is especially important
when developing iterative synthesis procedures, in which one should solve the problem of field analysis many
times.

When solving the problem at a given frequency, the computation of complex values of the fields at
each node of the mesh requires a computation time comparable with the time costs for implementation of
the FDTD method itself. Therefore, in order to avoid excessive time costs, the procedures of calculating
complex fields can be used only for a limited number of cross sections and surfaces. Analysis of the modal
content is an even more costly procedure which is usually expedient and possible in only the initial and final
cross sections of a waveguide converter.

In what follows we consider a synthesis algorithm allowing for these features of the FDTD method.

2. STATEMENT OF SYNTHESIS PROBLEMS FOR WAVEGUIDES

In the most general statement of the problem, we will consider solutions of the Maxwell equations
at a given frequency ω. Consider the problem (in the general case, a three-dimensional one) of a waveguide
with perfectly conducting walls and the length L, whose surface should be found (i.e., synthesized) from the
condition of complete transformation of the specified input fields to the required output fields (Fig. 1a). We
assume that semiinfinite regular waveguides, which ensure perfect matching, i.e., the absence of reflected
waves coming to the synthesized wavegide from the regions z > L and z < 0, are joined to the considered
waveguide on the left and on the right. In the cross section z = 0, only the input complex fields Ein(0, r⊥)
and Hin(0, r⊥) are specified, which correspond to the radiation propagating to the region z ∈ [0, L]. Here,
r⊥ is the radius vector in the plane z = const. In the cross section z = 0, these fields can be represented
as a superposition of the modes of the above-mentioned regular waveguide, which propagate in the positive
direction of the z axis. The required, or desired fields Eout(L, r⊥) and Hout(L, r⊥) are specified in the cross
section z = L.1 They form the radiation propagating from the region z ∈ [0, L]. In the cross section z = L,
these fields are represented by another superposition of the modes, which also propagate in the positive
direction of the z axis. The input and required fields should be specified self-consistently, so as to ensure
the fulfillment of the conservation law in the form of equality of power fluxes for all ingoing and outgoing
waves in the region z ∈ [0, L].

Application of the FDTD method for solving the specified problem requires taking the features of the
method into account. Specifically, within the framework of the FDTD method, the matching semiinfinite
waveguide sections are replaced by sections of finite lengths, which are filled with an absorber (Fig. 1b). Such

1 In the general case, the desired wave beams propagating from the region z ∈ [0, L] can be specified in the cross sections
z = 0 and z = L. For z = 0, the desired fields form the reflected radiation, which can be the objective in, e.g., the problems of
reflector synthesis.
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Fig. 1. Statement of the problem of synthesis in a waveguide (a); simulation of the matching by means of
absorbers and the mesh on whose basis the ladder structure of boundaries is formed (b).

absorbers ensure a wide angular matching spectrum and are formed by electrical and magnetic conductivities,
which are identical in value and increase linearly in the direction of propagation of the absorbed radiation.
Usually, one can achieve a reflection level of about 10−3 and smaller by using such absorbers whose thickness
is 10–20 times greater than the sizes of elementary cells of the mesh (the case where one of the waves incident
on the absorber has a frequency close to the cutoff is one the only exception).

To simulate processes at a given frequency, field sources should be taken in the form of monochromatic
emitters (fields or equivalent currents) which are switched on at some time. Before this time, all the fields
in the considered volume are zero. The switch-on process is excitation of a field with some frequency
spectrum whose width is inversely proportional to the switch-on time. One can wait till the processes of
wave propagation and diffraction reach a stationary level, which is provided by the presence of the above-
mentioned absorbers, and then state (with some degree of accuracy) that only one frequency has “survived.”
Usually, a different approach is used in the FDTD algorithms, namely, in order to calculate the complex
amplitude a = |a| exp(iφ), only the spectral component at the frequency ω is singled out of the time
dependence a(t) of the field by means of Fourier analysis:

a′ =
ω

πn

2πn/ω∫
0

a(t) cos(ωt) dt, (1)

a′′ =
ω

πn

2πn/ω∫
0

a(t) sin(ωt) dt, (2)

where n ≥ 1 is an integer. Then, |a| =
√

a′2 + a′′2 and φ = arctan(a′′/a′). This approach means frequency
filtration. The filtration is more efficient, the longer is the time interval on which the Fourier analysis is
performed, i.e., the greater the value of n.

Among the excited frequencies, there arise those corresponding to evanescent waves. Quasistatic
fields of such waves are concentrated only near the source. The effect of these fields on the synthesis of the
converter surface is weakened further by the use of spatial filters, which are discussed later.

Figure 1b shows schematically the space mesh used to analyze the fields within the framework of the
FDTD method. When performing synthesis, this mesh is chosen such that it covers the volume of the initial
waveguide with sufficient margin, since in the process of iterations during the synthesis, the shape of the
surface changes and the waveguide cross section becomes at some points wider or narrower than the initial
crosssection (Fig. 1b).

To develop the iterative algorithm, we will need two types of solutions of the Maxwell equations. Each
of the solutions satisfies the boundary conditions on metal. The fields E+(t, z, r⊥) and H+(t, z, r⊥) of the
first above-mentioned solution are found by solving the Maxwell equations directly, as they are integrated
in the positive direction of the time axis. In this case, the source is the fields whose transverse distributions
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correspond to Ein(0, r⊥) and Hin(0, r⊥) and time dependence is described by the oscillations at the frequency
ω (with accuracy up to the switch-on process). Such a source forms a power flow from the left to the right
(Fig. 1b). The fields E−(t, z, r⊥) and H−(t, z, r⊥) of the second solution are obtained by integration of the
Maxwell equations with the reverse direction of the time axis, in which case the source is the fields with the
distributions Eout(L, r⊥) and Hout(L, r⊥), which are also simulated by the switched-on oscillations at the
frequency ω. The waves radiated from such a source propagate from the right to the left.

The correction to the surface profile is calculated at each iteration from the complex-valued tangential
components of the magnetic field at the waveguide walls and the normal components of the electric field:

∆l = α Im(H+
τ
∗H−

τ + E+
n
∗E−

n ), (3)

where α is a certain constant and the asterisk denotes complex conjugation. The practical choice of this
constant and the choice of the form of the correction are justified below.

Calculation of the complex amplitudes in Eq. (3) means finding the amplitude and phase of the
corresponding Fourier harmonic at the frequency ω, but the use of this procedure in accordance with the
above discussion is necessary only at the mesh nodes falling on the waveguide surface, rather than in the
entire volume.

3. ITERATIVE SYNTHESIS ALGORITHM

To use the iterative synthesis procedure, one has to specify some initial approximation for the surface
profile. For example, it can be a cylindrical surface for the problem of conversion of the modal content in a
circular waveguide. Then we solve the direct problem in which the fields E+(t, z, r⊥) and H+(t, z, r⊥) are
calculated. Subsequently (or simultaneously), we solve the conjugate problem in which the fields E−(t, z, r⊥)
and H−(t, z, r⊥) are found. Fourier analysis of these fields on the surface allows one to use Eq. (3) to find
a small correction to the surface profile. Further, at the next iterative step, new fields are calculated in
the already changed geometry and the found fields are used to determine the new surface profile, etc. This
procedure can be repeated until the obtained fields coincide with the desired ones with sufficient accuracy.
A block diagram of the iterative synthesis procedure is shown in Fig. 2.

To estimate the degree of coincidence at each iterative step in the input and output cross sections, i.e.,
at z = 0 and z = L, one can calculate mutual power coefficients which characterize the degree of coincidence
of the obtained solutions with the desired ones:

η−i =

∣∣∣∣∣
∫
S

([E−
i ×Hin] + [Ein × H−

i ]) dS

∣∣∣∣∣
2

, (4)

η+
i =

∣∣∣∣∣
∫
S

([E+
i × Hout] + [Eout × H+

i ]) dS

∣∣∣∣∣
2

, (5)

where i is the iteration number and S is the side surface of the converter. We assume in Eqs. (4) and (5)
that the complex fields (Ein, Hin) and (Eout, Hout) in them are normalized to a unit power flux.

Let us dwell on choosing the form of the profile correction in more detail. It is evident that this
correction should satisfy at least two criteria: (i) the calculated value of the correction should tend to zero
as the obtained solution approaches the desired one, and (ii) the correction should generate such spatial
harmonics of the profile that increase the conversion efficiency if the solutions do not coincide.

Surely, the set of correction forms includes an infinite number of solutions which satisfy the above-
mentioned criteria. Among the corrections with the simplest form, two corrections were studied. One
of them is expressed by Eq. (3). It can easily be verified that if H+(z) = H−(z) and E+(z) = E−(z),
then ∆l(z) = 0. If the fields H+ and E+ correspond to one mode with the propagation constant h1, i.e.,
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Fig. 2. Block diagram of the iterative synthesis algorithm.

{H+,E+} ∝ exp(ih1z), and H− and E− correspond to another mode with the propagation constant h2,
i.e., {H−,E−} ∝ exp(ih2z), then ∆l ∝ sin[(h2 − h1) z]. Such a corrugation profile of the waveguide surface
within the framework of perturbation theory (∆l � λ) is the required solution which ensures the maximum
energy exchange between the two modes along the z coordinate [8].

Another form of the correction, which was considered, is given by

∆l(z, r⊥) = α |U+ − U−|2 (6)

and it also ensures that ∆l tends to zero when the fields U+ and U−, which can be both tangential magnetic-
field components and normal electric-field components, coincide. However, in the case of two modes with
different propagation constants, which has already been considered, Eq. (6) yields a formula for the correction
in the form ∆l ∝ sin[(h2 − h1) z] + const. Thus, an “extra” constant term is present in ∆l. This example
shows that the use of the correction in the form of Eq. (3) is more accurate since the formed spatial spectrum
of the profile is not widened by additional harmonics. Therefore, in what follows, we use this form of the
correction in all numerical examples.

It is of methodical interest to compare the proposed correction (3) to the profile with the correction
proposed in [3], in which an iterative synthesis algorithm was developed on the basis of solving a system of
equations for coupled waves. In the waveguide converters considered in [3], the mode energy exchange is
described in the one-dimensional case by a system of equations for complex amplitudes of aj modes:

daj

dz
− ihjaj = i

∑
s

χjsl(z)as, (7)

where χjs is the coupling coefficient of the modes with the numbers j and s, and l(z) is a function describing
the surface profile. The coupling coefficient in a waveguide close to a cylindrical one is expressed via the fields
of modes with the numbers j and s, which are taken on the walls of a reference (unperturbed cylindrical)
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waveguide and are normalized to the unit power flux [9]:

χjs =
1
2k

2πr0∫
0

(HjzHsz + HjϕHsϕ + EjrEsr) dp. (8)

Here, the integral is taken over the perimeter of the cross section of an unperturbed waveguide with the
radius r0, k = ω/c is the wave number in free space, and ϕ is the azimuthal angle in the cylindrical coordinate
system. The correction to the profile in [3] (written in our notation) is proposed in the form

∆l =
π

4L

∑
j,s

Im

(
a+

j
∗
a−s − a−j

∗
a+

s

χjs
+

a+
s
∗
a−j − a−s

∗
a+

j

χsj

)
, (9)

where the summation is performed over all propagated modes and L is the length of the synthesized section.
To compare both methods, we now discuss a special case of an axisymmetric waveguide, for which

we will be interested in only axisymmetric modes of magnetic type. We will consider only the solutions for
small surface corrections (∆l � λ), such that the application of perturbation theory is valid. In this case,
Eq. (3) is simplified as much as possible, since only the longitudinal (with respect to the z axis) component
of the magnetic field is nonzero. Let us also simplify Eq. (9). In the absence of reflected waves, all coupling
coefficients, as follows from the power-flux conservation law, satisfy the equality χsj = χ∗

js and are expressed
from Eq. (8) via the magnetic fields of modes with the numbers j and s, taken on the walls:

χjs =
πr0

k
Hjz(r0)Hsz(r0) = − µjµs

r4
0 (hj − hs)

√
hjhs

, (10)

Here, as in Eq. (8), r0 is the radius of an unperturbed waveguide, hj =
√

k2 − (µj/r0)2 and hs =√
k2 − (µs/r0)2 are the propagation constants of modes with the numbers j and s, respectively, µj and

µs are the roots of the equation J ′(µ) = 0, where J(µ) is a Bessel function and the prime denotes the
derivative with respect to the argument). Since, according to Eq. (10), all coupling coefficients are real, the
formula for the correction to the profile can be rewritten in the form

∆l(z) =
π

2L

∑
j,s

Im
(
a+

j
∗
a−s − a−j

∗
a+

s

) 1
χjs

(11)

or, if the terms under the sign of the imaginary part are rearranged, in a simpler form:

∆l(z) =
π

L

∑
j,s

Im
[
a+

j
∗(z)a−s (z)

] 1
χjs

. (12)

In particular, in the system of two coupled modes in the problem of complete conversion of one mode
to another, Eq. (12) yields the required profile in the form

∆l(z) =
π

χ12L
sin[(h1 − h2) z]. (13)

As was shown in [8], this formula is an exact solution of the problem within the framework of perturbation
theory, and no further iterations are needed.

On the other hand, Eq. (3) for the correction to the surface profile can be written, in accordance with
our proposal, by using the same complex amplitudes of waves if the fields are represented as an expansion
in terms of waveguide modes:

Hz(z, r⊥) =
∑

j

aj(z)Hjz(r⊥). (14)
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This representation is inapplicable for practical calculations due to the reason discussed above, namely,
enormous time costs of calculations for averaging of the fields and their expansion in modes. However, it
allows one to compare immediately the synthesis formulas. In particular, substituting Eq. (14) into Eq. (3),
we obtain

∆l(z) = α
∑
j,s

Im
[
a+

j
∗(z)a−s (z)

]
Hjz(r0)Hsz(r0) = α̃

∑
j,s

Im
[
a+

j
∗(z)a−s (z)

]
χjs, (15)

where α̃ is a certain constant independent of the coordinates. Thus, Eq. (15) proposed by us for the correction
is close in its structure to Eq. (12), to which the equation proposed in [3] is reduced. The only difference
is that in Eq. (12), the imaginary part of each product of complex amplitudes under the summation sign
is divided by the corresponding coupling coefficient, whereas in Eq. (15), we have multiplication by it. The
presence of the coupling coefficient in the denominator leads to difficulties in the case where uncoupled or
weakly coupled modes happen to be among the modes included in the synthesis procedure. In this case, the
correction to the surface profile can increase indefinitely, and one has to limit it artificially by excluding pairs
of modes of the above-mentioned type. Equation (15) has no such drawback. On the other hand, Eq. (15)
proposed by us comprises the constant α̃, which should be determined somehow for practical calculations.
We propose to choose it from the estimations yielded by perturbation theory. In particular, for the example
considered above, it follows from the analytical solution within the framework of perturbation theory [8] that
in the case where one mode should be completely converted to another copropagating mode, the constant
α̃ is expressed in the form

α̃ = π/(χ2
1 2L). (16)

Now, for α̃ chosen in the form of Eq. (16), correction (15) in the considered special case completely
coincides with correction (12) obtained in accordance with [3]. In the same case, in Eq. (3), the factor
α = π2r0/(χ2

1 2Lk), in accordance with Eq. (16). Evidently, the choice of smaller values of α is admissible,
but leads to a greater total number of iterative steps required to achieve the acceptable conversion level due
to the smallness of corrections. As the calculations show, the choice of overrated corrections also leads to
an increase in the number of iterations and unreasonably great deviations of the synthesized profile from
the unperturbed one.

Note that if undesired reflections occur, coefficients (4) and (5) also turn out to be less than unity.
It follows from the above discussion that in the presence of reflections, the procedure itself starts exciting
the profile harmonics which favor a decrease in this reflection.

4. APPLICATION OF FILTERS TO THE SYNTHESIZED SURFACE

As in most other methods, the field calculation in the FDTD method is associated with some errors.
Specific errors related only to the FDTD method can conventionally be divided into three groups. The first
group includes Schottky-type wideband noise which is related to the errors caused by the resolution of the
time–space mesh. The second group is related to finite times of the source switch-on and finite onset times
of oscillations in the system. The third group is related to parasitic reflections, in particular those caused
by imperfect matching of the end absorbers (Fig. 1b). All these sources of imperfections lead to errors in
field calculations, thereby affecting the shape of the synthesized profile.

We now consider profile aberrations using an example of a Schottky noise source. Let the only
nonzero fields on the surface be the magnetic fields having a single component and depending only on the
longitudinal coordinate z (such a case was already considered when we compared the profile corrections).
Let the synthesis problem also consist in the conversion of a mode with the propagation constant h1 to the
mode with the propagation constant h2:

H+(z) = [1 + δ(z)] exp(ih1z), H−(z) = [1 + δ(z)] exp(ih2z), (17)

where the formula for the fields is supplemented by a source δ(z) of the Schottky noise whose amplitude is
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small, such that |δ(z)| � 1. Then the correction to the profile will have the form

∆l(z) = α Im[(H+
τ )∗H−

τ ] ≈ α [1 + 2δ(z)] sin[(h2 − h1) z]. (18)

As follows from Eq. (18), the relative value of the noise in the profile is twice as great as the noise in the
formulas for the fields. If the Schottky noise source is assumed random from iteration to iteration, then
the noise in the profile will increase even more at the next iterative step. Thus, to suppress the noise
amplification from iteration to iteration, one should filter the harmonics of the synthesized profile.

It is reasonable to single out the useful signal (i.e., the surface profile) against the background of
noise and interference by using Fourier filters since the considered sources of noise and errors have some
pronounced spectral features. For example, the Schottky noise is wideband. Therefore, one should reject
the high- and low-frequency spatial harmonics. The errors related to finite times of oscillation switch-on
usually contribute to the low-frequency components. Parasitic reflections lead to the appearance of the
profile harmonics with the typical transverse scale π/h, where h is the propagation constant of the incident
wave.

Consider the development of the simplest two-dimensional Fourier filter using an example of a
waveguide close to the cylindrical one. To do this, we represent the correction to the cylinder surface
as a Fourier series expansion over the azimuthal coordinate ϕ:

∆l(ϕ, z) =
+∞∑

n=−∞
an(z) exp(inϕ), (19)

where an(z) are complex amplitudes of the Fourier harmonics. Taking into account that the profile is a real
value and, hence, a−n = a∗n, we rewrite Eq. (19) as

∆l(ϕ, z) = a0(z) + 2
N2∑

n=N1

Re[an(z) exp(inϕ)], (20)

where the summation limits should be chosen in accordance with the above-mentioned physical considera-
tions, to ensure the best filtration. As will be shown by examples, in some cases it is sufficient to allow for
only one or two azimuthal harmonics. We also note that in the numerical realizations of synthesis algorithms,
the surface profile was stored in computer memory in the form of amplitudes of the Fourier harmonics in
each cross section determined by the mesh spacing along the longitudinal coordinate.

To filter the profile along the longitudinal coordinate, we use the Fourier integral transform of each
azimuthal Fourier harmonics:

an(z) =

Kmax∫
−Kmax

Sn(k) exp(ikz) dk, (21)

in which the integration limits should also be restricted, and the spectrum Sn(k) is calculated by the formula

Sn(k) =
1
2π

L∫
0

an(z) exp(−ikz) dz. (22)

When developing a numerical filter on the basis of Eqs. (20)–(22), it is expedient to put the zeroth
harmonic equal to zero since the input and output of the converter are usually specified in the form of a
waveguide having a circular cross section and should not be changed in the synthesis process.
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b)

a)

TE01

TE04

Fig. 3. Initial instantaneous distributions of the azimuthal component of the electric field (at the zeroth
iterative step) in the longitudinal section of the waveguide for the incidence of the TE04 mode from the left
(a) and of the TE01 mode from the right (b).

5. AXISYMMETRIC TE01–TE04 MODE CONVERTER

The problem of the efficient TE01–TE04 mode conversion is complicated by the existence of at least
two “parasitic” modes, namely, TE02 and TE03. Despite the fact that axisymmetric modes of the electric
type do not appear in an axisymmetric waveguide if it is excited by any magnetic-type wave, the presence
of even the two above-mentioned parasitic modes makes solving the conversion problem rather difficult.
This is due to the fact that the coupling of the TE01 and TE04 modes is not the strongest for any small
perturbation of the profile of a regular waveguide, which leads to its tapering. For example, the coupling
of the TE04 and TE03 modes is greater due to a higher cutoff frequency of the TE03 mode compared with
the TE01 mode. Therefore, efficient conversion of the modes that are of interest to us is possible only in a
relatively long waveguide. Its length cannot be shorter than the longest length of the beats in the modes of
the system (in our case, they are beats of the lower-order TE01 and TE02 modes).

We will use the two-dimensional realization of the proposed synthesis algorithm and choose the length
of the synthesized converter section to be equal to three lengths of the lower-mode beats. For a frequency
of 30 GHz and the waveguide diameter equal to 49 mm, this length amounts to 400 mm. The initial field
distributions corresponding to the incidence of the TE01 mode from the right and of the TE04 mode from the
left are shown in Fig. 3 (halves of the cross section of a circular waveguide are presented and the waveguide
axis is shown by a dash-dot line).

As a result of the synthesis procedure, we obtain the solution (see Fig. 4) which ensures efficient
conversion of one mode to another at a level of 99% (1% is spent for the loss due to scattering to other
modes). The calculation accuracy estimated by the fulfillment of the conservation law amounts to 0.5–1%.

As the initial surface profile (zeroth iterative step), we took a smooth cylindrical waveguide. As is
seen in Fig. 5a, at the next iterative step, the profile becomes periodic (with the period corresponding to
the maximum energy exchange between the TE01 and TE04 modes) and has an almost constant amplitude
along the length. At the subsequent iterative steps, the profile is enriched with harmonics, which are, in
particular, responsible for the transfer of energy among all other propagated axisymmetric modes. In this
case, the efficiency of conversion of the desired modes increases on the average from iteration to iteration
(Fig. 5b). The highest conversion efficiency was achieved at the 18th iteration.

When finding the solution, we used a one-dimensional Fourier filter which rejects the profile harmonics
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b)

a)

TE01

TE04

Fig. 4. Instantaneous distributions of the azimuthal component of the electric field at the final (18th) iterative
step in the longitudinal section of the waveguide for the incidence of the TE04 mode from the left (a) and of
the TE01 mode from the right (b).
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Fig. 5. Profile of the synthesized surface over the length (r is the waveguide radius) at several iterative steps
(a) and the efficiency of conversion as a function of the iteration number (b).

capable of causing Bragg reflection. We also ignored the constant correction to the profile at each iterative
step and used a smoothing procedure similar to that proposed in [4] at the ends of the converter. The max-
imum change in the radius of the synthesized profile amounted to 0.3λ, which corresponded to a sufficiently
deep profile, which, strictly speaking, could not be described within the framework of perturbation theory.

To check the accuracy of the obtained solution, we used the cross-section method based on solving
a system of equations for coupled modes with allowance for both propagated modes and some evanescent
modes, including reflected modes [9]. The solution obtained by this method (Fig. 6) is in good qualitative
and quantitative agreement with the solution found by the FDTD method. In this case, the efficiency of
conversion also amounted to 99%, but minor differences were revealed. Specifically, in the solution based on
the cross-section method, the maximum-efficiency conversion is achieved at 75 MHz, i.e., at a frequency that
is lower (by 2.5%) than the calculated value (Fig. 7a). One can see in Fig. 7 that in the case of incidence of
the TE01 mode, the fact that the conversion efficiency differs from 100% is caused by both reflection into the
counterpropagating TE04 and TE02 modes (about 0.6%) and by the presence of an incompletely converted
copropagating TE02 mode at the output (approximately 0.6% in addition).
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Fig. 6. RMS distribution of the electric-field amplitude in the longitudinal section of the waveguide.
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Fig. 7. Conversion to copropagating and counterpropagating modes (a and b, respectively) at the final iterative
step as a function of the frequency for the incidence of the TE01 mode from the right.

6. SMALL-SIZE TE11—TE01 MODE CONVERTER

The converter of the fundamental mode of a waveguide with a rectangular cross section to the
lower-order axisymmetric TE01 mode is of interest for many applications, both in the case of high-power
microwave radiation (in view of the electric-strength reasons) and for low-power devices (due to a low ohmic
loss). Among many variants of such a conversion, we will consider a converter in the first section of which the
TE10 mode of a rectangular waveguide is converted adiabatically to the TE11 mode of a circular waveguide
and only then the TE11 mode is converted to the TE01 mode in the next section representing a periodically
bent waveguide. A successful realization of such a converter at a frequency of 30 GHz is described in [10].
The structure of the fields in this converter is shown in Fig. 8.

Before the development of powerful computation tools such as HFSS, “Microwave Studio,” etc., the
calculation of a periodically bent waveguide was possible only within the framework of the methods of cross
sections and perturbation theory. In the latter case, it is convenient for calculations to describe the converter
surface in the cylindrical coordinates (r, z, ϕ) by a simple analytical formula

r(z, ϕ) = r0 + l sin(2πz/D) cos ϕ, (23)

where r0 is the average radius of the converter, l is the deformation amplitude, and D is the beating
period of the TE11 and TE01 modes in an unperturbed waveguide with the radius r0. The length L of
the converter is related to the deformation amplitude by the complete-conversion condition L × l = const.
However, the problem is that one cannot decrease the length, while increasing the deformation amplitude,
due to the unavoidable increase in the scattering to parasitic modes. Among the propagated parasitic
modes, the TE21 mode, whose coupling to the TE11 mode is sufficiently strong, is the most dangerous.
The propagation constant of the TE21 mode lies strictly between the propagation constants of the TE11

and TE01 modes (hTE01 < hTE21 < hTE11). It is this parasitic mode that prevents decreasing the length
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Fig. 8. TE11–TE01 converter and the instantaneous distribution of the absolute value of the electric field in
its longitudinal section.
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Fig. 9. Field distribution in the longitudinal and cross sections of the converter for the incidence of the TE11

mode from the right (a–d) and of the TE01 mode from the left (e–h): Ey component in the xz plane (a), Ey

component in the yz plane (b), Ey component in the plane parallel to the xy plane at the converter output
(c), Ex component in the same plane (d), Ey component in the xz plane (e), Ey component in the yz plane
(f), Ey component in the xy plane (g), and Ex component in the xy plane (h).

of the converter. In particular, in [10], the converter length was limited by four beating periods of the
operating modes (about 12λ). Along with the above-mentioned obstacle related to parasitic scattering, the
applicability of perturbation theory is violated with increasing amplitude of bending. In particular, the
above-mentioned converter was calculated, for the sake of comparison, by several methods including the
perturbation method (MCW), FDTD, and HFSS [10]. The calculations by the two latter methods yield
close results, and perturbation theory yields a systematic shift of the center of frequency conversion by 1%
upwards, which is due evidently to an excessively high amplitude of the surface perturbation.
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Thus, it was confirmed that the calculation by the
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Fig. 10. Development of the converter surface.

FDTD method ensures satisfactory accuracy. Then a
problem was specified to synthesize a converter twice as
short as compared with that considered in [10].

The results of using the three-dimensional variant
of the synthesis procedure are presented in Fig. 9 showing
instantaneous distributions of the electric fields obtained
in two ways: for the incidence on the converter of the
TE11 mode from the right and of the TE01 mode from
the left. In the notations of the field components and
cross sections, we used the system of coordinates shown
in Fig. 8. The obtained conversion efficiency amounted to
99% and was achieved in 16 iterative steps.

The shape of the three-dimensional synthesized surface in the form of a waveguide development is
shown in Fig. 10. It is seen that the profile describes a surface similar to that yielded by Eq. (23). However,
one can observe an elliptical addition for large values of z.

The complete mesh used for the converter synthesis consisted of 120× 120× 400 nodes. In each cross
section, the number of azimuthal harmonics of the profile was limited to three harmonics: cosϕ, cos(2ϕ), and
cos(3ϕ). The number of field recalculation steps per synthesis iteration (number of time steps) amounted
to 3 · 103. The synthesized converter (for f = 30 GHz) had the following parameters: a length of 58.1 mm
(about 6λ), an average radius of 7.43 mm (about 0.8λ), and a maximum radius variation of 2.94 mm (about
0.3λ).

7. CONCLUSIONS

The proposed iterative algorithm for synthesizing the waveguide converter allows one to achieve high
efficiency of conversion of the spatial structure of radiation and its transportation in waveguide systems.
The method is based on direct solution of the Maxwell equations on a space–time mesh and does not require
the presence of small parameters in the geometry of the waveguide system. It is applicable for calculation of
a wide class of devices including waveguide converters and mirror converters. The generality of the method
makes it applicable when using other programs for field calculations (HFSS, “Microwave Studio,” MAFIA,
etc.). Examples of the converter synthesis demonstrate high efficiency and were checked by the methods of
cross sections and HFSS, as well as in experiments [11, 12].
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