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WIDE-ANGLE DIFFRACTION OF THE LASER BEAM BY A SHARP EDGE

S. P.Anokhov,1∗ R. A. Lymarenko,1

and A. I. Khizhnyak 2 UDC 535.2:621

Using a rigorous theory of diffraction, we explain the origin and analyze the structure of a wide-
angle illuminated area observed when a limited beam is diffracted by the sharp edge of an opaque
screen. It is shown that the formed plume has the structure of a cylindrical wave traveling from
the screen edge and its amplitude is proportional to the beam amplitude at this edge. The observed
structure is Young’s boundary wave produced by diffraction of the limited beam.

1. INTRODUCTION

This work was motivated by the following unusual observation. The field arising due to diffraction of
an intense laser beam by the edge of a thin screen comprises not only the bright central component whose
scale is comparable with that of the initial beam, but also a wide, less pronounced plume extending with the
decreasing intensity in the diffraction plane to both sides of the diffracted-beam axis (Fig. 1). The angular
size of this plume exceeds the divergence of both the initial beam and the above-mentioned central field
component by many times. The geometric center of the observed illuminated area coincides with the screen
edge, which gives rise to the idea that it is related to the so-called Young’s boundary wave [1, 2], whose
actual existence has remained the subject of discussions until recently. The purpose of this paper is to
establish the actual origin of this plume and the possibility of a rigorous description of its spatial structure.

The considered problem is reduced in a natural way to edge diffraction of a Gaussian beam radiated
by most production-type single-mode lasers. Generally speaking, interest in the subject is not new. The edge
diffraction of Gaussian beams was studied in [3–6]. However, information on the above-described wide-angle
component is absent in those works. The general structure of the field formed as a result of diffraction of
a three-dimensional Gaussian beam was studied approximately in [7, 8] and rigorously in [9, 10]. However,
such features as the phase structure of the field and, moreover, the detailed field structure in the far zone
remained outside the scope of those papers.

2. DIFFRACTION OF A GAUSSIAN BEAM BY A HALF-PLANE

Before formulating the problem, we briefly review the required results of the rigorous diffraction
theory. It is based on the exact solution of the problem of diffraction of a plane wave by a perfectly
conducting and, hence, perfectly reflecting half-plane (Fig. 2). This solution was obtained by Sommerfeld in
1896 and became the cornerstone for considering any kind of diffraction by two-dimensional apertures [1, 2].
In accordance with this solution, the field formed behind the half-plane due to diffraction of an arbitrarily
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Fig. 1. Diffraction of the laser beam by the sharp edge of the screen: the optical scheme of the experiment (a)
and the observed field distribution (b). Because of the significant change in the radiation intensity, the central
part of the distribution is given separately with decreased intensity and increased scale.

oriented E- or H-polarized plane wave E(pl) = A0 exp[−ikr cos(θ−α)] can be represented as the sum of two
stable waves 1 almost everywhere behind the screen (see the discussion below) [11]:

E(P ) = E(pl)/2 + E(d), (1)

1One should not confuse these waves with boundary and geometric-optical Young’s components. In Sommerfeld’s problem,
these components have an unremovable amplitude discontinuity at the boundary of the geometrical shadow. Due to this fact,
they cannot exist in free space.

927



where E(d) = A0 [(1 − i)/
√

2π] exp[−ikr cos(θ − α)]F (U),

Fig. 2. Diffraction of a plane wave or Gaussian
beam by the edge of a half-plane.

Fig. 3. Distributions of the absolute value (a) and
the phase (b) of the d-wave near the boundary of
the geometrical shadow.

A0 is the incident-wave amplitude, k = 2π/λ is the wave
number, the meanings of the quantities r, θ, and α are
easily understood from Fig. 2, and the function

F (U) =

U∫

0

exp(iµ2) dµ (2)

is a Fresnel integral with the upper limit

U =
√

2kr sin
α − θ

2
. (3)

Note that function (2) in graphical form represents the
well-known Cornu spiral [1, 2].

Solution (1) is valid in the entire upper half-space
above the half-plane (Fig. 2), except for a small region
of a few tens of wavelengths in radius in close proxim-
ity to the edge and for diffraction angles exceeding a few
tens of degrees. In these regions, one should take into
account the field related to the component reflected from
the screen [11]. The first term in Eq. (1) represents a plane
wave similar to the incident wave but having a factor of 2
smaller amplitude. The second term E(d) describes a wave
with a close amplitude and an infinitely extending wave
front comprising the edge dislocation at the geometrical-
shadow boundary (Fig. 3) [12]. All the characteristic fea-
tures of edge diffraction are related to exactly this singular
wave [11]. In what follows this wave (related to diffraction
and dislocation) is called the d-wave.

As is known, an arbitrary wave beam can be rep-
resented as a set of plane waves with differently oriented
wave vectors. The diffracted field produced by each plane
wave is described by Eq. (1). As a result, the general
diffracted field of the beam can be expressed as the sum
of the initial beam with the halved amplitude and the
field formed by the superposition of d-waves. For brevity,
the latter field will be called the D-wave.

In what follows we use more illustrative Cartesian coordinates introduced by the relations r =√
x2 + z2 and α = arccos[kx/k], where kx is the projection of the wave vector k onto the x axis and

θ = arccos[x/r] = arccos[x/
√

x2 + z2]. In these notations, the dimensionless spatial parameter U has the
form

U = σ [kr − kxx −
√

k2 − k2
x z]1/2, (4)

σ = sign
[
arccos(kx/k) − arccos(x/

√
x2 + z2)

]
. (5)

The general solution for the beam field behind the screen

E(Σ) = A0

+∞∫

−∞
fG(kx)

[
1
2

+
1 − i√

2π
F (U)

]
exp

[
i
(
kxx + z

√
k2 − k2

x

)]
dkx =

E(G)

2
+ E(D) (6)
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is the convolution of the Fourier transform fG(kx) of the incident beam and solution (1) for a single plane
wave.

Let a two-dimensional Gaussian beam corresponding to the geometry of the problem be incident on
the screen edge. For simplicity, we consider normal incidence of the beam on the screen and place the beam
constriction on the screen. The complex amplitude of such a beam is described by the expression

BG(x, z) = exp
(
−(x − x0)2

w2

)
exp(ikz) = b(x) exp(ikz), (7)

where x0 describes the shift of the beam axis with respect to the screen edge located at x = 0 and b(x) is
the distribution of the beam field in the screen plane. The angular spectrum of such a beam in terms of the
wave-vector projection kx onto the x axis is written as

fG(kx) =
w√
2

exp
(
−k2

xw2

4
− ikxx0

)
. (8)

Numerical calculation of solution (6) is difficult since its kernel comprises the complex Fresnel integral
F (U) which is a rapidly oscillating function of the integration variable. To remove this difficulty, the complex
amplitude of the d-wave was approximated by the relation

A
(d)
+ =

1 − i√
2π

F (U) ≈ σ

2

{
1 − (1 + i) exp(iU2)

|U |√2π + exp(−|U |1.04) + i [1 + 0.4U2]−0.6

}
(9)

with an explicitly expressed oscillating factor. The difference between approximating function (9) and the
Fresnel integral in the entire domain of its definition (−∞ < U < +∞) does not exceed 0.1% and 0.6% in
absolute value and phase, respectively. As a result, for the spatial distribution of the D-wave we obtain the
expression

E(D) =
w√
2

exp(ikr)

+k∫

−k

σ

2

{
1 − 1 + i

|U |√2π + exp(−|U |1.04) + i [1 + 0.4U2]−0.6

}
× exp

(
−k2

xw2

4
− ikxx0

)
dkx

(10)
without a rapidly oscillating factor, which simplifies significantly calculations, but leaves their accuracy
intact. Let us consider the results of numerical studies of solutions (6) and (10).

3. NUMERICAL RESULTS

The spatial structures of the diffracted field and its two wave components entering Eq. (10) are shown
in Figs. 4 and 5 for different distances from the screen. Figure 4 shows the distributions of the amplitudes of
the fields, while Fig. 5, the distributions of their phases. In each case, the bold line shows the total field, the
thin solid line, the D-wave field, and the dashed line, the field of the Gaussian beam decreased by a factor
of 2. As a scale of the axial coordinate z, we use the Rayleigh length LR = πw2/λ, which conventionally
separates the zones of Fresnel and Fraunhofer diffraction.

It is seen that the total field in the zone of Fresnel diffraction (z < LR) preserves the known details
of the classical distribution created by a diffracted plane wave, but the average level of the amplitude
oscillations now coincides with the beam profile (Figs. 4a and 4b). With increasing distance from the screen,
the frequency and the number of these oscillations decrease, so that the resulting field in the zone of
Fraunhofer diffraction is completely free of such oscillations. Since the discussed evolution of the central
part of this distribution is described and studied in detail in [3–8], we omit its detailed consideration and
proceed to the main issue, namely, the wide-angle component of the diffracted radiation.

Its presence is evidenced by extended structureless wings which are observed in the field and are well
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pronounced in all the presented amplitude distributions. It is seen in these distributions that both wings
belong to the D-wave which individually represents the actually observed field outside the central region of
the diffracted beam. The front of the D-wave acquires a well pronounced cylindrical shape at zstart ≈ LR/2,
i.e., before the field gets free of the initial amplitude oscillations. In all the cases, only the half-wave change
in the D-wave phase at the boundary of the geometrical shadow remains invariant.

To explain the mechanism of formation of the wide-angle component of the field, we use an asymptotic
representation of the Fresnel integral describing the d-wave complex amplitude

A(d)(U) =
1 − i√

2π
F (U) → ±

(
1
2
− 1 + i

2U
√

2π
exp(iU2)

)
, (11)

where the minus sign corresponds to the d-wave wing in the zone of the geometrical shadow and the plus
sign, to an open zone. Note that even for |U | ≈ 3, the error of this representation does not exceed 1%
and rapidly decreases with increasing distance from the shadow boundary. In accordance with Eq. (11), the
d-wave in this spatial region splits into two simpler waves, namely, a plane wave with the halved amplitude
and a cylindrical wave with the amplitude (1+i) exp(iU2)/(2U

√
2π). This allows us to analyze the structure

of total field (6) in another way. This field is given by

Fig. 4. Distributions of the absolute value of the
complex amplitude of the total field and its ba-
sic components for different distances from the
screen: a, z = LR/25; b, z = LR/2; c , z = LR;
d , z = 10LR.

Fig. 5. Distributions of the phase of the total field
and its basic components for different distances
from the screen: a, z = LR/25; b, z = LR/2;
c , z = LR; d , z = 10LR. The presented mono-
tonic dependences are jump-like since the vertical-
axis ranges of the plots are limited by 2π.
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E(Σ)(x, z) ≈ EG

2
+




−EG

2
+

A0 (1 + i)
2
√

2π
exp(ikr)

+∞∫

−∞

fG(kx)
U

exp(−ikxx0) dkx, U < −3;

EG

2
− A0 (1 + i)

2
√

2π
exp(ikr)

+∞∫
−∞

fG(kx)
U

exp(−ikxx0) dkx, U > 3.

(12)

We emphasize that the first two terms compensate for each other in the shadow zone, i.e., only
cylindrical components of the d-wave are important in this zone. However, in the open zone, these two
terms are added to give the initial beam propagating in free space in the absence of a screen. Since this
beam has a finite transverse size, the beam field decreases with distance from its axis and can be neglected
beginning with a certain distance. As a result, the plume in this spatial region outside the beam is described
by the same expressions as in the shadow zone (but with the reverse sign), which is indicative of the phase
shift by π.

Since we consider the plume outside the region of free propagation of the Gaussian beam, integration
in Eq. (12) is not difficult and leads to the following very simple representation of the plume field in this
spatial region:

E(Σ)(x, z) ∼




exp(ikr)√
kr

b(0)
cos[θ/2]

, U < −3;

−exp(ikr)√
kr

b(0)
cos[θ/2]

, U > 3,
(13)

where b(0) is the amplitude of the initial beam at the screen edge and θ is the observation angle (Fig. 2).
As we see, the D-wave outside the nondiffracted component on each side of the shadow boundary is

represented by a cylindrical wave traveling from the screen edge. It is important that the amplitude of the
observed plume is determined by the beam amplitude at the screen edge. This means that in the case of
diffraction of the beam having zero amplitude at the edge, the wide-angle plume related to the diffracted
beam is absent.2

Thus, based on the entire set of features, the ob-

Fig. 6. The spatial distribution of the D-wave (a)
and the pattern of its interference with an oblique
plane wave (b).

served wide-angle illumination can be classified as Young’s
boundary wave produced by diffraction of a limited beam.
However, in contrast to the analogous component in Som-
merfeld’s problem, this wave has not the amplitude dis-
continuity. Instead, its wave front comprises the boundary
dislocation. The intensity of the discussed wave is propor-
tional to the squared amplitude of the initial beam at the
screen edge.

4. ADDITIONAL EXPERIMENTAL DATA

It is easy to conclude from Eq. (6) that to observe
the D-wave individually, it is sufficient to remove the sec-
ond term, i.e., the Gaussian beam with the halved amplitude, from the total field. We performed such an
experiment. The field of this beam was removed by means of its interference quenching with the help of an
analogous beam whose phase was shifted by π. Figure 6a shows the spatial structure of the D-wave obtained
in such a way. To visualize the half-wave phase shift of one part of this wave with respect to the other part,
we used an additional plane wave propagating at a small angle with the initial beam. It is seen in Fig. 6b
that the interference strips formed upon crossing the boundary-dislocation region are displaced by one-half
of their period, which is undoubtedly indicative of the half-wave change in the phase of the studied field.

2In this case, however, there remains a weak component which is related to the field reflected from the screen and can
rigorously be taken into account [11].
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5. CONCLUSIONS

The proposed quantitative description of the wide-angle illumination observed in the case of edge
diffraction of the laser beam is rigorous. In accordance with it, the field diverging from the screen edge
represents the superposition of cylindrical components of the d-waves combined into the D-wave with the
common front of cylindrical shape. The bright central core of radiation, which falls at the boundary of the
geometrical shadow, is formed by superimposing the D-wave and the initial Gaussian beam with the halved
amplitude, whereas the plume is formed by wide wings of the D-wave, which are structureless, fill almost the
entire space behind the screen, and monotonically decrease in intensity with distance from the boundary of
the geometrical shadow, i.e., with increasing observation angle. The intensity of the observed illumination
is proportional to the squared amplitude of the wave diffracted by the sharp edge of the screen.
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