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Abstract
There is a well-known bijection between finite binary sequences and integer partitions.
Sequences of length r correspond to partitions of perimeter r+1.Motivated bywork on
rational numbers in the Calkin–Wilf tree, we classify partitions whose corresponding
binary sequence is a palindrome. We give a generating function that counts these
partitions, and describe how to efficiently generate all of them. Atypically for partition
generating functions, we find an unusual significance to prime degrees. Specifically,
we prove there are nontrivial palindrome partitions of n except when n = 3 or n +
1 is prime. We find an interesting new “branching diagram” for partitions, similar
to Young’s lattice, with an action of the Klein four group corresponding to natural
operations on the binary sequences.
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1 Introduction

Recall that λ = (λ1, λ2, . . . , λr ) is a partition of n, denoted λ � n, if λ1 ≥ λ2 ≥
· · · ≥ λr > 0 are positive integers with

∑r
i=1 λi = n. To λwe associate its Young dia-

gram [λ]. It is well-known that we can encode partitions by infinite binary sequences,
unbounded in each direction, which begin with infinitely many zeros and end with
infinitely many ones, see for example [7, Exercise 7.59] or [1]. This encoding can be
used, for example, to prove the important fact in representation theory of the symmetric
group that the p-core of a partition is unique. To encode a partition λ, draw the Young
diagram of λ with the left hand vertical edge and upper horizontal edge extended to
infinity. Label the southeast boundary of the diagram, including the horizontal and
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Fig. 1 The coding Cλ of the
partition λ = (5, 5, 3, 3, 1)

vertical rays, with a zero next to each vertical edge and a one next to each horizontal
edge. To obtain the corresponding binary sequence Cλ, simply read the numbers mov-
ing from southwest to northeast. For example in Fig. 1 we see that if λ = (5, 5, 3, 3, 1)
then Cλ = · · · 00101100110011 . . . .

After the infinitely many zeros, Cλ has an initial one, corresponding to the first
rightward move, and a final zero, corresponding to the last upwards move, before the
infinite sequence of ones.

Definition 1.1 Define B(λ) to be the finite binary sequence between the initial one
and final zero in Cλ. So in Fig. 1, we see that B(5, 5, 3, 1) = 01100110, labelled in
red.

Of course one can easily recover λ from B(λ). Given a binary sequence C we
denote the corresponding partition by P(C), so λ = P(B(λ)). Notice that the partition
τ = (1) corresponds to the empty sequence B(τ ) = ∅, so P(∅) = (1). There is no
binary sequence corresponding to the “empty partition.”

Suppose we have a sequence C with A zeros and B ones. It is clear from Fig. 1,
that B + 1 is the first part of P(C) and A+ 1 is the number of nonzero parts of P(C).

There are two natural operations on these binary sequences. The reverse sequence
just reverses the order in the sequence, and we denote it by Cr . The inverse of a
sequence is obtained by switching zeros and ones, and is denoted C .

Remark 1.2 There is an equivalent way to define B(λ) in terms of operations on the
Young diagram. Start with the Young diagram of λ. If [λ] has a single box in the last
row (i.e. if the last part is equal to 1), then remove it and record a “0”. If not, then
remove the entire first column from the Young diagram (i.e. subtract one from every
part), and record a “1”. Continue until only one box remains. The sequence you obtain
will be B(λ).

Reversing B(λ) has a nice geometric description in terms of Young diagrams:

Proposition 1.3 Let λ, B(λ), A and B be as above. Consider the boxes not in the first
row or column as a partition λ̃ sitting inside an A × B rectangle. Replace λ̃ with the
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Fig. 2 Calculating the partition
corresponding to the reverse
sequence

partition obtained by taking its complement inside the A × B rectangle and rotating
it 180 degrees, while preserving the first row and column of λ. What remains will be
the Young diagram for P(B(λ)r ).

Proof This is clear from Fig. 2. When we rotate the rectangle by 180 degrees, vertical
edges remain vertical, horizontal edges remain horizontal. So we can simply rotate all
the labels (in red) and the new partition will be correctly labelled with binary sequence
equal to B(λ)r . ��

Example 1.4 Consider the sequence 010100. Check that for λ = (3, 3, 3, 2, 1)we have
B(λ) = 010100. Following the algorithm in Proposition 1.3, we see that the partition
(3, 3, 2, 1, 1) corresponds to the reverse sequence 001010. This is illustrated in Fig. 2.
Notice that n is not typically preserved by this operation.

2 The Calkin–Wilf tree

We are going to be studying properties of the sequence B(λ), and in particular when it
is a palindrome. This question was motivated by work of [5] on binary sequences and
the Calkin–Wilf tree. This is an infinite perfect binary tree with each vertex labelled
by a rational number. One can also label this tree by binary sequences in a natural way,
and also by Young diagrams of partitions. We give a quick description in this section
as motivation, but it is not necessary to understand our results.

The Calkin–Wilf tree, TQ, and corresponding Calkin–Wilf sequence, is defined in
[2], although it has appeared also much earlier. It is an infinite binary tree with each
vertex labelled by a positive rational number written in lowest terms. It is defined
inductively as follows. The root is 1

1 . The left child of p
q is p

p+q and the right child

is p+q
q . Part of the tree is shown on the right side of Fig. 3. It is not difficult to prove

that every positive rational number appears exactly once, and that if p
q is a reduced

fraction, then so are both of its children. To obtain the Calkin–Wilf sequence, read left
to right top to bottom, obtaining {1, 1

2 ,
2
1 ,

1
3 ,

3
2 ,

2
3 ,

3
1 , . . .}. Let l(n) be the n-th term in

the Calkin-Wilkin sequence. In [4], the author gives a method to calculate l(n)without
generating the entire tree above it. In the opposite direction, in [3] the author gives a
method to start with a positive rational number and locate its position in the sequence,
and hence on the tree. One first computes the simple continued fraction expansion
of the rational number, and then uses it to read off the binary sequence. For example
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Fig. 3 The binary tree and Calkin–Wilf tree

starting with 9
7 , one obtains:

9

7
= 1 + 1

3 + 1
2

.

The sequence {2, 3, 1} encodes two “1”s, three “0”s, one “1”, thus the binary sequence
110001.

In Fig. 3 we give, on the left, the infinite binary tree labeled by binary sequences
starting with 1. So the root is labelled 1, the left child corresponds to appending a zero
and the right child to appending a one to the end of the sequence.

Ignoring the initial 1 on each label, we have a bijection between binary sequences
of length n and entries in the tree at level n + 1. For example the binary sequence 001
corresponds to the fraction 4/3, as labelled in red.

In [5], Kenyon studies the correspondence between binary sequences and rational
numbers illustrated in Fig. 3. She calls the sequences “paths,” as they encode the path
from the root vertex to the vertex in question, with zero representing left and one
representing right. Again note that she does not consider the initial one as part of the
path, the rational number 1

1 corresponds to an empty path.
It is an easy exercise that the inverse paths (sequences) correspond to reciprocal

fractions. It is not at all clear what reversing the path does to the corresponding rational
numbers.

Kenyon gathers data on paths that are equal to their reverse, called palindromic
paths, and those whose reverse path is equal to the inverse path, called antipalindromic
paths. So, for example, 0110 is a palindromic path and corresponds to the rational
number 5/7. The path 0101 is an antipalindromic path, corresponding to the rational
number 8/5.

We emphasize that the tree on the left of Fig. 3 is labelled in a way to match
the previous literature, but the reader should keep in mind when we discuss paths,
palindromic paths, etc. that the initial one is not included.

2.1 Partitions in the Calkin–Wilf tree

From Remark 1.2 we see there is a natural way to place Young diagrams at the nodes
of a binary tree. Start with the partition λ = (1) at the root. For any partition μ =
(μ1, μ2, . . . , μt ), let its left child be (μ1, μ2, . . . , μt , 1) and its right child be (μ1 +
1, μ2 + 1, . . . , μt + 1). Then following the unique path from a diagram upward to
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Fig. 4 Partitions on the Calkin–Wilf tree

the root will correspond to the operation described in Remark 1.2. This is illustrated
in Fig. 4

Remark 2.1 For the Young diagrams in Fig. 4, the diagram [λ] occupies the same spot
as the binary sequence which is B(λ)r . This is because we defined B(λ) reading from
southwest to northeast to match the existing literature. For example if λ = (2, 2, 2)we
see that B(λ) = 100 but λ occupies the same position as 001 in the tree. The choice
of zero or one for vertical/horizontal moves is arbitrary, as is the choice of which
direction to read the sequence off, but the results are all comparable independent of
these choices.

For a partition λ � n, recall the conjugate or transpose partition λ′ � n can be
obtained by swapping rows and columns in the Young diagram. For a box (i, j) in the
Young diagram, the (i, j) hook length is defined as λi − i + λ′

j − j + 1.

Proposition 2.2 (1) Let λ � n. Then B(λ′) = B(λ)r is the inverse of the reverse of
B(λ). Thus, antipalindromic paths correspond to self-conjugate partitions λ = λ′.

(2) Given λ and B(λ), to find the partition P(B(λ)r ) corresponding to the reverse
sequence of B(λ) one can use the algorithm described in Proposition 1.3.

(3) Row t of Fig.4 contains all partitions with first column hook length h11(λ) = t .
This value is also sometimes called the perimeter of the partition.

Remark 2.3 FromProposition 2.2we see that we have an action of theKlein four group
on the diagram in Fig. 4. The operations come from the the operations of inverse (I) and
reversal (R) on the corresponding sequences. We have seen that R fixes the first row
and column while replacing the rest with its complement inside a rectangle, whereas
R ◦ I = I ◦ R takes the transpose of the partition. Thus I does both operations, taking
the transpose and then performing the complement operation.
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Table 1 Count of palindrome
partitions

n PP(n) n PP(n) n PP(n) n PP(n)

1 1 11 10 21 12 31 38

2 2 12 2 22 2 32 34

3 2 13 8 23 36 33 18

4 2 14 10 24 12 34 46

5 4 15 10 25 14 35 104

6 2 16 2 26 24 36 2

7 4 17 18 27 36 37 20

8 4 18 2 28 2 38 46

9 6 19 20 29 60 39 108

10 2 20 16 30 2 40 2

3 Palindrome partitions

Say a partition λ � n is a palindrome partition if the sequence B(λ) is a palindrome,
i.e. B(λ) = B(λ)r . For example in Fig. 1, we see that B(55331) = 01100110, so
(5, 5, 3, 1) is a palindrome partition. Define PP(n) to be the number of palindrome
partitions of n. Observe that the partitions (n) and (1n) are palindromes, corresponding
to the sequences of all ones and all zeros respectively, so forn > 1wehave PP(n) ≥ 2.
Table 1 gives the sequence PP(n) up to n = 40. After this paper appeared in preprint
form, this sequence was added to the Online Encyclopedia of Integer Sequences [6]
as A368548. The values of n + 1 where PP(n) = 2 already suggests something
interesting is happening!

We will use the description in Proposition 1.3 to compute a generating function∑∞
n=0 PP(n)qn for PP(n). We will sum over all possible choices for λ1 and λ′

1. Let
“Case 1” be when both both λ1 and λ′

1 are odd, so A and B are both even. Let A = 2k
and B = 2l. We must count partitions μ in the 2k × 2l rectangle so that μ is equal to
its complement inside the rectangle. Dividing the large rectangle into 4 rectangles of
size k × l, it is clear that the upper left rectangle must be included in μ and the lower
right rectangle must be empty. We can select an arbitrary partition τ for lower left
rectangle, and then its complement in the k × l rectangle for the upper right, as shown
on the left side of Fig. 5. We have μ occupying 2kl boxes. It is well known that there
are

(k+l
k

)
choices for τ fitting inside a k × l rectangle. We also have 2k + 2l + 1 boxes

in the first row and column. Summing over all possible k and l we have a contribution
to the generating function of:

∞∑

k=0

∞∑

l=0

(
k + l

k

)

q2kl+2k+2l+1. (3.1)

Now suppose λ1 is odd and λ′
1 is even, call this “Case 2a.” So we are considering μ

inside a 2k + 1× 2l box as shown on the right side of Fig. 5. It is clear that the shaded
1× l rectangle must be entirely included in μ. If it were not, there would be a shaded
box in the 1× l rectangle to its right with an unshaded box to its left, and μ would not
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Fig. 5 Counting palindrome partitions

Table 2 Possible parities for λ1 and λ′
1

Case A = λ′
1 − 1 = # 0s B = λ1 − 1 = # 1s n 2(n+1)

1 2k 2l 2k+2l+2kl+1 4(k+1)(l+1)

2a 2k+1 2l 2k+3l+2kl+2 (2l+2)(2k+3)

2b 2k 2l+1 3k+2l+2kl+2 (2k+2)(2l+3)

be a valid palindrome partition. So in this case we have μ filling up (2k + 1)l boxes,(k+l
k

)
choices for τ and 2k + 2l + 2 boxes in the first row and column. Summing over

all possible k and l we have a contribution to the generating function of:

∞∑

k=0

∞∑

l=0

(
k + l

k

)

q2kl+2k+3l+2. (3.2)

Now “Case 2b” is when λ1 is even and λ′
1 is odd. This would simply give the

transpose of the diagram on the right of Fig. 5, and gives another contribution equal
to (3.2), as the sum is symmetric in k and l.

There is no “Case 3” where both λ1 and λ′
1 are even, as there can be no palindrome

partitions as μ would need to fill half of the boxes in an odd by odd rectangle. The
three cases are summarized in Table 2.

Thus we have proven:

Theorem 3.1 We have the following generating function:

∞∑

n=0

PP(n)qn =
∞∑

k=0

∞∑

l=0

(
k + l

k

)

q2kl+2k+2l+1 + 2
∞∑

k=0

∞∑

l=0

(
k + l

k

)

q2kl+2k+3l+2.

We are grateful to James Sellers for pointing out a simplification to the generating
function in Theorem 3.1 using the binomial series 1

(1−x)n+1 = ∑∞
j=0

(n+ j
j

)
x j . In the
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first double sum we can pull out a q2k+1 term and set x = q2k+2. In the second, we
pull out q2k+2 and set x = q2k+3, to obtain:

Corollary 3.2

∞∑

n=0

PP(n)qn =
∞∑

k=0

[
q2k+1

(1 − q2k+2)k+1 + 2
q2k+2

(1 − q2k+3)k+1

]

=
∞∑

k=0

[

qk
( q

1 − q2k+2

)k+1 + 2
( q2

1 − q2k+3

)k+1
]

.

In Table 2 we added a fourth column showing the factorization of 2(n+1). We can
now use this to explain why PP(n) = 2 occurs only when n = 3 or n + 1 is prime.

Theorem 3.3 The number PP(n) = 2 if and only if n = 3 or n + 1 > 2 is prime.

Proof Consider the factorizations of n + 1 in Table 2. If n + 1 is prime, we are either
in Case 2a with l = 0 or Case 2b with k = 0, corresponding to the partitions (1n) and
(n) respectively. In this case there are no other palindrome partitions. Now suppose
n + 1 is not prime, so let n + 1 = xy with x, y > 1. We will explain how to find
additional palindrome partitions of n.

If n+1 is odd, then so are x and y. We can find λ in Case 2a with l = x−1 ≥ 2 and
k = (y − 3)/2 ≥ 0. Then any of the

(k+l+1
k

)
choices for τ will produce a palindrome

partition λ � n not equal to (n) or (1n). A corresponding choice in Case 2b will give
the conjugate λ′. In the smallest example where x = y = 3, we can choose k = 0,
l = 2 or k = 2, l = 0 and we obtain λ = (5, 3) and its conjugate (2, 2, 2, 1, 1).

Finally suppose n + 1 = 2x . If x > 2 is even, we can choose k = 1, l = x/2 − 1
in Case 1, to obtain a palindrome partition λ � n not equal to (n) or (1n). If x ≥ 3
is odd, we can choose l = 1 and k = (x − 3)/2 in Case 2a to obtain a palindrome
partition λ � n not equal to (n) or (1n).

This leaves only the special case where n + 1 = 4, where we see that n + 1 is not
prime but the only palindrome partitions of n = 3 are (3) and (1, 1, 1). ��
Remark 3.4 The sequence of integers n with PP(n) = 2, given by
{2, 3, 4, 6, 10, 12, 16, 18, 22, . . .}, is A068499 at oeis.org: “Numbers n such that m!
reduced modulo (n+ 1) is not zero.” Of course this differs in only two terms from the
sequence of n with n + 1 prime.

4 Generating palindrome partitions of n

Wehave seen that, given n, there are always two palindrome partitions of n correspond-
ing to sequences B(λ) of length n − 1, namely the all zero sequence corresponding to
(1n) and the all one sequence corresponding to (n). If we want to generate all palin-
drome partitions of n, we need to know what other sequence lengths can occur, and
for each length, how many zeros and ones are included. This will specify the first part
λ1 and the first column λ′

1, and values for k and l. We simply choose all possible μ as
in the proof of Theorem 3.1, to obtain a list of all palindrome partitions of n.
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Table 3 Palindrome partitions of n = 11

λ 11 7,4 5,5,1 5,4,2 5,3,3 33, 12 32, 22, 1 3, 24 24, 13 111

B(λ) 110 13013 0140 101101 110011 001100 010010 1041 03103 010

l(B(λ)) 10 7 6 6 6 6 6 6 7 10

Definition 4.1 Let PL(n) be the number of lengths among all sequences B(λ) as λ

runs over all palindrome partitions of n. This is also the number of distinct perimeters
among all palindrome partitions of n.

So in Table 3, we see that PL(11) = 3 corresponding to the lengths 6,7, 10. For
a given length m, we have m = A + B, where the sequence has A zeros and B
ones. Recall that swapping zeros and ones gives a sequence also corresponding to a
palindrome partition of n. We now classify precisely which lengths occur and prove
that, for each possible length, the split into zeros and ones is unique (up to swapping
zeros and ones).

Theorem 4.2 PL(n) is the number of factorizations xy = 2(n + 1) where 0 < x ≤
y ≤ n. This is the sequence A211270 in [6], shifted by one. Moreover, suppose there
is a palindrome partition λ � n with B(λ) having length m = A + B with A zeros
and B ones. Then any other palindrome partition μ � n with B(μ) of length m must
have A zeros and B ones or B zeros and A ones.

Proof Supposewehave apalindromepartitionλofnwhere B(λ)has lengthm = A+B
as in Table 2. Thus k and l are determined and we obtain a factorization as desired
from the final column.

Conversely, suppose we have such a factorization xy = 2(n + 1). We prove there
is a unique corresponding length m and decomposition m = A + B. It is the case
that we have one odd factor or no odd factor. If one of the factors is odd, say x , then
x = 2l + 3 and y = 2k + 2, as in case 2. Then it follows that A = 2k = y − 2
and B = 2l = x − 3. If neither factor is odd, then x = 2l + 2 and y = 2k + 2
which is case 1. So A = x − 2 and B = y − 2, and we have a palindrome partition
with B(λ) of length A + B. Suppose that for a factorization of 2(n + 1) we have that
both x and y are even where m = 2k + 2l and also m = 2k̃ + 2l̃ for some k, l, k̃, l̃
where k �= k̃ and l �= l̃. It could be the case that k = l̃ and l = k̃, which would be
interchanging the zeros and ones. Consider a nontrivial solution where k + l = k̃ + l̃.
Then 2(n + 1) = (2k + 2)(2l + 2) = (2k̃ + 2)(2l̃ + 2) which simplifies to kl = k̃l̃.
Then

kl = k̃l̃

kl + l2 = k̃l̃ + l2

l(k + l) = k̃l̃ + l2

l(k̃ + l̃) = k̃l̃ + l2

(l − l̃)(k̃ − l) = 0.
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Table 4 Generating palindrome partitions of 29

60 = x · y l k No. of zeros No. of ones No. of λ Example

2 · 30 0 14 0 28 1 (29)

2 · 30 14 0 28 0 1 (129)

3 · 20 9 0 1 18 1 (19, 10)

3 · 20 0 9 18 1 1 (210, 19)

4 · 15 6 1 2 13
(7
1
)

(14, 14, 1)

4 · 15 1 6 13 2
(7
1
)

(3, 213)

5 · 12 5 1 3 10
(6
1
)

(11, 11, 6, 1)

5 · 12 1 5 10 3
(6
1
)

(4, 35, 25)

6 · 10 4 2 4 8
(6
2
)

(93, 1, 1)

6 · 10 2 4 8 4
(6
2
)

(55, 14)

Thus l = l̃ or k̃ = l. Now suppose for a factorization of 2(n+ 1) that x is odd without
loss of generality, which would mean m = 2k + 2l + 1 and m = 2k̃ + 2l̃ + 1 for
some k, l, k̃, l̃ where k �= k̃ and l �= l̃. Again, the case that k = l̃ and l = k̃, which
would be interchanging the zeros and ones. Suppose we have a nontrivial solution
where k + l = k̃ + l̃. Then 2(n + 1) = (2k + 2)(2l + 3) = (2k̃ + 2)(2l̃ + 3) which
simplifies to 2kl + k = 2k̃l̃ + k̃. Then

2kl + k = 2k̃l̃ + k̃

2kl + k − k + 2k2 = 2k̃l̃ + k̃ − k + 2k2

2k(l + k) = 2k̃l̃ + k̃ − k + 2k2

2k(l̃ + k̃) = 2k̃l̃ + k̃ − k + 2k2

(k̃ − k)(2k − 1 − 2l̃) = 0.

Thus k = k̃ or 2k = 2l̃ + 1. Therefore, it’s the case that for each word length of m,
there is a unique number of zeros and ones, up to swapping zeros and ones. ��
Example 4.3 We demonstrate how to use the results above to efficiently generate all
PP(29) = 60, palindrome partitions of n = 29. There are five relevant factorizations
of 2(n + 1) = 60. For each, we can compute k, l, A, B as in the proof above, using
Table 2. Once we have these, the first row λ1 and column λ′

1 are fixed. Then we have
(k+l

l

)
choices for the partition τ as in Fig. 5. Table 4 shows the results, where the entries

in the penultimate column sum to 60 as expected.

Remark 4.4 In Example 4.3 we generate palindrome partitions of n sorted by divisors
of 2(n + 1). Chai Wah Wu has used this idea to give an expression for PP(n), which
has the flavor of a divisor sum, and can be found in the OEIS entry for PP(n).
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5 Partitions with weight fixed by reversal

As we mentioned in Remark 2.3, sequence reversal gives an action of order two on
all partitions given by λ → P(B(λ)r ). The palindrome partitions are fixed by this
operation. In this section, we consider partitions where λ and P(B(λ)r ) are both
partitions of the same integer. In other words, these partitions remain in the same
row of Fig. 4 under this action. Let R(n) be the number of partitions λ � n where
P(B(λ)r ) � n.

Computing R(n) is similiar to counting PP(n), but in Fig. 5 we no longer have the
requirement that the partition be equal to the rotation of its complement. Instead we
require that it fill exactly half of the boxes in the 2k × 2l or (2k + 1) × 2l rectangle.
(As with the palindrome case, if the rectangle has an odd number of boxes then there
are no partitions to count).

Recall that the q-binomial coefficient
[n
k

]
q is the generating function for partitions

that fit inside an (n − k) × k rectangle, and is called a Gaussian polynomial. The
coefficient of qm counts partitions of m fitting inside a (n − k) × k rectangle, so it
has leading term qk(n−k). In place of the binomial coefficients in Theorem 3.1, we
will need the coefficient of the middle degree term in this polynomial. There is a nice
description of this coefficient in the case either k or n − k is even, which we prove
here.

Definition 5.1 Let T (n, k) be the number of nondecreasing sequences of length n,
with integer entries in [−k, k], summing to zero.

For example if n = 5 and k = 4 a possible sequence would be {−4,−2, 1, 1, 4}. The
array T (n, k) is given as sequence A183917 in the OEIS.

Proposition 5.2 The coefficient of qkl in the Gaussian polynomial
[2k+l

l

]
q is T (l, k).

Proof The coefficient in question counts all partitions of kl which fit inside an l × 2k
rectangle, i.e. have at most l parts, each less than or equal to 2k. We give a bijection to
the sequences counted by T (l, k). Given such a partition λ = (λ1, λ2, . . . , λl) � kl,
the corresponding sequence is {λl − k, λl−1 − k, λl−2 − k, . . . , λ1 − k}. For exam-
ple the sequence above corresponds to the partition (8, 5, 5, 2, 0) inside the 5 × 8
rectangle. ��

We can nowwrite the generating function for R(n) as in Theorem 3.1. The first term
is from the 2k × 2l rectangle so we get T (2l, k). The second term is the (2k + 1) × 2l
rectangle, which has the same count as a 2l× (2k+1) rectangle, namely T (2k+1, l).
Thus:

Theorem 5.3 We have the following generating function:

∞∑

n=0

R(n)qn =
∞∑

k=0

∞∑

l=0

T (2l, k)q2kl+2k+2l+1 + 2
∞∑

k=0

∞∑

l=0

T (2k + 1, l)q2kl+2k+3l+2.

Of course PP(n) ≤ R(n). Comparing Tables 1 and 5, we see the smallest n
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Table 5 Partitions with weight
fixed by reversal n R(n) n R(n) n R(n) n R(n)

1 1 11 10 21 12 31 76

2 2 12 2 22 2 32 90

3 2 13 8 23 52 33 18

4 2 14 14 24 28 34 198

5 4 15 10 25 14 35 320

6 2 16 2 26 52 36 2

7 4 17 20 27 80 37 20

8 4 18 2 28 2 38 142

9 6 19 28 29 120 39 388

10 2 20 28 30 2 40 2

with PP(n) < R(n) is n = 14, where PP(14) = 10 and R(14) = 14. The four
extra partitions which are not palindromes are λ = (44222), R(λ) = (43331) and
μ = (5522), R(μ) = (5441).

Remark 5.4 The proof of Theorem3.3 applies to themore general setting of computing
R(n), i.e. R(n) = 2 precisely when P(n) = 2.

6 Problems

We suggest some problems for future research.

Problem 6.1 Can we write the generating functions in Theorem 3.1 and 5.3 in a more
compact form

∑
f (n)qn? Can we see clearly from the generating function why

f (n) = 2 when n + 1 is prime?

Problem 6.2 The traditional Young’s lattice has all partitions of n in row n with edges
corresponding to removing and/or adding a single box. Classically this describes the
branching of irreducible representations of the symmetric group. Does Fig. 4 have any
representation- theoretic interpretation?

Problem 6.3 Proposition 1.3 gives a quick way to identify palindrome partitions λ

without calculating B(λ). Can one do the same for fractions in the Calkin–Wilf tree
corresponding to palindrome sequences, i.e. determine if a fraction corresponds to a
palindrome without doing the continued fraction expansion? Can we describe what
the reversal operation does to fractions?

Acknowledgements The authors would like to thank Matthew Just and Robert Schneider for suggesting
looking at this operation on partitions and William Keith for help with generating functions.
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