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Abstract

Let (n, g¢) denote the greatest common divisor of positive integers n and g, and let f;
denote the characteristic function of r-full numbers. We consider several asymptotic
formulas for sums of the modified square-full (» = 2) and cube-full numbers (» = 3),
which is Y-, > > i0.g) 4Fr (5) log % with any positive real numbers x and
y. Moreover, we derive the asymptotic formula of the above with » = 2 under the
Riemann Hypothesis.

Keywords Square full numbers - Cube full numbers - Riemann zeta-function -
Divisor function - Riemann hypothesis - Asymptotic results on arithmetical functions
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1 Introduction

Let s = o + it be the complex variable, and let ¢(s) be the Riemann zeta-function.
Let r(> 2) be an integer, we call n an r-full or r-free integer if pln = p”|n or
pln = p" 1 n, respectively. In the special case when r = 2 or 3 integer. We call
n a square-full or cube-full numbers, respectively. Let G(r) denote the set of r-full
numbers, and let (n, ¢) denote the greatest common divisor of positive integers n and
q. Define

1 if ne G,
Jrin) = {0 if n¢ G,
and
sOmy =Y df, (%). (1.1)
dimg)
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1046 . Kiuchi

It is worth mentioning that the above sum is an analogue of the Ramanujan sum
cqg(n) = Zd‘(n)q) du (g/d), with u being the Mobius function. For the case r = 2

and r = 3, the Dirichlet series of the function s;r) (n) is given by
oo (2)
DRI (CUI{ED) 12
—~ £(65)
g=
forRe s > %, and
o (3)
Z Sq (f?) _ Ul_s(n)€(3S)§(4S)€(5S)K9(S) (1.3)
q* ¢(8s)

g=1

for Re s > % Here o1_s(n) = Zd‘n d'~*, and the function ko(s) is absolutely
convergent for Re s > %, that is

C(135)c(145)C (215)%(225) 0% (235) 0 (24s) - - -
£(95)¢(105)2(175)¢ (185)¢ (195)£(255)23(265) - - -

K9(s) =

(see (1.96), (1.97) and (1.98) in [5]). For any large positive real numbers x and y, and
any non-negative integer k, we are interested by studying the double sums

. 1 ¢
S (x, y) = EZZSS”W (log ;i) . (1.4)

n=yq=x

In this paper, we shall consider the asymptotic formulas for S,Er) (x,y) whenr =2, 3.
In the case k = 0 and r = 2, the author [6] used the method of Chan and Kumchev
[1] (see also [9], [11]) ! and the theory of exponent pairs (see [3], [5])) to deduce the

asymptotic formula to S(()z) (x, ). It is shown that

(1.5)

3
SO, yy = SO O 5 0( )

1 1 X
2 + 3 + -
t6) O 42 AT

holds, where x and y are large real numbers such that x « y < x%.

Recently, the author [7] gave a more precise asymptotic for Séz) (x, y) by using
Lemma 2.2 below and some properties of the Riemann zeta-function. He proved that

@, L _Et@B) @G 1 {@E®)
0N ="r6 VY e YT wa

1 Cohen—Ramanujan sums were first developed in [9] and then their moments were studied in [11] following
the technique pioneered by Chan and Kumchev [1].
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1
2
+ 0 (xgylog“x —i—xy%logzy—i—x2 <)—C> log% x) (1.6)
y

14
holds, where x and y are large real numbers such that x% logx € y K ]jgix.
Moreover, for k = 0 and r = 3, the author [8] showed that

) _ §B3)EHE(B)kg(1) £(6)5(8)¢(10)k9(2) ,
Sy (x,y) = xy — X
4¢)) 4z(16)
1 1 x3
+0<x3y +xy3+7) 1.7)

holds, where x and y denote large real numbers such that x € y <« x3. From the
above, we notice that it is difficult to improve the error because the term O (x% y)
is absorbed into all error terms. For this reason, in this paper, we consider asymp-
totic formulas for Sfr)(x, y) and give the interesting relation between Sér) (x,y) and
S{r)(x, y) for r = 2, 3. It is the most interesting problem for us to derive asymptotic
formulas of (1.4) when £k = 0, 1, and by a similar argument, we may prove that any
cases k(> 2). Before going into the statements of our theorems, we denote the Fourier
integrals v(u) and & (u) defined by

0 (L _ 2ine(s 43 itu

o) = L/‘ {(—5 —in¢(S + t't)g”(2 + 3it) e dr. (18)
27 J o0 (15 + 6it) (3 +iD2(§ +it)

and

E(u) :=

1 8(=5 —ing(F +3i05(10 + 4ing (3 + Sit)ke (3 + 1) el i

27 Jooo ¢(20 + 8it) (G +in2(3 +it)

(1.9)

with u = log %, respectively. It follows from (3.6) and (5.5) below that

4 £(3)EB)E()ES) (Z+1)

()| = )2 2G0) 2

and

4 (36351005 (F)E 0o (3) (Z+1)

ORI 20 :

hold. Here the integrals are computable constants, and, strictly speaking, that is enough
for the purpose of this paper. Then we have the following results:
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Theorem 1 Let the notation be as above. Let x and y be large real numbers such that
xlog®x € y < X9 Then we have

@, - (@B EREG) 1 EB)EG)
SV (x,y) = 26 xy +2 G xIy+3 5 o)
1
CLe@®e®) 5, 5 (x)? (2)
8 ¢z ~ " <y> vu) + E7(x, ), (1.10)

where the function v(u) is given by (1.8) and the error term E ;2) (x, y) is estimated by
(log x)3
| 0g x)? |
EQG,y) =0 [yxt exp[—C——22" ) 4 xySlog?y (1.11)
(loglog x)3
with C being a positive constant.

Remark 1.1 Using (1.5) and (1.10) we deduce the relation

R @ _ Li@®e©) x 1 X2
(5P - 5P ) = BRI 0 (384

< |X
)

forxlog3x Ly K x%. It follows from (1.10) and (1.11) that

1 x @B B 1 chieG) s
- @ g 27512 35337 -3
xyZqu (n)logq =6 +2 R 143 ot

n=yq=x

1£(4)5(6) x 5. s 2. 4
_gw;+0<x 6 log” x + y~ 3 log y)

holds. This means that the logarithmic average order of s‘(f) (n)is

$@X06) (233) where g and

n satisfying the condition ¢ log® ¢ <« n <« q%.

In fact, it is suspected that there is a deep relationship between a zero-free region of
the Riemann zeta-function and the order of magnitude of the error term (1.11). Then
we immediately obtain
Conjecture 1 We may conjecture that

(log x)3
1 ogx 1
EEZ)(x, y) = O | yxt exp —Cg—] +xy3 10g2 y
(loglogx)s

holds with an absolute constant C > 0.
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Theorem 2 Let the notation be as above. Let x and y be large real numbers such that
x$ log>y € y < X12. Then we have

Ly rodyr(S 1 1N -(3y7(5 1
553)()6, y) = ((3)4“(4)4“(5)169(1)” +3§(§)§(§){8(§)K9 (g)x%y +4§(z)§(z)§8(z)l<9 (Z)x%
¢(®) ¢(3) ()
chedeo () 1 1LOI®00@) 5 5 (x)
3 (5 YT e T (?) 5w
. (logx)$ 1
+O|yx3exp| —C————— | +xy3log°y], (1.12)
(loglogx)3
where the function & (u) is given by (1.9) and C is a positive constant.
Remark 1.2 Similarly as in Remark 1.1, we have
6)2(8)¢(10)k9(2 3
SV x,3) = 8§ (x, y) = & )5(8;4;;6))"9( )24 0 (yx5 +xyilog?y + x;)

for x.g logdx € y < x%, and the logarithmic average order of s((;) (n) is derived by

—{(3)4“(?58()5)"9(1) under g and n satisfying the condition qg log*qg < n < q%,

Next, we assume the truth of the unproved Riemann Hypothesis, that all the complex

zeros of the Riemann zeta-function ¢ (s) lie on the line 0 = % We consider the precise

asymptotic formula concerning S{Z) (x, y). Then we derive the following

Theorem 3 Assume that the Riemann Hypothesis is true. Let x and y be large real num-
bers such that xlog® x K y < x%exp (—A 102’1%; ) Then the error term E}z) (x,y)
of (1.10) is estimated by

o) _ & log x 1 1002
E7(x,y)=0(yxZexp| A———— ) +xy3log”y (1.13)
loglog x

with A being a positive constant.

In addition, we assume that all the zeros p of the Riemann zeta-function ¢ (s) on the
critical line are simple, where p = % + iy denotes a nontrivial zero of the Riemann
zeta-function, and y denotes the imaginary part of zero on the critical line. Then we
may derive a sum involving the zeros p of ¢(s) concerning E ;2) (x, ¥). To improve the
order of magnitude of its sum, we make use of the Gonek-Hejhal Hypothesis (Gonek
[2], and Hejhal [4] independently conjectured), namely

1 2
= - =1
J_(T): E IO T(ogT)
O<y<T

for real number A < % where ¢’(s) is the first derivative of ¢ (s), then we may deduce

a new estimate of F£ gz) (x, ¥), which will be done elsewhere.
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1050 . Kiuchi

Notations. Throughout this paper, we use the following notations: The Riemann zeta-
function ¢ (s), defined by > 2 | n—lq for o > 1, admits of analytic continuation over
the whole complex plane having as its only singularity a simple pole with residue 1 at
s = 1. In what follows, C donotes any arbitrarily positive number, not necessarily the
same ones at each occurrence.

2 Some Lemmas

o0 an
n=1 ns

Lemma 2.1 Suppose that the Dirichlet series o (s) := Y _
o¢. If og > max(0, o) and x > 1, then

X 1 op+ioo x5
Zanlogzzﬁf a(S)S_ZdS'
o

n<x 0—i00

converges for Re s >

Proof This is Riesz typical means of Perron’s formula. For more details, see (5.20)—
(5.22) in [10]. O

Lemma2.2 Let Re z < 0, and let o, (n) denote the generalization of the divisor
function defined by o, ,(n) = Zdbm d’%. Then we have

> o) = D) + Az (),

n<x

where Z/ indicates that the last term is to be halved if x is an integer, and
L)
A p(x) =0 <x3 log x)

uniformly for b > 1 and D; j,(x) is given by the following
(i) Ifb=1,2and — 555 < Rez <0, then

1

LZ b(x) — g(b(l Z))x g Z X .

Dy p(x) = ¢(b(1 = 2))x.
Proof The proof of this result can be found in [Theorem 1.4, [11]]. O

Lemma 2.3 There is an absolute constant C > 0 such that ¢ (s) # 0 for
o >1—C(ogn 3(loglog)™3 (r > to).
Proof This lemma is given by Theorem 6.1 in [5]. O
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Sums of logarithmic weights... 1051

Lemma24 For|t| >2ando > 1 — C(logt)’%(log logt)’% we have

1
{(o +if) < (logD)? (loglog )’ and ———— < (log1)* (loglog 1)
(o +it)

Proof The first term of this lemma is a well-known result. The second term of this
lemma is given by Lemma 12.3 in [5]. O

Lemma 2.5 Fort > to > O uniformly in o, we have

t61(3_4°) logt (0<o0<3%),
(ovin< ] Vgt (3=0=1),
log ¢ (l<o<3),

1 (0 > %)

Proof The proof of this lemma follows from Theorem I1.3.8 in [12] (see also [5], [13]).

O
Lemma 2.6 For any positive number T > 1 we have
T T340 0<o < %) ,
f ¢o +in*dt < { Tlog* T (o = %). 2.1)
1 T (U > 7) .

Proof The second and third terms of (2.1) are due to Theorem 5.1 and Theorem 8.5
in [5]. We use (2.2) below and the formula flT ¢ (o +it)|4dt =0(T) for% <o <1
to deduce (2.1). O

Lemma 2.7 Assume that the Riemann hypothesis is true. Then we have

1
fovin <

&

(o +it) «t® and

for every o (% 4+ 6 <o <2)andt > tg being a sufficiently large real number.

Proof The first and second terms of this lemma are given by (14.2.5), (14.2.6),
(14.14.1) and (14.16.2) in [13], respectively. |

The next lemma is a well-known result (see [5], [13]), that is

Lemma 2.8 The functional equation of the Riemann zeta-function is given by
¢(s) = x(s)¢(1 —s), 2.2)

where x (s) = 27! sin (%) I'(1 — ). Thus in any bounded vertical strip, we have

() (0(2)
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3 Proof of Theorem 1

We assume that 1 < y < x™ for some constant M. Without loss of generality we can
assume that x, y € Z + % We apply Lemma 2.1 with (1.2) to get

atiT £(25)¢(3s) x*
Y s mlog = —f o1 ETEED s 10 (o9 ).
= ((6s) &2
where @ = 1 + ; Oéx. Let T be a real parameter at our disposal. We have

et £(25)¢(3s) x* x
ZZS(Z)(H)logf — > ois(n )Ws—d s+ 0 ?Zao(n) .

n<ygqsx 2l JamiT 2y n<y

Taking b = 1 and z = 1 — s into Lemma 2.2 and using the estimate an y op(n) K
ylogy we have

SO, y) =K+ Ko+ 0 (xyz log? y) 1o (— log y) 3.1)
where
a+iT
K= L/ £(5)¢(25)¢(3s) x* * is,
270 Jo—iT ¢ (6s) 52
and
oo 2 [T 2= 9E@EGs) (x/y)
27 20 Jomir (6s)  s22-s
Define
C
e(T) .= 1()_0(10g T)” %(loglog T) 3 (3.2)

with C being the same as that in Lemma 2.3 and 7 = x2. Let I'(«, B, T) denote
the contour consisting of the line segments [« — iT, 8 —iT], [B —iT,B +iT] and
[B+iT,a+iT].

In K, we move the integration, with respectto s, to I'(«, 8, T) with 8 = 1_ e(T).
We denote the integrals over the horizontal line segments by K1 1 and K 3, and the
integral over the vertical line segment by K 2, respectively. We use Lemmas 2.3-2.5
to deduce

Ki1, K3

1 1
y 3 2 a ) ) ) 5
<7D ([ﬂ +f +/§ )|c(a+zT)||;<2(o+zT>>||<:<3(a+zT>>|x do

@ Springer
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y log® T Té%xad Té%xad Tl”‘xad
2 2 — 6 — 3 -

<TI%m /ﬁ(r> o+ /;(T) o+ /;('> a
y log* T x5 x3 X2

<L = — t+t—+—=
T eT) \trs 712 T

and

w\N [T
+
N =

N——

K12<<yx6 S(T)< / >x
[t|<Ty To<|t|<T

|§(g —&(T) +in)|¢(3 = 2e(T) +2in)[|g(§ — 3e(T) + 3Lt)|
61— 68(T) + 6i1)|(1 + [1])?

oM S 146(T)
< L+ xéfs(T)/ 16 it
y o
e(1) To<lt)<T 1§(1 — 66(T) + 6it)|t
1
yxi—e@
<

It remains to evaluate the residues of the poles of the integrand, and there exist three
. . . 2we(hye(3y 1 Dye(2
simple poles at s = 1, % and % with residues $24B) y 2GXQ) 5 5 3G

: ORI and =y X,
respectively. Therefore, we have
t@¢B3) 2033 1 333 1
K = _— X3
'Tee T T T Y
1
) (yxéexp (—CM)) 3.3)
(loglogx)3

by setting T = x2, where C is a positive constant.

In K;, we move the integration, with respect to s, to I'(c, %, T). We denote the
integrals over the horizontal line segments by K> | and K> 3, and the integral over the
vertical line segment by K> 7, respectively. Using Lemmas 2.5 and 2.8 we have

y? 3 . x\?
K1, Ky3 <K —3f |§(2—O’—lT)|<;> do
o % e
<<(f |§(2—a—lT)|< ) d(r-l-f |§(0—l+iT)X(2—a—iT)|<;) d()‘)
2
y2 ( 1 2(T2x>o 3 % Tx\°
<<7]0gT / do+T 2/ <7> do
o y ) y
yzlogT X L x\? X 3
< 7+T7<7> +T< ) ’ (3.4)
T y y y
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and
oo y2/3+f°° (- neenas (3) s
227 i Jiis (65) 22 —s)
1 34 i 15 i .
ol <£>2 /oo iz (3 +zt)||§(5+21t).||§(2 +3i) |y (=4 — ir) »
y T I (15 + 6it) | (1+1)3

1 1
——(2) w0 <x2 () 1) , (3.5)
y vy T
where v(u) is given by

L o 5(—% —it)c(S+ 2it)§(§ + 3it) oitt "

v(u) =

with # = log . We use Lemma 2.5 and the inequality | z (1S)| < g((g) foro > 1to
obtain the absolute value of v(u), that is

00 3 . . 15 . D
()] < L {(2 +lt)§(5+21t?§( 5 + 3it) X (=5 —it)
2 £S5+ 6ir) G +in2(3 +iD)
2 G );(5)4(1%;(15)/ t "
<= .
Q) £(30) 0 (24 (g) Wt ()
2 3 );(5);(15>c<15)/
= (2n)? £(30) 24 ( %
4 tBieGEeas) x
= 2n)e 2(30) ( ) (3.6)

hence |v(u)| is an upper bound. Next, there exists a simple pole at s = 2 of the integral

th residue A0 (2} by usi I
K> with residue 82(12) (;) by using the value {(0) = —5. Hence, we have

1
_L@BLO) 5 o (x)2 x\?
scaz) ~ " <y> ”(”)+O<<y> ) G-D
with T = x2.

Combining (3.3) and (3.7) with (3.1) and taking T = x2, we obtain the formula
(1.10).
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4 Proof of Theorem 3

In this section we assume that the Riemann Hypothesis is true, and 1 < y < xM for
some constant M. Without loss of generality we can assume that x, y € Z + % The
proof of this theorem follows by the same method as in Theorem 1, in addition to the
Riemann Hypothesis. We start with (3.1), and set 8 = % + 8 with § = ﬁ, and

_ 1 . 2
€ = foglogT 1N Lemma 2.7 and T = x~.

In K1, we move the integration, with respect to s, to I'(«, B, T') with 8 = % + 4.
We denote the integrals over the horizontal line segments by K1 1 and K 3, and the
integral over the vertical line segment by K », respectively. We use Lemmas 2.5, 2.7,
and 2.8 to deduce

K T|2+5
12 K yx +
[t|1<To To<|t|<T

|x(12+8+zt)||x(6+26+21t)||x(4+38+31t)|
1£(L + 68 + 6i1)]
y lz(3 6—n>||;(——28—2zr>||c(%—38—3it>|dt
(1 + |])>
« yx Tt 4yt s/ f—1-65+4e g,
To<|t|<T

L log x
L yxexp| A————
loglog x

with A being a positive constant, and 7 = x2. We use Lemmas 2.5, 2.7, 2.8, and the
estimates of K1 1 and K 3 in the proof of Theorem 1 to deduce

Ki1, K3

y £ +iDIECo +iTIEGE +iTHI
2 + d
< (/HH A ) <60 +iT))] !

6
1 1
y 3 44e d xo 4
<7 (Tz / (ﬁ) da—l—glog T)
y xé 2""‘S
< T Elog T+ ———F T65 -
Therefore, by using Cauchy’s residue theorem we have

R{OE) 20083 1 3033 ( L ( log x ))
Ky = 2(6) xy + (3 x2y+ (2 x3y+ O | yxT2exp Aloglogx
“.1)

by setting 7 = x?2, where A is a positive constant.

@ Springer



1056 . Kiuchi

As for K>, we make use of the same result in the proof of Theorem 1, that is

C@e® 5 ()} x\?
= —8§(12) X X (y) v(u)+0<<y> ) “4.2)
with T = x2.

Combining (4.1) and (4.2) with (3.1) and taking T = x2, we obtain the formula
(1.13).

5 Proof of Theorem 2

Assume that 1 < y < x™ for some constant M. Without loss of generality we can
assume that x, y € Z + % The proof of this theorem follows by the same method as
in Theorem 1. We apply Lemma 2.1 with (1.3) and substitute b = landz = 1 — s
into Lemma 2.2 to deduce

(3) _ L. 2 Xy
s (x,y)_L1+L2+0(xy310g y)+0(T logy>, (5.1)
where
Lo Y /“*"T L($)EBEANE(G9)Ky(s) *°
YT 2w Jmir £(85) s20
and
P /“*"T (2= DEBHEANEGIE) (/3
27 om0 Joir £(8s) 25 —2)
Herea = 1 + —— and T is a real parameter at our disposal.

log x

We move the integration, with respectto s, to I' (o, 8, T') with 8 = L e(T), where
e(T) is given by (3.2). We denote the integrals over the horizontal line segments by
L1, and L 3, and the integral over the vertical line segment by L, respectively.
Since the estimate k9(0 +iT) < 1 for o > B, it follows from Lemmas 2.3-2.5 that

Ly, Ly

1 1 1
y 5 g 3 o
<<_2(/ o[ +/)
T 8 1 1 1
5 4 3

L0 +iDNIEB0 +iT)NIEE©@ +iTHIEG© +iD)] 5,
1£(8(a +iT))|

logS T 5 o
<« 22 T%f < x”) do
T g \T7
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Sums of logarithmic weights... 1057

7 % X \©O 5 % X g 1 o X o
+Te — ) do+Ts — | do+T:2 — | do
1 T3 1 5 1 2
i 1 3 7 T3

3
ylog> T x§ X3 Xt X3 X
L +—Ft—+—F+=]-

T % T®% T T®R T

For L, we use integration by parts, Cauchy—Schwarz’s inequality twice, Lemmas
2.3-2.6, and the estimate Kg(% +it) < 1 to deduce

e l_g(T)/ X (B + in)l1x BB + 3in)]1x (4B + 4i1)|
L +yx§
12Ty T - 236 1 80)| 8
16— B—inlle(1 = 36 = 3inlle(1 = 45 — 4inE (B +5in)|

(1 +e)?

yxg—g(r) yxg—sm /
< +
&(T) e(T)  Jry<pi<r

5 1£(Z + &(T) —in||¢(3 +3e(T) — 3in||¢ (3 +4e(T) — 4in)||¢(3 — 5e(T) + Sit)| U
(1+ e 38D

4
peboem el (e et N e (3
+ / 8 du / ————————du
1 1

e(T) e(T) (1+ |u|)%+88(T) -+ Iul)%+8€(T)

<

1
LS ks ENT 3
y /‘” fGHml ) /” e Ge il ,
R DR (1 fup) 3D
yx§—e(T)

<=@D

It remains to evaluate the residues of the poles of the integrand, and there exist four

11

1 4 5 1
¢

simple polesats = 1, 37 and % with residues , e X3,
3
awHrBero(1) 1 StBeDieEmo(5) 1 .
%x% and 55{(—3)5(5))65, respectively. Therefore, we have
5

_ SO@eGIo)  3GEEEGI (3) 1y A @D (5) 1

L
! £(®) g (%) g £2)
ehe (o (1) 1 1
RRIGHOICITTC N (yxsexp (_C (ogx)5 )) 52
() (loglog 1)’

by setting T = x2, with C being a positive constant.

For L;, we move the integration, with respect to s, to I'(«, % T). We denote the
integrals over the horizontal line segments by L 1 and L5 3, and the integral over the
vertical line segment by L, », respectively. Following the same method as in (3.4) and
(3.5) we have
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5
y*log T (x 1 (x\? x\2
Ly, L3 K 3 T2 () +7(2 ’

Vo f%”“ (2= 9)BCENCGsIRo) ()
$-ico £ (8s) s2(s —2)

(2 \? oo|;(—%—ir)||¢(%+3m\|;<10+4m||c(22—5+5n)||xg(%+iz)\
+0|x <7> / dt
T

and

y 120+ 5in)|(1 + 1)

— (’;)é Ew)+ 0 ( (,;>; ;) (5.3)

where &(u) is given by

Ly— l ©
§(u) == E/_OO

c(—1 —ine (B +3inc(10 + 4in¢ (3 + 5it)o(3 + i) et ”
(20 + 8ir) (G +in2(3 +it)
54
with u = log )y—c Similarly as in (3.6), we have
4 £(3)6(3)E10)8 (P09 (3) (T
Ewl = 553 0 (Z n 1). (5.5)
There exists a simple pole at s = 2 of the integral L, with residue
2
—{(6)4(32%]6?)"9(2) (’}—‘) . Hence, we have
1 1
__8©)2®)i(0)k9(2) , 5 ({)2 <f)2
L, = 32(16) X< —x y Eu)y+ 0 5 (5.6)

by using T = x2.
Combining (5.2) and (5.6) with (5.1) and taking T = x2, the formula (1.12) is
proved.
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