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Abstract
Let (n, q) denote the greatest common divisor of positive integers n and q, and let fr
denote the characteristic function of r -full numbers. We consider several asymptotic
formulas for sums of the modified square-full (r = 2) and cube-full numbers (r = 3),
which is

∑
n≤y

∑
q≤x

∑
d|(n,q) d fr

( q
d

)
log x

q with any positive real numbers x and
y. Moreover, we derive the asymptotic formula of the above with r = 2 under the
Riemann Hypothesis.

Keywords Square full numbers · Cube full numbers · Riemann zeta-function ·
Divisor function · Riemann hypothesis · Asymptotic results on arithmetical functions

Mathematics Subject Classification 11A25 · 11N37 · 11P99

1 Introduction

Let s = σ + i t be the complex variable, and let ζ(s) be the Riemann zeta-function.
Let r(≥ 2) be an integer, we call n an r -full or r -free integer if p|n ⇒ pr |n or
p|n ⇒ pr � n, respectively. In the special case when r = 2 or 3 integer. We call
n a square-full or cube-full numbers, respectively. Let G(r) denote the set of r -full
numbers, and let (n, q) denote the greatest common divisor of positive integers n and
q. Define

fr (n) :=
{
1 if n ∈ G(r),
0 if n /∈ G(r),

and

s(r)
q (n) :=

∑

d|(n,q)

d fr
(q

d

)
. (1.1)

B Isao Kiuchi
kiuchi@yamaguchi-u.ac.jp

1 Department of Mathematical Sciences, Faculty of Science, Yamaguchi University, Yoshida 1677-1,
Yamaguchi 753-8512, Japan

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11139-024-00891-w&domain=pdf


1046 I. Kiuchi

It is worth mentioning that the above sum is an analogue of the Ramanujan sum
cq(n) = ∑

d|(n,q) dμ (q/d) , with μ being the Möbius function. For the case r = 2

and r = 3, the Dirichlet series of the function s(r)
q (n) is given by

∞∑

q=1

s(2)
q (n)

qs
= σ1−s(n)

ζ(2s)ζ(3s)

ζ(6s)
(1.2)

for Re s > 1
2 , and

∞∑

q=1

s(3)
q (n)

qs
= σ1−s(n)

ζ(3s)ζ(4s)ζ(5s)κ9(s)

ζ(8s)
(1.3)

for Re s > 1
3 . Here σ1−s(n) = ∑

d|n d1−s, and the function κ9(s) is absolutely

convergent for Re s > 1
9 , that is

κ9(s) = ζ(13s)ζ(14s)ζ(21s)ζ 2(22s)ζ 2(23s)ζ(24s) · · ·
ζ(9s)ζ(10s)ζ(17s)ζ (18s)ζ (19s)ζ(25s)ζ 3(26s) · · ·

(see (1.96), (1.97) and (1.98) in [5]). For any large positive real numbers x and y, and
any non-negative integer k, we are interested by studying the double sums

S(r)
k (x, y) := 1

k!
∑

n≤y

∑

q≤x

s(r)
q (n)

(

log
x

q

)k

. (1.4)

In this paper, we shall consider the asymptotic formulas for S(r)
k (x, y) when r = 2, 3.

In the case k = 0 and r = 2, the author [6] used the method of Chan and Kumchev
[1] (see also [9], [11]) 1 and the theory of exponent pairs (see [3], [5])) to deduce the
asymptotic formula to S(2)

0 (x, y). It is shown that

S(2)
0 (x, y) = ζ(2)ζ(3)

ζ(6)
xy − ζ(4)ζ(6)

4ζ(12)
x2 + O

(

x
1
2 y + x y

1
3 + x3

y

)

(1.5)

holds, where x and y are large real numbers such that x � y � x
3
2 .

Recently, the author [7] gave a more precise asymptotic for S(2)
0 (x, y) by using

Lemma 2.2 below and some properties of the Riemann zeta-function. He proved that

S(2)
0 (x, y) = ζ(2)ζ(3)

ζ(6)
xy + ζ( 12 )ζ( 32 )

ζ(3)
x

1
2 y − ζ(4)ζ(6)

4ζ(12)
x2

1 Cohen–Ramanujan sumswere first developed in [9] and then theirmomentswere studied in [11] following
the technique pioneered by Chan and Kumchev [1].
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Sums of logarithmic weights... 1047

+ O

(

x
4
9 y log4 x + x y

1
3 log2 y + x2

(
x

y

) 1
2

log
3
2 x

)

(1.6)

holds, where x and y are large real numbers such that x
4
3 log x � y � x

14
9

log4 x
.

Moreover, for k = 0 and r = 3, the author [8] showed that

S(3)
0 (x, y) = ζ(3)ζ(4)ζ(5)κ9(1)

ζ(8)
xy − ζ(6)ζ(8)ζ(10)κ9(2)

4ζ(16)
x2

+ O

(

x
1
3 y + x y

1
3 + x3

y

)

(1.7)

holds, where x and y denote large real numbers such that x � y � x
5
3 . From the

above, we notice that it is difficult to improve the error because the term O
(
x

1
3 y

)

is absorbed into all error terms. For this reason, in this paper, we consider asymp-
totic formulas for S(r)

1 (x, y) and give the interesting relation between S(r)
0 (x, y) and

S(r)
1 (x, y) for r = 2, 3. It is the most interesting problem for us to derive asymptotic

formulas of (1.4) when k = 0, 1, and by a similar argument, we may prove that any
cases k(≥ 2). Before going into the statements of our theorems, we denote the Fourier
integrals ν(u) and ξ(u) defined by

ν(u) := 1

2π

∫ ∞

−∞
ζ(− 1

2 − i t)ζ(5 + 2i t)ζ( 152 + 3i t)

ζ(15 + 6i t)

ei tu

( 52 + i t)2( 12 + i t)
dt, (1.8)

and

ξ(u) :=
1

2π

∫ ∞

−∞
ζ(− 1

2 − i t)ζ( 152 + 3i t)ζ(10 + 4i t)ζ( 252 + 5i t)κ9( 52 + i t)

ζ(20 + 8i t)

ei tu

( 52 + i t)2( 12 + i t)
dt

(1.9)

with u = log x
y , respectively. It follows from (3.6) and (5.5) below that

|ν(u)| ≤ 4

(2π)2

ζ( 32 )ζ(5)ζ( 152 )ζ(15)

ζ(30)

(π

4
+ 1

)

and

|ξ(u)| ≤ 4

(2π)2

ζ( 32 )ζ( 152 )ζ(10)ζ( 252 )ζ(20)κ9( 52 )

ζ(40)

(π

4
+ 1

)

hold. Here the integrals are computable constants, and, strictly speaking, that is enough
for the purpose of this paper. Then we have the following results:
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1048 I. Kiuchi

Theorem 1 Let the notation be as above. Let x and y be large real numbers such that

x log3 x � y � x
14
9 . Then we have

S(2)
1 (x, y) = ζ(2)ζ(3)

ζ(6)
xy + 2

ζ( 12 )ζ( 32 )

ζ(3)
x

1
2 y + 3

ζ( 13 )ζ( 23 )

ζ(2)
x

1
3 y

− 1

8

ζ(4)ζ(6)

ζ(12)
x2 − x2

(
x

y

) 1
2

ν(u) + E (2)
1 (x, y), (1.10)

where the function ν(u) is given by (1.8) and the error term E (2)
1 (x, y) is estimated by

E (2)
1 (x, y) = O

(

yx
1
6 exp

(

−C
(log x)

1
3

(log log x)
1
3

)

+ x y
1
3 log2 y

)

(1.11)

with C being a positive constant.

Remark 1.1 Using (1.5) and (1.10) we deduce the relation

1

xy

(
S(2)
1 (x, y) − S(2)

0 (x, y)
)

= 1

8

ζ(4)ζ(6)

ζ(12)

x

y
+ O

(

x− 1
2 + x2

y2

)

for x log3 x � y � x
3
2 . It follows from (1.10) and (1.11) that

1

xy

∑

n≤y

∑

q≤x

s(2)
q (n) log

x

q
= ζ(2)ζ(3)

ζ(6)
+ 2

ζ( 12 )ζ( 32 )

ζ(3)
x− 1

2 + 3
ζ( 13 )ζ( 23 )

ζ(2)
x− 2

3

− 1

8

ζ(4)ζ(6)

ζ(12)

x

y
+ O

(
x− 5

6 log5 x + y− 2
3 log2 y

)

holds. This means that the logarithmic average order of s(2)
q (n) is ζ(2)ζ(3)

ζ(6) where q and

n satisfying the condition q log3 q � n � q
14
9 .

In fact, it is suspected that there is a deep relationship between a zero-free region of
the Riemann zeta-function and the order of magnitude of the error term (1.11). Then
we immediately obtain

Conjecture 1 We may conjecture that

E (2)
1 (x, y) = O

(

yx
1
6 exp

(

−C
(log x)

3
5

(log log x)
1
5

)

+ x y
1
3 log2 y

)

holds with an absolute constant C > 0.
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Theorem 2 Let the notation be as above. Let x and y be large real numbers such that

x
6
5 log3 x � y � x

19
12 . Then we have

S(3)
1 (x, y) = ζ(3)ζ(4)ζ(5)κ9(1)

ζ(8)
xy + 3

ζ( 13 )ζ( 43 )ζ( 53 )κ9
( 1
3

)

ζ( 83 )
x

1
3 y + 4

ζ( 14 )ζ( 34 )ζ( 54 )κ9
( 1
4

)

ζ( 84 )
x

1
4 y

+ 5
ζ( 15 )ζ( 35 )ζ( 45 )κ9

( 1
5

)

ζ( 85 )
x

1
5 y − 1

8

ζ(6)ζ(8)ζ(10)κ9(2)

ζ(16)
x2 − x2

(
x

y

) 1
2

ξ(u)

+ O

(

yx
1
8 exp

(

−C
(log x)

1
3

(log log x)
1
3

)

+ xy
1
3 log2 y

)

, (1.12)

where the function ξ(u) is given by (1.9) and C is a positive constant.

Remark 1.2 Similarly as in Remark 1.1, we have

S(3)
1 (x, y) − S(3)

0 (x, y) = ζ(6)ζ(8)ζ(10)κ9(2)

8ζ(16)
x2 + O

(

yx
1
3 + xy

1
3 log2 y + x3

y

)

for x
6
5 log3 x � y � x

5
3 , and the logarithmic average order of s(3)

q (n) is derived by
ζ(3)ζ(4)ζ(5)κ9(1)

ζ(8) under q and n satisfying the condition q
6
5 log3 q � n � q

19
12 .

Next,we assume the truth of the unprovedRiemannHypothesis, that all the complex
zeros of the Riemann zeta-function ζ(s) lie on the line σ = 1

2 . We consider the precise

asymptotic formula concerning S(2)
1 (x, y). Then we derive the following

Theorem 3 Assume that theRiemannHypothesis is true. Let x and y be large real num-

bers such that x log3 x � y � x
29
18 exp

(
−A log x

log log x

)
. Then the error term E (2)

1 (x, y)

of (1.10) is estimated by

E (2)
1 (x, y) = O

(

yx
1
12 exp

(

A
log x

log log x

)

+ x y
1
3 log2 y

)

(1.13)

with A being a positive constant.

In addition, we assume that all the zeros ρ of the Riemann zeta-function ζ(s) on the
critical line are simple, where ρ = 1

2 + iγ denotes a nontrivial zero of the Riemann
zeta-function, and γ denotes the imaginary part of zero on the critical line. Then we
may derive a sum involving the zeros ρ of ζ(s) concerning E (2)

1 (x, y). To improve the
order of magnitude of its sum, we make use of the Gonek-Hejhal Hypothesis (Gonek
[2], and Hejhal [4] independently conjectured), namely

J−λ(T ) :=
∑

0<γ≤T

1

|ζ ′(ρ)|2λ 	 T (log T )(λ−1)2

for real number λ < 3
2 , where ζ ′(s) is the first derivative of ζ(s), then we may deduce

a new estimate of E (2)
1 (x, y), which will be done elsewhere.
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1050 I. Kiuchi

Notations. Throughout this paper, we use the following notations: The Riemann zeta-
function ζ(s), defined by

∑∞
n=1

1
ns for σ > 1, admits of analytic continuation over

the whole complex plane having as its only singularity a simple pole with residue 1 at
s = 1. In what follows, C donotes any arbitrarily positive number, not necessarily the
same ones at each occurrence.

2 Some Lemmas

Lemma 2.1 Suppose that the Dirichlet series α(s) := ∑∞
n=1

an
ns converges for Re s >

σc. If σ0 > max(0, σc) and x > 1, then

∑

n≤x

an log
x

n
= 1

2π i

∫ σ0+i∞

σ0−i∞
α(s)

xs

s2
ds.

Proof This is Riesz typical means of Perron’s formula. For more details, see (5.20)–
(5.22) in [10]. 
�
Lemma 2.2 Let Re z ≤ 0, and let σz,b(n) denote the generalization of the divisor
function defined by σz,b(n) = ∑

db|n dbz . Then we have

∑

n≤x

′
σz,b(n) = Dz,b(x) + �z,b(x),

where
∑ ′

indicates that the last term is to be halved if x is an integer, and

�z,b(x) = O
(
x

1
3 log2 x

)

uniformly for b ≥ 1 and Dz,b(x) is given by the following

(i) If b = 1, 2 and − 2
3b2

< Re z ≤ 0, then

Dz,b(x) = ζ(b(1 − z))x + 1

1 + bz
ζ

(

z + 1

b

)

xz+
1
b .

(ii) If b ≥ 3 and −1 < Re z ≤ 0, then

Dz,b(x) = ζ(b(1 − z))x .

Proof The proof of this result can be found in [Theorem 1.4, [11]]. 
�
Lemma 2.3 There is an absolute constant C > 0 such that ζ(s) �= 0 for

σ ≥ 1 − C(log t)−
2
3 (log log t)−

1
3 (t ≥ t0).

Proof This lemma is given by Theorem 6.1 in [5]. 
�

123



Sums of logarithmic weights... 1051

Lemma 2.4 For |t | ≥ 2 and σ ≥ 1 − C(log t)− 2
3 (log log t)− 1

3 we have

ζ(σ + i t) � (log t)
2
3 (log log t)

1
3 and

1

ζ(σ + i t)
� (log t)

2
3 (log log t)

1
3 .

Proof The first term of this lemma is a well-known result. The second term of this
lemma is given by Lemma 12.3 in [5]. 
�
Lemma 2.5 For t ≥ t0 > 0 uniformly in σ , we have

ζ(σ + i t) �

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

t
1
6 (3−4σ) log t

(
0 ≤ σ ≤ 1

2

)
,

t
1
3 (1−σ) log t

( 1
2 ≤ σ ≤ 1

)
,

log t
(
1 ≤ σ ≤ 3

2

)
,

1
(
σ > 3

2

)
.

Proof The proof of this lemma follows fromTheorem II.3.8 in [12] (see also [5], [13]).

�

Lemma 2.6 For any positive number T > 1 we have

∫ T

1
|ζ(σ + i t)|4dt �

⎧
⎨

⎩

T 3−4σ
(
0 < σ < 1

2

)
,

T log4 T
(
σ = 1

2

)
.

T
(
σ > 1

2

)
,

(2.1)

Proof The second and third terms of (2.1) are due to Theorem 5.1 and Theorem 8.5
in [5]. We use (2.2) below and the formula

∫ T
1 |ζ(σ + i t)|4dt = O(T ) for 1

2 < σ ≤ 1
to deduce (2.1). 
�
Lemma 2.7 Assume that the Riemann hypothesis is true. Then we have

ζ(σ + i t) � tε and
1

ζ(σ + i t)
� tε

for every σ ( 12 + δ ≤ σ ≤ 2) and t ≥ t0 being a sufficiently large real number.

Proof The first and second terms of this lemma are given by (14.2.5), (14.2.6),
(14.14.1) and (14.16.2) in [13], respectively. 
�

The next lemma is a well-known result (see [5], [13]), that is

Lemma 2.8 The functional equation of the Riemann zeta-function is given by

ζ(s) = χ(s)ζ(1 − s), (2.2)

where χ(s) = 2sπ s−1 sin
(

πs
2

)
�(1− s). Thus in any bounded vertical strip, we have

|χ(s)| 	
(

t

2π

) 1
2−σ (

1 + O

(
1

t

))

.
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1052 I. Kiuchi

3 Proof of Theorem 1

We assume that 1 ≤ y ≤ xM for some constant M . Without loss of generality we can
assume that x, y ∈ Z + 1

2 . We apply Lemma 2.1 with (1.2) to get

∑

q≤x

s(2)
q (n) log

x

q
= 1

2π i

∫ α+iT

α−iT
σ1−s(n)

ζ(2s)ζ(3s)

ζ(6s)

xs

s2
ds + O

(
σ0(n)

x

T

)
,

where α = 1 + 1
log x . Let T be a real parameter at our disposal. We have

∑

n≤y

∑

q≤x

s(2)
q (n) log

x

q
= 1

2π i

∫ α+iT

α−iT

∑

n≤y

σ1−s(n)
ζ(2s)ζ(3s)

ζ(6s)

xs

s2
ds + O

(
x

T

∑

n≤y

σ0(n)

)

.

Taking b = 1 and z = 1 − s into Lemma 2.2 and using the estimate
∑

n≤y σ0(n) �
y log y we have

S(2)
1 (x, y) = K1 + K2 + O

(
xy

1
3 log2 y

)
+ O

( xy

T
log y

)
, (3.1)

where

K1 := y

2π i

∫ α+iT

α−iT

ζ(s)ζ(2s)ζ(3s)

ζ(6s)

xs

s2
ds,

and

K2 := y2

2π i

∫ α+iT

α−iT

ζ(2 − s)ζ(2s)ζ(3s)

ζ(6s)

(x/y)s

s2(2 − s)
ds.

Define

ε(T ) := C

100
(log T )−

2
3 (log log T )−

1
3 (3.2)

with C being the same as that in Lemma 2.3 and T = x2. Let �(α, β, T ) denote
the contour consisting of the line segments [α − iT , β − iT ], [β − iT , β + iT ] and
[β + iT , α + iT ].

In K1, we move the integration, with respect to s, to �(α, β, T )with β = 1
6 −ε(T ).

We denote the integrals over the horizontal line segments by K1,1 and K1,3, and the
integral over the vertical line segment by K1,2, respectively. We use Lemmas 2.3–2.5
to deduce

K1,1, K1,3

� y

T 2ε(T )

(∫ 1
3

β

+
∫ 1

2

1
3

+
∫ α

1
2

)

|ζ(σ + iT )||ζ(2(σ + iT ))||ζ(3(σ + iT ))|xσdσ
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� y

T 2

log3 T

ε(T )

(

T
3
2

∫ 1
3

β

( x

T 4

)σ

dσ + T
5
6

∫ 1
2

1
3

( x

T

)σ

dσ + T
1
3

∫ α

1
2

(
x

T
1
3

)σ

dσ

)

� y

T

log3 T

ε(T )

(
x

1
6

T
1
6

+ x
1
3

T
1
2

+ x
1
2

T
2
3

+ x

T

)

and

K1,2 � yx
1
6−ε(T )

(∫

|t |≤T0
+

∫

T0<|t |≤T

)

×

× |ζ( 16 − ε(T ) + i t)||ζ( 13 − 2ε(T ) + 2i t)||ζ( 12 − 3ε(T ) + 3i t)|
|ζ(1 − 6ε(T ) + 6i t)|(1 + |t |)2 dt

� yx
1
6−ε(T )

ε(T )
+ yx

1
6−ε(T )

∫

T0<|t |≤T

t
5
6+4ε(T )

|ζ(1 − 6ε(T ) + 6i t)|t2 dt

� yx
1
6−ε(T )

ε(T )
.

It remains to evaluate the residues of the poles of the integrand, and there exist three

simple poles at s = 1, 12 and
1
3 with residues

ζ(2)ζ(3)
ζ(6) x,

2ζ( 12 )ζ( 32 )

ζ(3) x
1
2 , and

3ζ( 13 )ζ( 23 )

ζ(2) x
1
3 ,

respectively. Therefore, we have

K1 = ζ(2)ζ(3)

ζ(6)
xy + 2ζ( 12 )ζ( 32 )

ζ(3)
x

1
2 y + 3ζ( 13 )ζ( 23 )

ζ(2)
x

1
3 y

+ O

(

yx
1
6 exp

(

−C
(log x)

1
3

(log log x)
1
3

))

(3.3)

by setting T = x2, where C is a positive constant.
In K2, we move the integration, with respect to s, to �(α, 5

2 , T ). We denote the
integrals over the horizontal line segments by K2,1 and K2,3, and the integral over the
vertical line segment by K2,2, respectively. Using Lemmas 2.5 and 2.8 we have

K2,1, K2,3 � y2

T 3

∫ 5
2

α

|ζ(2 − σ − iT )|
(
x

y

)σ

dσ

� y2

T 3

(∫ 2

α

|ζ(2 − σ − iT )|
(
x

y

)σ

dσ +
∫ 5

2

2
|ζ(σ − 1 + iT )χ(2 − σ − iT )|

(
x

y

)σ

dσ

)

� y2

T 3 log T

(

T− 1
2

∫ 2

α

(
T

1
2 x

y

)σ

dσ + T− 3
2

∫ 5
2

2

(
T x

y

)σ

dσ

)

� y2 log T

T 3

(
x

y
+ T

1
2

(
x

y

)2

+ T

(
x

y

) 5
2
)

, (3.4)
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1054 I. Kiuchi

and

K2,2 = y2

2π i

∫ 5
2+i∞

5
2−i∞

ζ(2 − s)ζ(2s)ζ(3s)

ζ(6s)

(
x
y

)s

s2(2 − s)
ds

+ O

⎛

⎝x2
(
x

y

) 1
2
∫ ∞

T

|ζ ( 3
2 + i t

) ||ζ(5 + 2i t)||ζ
(
15
2 + 3i t

)
|

|ζ (15 + 6i t) |
|χ (− 1

2 − i t
) |

(1 + t)3
dt

⎞

⎠

= −x2
(
x

y

) 1
2

ν(u) + O

(

x2
(
x

y

) 1
2 1

T

)

, (3.5)

where ν(u) is given by

ν(u) := 1

2π

∫ ∞

−∞
ζ(− 1

2 − i t)ζ(5 + 2i t)ζ( 152 + 3i t)

ζ(15 + 6i t)

ei tu

( 52 + i t)2( 12 + i t)
dt,

with u = log x
y . We use Lemma 2.5 and the inequality | 1

ζ(s) | ≤ ζ(σ )
ζ(2σ)

for σ > 1 to
obtain the absolute value of ν(u), that is

|ν(u)| ≤ 1

2π

∫ ∞

−∞

∣
∣
∣
∣
∣

ζ( 32 + i t)ζ(5 + 2i t)ζ( 152 + 3i t)

ζ(15 + 6i t)

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

χ(− 1
2 − i t)

( 52 + i t)2( 12 + i t)

∣
∣
∣
∣
∣
dt

≤ 2

(2π)2

ζ( 32 )ζ(5)ζ( 152 )ζ(15)

ζ(30)

∫ ∞

0

t

(t2 +
(
5
2

)2
)

√

t2 + ( 1
2

)2
dt

≤ 2

(2π)2

ζ( 32 )ζ(5)ζ( 152 )ζ(15)

ζ(30)

∫ ∞

0

t
1
2

t2 + ( 1
2

)2 dt

≤ 4

(2π)2

ζ( 32 )ζ(5)ζ( 152 )ζ(15)

ζ(30)

(π

4
+ 1

)
, (3.6)

hence |ν(u)| is an upper bound. Next, there exists a simple pole at s = 2 of the integral

K2 with residue
ζ(4)ζ(6)
8ζ(12)

(
x
y

)2
by using the value ζ(0) = − 1

2 . Hence, we have

K2 = −ζ(4)ζ(6)

8ζ(12)
x2 − x2

(
x

y

) 1
2

ν(u) + O

((
x

y

) 1
2
)

(3.7)

with T = x2.
Combining (3.3) and (3.7) with (3.1) and taking T = x2, we obtain the formula

(1.10).
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4 Proof of Theorem 3

In this section we assume that the Riemann Hypothesis is true, and 1 ≤ y ≤ xM for
some constant M . Without loss of generality we can assume that x, y ∈ Z + 1

2 . The
proof of this theorem follows by the same method as in Theorem 1, in addition to the
Riemann Hypothesis. We start with (3.1), and set β = 1

12 + δ with δ = 10
log log T , and

ε = 1
log log T in Lemma 2.7 and T = x2.

In K1, we move the integration, with respect to s, to �(α, β, T ) with β = 1
12 + δ.

We denote the integrals over the horizontal line segments by K1,1 and K1,3, and the
integral over the vertical line segment by K1,2, respectively. We use Lemmas 2.5, 2.7,
and 2.8 to deduce

K1,2 � yx
1
12+δ

(∫

|t |≤T0
+

∫

T0<|t |≤T

)

× |χ( 1
12 + δ + i t)||χ( 16 + 2δ + 2i t)||χ( 14 + 3δ + 3i t)|

|ζ( 12 + 6δ + 6i t)| ×

× |ζ( 1112 − δ − i t)||ζ( 56 − 2δ − 2i t)||ζ( 34 − 3δ − 3i t)|
(1 + |t |)2 dt

� yx
1
12+δ + yx

1
12+δ

∫

T0<|t |≤T
t−1−6δ+4εdt

� yx
1
12 exp

(

A
log x

log log x

)

with A being a positive constant, and T = x2. We use Lemmas 2.5, 2.7, 2.8, and the
estimates of K1,1 and K1,3 in the proof of Theorem 1 to deduce

K1,1, K1,3

� y

T 2

(∫ 1
6

1
12+δ

+
∫ α

1
6

)
|ζ(σ + iT )||ζ(2(σ + iT ))||ζ(3(σ + iT ))|

|ζ(6(σ + iT ))| xσdσ

� y

T 2

(

T
3
2+4ε

∫ 1
6

1
12+δ

( x

T 6

)σ

dσ + x
1
6

T
1
6

log4 T

)

� y

T

(
x

1
6

T
1
6

log4 T + x
1
12+δ

T 6δ−4ε

)

.

Therefore, by using Cauchy’s residue theorem we have

K1 = ζ(2)ζ(3)

ζ(6)
xy + 2ζ( 12 )ζ( 32 )

ζ(3)
x

1
2 y + 3ζ( 13 )ζ( 23 )

ζ(2)
x

1
3 y + O

(

yx
1
12 exp

(

A
log x

log log x

))

(4.1)

by setting T = x2, where A is a positive constant.
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As for K2, we make use of the same result in the proof of Theorem 1, that is

K2 = −ζ(4)ζ(6)

8ζ(12)
x2 − x2

(
x

y

) 1
2

ν(u) + O

((
x

y

) 1
2
)

(4.2)

with T = x2.
Combining (4.1) and (4.2) with (3.1) and taking T = x2, we obtain the formula

(1.13).

5 Proof of Theorem 2

Assume that 1 ≤ y ≤ xM for some constant M . Without loss of generality we can
assume that x, y ∈ Z + 1

2 . The proof of this theorem follows by the same method as
in Theorem 1. We apply Lemma 2.1 with (1.3) and substitute b = 1 and z = 1 − s
into Lemma 2.2 to deduce

S(3)
1 (x, y) = L1 + L2 + O

(
xy

1
3 log2 y

)
+ O

( xy

T
log y

)
, (5.1)

where

L1 := y

2π i

∫ α+iT

α−iT

ζ(s)ζ(3s)ζ(4s)ζ(5s)κ9(s)

ζ(8s)

xs

s2
ds,

and

L2 := − y2

2π i

∫ α+iT

α−iT

ζ(2 − s)ζ(3s)ζ(4s)ζ(5s)κ9(s)

ζ(8s)

(x/y)s

s2(s − 2)
ds.

Here α = 1 + 1
log x and T is a real parameter at our disposal.

Wemove the integration, with respect to s, to�(α, β, T )with β = 1
8 −ε(T ), where

ε(T ) is given by (3.2). We denote the integrals over the horizontal line segments by
L1,1 and L1,3, and the integral over the vertical line segment by L1,2, respectively.
Since the estimate κ9(σ + iT ) � 1 for σ ≥ β, it follows from Lemmas 2.3–2.5 that

L1,1, L1,3

� y

T 2

(∫ 1
5

β

+
∫ 1

4

1
5

+
∫ 1

3

1
4

+
∫ α

1
3

)

|ζ(σ + iT )||ζ(3(σ + iT ))||ζ(4(σ + iT ))||ζ(5(σ + iT ))|
|ζ(8(σ + iT ))| xσdσ

� y log5 T

T 2

(

T
5
3

∫ 1
5

β

(
x

T
17
3

)σ

dσ
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+T
7
6

∫ 1
4

1
5

( x

T 3

)σ

dσ + T
5
6

∫ 1
3

1
4

(
x

T
5
3

)σ

dσ + T
1
2

∫ α

1
3

(
x

T
2
3

)σ

dσ

)

� y log5 T

T

(
x

1
8

T
1
24

+ x
1
5

T
13
30

+ x
1
4

T
7
12

+ x
1
3

T
13
18

+ x

T

)

.

For L1,2, we use integration by parts, Cauchy–Schwarz’s inequality twice, Lemmas
2.3–2.6, and the estimate κ9(

1
8 + i t) � 1 to deduce

L1,2 � yx
1
8−ε(T )

ε(T )
+ yx

1
8−ε(T )

∫

T0<|t |≤T

|χ(β + i t)||χ(3β + 3i t)||χ(4β + 4i t)|
|ζ(8β + 8i t)| ×

× |ζ(1 − β − i t)||ζ(1 − 3β − 3i t)||ζ(1 − 4β − 4i t)||ζ(5β + 5i t)|
(1 + |t |)2 dt

� yx
1
8−ε(T )

ε(T )
+ yx

1
8−ε(T )

ε(T )

∫

T0<|t |≤T

× |ζ( 78 + ε(T ) − i t)||ζ( 58 + 3ε(T ) − 3i t)||ζ( 12 + 4ε(T ) − 4i t)||ζ( 58 − 5ε(T ) + 5i t)|
(1 + |t |) 3

2 +8ε(T )
dt

� yx
1
8−ε(T )

ε(T )
+ yx

1
8−ε(T )

ε(T )

(∫ T

1

∣
∣ζ

( 7
8 + iu

)∣
∣4

(1 + |u|) 3
2 +8ε(T )

du

) 1
4

⎛

⎜
⎝

∫ 3T

1

∣
∣
∣ζ

(
5
8 + iu

)∣
∣
∣
4

(1 + |u|) 3
2 +8ε(T )

du

⎞

⎟
⎠

1
4

×
(∫ 4T

1

∣
∣ζ

( 1
2 + iu

)∣
∣4

(1 + |u|) 3
2 +8ε(T )

du

) 1
4
(∫ 5T

1

∣
∣ζ

( 9
16 + iu

)∣
∣4

(1 + |u|) 3
2 +8ε(T )

du

) 1
4

� yx
1
8−ε(T )

ε(T )
.

It remains to evaluate the residues of the poles of the integrand, and there exist four

simple poles at s = 1, 13 ,
1
4 and

1
5 with residues

ζ(3)ζ(4)ζ(5)κ9(1)
ζ(8) x,

3ζ( 13 )ζ( 43 )ζ( 53 )κ9

(
1
3

)

ζ( 83 )
x

1
3 ,

4ζ( 14 )ζ( 34 )ζ( 54 )κ9

(
1
4

)

ζ(2) x
1
4 , and

5ζ( 15 )ζ( 35 )ζ( 45 )κ9

(
1
5

)

ζ( 85 )
x

1
5 , respectively. Therefore, we have

L1 = ζ(3)ζ(4)ζ(5)κ9(1)

ζ(8)
xy + 3ζ( 13 )ζ( 43 )ζ( 53 )κ9

( 1
3

)

ζ( 83 )
x

1
3 y + 4ζ( 14 )ζ( 34 )ζ( 54 )κ9

( 1
4

)

ζ(2)
x

1
4 y

+ 5ζ( 15 )ζ( 35 )ζ( 45 )κ9
( 1
5

)

ζ( 85 )
x

1
5 y + O

(

yx
1
8 exp

(

−C
(log x)

1
3

(log log x)
1
3

))

(5.2)

by setting T = x2, with C being a positive constant.
For L2, we move the integration, with respect to s, to �(α, 5

2 , T ). We denote the
integrals over the horizontal line segments by L2,1 and L2,3, and the integral over the
vertical line segment by L2,2, respectively. Following the same method as in (3.4) and
(3.5) we have
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L2,1, L2,3 � y2 log T

T 3

(
x

y
+ T

1
2

(
x

y

)2

+ T

(
x

y

) 5
2
)

,

and

L2,2 = − y2

2π i

∫ 5
2 +i∞

5
2 −i∞

ζ(2 − s)ζ(3s)ζ(4s)ζ(5s)κ9(s)

ζ(8s)

( xy )s

s2(s − 2)
ds

+ O

⎛

⎝x2
(
x

y

) 1
2

∫ ∞

T

|ζ (− 1
2 − i t

) ||ζ( 152 + 3i t)||ζ (10 + 4i t) ||ζ
(
25
2 + 5i t

)
||κ9( 52 + i t)|

|ζ(20 + 5i t)|(1 + t)3
dt

⎞

⎠

= −x2
(
x

y

) 1
2

ξ(u) + O

(

x2
(
x

y

) 1
2 1

T

)

, (5.3)

where ξ(u) is given by

ξ(u) := 1

2π

∫ ∞

−∞
ζ(− 1

2 − i t)ζ( 152 + 3i t)ζ(10 + 4i t)ζ( 252 + 5i t)κ9( 52 + i t)

ζ(20 + 8i t)

ei tu

( 52 + i t)2( 12 + i t)
dt

(5.4)

with u = log x
y . Similarly as in (3.6), we have

|ξ(u)| ≤ 4

(2π)2

ζ( 32 )ζ( 152 )ζ(10)ζ( 252 )ζ(20)κ9( 52 )

ζ(40)

(π

4
+ 1

)
. (5.5)

There exists a simple pole at s = 2 of the integral L2 with residue
ζ(6)ζ(8)ζ(10)κ9(2)

8ζ(16)

(
x
y

)2
. Hence, we have

L2 = −ζ(6)ζ(8)ζ(10)κ9(2)

8ζ(16)
x2 − x2

(
x

y

) 1
2

ξ(u) + O

((
x

y

) 1
2
)

(5.6)

by using T = x2.
Combining (5.2) and (5.6) with (5.1) and taking T = x2, the formula (1.12) is

proved.
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