

Sums of logarithmic weights involving *r*-full numbers

Isao Kiuchi¹

Received: 23 March 2022 / Accepted: 30 April 2024 / Published online: 28 June 2024 © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024

Abstract

Let (n, q) denote the greatest common divisor of positive integers n and q, and let f_r denote the characteristic function of r-full numbers. We consider several asymptotic formulas for sums of the modified square-full (r = 2) and cube-full numbers (r = 3), which is $\sum_{n \le y} \sum_{q \le x} \sum_{d \mid (n,q)} df_r \left(\frac{q}{d}\right) \log \frac{x}{q}$ with any positive real numbers x and y. Moreover, we derive the asymptotic formula of the above with r = 2 under the Riemann Hypothesis.

Keywords Square full numbers \cdot Cube full numbers \cdot Riemann zeta-function \cdot Divisor function \cdot Riemann hypothesis \cdot Asymptotic results on arithmetical functions

Mathematics Subject Classification 11A25 · 11N37 · 11P99

1 Introduction

Let $s = \sigma + it$ be the complex variable, and let $\zeta(s)$ be the Riemann zeta-function. Let $r(\geq 2)$ be an integer, we call *n* an *r*-full or *r*-free integer if $p|n \Rightarrow p^r|n$ or $p|n \Rightarrow p^r \nmid n$, respectively. In the special case when r = 2 or 3 integer. We call *n* a square-full or cube-full numbers, respectively. Let G(r) denote the set of *r*-full numbers, and let (n, q) denote the greatest common divisor of positive integers *n* and *q*. Define

$$f_r(n) := \begin{cases} 1 & \text{if } n \in G(r), \\ 0 & \text{if } n \notin G(r), \end{cases}$$

and

$$s_q^{(r)}(n) := \sum_{d \mid (n,q)} df_r\left(\frac{q}{d}\right).$$

$$(1.1)$$

☑ Isao Kiuchi kiuchi@yamaguchi-u.ac.jp

¹ Department of Mathematical Sciences, Faculty of Science, Yamaguchi University, Yoshida 1677-1, Yamaguchi 753-8512, Japan

It is worth mentioning that the above sum is an analogue of the Ramanujan sum $c_q(n) = \sum_{d|(n,q)} d\mu(q/d)$, with μ being the Möbius function. For the case r = 2 and r = 3, the Dirichlet series of the function $s_q^{(r)}(n)$ is given by

$$\sum_{q=1}^{\infty} \frac{s_q^{(2)}(n)}{q^s} = \sigma_{1-s}(n) \frac{\zeta(2s)\zeta(3s)}{\zeta(6s)}$$
(1.2)

for Re $s > \frac{1}{2}$, and

$$\sum_{q=1}^{\infty} \frac{s_q^{(3)}(n)}{q^s} = \sigma_{1-s}(n) \frac{\zeta(3s)\zeta(4s)\zeta(5s)\kappa_9(s)}{\zeta(8s)}$$
(1.3)

for Re $s > \frac{1}{3}$. Here $\sigma_{1-s}(n) = \sum_{d|n} d^{1-s}$, and the function $\kappa_9(s)$ is absolutely convergent for Re $s > \frac{1}{9}$, that is

$$\kappa_9(s) = \frac{\zeta(13s)\zeta(14s)\zeta(21s)\zeta^2(22s)\zeta^2(23s)\zeta(24s)\cdots}{\zeta(9s)\zeta(10s)\zeta(17s)\zeta(18s)\zeta(19s)\zeta(25s)\zeta^3(26s)\cdots}$$

(see (1.96), (1.97) and (1.98) in [5]). For any large positive real numbers x and y, and any non-negative integer k, we are interested by studying the double sums

$$S_k^{(r)}(x, y) := \frac{1}{k!} \sum_{n \le y} \sum_{q \le x} s_q^{(r)}(n) \left(\log \frac{x}{q} \right)^k.$$
(1.4)

In this paper, we shall consider the asymptotic formulas for $S_k^{(r)}(x, y)$ when r = 2, 3. In the case k = 0 and r = 2, the author [6] used the method of Chan and Kumchev [1] (see also [9], [11])¹ and the theory of exponent pairs (see [3], [5])) to deduce the asymptotic formula to $S_0^{(2)}(x, y)$. It is shown that

$$S_0^{(2)}(x, y) = \frac{\zeta(2)\zeta(3)}{\zeta(6)}xy - \frac{\zeta(4)\zeta(6)}{4\zeta(12)}x^2 + O\left(x^{\frac{1}{2}}y + xy^{\frac{1}{3}} + \frac{x^3}{y}\right)$$
(1.5)

holds, where x and y are large real numbers such that $x \ll y \ll x^{\frac{3}{2}}$.

Recently, the author [7] gave a more precise asymptotic for $S_0^{(2)}(x, y)$ by using Lemma 2.2 below and some properties of the Riemann zeta-function. He proved that

$$S_0^{(2)}(x, y) = \frac{\zeta(2)\zeta(3)}{\zeta(6)}xy + \frac{\zeta(\frac{1}{2})\zeta(\frac{3}{2})}{\zeta(3)}x^{\frac{1}{2}}y - \frac{\zeta(4)\zeta(6)}{4\zeta(12)}x^2$$

¹ Cohen–Ramanujan sums were first developed in [9] and then their moments were studied in [11] following the technique pioneered by Chan and Kumchev [1].

+
$$O\left(x^{\frac{4}{9}}y\log^4 x + xy^{\frac{1}{3}}\log^2 y + x^2\left(\frac{x}{y}\right)^{\frac{1}{2}}\log^{\frac{3}{2}}x\right)$$
 (1.6)

holds, where x and y are large real numbers such that $x^{\frac{4}{3}} \log x \ll y \ll \frac{x^{\frac{14}{9}}}{\log^4 x}$. Moreover, for k = 0 and r = 3, the author [8] showed that

$$S_0^{(3)}(x, y) = \frac{\zeta(3)\zeta(4)\zeta(5)\kappa_9(1)}{\zeta(8)}xy - \frac{\zeta(6)\zeta(8)\zeta(10)\kappa_9(2)}{4\zeta(16)}x^2 + O\left(x^{\frac{1}{3}}y + xy^{\frac{1}{3}} + \frac{x^3}{y}\right)$$
(1.7)

holds, where x and y denote large real numbers such that $x \ll y \ll x^{\frac{5}{3}}$. From the above, we notice that it is difficult to improve the error because the term $O\left(x^{\frac{1}{3}}y\right)$ is absorbed into all error terms. For this reason, in this paper, we consider asymptotic formulas for $S_1^{(r)}(x, y)$ and give the interesting relation between $S_0^{(r)}(x, y)$ and $S_1^{(r)}(x, y)$ for r = 2, 3. It is the most interesting problem for us to derive asymptotic formulas of (1.4) when k = 0, 1, and by a similar argument, we may prove that any cases $k(\geq 2)$. Before going into the statements of our theorems, we denote the Fourier integrals v(u) and $\xi(u)$ defined by

$$\nu(u) := \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{\zeta(-\frac{1}{2} - it)\zeta(5 + 2it)\zeta(\frac{15}{2} + 3it)}{\zeta(15 + 6it)} \frac{e^{itu}}{(\frac{5}{2} + it)^2(\frac{1}{2} + it)} dt, \quad (1.8)$$

and

$$\xi(u) := \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{\zeta(-\frac{1}{2} - it)\zeta(\frac{15}{2} + 3it)\zeta(10 + 4it)\zeta(\frac{25}{2} + 5it)\kappa_9(\frac{5}{2} + it)}{\zeta(20 + 8it)} \frac{e^{itu}}{(\frac{5}{2} + it)^2(\frac{1}{2} + it)} dt$$
(1.9)

with $u = \log \frac{x}{y}$, respectively. It follows from (3.6) and (5.5) below that

$$|\nu(u)| \le \frac{4}{(2\pi)^2} \frac{\zeta(\frac{3}{2})\zeta(5)\zeta(\frac{15}{2})\zeta(15)}{\zeta(30)} \left(\frac{\pi}{4} + 1\right)$$

and

$$|\xi(u)| \le \frac{4}{(2\pi)^2} \frac{\zeta(\frac{3}{2})\zeta(\frac{15}{2})\zeta(10)\zeta(\frac{25}{2})\zeta(20)\kappa_9(\frac{5}{2})}{\zeta(40)} \left(\frac{\pi}{4} + 1\right)$$

hold. Here the integrals are computable constants, and, strictly speaking, that is enough for the purpose of this paper. Then we have the following results:

🖄 Springer

Theorem 1 Let the notation be as above. Let x and y be large real numbers such that $x \log^3 x \ll y \ll x^{\frac{14}{9}}$. Then we have

$$S_{1}^{(2)}(x, y) = \frac{\zeta(2)\zeta(3)}{\zeta(6)}xy + 2\frac{\zeta(\frac{1}{2})\zeta(\frac{3}{2})}{\zeta(3)}x^{\frac{1}{2}}y + 3\frac{\zeta(\frac{1}{3})\zeta(\frac{2}{3})}{\zeta(2)}x^{\frac{1}{3}}y - \frac{1}{8}\frac{\zeta(4)\zeta(6)}{\zeta(12)}x^{2} - x^{2}\left(\frac{x}{y}\right)^{\frac{1}{2}}\nu(u) + E_{1}^{(2)}(x, y), \qquad (1.10)$$

where the function v(u) is given by (1.8) and the error term $E_1^{(2)}(x, y)$ is estimated by

$$E_1^{(2)}(x, y) = O\left(yx^{\frac{1}{6}} \exp\left(-C\frac{(\log x)^{\frac{1}{3}}}{(\log\log x)^{\frac{1}{3}}}\right) + xy^{\frac{1}{3}}\log^2 y\right)$$
(1.11)

with C being a positive constant.

Remark 1.1 Using (1.5) and (1.10) we deduce the relation

$$\frac{1}{xy}\left(S_1^{(2)}(x,y) - S_0^{(2)}(x,y)\right) = \frac{1}{8}\frac{\zeta(4)\zeta(6)}{\zeta(12)}\frac{x}{y} + O\left(x^{-\frac{1}{2}} + \frac{x^2}{y^2}\right)$$

for $x \log^3 x \ll y \ll x^{\frac{3}{2}}$. It follows from (1.10) and (1.11) that

$$\frac{1}{xy} \sum_{n \le y} \sum_{q \le x} s_q^{(2)}(n) \log \frac{x}{q} = \frac{\zeta(2)\zeta(3)}{\zeta(6)} + 2\frac{\zeta(\frac{1}{2})\zeta(\frac{3}{2})}{\zeta(3)} x^{-\frac{1}{2}} + 3\frac{\zeta(\frac{1}{3})\zeta(\frac{2}{3})}{\zeta(2)} x^{-\frac{2}{3}} - \frac{1}{8} \frac{\zeta(4)\zeta(6)}{\zeta(12)} \frac{x}{y} + O\left(x^{-\frac{5}{6}} \log^5 x + y^{-\frac{2}{3}} \log^2 y\right)$$

holds. This means that the logarithmic average order of $s_q^{(2)}(n)$ is $\frac{\zeta(2)\zeta(3)}{\zeta(6)}$ where q and n satisfying the condition $q \log^3 q \ll n \ll q^{\frac{14}{9}}$.

In fact, it is suspected that there is a deep relationship between a zero-free region of the Riemann zeta-function and the order of magnitude of the error term (1.11). Then we immediately obtain

Conjecture 1 We may conjecture that

$$E_1^{(2)}(x, y) = O\left(yx^{\frac{1}{6}}\exp\left(-C\frac{(\log x)^{\frac{3}{5}}}{(\log\log x)^{\frac{1}{5}}}\right) + xy^{\frac{1}{3}}\log^2 y\right)$$

holds with an absolute constant C > 0.

🖄 Springer

Theorem 2 Let the notation be as above. Let x and y be large real numbers such that $x^{\frac{6}{5}} \log^3 x \ll y \ll x^{\frac{19}{12}}$. Then we have

$$S_{1}^{(3)}(x, y) = \frac{\zeta(3)\zeta(4)\zeta(5)\kappa_{9}(1)}{\zeta(8)}xy + 3\frac{\zeta(\frac{1}{3})\zeta(\frac{4}{3})\zeta(\frac{5}{3})\kappa_{9}\left(\frac{1}{3}\right)}{\zeta(\frac{8}{3})}x^{\frac{1}{3}}y + 4\frac{\zeta(\frac{1}{4})\zeta(\frac{3}{4})\zeta(\frac{5}{4})\kappa_{9}\left(\frac{1}{4}\right)}{\zeta(\frac{8}{4})}x^{\frac{1}{4}}y + 5\frac{\zeta(\frac{1}{5})\zeta(\frac{3}{5})\zeta(\frac{4}{5})\kappa_{9}\left(\frac{1}{5}\right)}{\zeta(\frac{8}{5})}x^{\frac{1}{5}}y - \frac{1}{8}\frac{\zeta(6)\zeta(8)\zeta(10)\kappa_{9}(2)}{\zeta(16)}x^{2} - x^{2}\left(\frac{x}{y}\right)^{\frac{1}{2}}\xi(u) + O\left(yx^{\frac{1}{8}}\exp\left(-C\frac{(\log x)^{\frac{1}{3}}}{(\log \log x)^{\frac{1}{3}}}\right) + xy^{\frac{1}{3}}\log^{2}y\right),$$
(1.12)

where the function $\xi(u)$ is given by (1.9) and C is a positive constant.

Remark 1.2 Similarly as in Remark 1.1, we have

$$S_1^{(3)}(x, y) - S_0^{(3)}(x, y) = \frac{\zeta(6)\zeta(8)\zeta(10)\kappa_9(2)}{8\zeta(16)}x^2 + O\left(yx^{\frac{1}{3}} + xy^{\frac{1}{3}}\log^2 y + \frac{x^3}{y}\right)$$

for $x^{\frac{6}{5}} \log^3 x \ll y \ll x^{\frac{5}{3}}$, and the logarithmic average order of $s_q^{(3)}(n)$ is derived by $\frac{\zeta(3)\zeta(4)\zeta(5)\kappa_9(1)}{\zeta(8)}$ under q and n satisfying the condition $q^{\frac{6}{5}} \log^3 q \ll n \ll q^{\frac{19}{12}}$.

Next, we assume the truth of the unproved Riemann Hypothesis, that all the complex zeros of the Riemann zeta-function $\zeta(s)$ lie on the line $\sigma = \frac{1}{2}$. We consider the precise asymptotic formula concerning $S_1^{(2)}(x, y)$. Then we derive the following

Theorem 3 Assume that the Riemann Hypothesis is true. Let x and y be large real numbers such that $x \log^3 x \ll y \ll x^{\frac{29}{18}} \exp\left(-A \frac{\log x}{\log \log x}\right)$. Then the error term $E_1^{(2)}(x, y)$ of (1.10) is estimated by

$$E_1^{(2)}(x, y) = O\left(yx^{\frac{1}{12}}\exp\left(A\frac{\log x}{\log\log x}\right) + xy^{\frac{1}{3}}\log^2 y\right)$$
(1.13)

with A being a positive constant.

In addition, we assume that all the zeros ρ of the Riemann zeta-function $\zeta(s)$ on the critical line are simple, where $\rho = \frac{1}{2} + i\gamma$ denotes a nontrivial zero of the Riemann zeta-function, and γ denotes the imaginary part of zero on the critical line. Then we may derive a sum involving the zeros ρ of $\zeta(s)$ concerning $E_1^{(2)}(x, y)$. To improve the order of magnitude of its sum, we make use of the Gonek-Hejhal Hypothesis (Gonek [2], and Hejhal [4] independently conjectured), namely

$$J_{-\lambda}(T) := \sum_{0 < \gamma \le T} \frac{1}{|\zeta'(\rho)|^{2\lambda}} \asymp T(\log T)^{(\lambda-1)^2}$$

for real number $\lambda < \frac{3}{2}$, where $\zeta'(s)$ is the first derivative of $\zeta(s)$, then we may deduce a new estimate of $E_1^{(2)}(x, y)$, which will be done elsewhere.

Notations. Throughout this paper, we use the following notations: The Riemann zetafunction $\zeta(s)$, defined by $\sum_{n=1}^{\infty} \frac{1}{n^s}$ for $\sigma > 1$, admits of analytic continuation over the whole complex plane having as its only singularity a simple pole with residue 1 at s = 1. In what follows, *C* donotes any arbitrarily positive number, not necessarily the same ones at each occurrence.

2 Some Lemmas

Lemma 2.1 Suppose that the Dirichlet series $\alpha(s) := \sum_{n=1}^{\infty} \frac{a_n}{n^s}$ converges for Re $s > \sigma_c$. If $\sigma_0 > \max(0, \sigma_c)$ and x > 1, then

$$\sum_{n \le x} a_n \log \frac{x}{n} = \frac{1}{2\pi i} \int_{\sigma_0 - i\infty}^{\sigma_0 + i\infty} \alpha(s) \frac{x^s}{s^2} ds.$$

Proof This is Riesz typical means of Perron's formula. For more details, see (5.20)–(5.22) in [10].

Lemma 2.2 Let Re $z \le 0$, and let $\sigma_{z,b}(n)$ denote the generalization of the divisor function defined by $\sigma_{z,b}(n) = \sum_{d^b|n} d^{bz}$. Then we have

$$\sum_{n \le x} \sigma_{z,b}(n) = D_{z,b}(x) + \Delta_{z,b}(x),$$

where \sum' indicates that the last term is to be halved if x is an integer, and

$$\Delta_{z,b}(x) = O\left(x^{\frac{1}{3}}\log^2 x\right)$$

uniformly for $b \ge 1$ and $D_{z,b}(x)$ is given by the following (i) If b = 1, 2 and $-\frac{2}{3b^2} < \text{Re } z \le 0$, then

$$D_{z,b}(x) = \zeta(b(1-z))x + \frac{1}{1+bz}\zeta\left(z+\frac{1}{b}\right)x^{z+\frac{1}{b}}.$$

(*ii*) If $b \ge 3$ and $-1 < \text{Re } z \le 0$, then

$$D_{z,b}(x) = \zeta(b(1-z))x.$$

Proof The proof of this result can be found in [Theorem 1.4, [11]].

Lemma 2.3 There is an absolute constant C > 0 such that $\zeta(s) \neq 0$ for

$$\sigma \ge 1 - C(\log t)^{-\frac{2}{3}} (\log \log t)^{-\frac{1}{3}} \quad (t \ge t_0).$$

Proof This lemma is given by Theorem 6.1 in [5].

🖉 Springer

Lemma 2.4 For $|t| \ge 2$ and $\sigma \ge 1 - C(\log t)^{-\frac{2}{3}}(\log \log t)^{-\frac{1}{3}}$ we have

$$\zeta(\sigma + it) \ll (\log t)^{\frac{2}{3}} (\log \log t)^{\frac{1}{3}}$$
 and $\frac{1}{\zeta(\sigma + it)} \ll (\log t)^{\frac{2}{3}} (\log \log t)^{\frac{1}{3}}.$

Proof The first term of this lemma is a well-known result. The second term of this lemma is given by Lemma 12.3 in [5]. \Box

Lemma 2.5 For $t \ge t_0 > 0$ uniformly in σ , we have

$$\zeta(\sigma + it) \ll \begin{cases} t^{\frac{1}{6}(3-4\sigma)}\log t & \left(0 \le \sigma \le \frac{1}{2}\right), \\ t^{\frac{1}{3}(1-\sigma)}\log t & \left(\frac{1}{2} \le \sigma \le 1\right), \\ \log t & \left(1 \le \sigma \le \frac{3}{2}\right), \\ 1 & \left(\sigma > \frac{3}{2}\right). \end{cases}$$

Proof The proof of this lemma follows from Theorem II.3.8 in [12] (see also [5], [13]).

Lemma 2.6 For any positive number T > 1 we have

$$\int_{1}^{T} |\zeta(\sigma+it)|^{4} dt \ll \begin{cases} T^{3-4\sigma} & \left(0 < \sigma < \frac{1}{2}\right), \\ T \log^{4} T & \left(\sigma = \frac{1}{2}\right), \\ T & \left(\sigma > \frac{1}{2}\right), \end{cases}$$
(2.1)

Proof The second and third terms of (2.1) are due to Theorem 5.1 and Theorem 8.5 in [5]. We use (2.2) below and the formula $\int_1^T |\zeta(\sigma + it)|^4 dt = O(T)$ for $\frac{1}{2} < \sigma \le 1$ to deduce (2.1).

Lemma 2.7 Assume that the Riemann hypothesis is true. Then we have

$$\zeta(\sigma + it) \ll t^{\varepsilon}$$
 and $\frac{1}{\zeta(\sigma + it)} \ll t^{\varepsilon}$

for every σ $(\frac{1}{2} + \delta \le \sigma \le 2)$ and $t \ge t_0$ being a sufficiently large real number.

Proof The first and second terms of this lemma are given by (14.2.5), (14.2.6), (14.14.1) and (14.16.2) in [13], respectively.

The next lemma is a well-known result (see [5], [13]), that is

Lemma 2.8 The functional equation of the Riemann zeta-function is given by

$$\zeta(s) = \chi(s)\zeta(1-s), \tag{2.2}$$

where $\chi(s) = 2^s \pi^{s-1} \sin\left(\frac{\pi s}{2}\right) \Gamma(1-s)$. Thus in any bounded vertical strip, we have

$$|\chi(s)| \asymp \left(\frac{t}{2\pi}\right)^{\frac{1}{2}-\sigma} \left(1+O\left(\frac{1}{t}\right)\right).$$

3 Proof of Theorem 1

We assume that $1 \le y \le x^M$ for some constant *M*. Without loss of generality we can assume that $x, y \in \mathbb{Z} + \frac{1}{2}$. We apply Lemma 2.1 with (1.2) to get

$$\sum_{q \le x} s_q^{(2)}(n) \log \frac{x}{q} = \frac{1}{2\pi i} \int_{\alpha - iT}^{\alpha + iT} \sigma_{1-s}(n) \frac{\zeta(2s)\zeta(3s)}{\zeta(6s)} \frac{x^s}{s^2} ds + O\left(\sigma_0(n)\frac{x}{T}\right),$$

where $\alpha = 1 + \frac{1}{\log x}$. Let *T* be a real parameter at our disposal. We have

$$\sum_{n \le y} \sum_{q \le x} s_q^{(2)}(n) \log \frac{x}{q} = \frac{1}{2\pi i} \int_{\alpha - iT}^{\alpha + iT} \sum_{n \le y} \sigma_{1-s}(n) \frac{\zeta(2s)\zeta(3s)}{\zeta(6s)} \frac{x^s}{s^2} ds + O\left(\frac{x}{T} \sum_{n \le y} \sigma_0(n)\right).$$

Taking b = 1 and z = 1 - s into Lemma 2.2 and using the estimate $\sum_{n \le y} \sigma_0(n) \ll y \log y$ we have

$$S_1^{(2)}(x, y) = K_1 + K_2 + O\left(xy^{\frac{1}{3}}\log^2 y\right) + O\left(\frac{xy}{T}\log y\right),$$
(3.1)

where

$$K_1 := \frac{y}{2\pi i} \int_{\alpha - iT}^{\alpha + iT} \frac{\zeta(s)\zeta(2s)\zeta(3s)}{\zeta(6s)} \frac{x^s}{s^2} ds,$$

and

$$K_2 := \frac{y^2}{2\pi i} \int_{\alpha - iT}^{\alpha + iT} \frac{\zeta(2 - s)\zeta(2s)\zeta(3s)}{\zeta(6s)} \frac{(x/y)^s}{s^2(2 - s)} ds.$$

Define

$$\varepsilon(T) := \frac{C}{100} (\log T)^{-\frac{2}{3}} (\log \log T)^{-\frac{1}{3}}$$
(3.2)

with *C* being the same as that in Lemma 2.3 and $T = x^2$. Let $\Gamma(\alpha, \beta, T)$ denote the contour consisting of the line segments $[\alpha - iT, \beta - iT], [\beta - iT, \beta + iT]$ and $[\beta + iT, \alpha + iT]$.

In K_1 , we move the integration, with respect to *s*, to $\Gamma(\alpha, \beta, T)$ with $\beta = \frac{1}{6} - \varepsilon(T)$. We denote the integrals over the horizontal line segments by $K_{1,1}$ and $K_{1,3}$, and the integral over the vertical line segment by $K_{1,2}$, respectively. We use Lemmas 2.3–2.5 to deduce

$$K_{1,1}, K_{1,3} \ll \frac{y}{T^2 \varepsilon(T)} \left(\int_{\beta}^{\frac{1}{3}} + \int_{\frac{1}{3}}^{\frac{1}{2}} + \int_{\frac{1}{2}}^{\alpha} \right) |\zeta(\sigma + iT)||\zeta(2(\sigma + iT))||\zeta(3(\sigma + iT))|x^{\sigma} d\sigma$$

$$\ll \frac{y}{T^2} \frac{\log^3 T}{\varepsilon(T)} \left(T^{\frac{3}{2}} \int_{\beta}^{\frac{1}{3}} \left(\frac{x}{T^4} \right)^{\sigma} d\sigma + T^{\frac{5}{6}} \int_{\frac{1}{3}}^{\frac{1}{2}} \left(\frac{x}{T} \right)^{\sigma} d\sigma + T^{\frac{1}{3}} \int_{\frac{1}{2}}^{\alpha} \left(\frac{x}{T^{\frac{1}{3}}} \right)^{\sigma} d\sigma \right)$$
$$\ll \frac{y}{T} \frac{\log^3 T}{\varepsilon(T)} \left(\frac{x^{\frac{1}{6}}}{T^{\frac{1}{6}}} + \frac{x^{\frac{1}{3}}}{T^{\frac{1}{2}}} + \frac{x^{\frac{1}{2}}}{T^{\frac{2}{3}}} + \frac{x}{T} \right)$$

and

$$\begin{split} K_{1,2} &\ll yx^{\frac{1}{6}-\varepsilon(T)} \left(\int_{|t| \leq T_0} + \int_{T_0 < |t| \leq T} \right) \times \\ &\times \frac{|\zeta(\frac{1}{6}-\varepsilon(T)+it)||\zeta(\frac{1}{3}-2\varepsilon(T)+2it)||\zeta(\frac{1}{2}-3\varepsilon(T)+3it)|}{|\zeta(1-6\varepsilon(T)+6it)|(1+|t|)^2} dt \\ &\ll \frac{yx^{\frac{1}{6}-\varepsilon(T)}}{\varepsilon(T)} + yx^{\frac{1}{6}-\varepsilon(T)} \int_{T_0 < |t| \leq T} \frac{t^{\frac{5}{6}+4\varepsilon(T)}}{|\zeta(1-6\varepsilon(T)+6it)|t^2} dt \\ &\ll \frac{yx^{\frac{1}{6}-\varepsilon(T)}}{\varepsilon(T)}. \end{split}$$

It remains to evaluate the residues of the poles of the integrand, and there exist three simple poles at s = 1, $\frac{1}{2}$ and $\frac{1}{3}$ with residues $\frac{\zeta(2)\zeta(3)}{\zeta(6)}x$, $\frac{2\zeta(\frac{1}{2})\zeta(\frac{3}{2})}{\zeta(3)}x^{\frac{1}{2}}$, and $\frac{3\zeta(\frac{1}{3})\zeta(\frac{2}{3})}{\zeta(2)}x^{\frac{1}{3}}$, respectively. Therefore, we have

$$K_{1} = \frac{\zeta(2)\zeta(3)}{\zeta(6)}xy + \frac{2\zeta(\frac{1}{2})\zeta(\frac{3}{2})}{\zeta(3)}x^{\frac{1}{2}}y + \frac{3\zeta(\frac{1}{3})\zeta(\frac{2}{3})}{\zeta(2)}x^{\frac{1}{3}}y + O\left(yx^{\frac{1}{6}}\exp\left(-C\frac{(\log x)^{\frac{1}{3}}}{(\log\log x)^{\frac{1}{3}}}\right)\right)$$
(3.3)

by setting $T = x^2$, where C is a positive constant.

In K_2 , we move the integration, with respect to *s*, to $\Gamma(\alpha, \frac{5}{2}, T)$. We denote the integrals over the horizontal line segments by $K_{2,1}$ and $K_{2,3}$, and the integral over the vertical line segment by $K_{2,2}$, respectively. Using Lemmas 2.5 and 2.8 we have

$$K_{2,1}, K_{2,3} \ll \frac{y^2}{T^3} \int_{\alpha}^{\frac{5}{2}} |\zeta(2 - \sigma - iT)| \left(\frac{x}{y}\right)^{\sigma} d\sigma$$

$$\ll \frac{y^2}{T^3} \left(\int_{\alpha}^{2} |\zeta(2 - \sigma - iT)| \left(\frac{x}{y}\right)^{\sigma} d\sigma + \int_{2}^{\frac{5}{2}} |\zeta(\sigma - 1 + iT)\chi(2 - \sigma - iT)| \left(\frac{x}{y}\right)^{\sigma} d\sigma \right)$$

$$\ll \frac{y^2}{T^3} \log T \left(T^{-\frac{1}{2}} \int_{\alpha}^{2} \left(\frac{T^{\frac{1}{2}}x}{y}\right)^{\sigma} d\sigma + T^{-\frac{3}{2}} \int_{2}^{\frac{5}{2}} \left(\frac{Tx}{y}\right)^{\sigma} d\sigma \right)$$

$$\ll \frac{y^2 \log T}{T^3} \left(\frac{x}{y} + T^{\frac{1}{2}} \left(\frac{x}{y}\right)^2 + T \left(\frac{x}{y}\right)^{\frac{5}{2}} \right), \qquad (3.4)$$

and

$$K_{2,2} = \frac{y^2}{2\pi i} \int_{\frac{5}{2} - i\infty}^{\frac{5}{2} + i\infty} \frac{\zeta(2 - s)\zeta(2s)\zeta(3s)}{\zeta(6s)} \frac{\left(\frac{x}{y}\right)^s}{s^2(2 - s)} ds + O\left(x^2 \left(\frac{x}{y}\right)^{\frac{1}{2}} \int_T^{\infty} \frac{|\zeta\left(\frac{3}{2} + it\right)||\zeta(5 + 2it)||\zeta\left(\frac{15}{2} + 3it\right)|}{|\zeta(15 + 6it)|} \frac{|\chi\left(-\frac{1}{2} - it\right)|}{(1 + t)^3} dt\right) = -x^2 \left(\frac{x}{y}\right)^{\frac{1}{2}} \nu(u) + O\left(x^2 \left(\frac{x}{y}\right)^{\frac{1}{2}} \frac{1}{T}\right),$$
(3.5)

where v(u) is given by

$$\nu(u) := \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{\zeta(-\frac{1}{2} - it)\zeta(5 + 2it)\zeta(\frac{15}{2} + 3it)}{\zeta(15 + 6it)} \frac{e^{itu}}{(\frac{5}{2} + it)^2(\frac{1}{2} + it)} dt,$$

with $u = \log \frac{x}{y}$. We use Lemma 2.5 and the inequality $\left|\frac{1}{\zeta(s)}\right| \le \frac{\zeta(\sigma)}{\zeta(2\sigma)}$ for $\sigma > 1$ to obtain the absolute value of $\nu(u)$, that is

$$\begin{aligned} |\nu(u)| &\leq \frac{1}{2\pi} \int_{-\infty}^{\infty} \left| \frac{\zeta(\frac{3}{2} + it)\zeta(5 + 2it)\zeta(\frac{15}{2} + 3it)}{\zeta(15 + 6it)} \right| \left| \frac{\chi(-\frac{1}{2} - it)}{(\frac{5}{2} + it)^2(\frac{1}{2} + it)} \right| dt \\ &\leq \frac{2}{(2\pi)^2} \frac{\zeta(\frac{3}{2})\zeta(5)\zeta(\frac{15}{2})\zeta(15)}{\zeta(30)} \int_0^{\infty} \frac{t}{(t^2 + (\frac{5}{2})^2)\sqrt{t^2 + (\frac{1}{2})^2}} dt \\ &\leq \frac{2}{(2\pi)^2} \frac{\zeta(\frac{3}{2})\zeta(5)\zeta(\frac{15}{2})\zeta(15)}{\zeta(30)} \int_0^{\infty} \frac{t^{\frac{1}{2}}}{t^2 + (\frac{1}{2})^2} dt \\ &\leq \frac{4}{(2\pi)^2} \frac{\zeta(\frac{3}{2})\zeta(5)\zeta(\frac{15}{2})\zeta(15)}{\zeta(30)} \left(\frac{\pi}{4} + 1\right), \end{aligned}$$
(3.6)

hence $|\nu(u)|$ is an upper bound. Next, there exists a simple pole at s = 2 of the integral K_2 with residue $\frac{\zeta(4)\zeta(6)}{8\zeta(12)} \left(\frac{x}{y}\right)^2$ by using the value $\zeta(0) = -\frac{1}{2}$. Hence, we have

$$K_{2} = -\frac{\zeta(4)\zeta(6)}{8\zeta(12)}x^{2} - x^{2}\left(\frac{x}{y}\right)^{\frac{1}{2}}\nu(u) + O\left(\left(\frac{x}{y}\right)^{\frac{1}{2}}\right)$$
(3.7)

with $T = x^2$.

Combining (3.3) and (3.7) with (3.1) and taking $T = x^2$, we obtain the formula (1.10).

4 Proof of Theorem 3

In this section we assume that the Riemann Hypothesis is true, and $1 \le y \le x^M$ for some constant *M*. Without loss of generality we can assume that $x, y \in \mathbb{Z} + \frac{1}{2}$. The proof of this theorem follows by the same method as in Theorem 1, in addition to the Riemann Hypothesis. We start with (3.1), and set $\beta = \frac{1}{12} + \delta$ with $\delta = \frac{10}{\log \log T}$, and $\varepsilon = \frac{1}{\log \log T}$ in Lemma 2.7 and $T = x^2$.

In K_1 , we move the integration, with respect to *s*, to $\Gamma(\alpha, \beta, T)$ with $\beta = \frac{1}{12} + \delta$. We denote the integrals over the horizontal line segments by $K_{1,1}$ and $K_{1,3}$, and the integral over the vertical line segment by $K_{1,2}$, respectively. We use Lemmas 2.5, 2.7, and 2.8 to deduce

$$\begin{split} K_{1,2} &\ll yx^{\frac{1}{12}+\delta} \left(\int_{|t| \leq T_0} + \int_{T_0 < |t| \leq T} \right) \\ &\times \frac{|\chi(\frac{1}{12} + \delta + it)||\chi(\frac{1}{6} + 2\delta + 2it)||\chi(\frac{1}{4} + 3\delta + 3it)|}{|\zeta(\frac{1}{2} + 6\delta + 6it)|} \\ &\times \frac{|\zeta(\frac{11}{12} - \delta - it)||\zeta(\frac{5}{6} - 2\delta - 2it)||\zeta(\frac{3}{4} - 3\delta - 3it)|}{(1 + |t|)^2} dt \\ &\ll yx^{\frac{1}{12}+\delta} + yx^{\frac{1}{12}+\delta} \int_{T_0 < |t| \leq T} t^{-1-6\delta+4\varepsilon} dt \\ &\ll yx^{\frac{1}{12}} \exp\left(A\frac{\log x}{\log\log x}\right) \end{split}$$

with A being a positive constant, and $T = x^2$. We use Lemmas 2.5, 2.7, 2.8, and the estimates of $K_{1,1}$ and $K_{1,3}$ in the proof of Theorem 1 to deduce

$$\begin{split} & K_{1,1}, K_{1,3} \\ & \ll \frac{y}{T^2} \left(\int_{\frac{1}{12} + \delta}^{\frac{1}{6}} + \int_{\frac{1}{6}}^{\alpha} \right) \frac{|\zeta(\sigma + iT)||\zeta(2(\sigma + iT))||\zeta(3(\sigma + iT))|}{|\zeta(6(\sigma + iT))|} x^{\sigma} d\sigma \\ & \ll \frac{y}{T^2} \left(T^{\frac{3}{2} + 4\varepsilon} \int_{\frac{1}{12} + \delta}^{\frac{1}{6}} \left(\frac{x}{T^6} \right)^{\sigma} d\sigma + \frac{x^{\frac{1}{6}}}{T^{\frac{1}{6}}} \log^4 T \right) \\ & \ll \frac{y}{T} \left(\frac{x^{\frac{1}{6}}}{T^{\frac{1}{6}}} \log^4 T + \frac{x^{\frac{1}{12} + \delta}}{T^{6\delta - 4\varepsilon}} \right). \end{split}$$

Therefore, by using Cauchy's residue theorem we have

$$K_{1} = \frac{\zeta(2)\zeta(3)}{\zeta(6)}xy + \frac{2\zeta(\frac{1}{2})\zeta(\frac{3}{2})}{\zeta(3)}x^{\frac{1}{2}}y + \frac{3\zeta(\frac{1}{3})\zeta(\frac{2}{3})}{\zeta(2)}x^{\frac{1}{3}}y + O\left(yx^{\frac{1}{12}}\exp\left(A\frac{\log x}{\log\log x}\right)\right)$$
(4.1)

by setting $T = x^2$, where A is a positive constant.

As for K_2 , we make use of the same result in the proof of Theorem 1, that is

$$K_{2} = -\frac{\zeta(4)\zeta(6)}{8\zeta(12)}x^{2} - x^{2}\left(\frac{x}{y}\right)^{\frac{1}{2}}\nu(u) + O\left(\left(\frac{x}{y}\right)^{\frac{1}{2}}\right)$$
(4.2)

with $T = x^2$.

Combining (4.1) and (4.2) with (3.1) and taking $T = x^2$, we obtain the formula (1.13).

5 Proof of Theorem 2

Assume that $1 \le y \le x^M$ for some constant *M*. Without loss of generality we can assume that *x*, $y \in \mathbb{Z} + \frac{1}{2}$. The proof of this theorem follows by the same method as in Theorem 1. We apply Lemma 2.1 with (1.3) and substitute b = 1 and z = 1 - s into Lemma 2.2 to deduce

$$S_1^{(3)}(x, y) = L_1 + L_2 + O\left(xy^{\frac{1}{3}}\log^2 y\right) + O\left(\frac{xy}{T}\log y\right),$$
(5.1)

where

$$L_1 := \frac{y}{2\pi i} \int_{\alpha - iT}^{\alpha + iT} \frac{\zeta(s)\zeta(3s)\zeta(4s)\zeta(5s)\kappa_9(s)}{\zeta(8s)} \frac{x^s}{s^2} ds,$$

and

$$L_2 := -\frac{y^2}{2\pi i} \int_{\alpha - iT}^{\alpha + iT} \frac{\zeta(2 - s)\zeta(3s)\zeta(4s)\zeta(5s)\kappa_9(s)}{\zeta(8s)} \frac{(x/y)^s}{s^2(s - 2)} ds.$$

Here $\alpha = 1 + \frac{1}{\log x}$ and *T* is a real parameter at our disposal.

We move the integration, with respect to *s*, to $\Gamma(\alpha, \beta, T)$ with $\beta = \frac{1}{8} - \varepsilon(T)$, where $\varepsilon(T)$ is given by (3.2). We denote the integrals over the horizontal line segments by $L_{1,1}$ and $L_{1,3}$, and the integral over the vertical line segment by $L_{1,2}$, respectively. Since the estimate $\kappa_9(\sigma + iT) \ll 1$ for $\sigma \ge \beta$, it follows from Lemmas 2.3–2.5 that

$$\begin{split} & L_{1,1}, L_{1,3} \\ \ll \frac{y}{T^2} \left(\int_{\beta}^{\frac{1}{5}} + \int_{\frac{1}{5}}^{\frac{1}{4}} + \int_{\frac{1}{4}}^{\frac{1}{3}} + \int_{\frac{1}{3}}^{\alpha} \right) \\ & \frac{|\zeta(\sigma + iT)||\zeta(3(\sigma + iT))||\zeta(4(\sigma + iT))||\zeta(5(\sigma + iT))|}{|\zeta(8(\sigma + iT))|} x^{\sigma} d\sigma \\ & \ll \frac{y \log^5 T}{T^2} \left(T^{\frac{5}{3}} \int_{\beta}^{\frac{1}{5}} \left(\frac{x}{T^{\frac{17}{3}}} \right)^{\sigma} d\sigma \end{split}$$

$$+T^{\frac{7}{6}}\int_{\frac{1}{5}}^{\frac{1}{4}} \left(\frac{x}{T^{3}}\right)^{\sigma} d\sigma + T^{\frac{5}{6}}\int_{\frac{1}{4}}^{\frac{1}{3}} \left(\frac{x}{T^{\frac{5}{3}}}\right)^{\sigma} d\sigma + T^{\frac{1}{2}}\int_{\frac{1}{3}}^{\alpha} \left(\frac{x}{T^{\frac{2}{3}}}\right)^{\sigma} d\sigma \right)$$
$$\ll \frac{y\log^{5}T}{T} \left(\frac{x^{\frac{1}{8}}}{T^{\frac{1}{24}}} + \frac{x^{\frac{1}{5}}}{T^{\frac{13}{30}}} + \frac{x^{\frac{1}{4}}}{T^{\frac{7}{12}}} + \frac{x^{\frac{1}{3}}}{T^{\frac{13}{18}}} + \frac{x}{T}\right).$$

For $L_{1,2}$, we use integration by parts, Cauchy–Schwarz's inequality twice, Lemmas 2.3–2.6, and the estimate $\kappa_9(\frac{1}{8} + it) \ll 1$ to deduce

$$\begin{split} L_{1,2} &\ll \frac{yx^{\frac{1}{8}-\varepsilon(T)}}{\varepsilon(T)} + yx^{\frac{1}{8}-\varepsilon(T)} \int_{T_0 < |t| \le T} \frac{|\chi(\beta+it)||\chi(3\beta+3it)||\chi(4\beta+4it)|}{|\zeta(8\beta+8it)|} \times \\ &\times \frac{|\zeta(1-\beta-it)||\zeta(1-3\beta-3it)||\zeta(1-4\beta-4it)||\zeta(5\beta+5it)|}{(1+|t|)^2} dt \\ &\ll \frac{yx^{\frac{1}{8}-\varepsilon(T)}}{\varepsilon(T)} + \frac{yx^{\frac{1}{8}-\varepsilon(T)}}{\varepsilon(T)} \int_{T_0 < |t| \le T} \\ &\times \frac{|\zeta(\frac{7}{8}+\varepsilon(T)-it)||\zeta(\frac{5}{8}+3\varepsilon(T)-3it)||\zeta(\frac{1}{2}+4\varepsilon(T)-4it)||\zeta(\frac{5}{8}-5\varepsilon(T)+5it)|}{(1+|t|)^{\frac{3}{2}+8\varepsilon(T)}} dt \\ &\ll \frac{yx^{\frac{1}{8}-\varepsilon(T)}}{\varepsilon(T)} + \frac{yx^{\frac{1}{8}-\varepsilon(T)}}{\varepsilon(T)} \left(\int_{1}^{T} \frac{|\zeta(\frac{7}{8}+iu)|^4}{(1+|u|)^{\frac{3}{2}+8\varepsilon(T)}} du\right)^{\frac{1}{4}} \left(\int_{1}^{3T} \frac{|\zeta(\frac{5}{8}+iu)|^4}{(1+|u|)^{\frac{3}{2}+8\varepsilon(T)}} du\right)^{\frac{1}{4}} \\ &\times \left(\int_{1}^{4T} \frac{|\zeta(\frac{1}{2}+iu)|^4}{(1+|u|)^{\frac{3}{2}+8\varepsilon(T)}} du\right)^{\frac{1}{4}} \left(\int_{1}^{5T} \frac{|\zeta(\frac{9}{16}+iu)|^4}{(1+|u|)^{\frac{3}{2}+8\varepsilon(T)}} du\right)^{\frac{1}{4}} \\ &\ll \frac{yx^{\frac{1}{8}-\varepsilon(T)}}{\varepsilon(T)}. \end{split}$$

It remains to evaluate the residues of the poles of the integrand, and there exist four simple poles at $s = 1, \frac{1}{3}, \frac{1}{4}$ and $\frac{1}{5}$ with residues $\frac{\zeta(3)\zeta(4)\zeta(5)\kappa_9(1)}{\zeta(8)}x, \frac{3\zeta(\frac{1}{3})\zeta(\frac{4}{3})\zeta(\frac{5}{3})\kappa_9(\frac{1}{3})}{\zeta(\frac{8}{3})}x^{\frac{1}{3}}, \frac{4\zeta(\frac{1}{4})\zeta(\frac{3}{4})\zeta(\frac{5}{4})\kappa_9(\frac{1}{4})}{\zeta(2)}x^{\frac{1}{4}}$, and $\frac{5\zeta(\frac{1}{5})\zeta(\frac{3}{5})\zeta(\frac{4}{5})\kappa_9(\frac{1}{5})}{\zeta(\frac{8}{5})}x^{\frac{1}{5}}$, respectively. Therefore, we have

$$L_{1} = \frac{\zeta(3)\zeta(4)\zeta(5)\kappa_{9}(1)}{\zeta(8)}xy + \frac{3\zeta(\frac{1}{3})\zeta(\frac{4}{3})\zeta(\frac{5}{3})\kappa_{9}\left(\frac{1}{3}\right)}{\zeta(\frac{8}{3})}x^{\frac{1}{3}}y + \frac{4\zeta(\frac{1}{4})\zeta(\frac{3}{4})\zeta(\frac{5}{4})\kappa_{9}\left(\frac{1}{4}\right)}{\zeta(2)}x^{\frac{1}{4}}y + \frac{5\zeta(\frac{1}{5})\zeta(\frac{3}{5})\zeta(\frac{4}{5})\kappa_{9}\left(\frac{1}{5}\right)}{\zeta(\frac{8}{5})}x^{\frac{1}{5}}y + O\left(yx^{\frac{1}{8}}\exp\left(-C\frac{(\log x)^{\frac{1}{3}}}{(\log\log x)^{\frac{1}{3}}}\right)\right)$$
(5.2)

by setting $T = x^2$, with C being a positive constant.

For L_2 , we move the integration, with respect to *s*, to $\Gamma(\alpha, \frac{5}{2}, T)$. We denote the integrals over the horizontal line segments by $L_{2,1}$ and $L_{2,3}$, and the integral over the vertical line segment by $L_{2,2}$, respectively. Following the same method as in (3.4) and (3.5) we have

$$L_{2,1}, L_{2,3} \ll \frac{y^2 \log T}{T^3} \left(\frac{x}{y} + T^{\frac{1}{2}} \left(\frac{x}{y} \right)^2 + T \left(\frac{x}{y} \right)^{\frac{5}{2}} \right),$$

and

$$L_{2,2} = -\frac{y^2}{2\pi i} \int_{\frac{5}{2}-i\infty}^{\frac{5}{2}+i\infty} \frac{\zeta(2-s)\zeta(3s)\zeta(4s)\zeta(5s)\kappa_9(s)}{\zeta(8s)} \frac{(\frac{x}{y})^s}{s^2(s-2)} ds + O\left(x^2 \left(\frac{x}{y}\right)^{\frac{1}{2}} \int_T^{\infty} \frac{|\zeta\left(-\frac{1}{2}-it\right)||\zeta(\frac{15}{2}+3it)||\zeta\left(10+4it\right)||\zeta\left(\frac{25}{2}+5it\right)||\kappa_9(\frac{5}{2}+it)|}{|\zeta(20+5it)|(1+t)^3} dt\right) = -x^2 \left(\frac{x}{y}\right)^{\frac{1}{2}} \xi(u) + O\left(x^2 \left(\frac{x}{y}\right)^{\frac{1}{2}} \frac{1}{T}\right),$$
(5.3)

where $\xi(u)$ is given by

$$\xi(u) := \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{\zeta(-\frac{1}{2} - it)\zeta(\frac{15}{2} + 3it)\zeta(10 + 4it)\zeta(\frac{25}{2} + 5it)\kappa_9(\frac{5}{2} + it)}{\zeta(20 + 8it)} \frac{e^{itu}}{(\frac{5}{2} + it)^2(\frac{1}{2} + it)} dt$$
(5.4)

with $u = \log \frac{x}{y}$. Similarly as in (3.6), we have

$$|\xi(u)| \le \frac{4}{(2\pi)^2} \frac{\zeta(\frac{3}{2})\zeta(\frac{15}{2})\zeta(10)\zeta(\frac{25}{2})\zeta(20)\kappa_9(\frac{5}{2})}{\zeta(40)} \left(\frac{\pi}{4} + 1\right).$$
(5.5)

There exists a simple pole at s = 2 of the integral L_2 with residue $\frac{\zeta(6)\zeta(8)\zeta(10)\kappa_9(2)}{8\zeta(16)} \left(\frac{x}{y}\right)^2$. Hence, we have

$$L_2 = -\frac{\zeta(6)\zeta(8)\zeta(10)\kappa_9(2)}{8\zeta(16)}x^2 - x^2\left(\frac{x}{y}\right)^{\frac{1}{2}}\xi(u) + O\left(\left(\frac{x}{y}\right)^{\frac{1}{2}}\right)$$
(5.6)

by using $T = x^2$.

Combining (5.2) and (5.6) with (5.1) and taking $T = x^2$, the formula (1.12) is proved.

Acknowledgements The author would like to thank the referee for his/her careful reading of the earlier version of this paper, giving him many valuable suggestions. The author is supported by JSPS Grant-in-Aid for Scientific Research(C)(21K03205).

References

1. Chan, T.H., Kumchev, A.V.: On sums of Ramanujan sums. Acta Arith. 152(1), 1-10 (2012)

- 2. Gonek, S.M.: On negative moments of the Riemann zeta-function. Mathematika 36, 71-88 (1989)
- 3. Graham, S.W., Kolesnik, G.P.: Van der Corput's Method of Exponential Sums. London Mathematical Society Lecture Note Series, vol. 126. Cambridge University Press, Cambridge (1991)
- 4. Hejhal, D.P.: On the distribution of $\log |\zeta'(\frac{1}{2} + it)|$. In: Aubert, K.E., Bombieri, E., Goldfeld, D. (eds.) Number Theory, Trace Formula and Discrete Groups, pp. 343–370. Academic Press, San Diego (1989)
- 5. Ivić, A.: The Riemann Zeta-Function. Dover Publications, New York (2003)
- 6. Kiuchi, I.: On sums of sums involving squarefull numbers. Acta Arith. 200(2), 197-211 (2021)
- 7. Kiuchi, I.: On a sum involving squarefull numbers. Rocky Mt. J. Math. 52, 1713–1718 (2022)
- 8. Kiuchi, I.: On sums of sums involving cube-full numbers. Ramanujan J. 59, 279–296 (2022)
- Kühn, P., Robles, N.: Explicit formulas of a generalized Ramanujan sum. Int. J. Number Theory 12, 383–408 (2016)
- Montgomery, H.L., Vaughan, R.C.: Multiplicative Number Theory I. Cambridge Studies in Advanced Mathematics, Classical Theory. Cambridge University Press, Cambridge (2007)
- Robles, N., Roy, A.: Moments of averages of generalized Ramanujan sums. Monatsh. Math. 182, 433–461 (2017)
- Tenenbaum, G.P.: Introduction to Analytic and Probabilistic Number Theory. Garduate Studies, vol. 163. AMS, Providence, RI (2008)
- 13. Titchmarsh, E.C.: The Theory of the Riemann Zeta-Function, 2nd edn. Oxford University Press, Oxford (1986)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.