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Abstract
We study algebras of differential and difference operators acting on matrix val-
ued orthogonal polynomials (MVOPs) with respect to a weight matrix of the form
W (ν)

φ (x) = xνe−φ(x)W (ν)
pol (x), where ν > 0, W (ν)

pol (x) is a certain matrix valued poly-

nomial and φ is an analytic function. We introduce differential operatorsD,D† which
are mutually adjoint with respect to the matrix inner product induced by W (ν)

φ (x). We

prove that the Lie algebra generated by D and D† is finite dimensional if and only if
φ is a polynomial. For a polynomial φ, we describe the structure of this Lie algebra.
As a byproduct, we give a partial answer to a problem by Ismail about finite dimen-
sional Lie algebras related to scalar Laguerre type polynomials. The case φ(x) = x
is discussed in detail.

Keywords Orthogonal polynomials · Differential operators · Lie algebras

Mathematics Subject Classification 33C45 · 17B60

1 Introduction

The theory of matrix valued orthogonal polynomials (MVOPs) was initiated by Krein
in 1940s, and it has since been used in various areas of mathematics and mathemat-
ical physics. These areas include spectral theory, scattering theory, tiling problems,
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integrable systems, and stochastic processes. For further details and insights on these
subjects, we refer to [1, 5, 7, 9, 11, 13], and the references therein.

Significant progress has been made in the past two decades toward understanding
how the differential and algebraic properties of classical scalar orthogonal polynomials
are extended to the matrix valued setting. A fundamental role has been played by
the connection between harmonic analysis of matrix valued functions on compact
symmetric pairs andMVOPs. In [8], Durán poses the problem of determining families
ofMVOPswhich are eigenfunctions of a suitable second-order differential operator. In
the scalar case, the answer to this problem is a classical result due to Bochner [2]. The
only families with this property are those of Hermite, Laguerre, and Jacobi. Thematrix
valued setting turns out to bemuchmore involved. The first explicit examples appeared
in connection with spherical functions of the compact symmetric pair (SU(3),U(2)),
see [12]. Following [21], a direct approach was taken in [19, 20] for the case of
(SU(2) × SU(2), diag), leading to a general set-up in the context of multiplicity free
pairs [15]. In this context, certain properties of the orthogonal polynomials, such as
orthogonality, recurrence relations, and differential equations, are understood in terms
of the representation theory of the corresponding symmetric spaces. Recently, Casper
and Yakimov solved the matrix Bochner problem [3]. This is the classification of
all N × N weight matrices W (x) whose associated MVOPs are eigenfunctions of a
second-order differential operator.

For N ∈ N, let MN (C) be the set of complex matrices of size N × N and by
MN (C)[x] the set of one variable polynomials with coefficients in MN (C). We con-
sider a matrix valued weight function W : (a, b) → MN (C), where a, b could be
±∞, such that W (x) is positive definite for all x ∈ (a, b) and W has finite moments
of all orders. In such a case, W induces a matrix valued inner product

〈P, Q〉 =
∫ b

a
P(x)W (x)Q(x)∗dx ∈ MN (C), (1.1)

such that for all P, Q ∈ MN (C)[x] and T ∈ MN (C), the following properties are
satisfied

〈T P, Q〉 = T 〈P, Q〉, 〈P, Q〉∗ = 〈Q, P〉, 〈P, P〉 ≥ 0.

Moreover, 〈P, P〉 = 0 if and only if P = 0. Using standard arguments, it can be
shown that there exists a unique sequence (P(x, n))n of monic MVOPs with respect
to W in the following sense:

〈P(x, n), P(x,m)〉 = H(n)δn,m (1.2)

where the squared norm H(n) is a positive definite matrix. We will write

P(x, n) = xn + X(n)xn−1 + Y (n)xn−2 + l.o.t. (1.3)
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The monic MVOPs satisfy a three-term recurrence relation:

x P(x, n) = P(x, n + 1) + B(n)P(x, n) + C(n)P(x, n − 1) (1.4)

where B(n),C(n) ∈ MN (C) and n ≥ 1. The coefficients of the recurrence relation
are given by

B(n) = X(n) − X(n + 1), C(n) = H(n)H(n − 1)−1, (1.5)

where X(n) is given in (1.3) and H(n) in (1.2). Moreover, for n ≥ 2, we have that

Y (n) = Y (n + 1) + B(n)X(n) + C(n). (1.6)

In [6], the authors studied difference–differential relations for a class of Hermite
type MVOPs associated with the weight W (x) = e−v(x)ex Aex A

∗
, where x ∈ R, v(x)

is a scalar polynomial of even degree, and A is a constant matrix. The approach of [6]
is to get information on the MVOPs by investigating two mutually adjoint operators
D andD†. If v(x) is a polynomial of degree two, in addition toD andD†, there exists
a second-order differential operator D having the MVOPs as eigenfunctions. It turns
out that D,D†, and D generate a finite dimensional Lie algebra which is isomorphic
to the Lie algebra of the oscillator group. The Casimir operator for this algebra is given
explicitly and the commutativity properties of this operator provide information about
MVOPs. Here, we study the analogous problem for Laguerre type weights.

We will first consider a matrix valued weight supported on [0,∞) of the form

W (ν)
φ (x) = eAxT (ν)

φ (x)eA
∗x , T (ν)

φ (x) = e−φ(x)
N∑

k=1

δ
(ν)
k xν+k Ek,k, (1.7)

where ν > 0, δ
(ν)
k ∈ R, A is a constant matrix and φ(x) is an analytic function and

Ei, j denotes the N × N matrix whose (i, j)-th coordinate is equal to δi, j . Next we
introduce first-order differential operators

D = ∂x x + (A − 1)x, D† = −∂x x − (1 + ν + J ) + xφ′(x) − x .

Our first result shows that D and D† are mutually adjoint with respect to the matrix
valued inner product related to W (ν)

φ (x). We are now concerned with the Lie algebra

generated by D and D†. The main result of this paper is the characterization of all
analytic functions φ(x) defined on (0,∞) such that the Lie algebra generated by D
and D† is finite dimensional. We also obtain an explicit description and classification
of these Lie algebras, up to isomorphisms.

The paper is organized as follows. In Sect. 2, we recall some preliminaries about
differential and difference operators and introduce the left and right Fourier algebras
related to the sequence of monic MVOPs.

In Sect. 3, we introduce a Laguerre type weight W (ν)
φ for a given analytic function

φ on a neighborhood of the interval [0,∞). We introduce the operators D and D†,
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and we prove that they are mutually adjoint with respect to W (ν)
φ (x). For the MVOPs

(P(x, n))n with respect to W (ν)
φ , we find difference operators M, M† associated to

D, D†, respectively, given by the relations (M · P)(x, n) = (P · D)(x, n) and (M† ·
P)(x, n) = (P · D†)(x, n).

In Sect. 4, we study the Lie algebra gφ generated by the differential operators D
andD†. We prove that gφ is finite dimensional if and only if φ is a polynomial. When
φ is a polynomial, we obtain that

gφ
∼=

{
C
2 ⊕ h for N ≥ 2

C ⊕ h for N = 1

where h is a solvable Lie algebra with nilradical of codimension one. Moreover, we
classify this family of Lie algebras up to isomorphisms. As a byproduct, we give a
partial solution to a problem proposed by Ismail in [16, Problem 24.5.2] in the case
that φ(x) is an analytic real function defined on (0,∞).

In Sect. 5, we analyze the case φ(x) = x and we give an explicit expression for D,
D†, M , and M†. We also find a symmetric second-order differential operator D which
has (P(x, n))n as eigenfunctions. We describe the Lie algebra a generated by D, D†,
and D. We prove that a = Za ⊕ [a, a] where the dimension of the center Za is two
and [a, a] is isomorphic to sl(2, C). Finally, we obtain non-abelian relations between
H(n), B(n), and C(n).

1.1 Application: solution to a problem by Ismail

In [4], the authors investigated ladder operators for exponential type weights of the
form e−v(x), where v(x) is a suitable differentiable function. One of the results in [4]
states that the Lie algebra generated by the ladder operators are finite dimensional
whenever v is a polynomial. However, the converse of this result is still open. The
ideas in [4] are extended to scalar Laguerre type weights in [16, Section 3.7]; in this
case, both problems are open.

Our classification of all finite dimensional Lie algebras related with the Laguerre
type MVOPs is closely related to [16, Problem 24.5.2]. In order to state this problem,
we first consider a scalar weight w1(x) = xαe−φ(x) with φ(x) a twice continuously
differentiable function on (0,∞). Let (pn(x))n be a sequence of orthonormal poly-
nomials satisfying a recurrence relation

xpn(x) = an+1 pn+1(x) + αn pn(x) + an pn−1(x), n > 0, (1.8)

where p0(x) = 1, p1(x) = (x−α0)
a1

. We introduce the coefficients {βn(x)}n∈N0 by

βn(x)

an
= w1(y)pn(y)pn−1(y)

x − y

∣∣∣∞
0

+
∫ ∞

0

φ′(x) − φ′(y)
x − y

pn(y)pn−1(y)w1(y)dy. (1.9)
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Lie algebras of differential operators 935

Now we have a pair of n-dependent first-order differential operators

xL1,n = ∂x x + xβn(x), xL2,n = −∂x x + xβn(x) + xφ′(x). (1.10)

For a fixed n, the operators xL1,n , xL2,n are mutually adjoint with respect to the
scalar Laguerre type weight w1(x) = xαe−φ(x), α > −1, x > 0. We are now ready
to state [16, Problem 24.5.2]: “The Lie algebra generated by xL1,n and xL2,n is finite
dimensional if and only if φ is a polynomial.”

In this paper, we provide an answer to a similar problem in a more general context
of MVOPs. More precisely, we consider a matrix valued weight W (ν)

φ as in (1.7) and
two matrix valued differential operators

D1,n = ∂x x + x(A − βn(x)), D2,n = −∂x x − (1 + ν + J ) + xφ′(x) − xβn(x),

which are mutually adjoint with respect to W (ν)
φ (x). In Sect. 4.3, we prove that if

x(φ′(x) + 2βn(x)) is a real analytic non-polynomial function, then the Lie algebra
generated byD1,n andD2,n is infinite dimensional. Conversely, ifφ is a polynomial and
xβn(x) is a matrix valued polynomial function, then the Lie algebra generated byD1,n
and D2,n is finite dimensional. By specializing N = 1 with βn as in (1.9) and φ a real
analytic function, we give a solution to [16, Problem 24.5.2] when the corresponding
operators live in the right Fourier algebra. More precisely, if the differential operators
xL1,n and xL2,n are inFR(P) then xβn(x) is a polynomial. In general, we obtain that
φ polynomial implies that the Lie algebra gn generated by xL1,n(x) and xL2,n(x) is
finitely dimensional. Conversely, if the operators xL1,n and xL2,n are in FR(P) and
the Lie algebra gn is finitely dimensional, then the function φ is a polynomial.

2 Preliminaries

This section presents the left and right Fourier algebras associated with the sequence
of monic MVOPs, as developed by Casper and Yakimov in [3]. The results discussed
in this section have been previously covered in a more comprehensive context in [3].

Let Q(x, n) be a function Q : C×N0 → MN (C) such that, for each fixed n ∈ N0,
Q(x, n) is a rational function of x . A differential operator of the form

D =
n∑
j=0

∂
j
x Fj (x), ∂

j
x := d j

dx j , (2.1)

where Fj : C → MN (C) is a rational function of x , acts on Q from the right by

(Q · D)(x, n) =
n∑
j=0

(∂
j
x Q)(x, n) Fj (x).

The algebra of all differential operators of the form (2.1) will be denoted byMN . In
addition to the right action by differential operators, we also consider a left action on
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Q by difference operators on the variable n. For j ∈ Z, let δ j be the discrete operator
which acts on a sequence A : N0 → MN (C) by

(δ j · A)(n) = A(n + j).

Here we assume that the value of a sequence at a negative integer is equal to zero. For
given sequences A−�, . . . , Ak , a discrete operator of the form

M(n) =
k∑

j=−�

A j (n)δ j , (2.2)

acts on Q from the left by

(M · Q)(x, n) =
k∑

j=−�

A j (n) (δ j · Q)(x, n) =
k∑

j=−�

A j (n) Q(x, n + j).

We shall denote the algebra of difference operators (2.2) by NN .
We will be interested in the sequence of monic orthogonal polynomials (P(x, n))n

related to a weight matrix, as in (1.2). As in [3, Definition 2.20], we define:

Definition 2.1 The left and right Fourier algebras associated with the sequence of
monic orthogonal polynomials (P(x, n))n are given by:

FL(P) = {M ∈ NN : ∃D ∈ MN , M · P = P · D} ⊂ NN ,

FR(P) = {D ∈ MN : ∃ M ∈ NN , M · P = P · D} ⊂ MN .
(2.3)

The definition of the Fourier algebras directly implies a connection between the
elements of FL(P) and FR(P). Moreover, the map

ϕ : FL(P) → FR(P), defined by M · P = P · ϕ(M),

is an algebra isomorphism. In [3], this map is called the generalized Fourier map.
More precisely, M1M2 · P = P ·ϕ(M1)ϕ(M2) for all M1, M2 ∈ FL(P). On the other
hand, by the definition of ϕ, we have that M1M2 · P = P · ϕ(M1M2).

Remark 2.2 In this context, the three-term recurrence relation (1.4) can be written as

x P = P · x = L · P, where L = δ + B(n) + C(n)δ−1.

Therefore x ∈ FR(P), L ∈ FL(P) and ϕ(L) = x . For every polynomial v ∈ C[x],
we have

P · v(x) = P · v(ϕ(L)) = v(L) · P.
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Lie algebras of differential operators 937

One of the crucial results from [3] is the existence of an adjoint operation † in the
Fourier algebras FL(P) and FR(P) as described in [3, §3.1]. To define the adjoint
operation in FL(P), we initially observe that the algebra of difference operators NN

has a ∗-operation defined as follows:

⎛
⎝ k∑

j=−�

A j (n) δ j

⎞
⎠

∗
=

k∑
j=−�

A j (n − j)∗ δ− j , (2.4)

where A j (n− j)∗ is the conjugate transpose of A j (n− j). Now, the adjoint ofM ∈ NN

is given by

M† = H(n)M∗H(n)−1, (2.5)

whereH(n) is the squared norm which we view as a difference operator of order zero.
The following holds:

〈(M · P)(x, n), P(x,m)〉 = 〈P(x, n), (M† · P)(x,m)〉.

In [3, Corollary 3.8], the authors show that every differential operator D ∈ FR(P)

has a unique adjoint D† ∈ FR(P) with the property

〈P · D, Q〉 = 〈P, Q · D†〉,

for all P, Q ∈ MN (C)[x]. Moreover, ϕ(M†) = ϕ(M)† for all M ∈ FL(P).

3 Differential operators for semi-classical Laguerre type weights

The goal of this section is two-fold. On the one hand, by assuming the existence of two
mutually adjoint first-order differential operators D and D†, we give explicit formulas
for the associated difference operators in the left Fourier algebra FL(P). On the other
hand, we introduce an explicit Laguerre type weight of arbitrary size and we show
that D and D† are mutually adjoint with respect to the inner product induced by this
weight. In the rest of this paper, we will use the following N × N constant matrices:

J =
N∑

k=1

kEk,k A =
N−1∑
k=1

ak Ek+1,k, (3.1)

where ak ∈ C. Recall that Ei, j denotes the N × N matrix whose (i, j)-th coordinate
is equal to δi, j . It is straightforward to show that

[J , A] = A and ex A Je−x A = J − Ax . (3.2)
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938 A. L. Gallo, P. Román

3.1 Mutually adjoint differential operators

In this subsection, we let W be a matrix valued weight with a matrix valued inner
product as in (1.1). Let φ be an analytic function such that

∫ b
a xnφ(x)W (x)dx < ∞

for all n ∈ N0. We consider the first-order differential operators

D = ∂x x + x(A − 1), D† = −∂x x − (1 + ν + J ) + xφ′(x) − x . (3.3)

We will be interested in weight matrices such thatD andD† are mutually adjoint, i.e.,
〈P · D, Q〉 = 〈P, Q · D†〉 for all P, Q ∈ MN (C)[x].

We note that

D† = −D + C − (1 + ν) + xφ′(x) − 2x (3.4)

where C = Ax − J .

Lemma 3.1 Assume that D and D† are mutually adjoint operators with respect to
the matrix valued inner product associated to W. Then C = Ax − J is a symmetric
operator and C ∈ FR(P). Moreover, if (P(x, n))n is the sequence of monic MVOPs
for W and MC = ϕ−1(C), then

P · C = MC · P, where MC =
1∑

i=−1

Uj (n)δ j .

The coefficients of MC are:

U1(n) = A, U0(n) = X(n)A − AX(n + 1) − J ,

U−1(n) = Y (n)A − AY (n + 1) + [J , X(n)] + (AX(n + 1) − X(n)A)X(n),

where X(n) and Y (n) are given in (1.3).

Proof By (1.1), the operator multiplication by −(1+ ν) + xφ′(x) − 2x is symmetric
with respect to the matrix inner product associated to W . On the other hand, since D
and D† are mutually adjoint, we have that D + D† is symmetric. Hence

C = D + D† + (1 + ν) − xφ′(x) + 2x,

is symmetric. Moreover, by [3, Theorem 3.7], we get D ∈ FL(P).
If we write

MC =
�2∑

j=−�1

Uj (n)δ j , �1, �2 ∈ N0,

then by taking into account that C increases the degree of any polynomial by 1, we
immediately obtain Uj (n) = 0 for j > 1. This implies that �2 = 1. On the other
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Lie algebras of differential operators 939

hand, since C is a symmetric operator with respect to W , we have that MC = M†
C and

so Uj (n) = 0 for j < −1. Finally, the formulas for U−1(n),U0(n), and U1(n) are
obtained by direct computation from the relation P · C = MC · P . ��
Theorem 3.2 Suppose that the operators D and D† in (3.3) are mutually adjoint and
let M = ϕ−1(D) and M† = ϕ−1(D†). If φ is a polynomial of degree k then

P · D = M · P, M =
1∑

j=−k

A j (n)δ j (3.5)

with

A1(n) = A − 1, A0(n) = n + X(n)A − AX(n + 1) − B(n),

A−1(n) = (n − 1)X(n) + Y (n)(A − 1) − (A − 1)Y (n + 1) − A0(n)X(n),

A j (n) = (v(L)) j (n), −k + 1 < j < −1

where B(n) is given by (1.5) and v(x) = −(1 + ν) + xφ′(x) − 2x.

Proof Since D increases the degree of P(x, n) by one, we have that

M := ϕ−1(D) =
1∑

t=�

At (n)δt ,

for certain coefficients A j (n). The formulas for A j (n) with j = −1, 0, 1 are obtained
from (3.5) and the definition ofD by comparing leading coefficients. By orthogonality,
we have that

〈M · P, δ j · P〉 =
1∑

t=�

At (n)〈P(x, n + t), P(x, n + j)〉 = A j (n)H(n + j).

By (3.4) D† = −D + C + v(x), and so for j < −1, we have that

A j (n) = 〈P · D, δ j · P〉H(n + j)−1 = 〈P, δ j · P · D†〉H(n + j)−1

= 〈P, δ j · P · v(x)〉H(n + j)−1 = 〈P · v(x), δ j · P〉H(n + j)−1

= 〈v(L) · P, δ j · P〉H(n + j)−1.

In the third equality, we have used that 〈P, δ j · P · D〉 and 〈P, δ j · P · C〉 vanish for
j < −1 and in the fourth equality, the fact that any scalar polynomial is symmetric.
Since v is a polynomial of degree k, then

v(L) =
0∑

j=−k

(v(L)) jδ
j ,
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and so

〈v(L) · P, δ j · P〉 =
1∑

t=−k

(v(L))t (n)〈P(x, n + t), P(x, n + j)〉 = (v(L)) j (n)H(n + j).

Then, we have that

A j (n) = (v(L)) j (n) for j < −1.

We complete the proof by noting that (v(L)) j (n) = 0 for j < −k. ��
As a direct consequence, we obtain the following corollary.

Corollary 3.3 If φ is a monic polynomial of degree one, then M = ϕ−1(D) satisfies

M = A0(n) + (A − 1)δ

with A0(n) as in Theorem 3.2. Moreover, in this case, we have that

(n − 1)X(n) + Y (n)(A − 1) − (A − 1)Y (n + 1)

−
(
n + X(n)A − AX(n + 1) − B(n)

)
X(n) = 0. (3.6)

Proof If v(x) = −(1+ν)+xφ′(x)−2x ,x since deg(v) = deg(φ) < 2, byTheorem3.2
we obtain that A j (n) = 0 for all j < −1. On the other hand, notice that since φ is
monic, then D† = −∂x x − (1 + ν + J ) and so D† does not increase degrees. This
implies that A†

1 = 0 and therefore

A−1(n) = (n − 1)X(n) + Y (n)(A − 1) − (A − 1)Y (n + 1) − A0(n)X(n) = 0.

The formulas for A1(n) and A0(n) follow from Theorem 3.2. ��
Remark 3.4 Since C is symmetric, we have that C = C† implies MC = M†

C . Thus,
from Eq. (2.5), we have that

U1(n) = H(n)U−1(n + 1)∗H(n + 1)−1, U0(n) = H(n)U0(n)∗H(n)−1,

and so we obtain that

A = H(n)
(
Y (n + 1)A − AY (n + 2) + [J , X(n + 1)]

+(AX(n + 2) − X(n + 1)A)X(n + 1)
)∗H(n + 1)−1,

and

X(n)A − AX(n + 1) − J = H(n)
(
X(n)A − AX(n + 1) − J

)∗H(n)−1.
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3.2 The Laguerre type weight

Let δ
(ν)
1 , . . . , δ

(ν)
N be non-zero real numbers, and let φ be an analytic function on a

neighborhood of the interval [0,∞). The matrix valued Laguerre type weight is given
by

W (ν)
φ (x) = eAxT (ν)

φ (x)eA
∗x , T (ν)

φ (x) = e−φ(x)
N∑

k=1

δ
(ν)
k xν+k Ek,k, (3.7)

with support on the interval [0,∞). This is an extension of the Laguerre weight given
in [18]. In the rest of the paper, we assume that W (x)P(x) has vanishing limits at the
endpoints of the support for any matrix polynomial P .

Remark 3.5 Since δ
(ν)
k �= 0 for any k and eAx is invertible, then the weight matrix

W (ν)
φ (x) is also invertible for all x ∈ [0,∞).

Proposition 3.6 Let A, J ∈ MN (C) as in (3.1) and let W (ν)
φ (x) be as in (3.7). Then,

the first-order differential operators

D = ∂x x + x(A − 1), D† = −∂x x − (1 + ν + J ) + xφ′(x) − x, (3.8)

are mutually adjoint with respect to W (ν)
φ (x).

Proof Let P, Q ∈ MN (C)[x]. In order to simplify the notation, in the rest of the proof,
we denote by W (x) := W (ν)

φ (x) and T (x) := T (ν)
φ (x). Thus, we have that

〈P · D, Q〉 =
∫ ∞

0

(
x P ′(x) + x P(x)(A − 1)

)
W (x)Q∗(x)dx . (3.9)

Notice that, sinceW (x)P(x) has vanishing limits at the endpoints x = 0, and x = ∞,
integration by parts implies that

∫ ∞

0
x P ′(x)W (x)Q∗(x)dx = −

∫ ∞

0
P(x)

(
xW (x)Q∗(x)

)′ dx . (3.10)

By replacing (3.10) in (3.9) and using the linearity of the matrix valued inner
product, we write 〈P · D, Q〉 as the sum of four integrals:

〈P · D, Q〉 = −
∫ ∞

0
P(x)W (x)Q∗(x)dx −

∫ ∞

0
x P(x)W ′(x)Q∗dx

−
∫ ∞

0
x P(x)W (x)(Q∗(x))′dx

+
∫ ∞

0
x P(x)(A − 1)W (x)Q∗(x)dx . (3.11)
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942 A. L. Gallo, P. Román

We note that the sum of the first and third integral of (3.11) can be written in terms of
the first-order differential operator (1 + ∂x x) in the following way

∫ ∞

0
P(x)W (x)(Q∗(x) + x(Q∗(x))′)dx = 〈P(x), Q · (1 + ∂x x)〉.

Therefore, we are left with the second and fourth integrals of (3.11). In order to deal
with these integrals, we first write


 = −
∫ ∞

0
x P(x)W ′(x)Q∗(x)dx +

∫ ∞

0
x P(x)(A − 1)W (x)Q∗(x)dx . (3.12)

By (3.7), we have that

W−1(x)W ′(x) = e−A∗x
(
T−1(x) A T (x) + T−1(x)T ′(x) + A∗) eA

∗x ,

W−1(x)x(A − 1)W (x) = e−A∗x
(
xT−1(x) A T (x) − x

)
eA

∗x .

Thus, we obtain


 = −
∫ ∞

0
P(x)W (x)xW−1(x)W ′(x)Q∗(x)dx

+
∫ ∞

0
P(x)W (x)

(
W−1(x)x(A − 1)W (x)

)
Q∗(x)dx,

= −
∫ ∞

0
P(x)W (x)e−A∗x

(
xT−1(x) A T (x) + xT−1(x)T ′(x) + x A∗) eA

∗x Q∗(x)dx

+
∫ ∞

0
P(x)W (x)e−A∗x

(
xT−1(x) A T (x) − x

)
eA

∗x Q∗(x)dx

= −
∫ ∞

0
P(x)W (x)e−A∗x

(
xT−1(x)T ′(x) + x A∗ + x

)
eA

∗x Q∗(x)dx .

By taking into account that xT ′(x) = T (x)(−xφ′(x) + ν + J ), we obtain that


 =
∫ ∞

0
P(x)W (x)e−A∗x (−xφ′(x) + ν + J + x A∗ + x)eA

∗x Q∗(x)dx .

Notice that the second expression of the right hand of the above equality is

e−A∗x (−xφ′(x) + ν + J + x A∗ + x)eA
∗x = −xφ′(x) + ν + e−A∗x JeA

∗x + x A∗ + x .
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On the other hand, the equation ex A Je−x A = J − Ax implies that e−A∗x JeA
∗x =

J − A∗x . Hence, we obtain that

〈P · D, Q〉 = −
∫ ∞

0
P(x)W (x) (Q · (1 + ∂x x))

∗ (x)dx

−
∫ ∞

0
P(x)W (x)(x − xφ′(x) + (ν + J − A∗x + x A∗)Q∗(x)dx

=
∫ ∞

0
P(x)W (x)

(
Q · −(∂x x + x − xφ′(x) + (ν + J + 1)

)∗
(x)dx

= 〈P, Q · D†〉.

Therefore, the operators D and D† are mutually adjoint, as asserted. ��
The following corollary is a consequence of the previous results.

Corollary 3.7 LetD andD† as in (3.8). Then, φ is a polynomial if and only ifD,D† ∈
FR(P).

Proof By Theorem 3.2 and Proposition 3.6, if φ is a polynomial thenD,D† ∈ FR(P),
as asserted.

Conversely, if D† = −∂x x − (1+ ν + J ) + xφ′(x) − x,∈ FR(P), then xφ′(x) is
a polynomial. Indeed, by taking into account that P0(x) = I , we have

(P · D†)(x, 0) = −(1 + ν + J ) + xφ′(x) − x = (M† · P)(x, 0),

Now, since M† is as in (2.2) we obtain that (M† · P)(x) ∈ MN (C)[x] and so xφ′(x)
is a polynomial. Now, as φ(x) is an analytic real function, φ(x) = ∑∞

r=0 ar x
r , and

then xφ′(x) = ∑∞
r=1 rar x

r . If xφ′(x) is a polynomial, then there exists S ∈ N such
that rar = 0 for all r ≥ S. Then, ar = 0 for all r ≥ S, and then, φ(x) is a polynomial,
as desired. ��

4 Lie algebras associated to orthogonal polynomials

The goal of this section is to study the dimension of the Lie algebra generated byD and
D† and to classify, up to isomorphisms, all the finite dimensional cases.As a byproduct,
we solve a problem proposed by Ismail in [16, Problem 24.5.2], as described in the
introduction.

If g is a finite dimensional Lie algebra, and if g j and g j denote

g0 = g0 = g, g j+1 = [g j , g j ] and g j+1 = [g, g j ],

then g is called solvable (nilpotent) if g j = 0 for some j (if g j = 0 for some
j). Clearly, any nilpotent Lie algebra is solvable. The radical (nilradical) of g is its
maximal solvable ideal (maximal nilpotent ideal) of g. We will denote by Rad(g) and
Nil(g) the radical and nilradical of g, respectively.
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4.1 Lie algebra generated byD andD†

In the sequel, given φ an analytic real function over R, we denote by

gφ = 〈1,D,D†, x, xφ′(x), x2φ(2)(x), . . .〉 (4.1)

with the usual bracket. The first result in this section consists in deciding whether gφ is
finite dimensional and giving its dimension. The following lemma gives the relations
for the generators of gφ . The proof, which can be done by a direct computation, is
omitted.

Lemma 4.1 Let A, J ∈ MN (C) as in (3.1) and let φ an analytic real function over R.
Let us consider the operators D and D† introduced in (3.3). Then we have that

[D, x] = −x, [D†, x] = x, [D,D†] = −x2φ(2)(x) + (2 − φ′(x))x,
[D, φ( j)(x)x j ] = −( j x jφ( j)(x) + x j+1φ( j+1)(x))

= −[D†, φ( j)(x)x j ] for all j ≥ 1,

where x and x jφ( j)(x) act on matrix valued polynomials by right multiplication.

We are interested in determining whether the Lie algebra gφ is finite dimensional.
In order to prove this, we introduce the following Lie subalgebra

aφ = 〈xiφ(i)(x)〉i∈N. (4.2)

The following lemma states thataφ is finite dimensional if and only ifφ is a polynomial.

Lemma 4.2 Let φ be an analytic real function over R and let aφ as in (4.2). Then, aφ

is finite dimensional if and only if φ is a polynomial. In such a case, dim aφ = � where
� is the number of non-zero coefficients of φ.

Proof Clearly, if φ is a polynomial, then the dimension of aφ is finite, since φ(m)(x)
vanishes for all m greater than the degree of φ.

Conversely, assume now that φ is given by the power series

φ(x) =
∞∑
i=0

ai x
i . (4.3)

This implies that

x jφ( j)(x) =
∞∑
i=0

bi, j x
i , with bi, j =

{(i
j

)
j ! ai if j ≤ i,

0 if i < j .
(4.4)

In particular, if ai = 0 then bi, j = 0 for all j ∈ N.
Let {it }t∈N be the sequence of indices whose coefficients in (4.3) are non-zeros of

φ, that is it < it+1 for all t ∈ N, and ai �= 0 if and only if i = it for some t ∈ N.
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Claim: Thevector space 〈xi1φ(i1)(x), . . . , xi�φ(ir )(x)〉has dimension r . Let c1, . . . , cr ∈
C be such that

c1x
i1φ(i1)(x) + · · · + cr x

ir φ(ir )(x) = 0.

This induces the following system of equations

h∑
j=1

c j
(ih
i j

)
ih !ai j = 0, for h = 1, . . . , r .

By taking into account that ai1 �= 0, the equation for h = 1 implies that c1 = 0. In
the same way, since c1 = 0, the equation for h = 2 implies that c2ai2 i2! = 0 and so
c2 = 0 since ai2 �= 0. Inductively, if c1 = c2 = . . . = cr−1 = 0, then the equation for
h = r implies that crair ir ! = 0 and so cr = 0 since air �= 0. Hence, ch = 0 for all
h ∈ {1, . . . , r}.

By the claim, the space aφ has subspaces of all of the possible dimensions and so
is non-finite dimensional.

Now, assume that φ is a polynomial of degree n, in the same notation as above, by
(4.4), we have that

〈xφ′(x), x2φ(2)(x), . . . , xnφ(n)(x)〉 ⊆ 〈xi1 , . . . , xi�〉.

The claim and the above statement imply that 〈xφ′(x), x2φ(2)(x), . . . , xnφ(n)(x)〉 has
dimension �. ��

We will need the following notation: given φ a polynomial over C with � non-zero
coefficients,

k =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

� + 2 if φ′(0) = φ(0) = 0,

� + 1 if φ′(0) = 0, φ(0) �= 0,

� + 1 if φ(0) = 0, φ′(0) �= 0,

� if φ(0) �= 0, φ′(0) �= 0.

(4.5)

Proposition 4.3 Letφ be an analytic real function overR and let g := gφ its associated
Lie algebra as in (4.1). Then, we have that dim(g) is finite if and only if φ is a
polynomial. In such a case, if k is as in (4.5), then

dim(g) =
{
k + 2 for N ≥ 2,

k + 1 for N = 1.

Proof Clearly, if φ is a polynomial, then the dimension of g is finite, since φ(m)(x)
vanishes for all m greater than the degree of φ.

Conversely, assumenow thatφ is not a polynomial.Notice thataφ is aLie subalgebra
of g, by Lemma 4.2, hφ has infinite dimension, and hence, the dimension of g is infinite.
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Finally, the dimension of g follows from Lemma 4.2 and the fact that D,D† are
linearly independent of 1, x, xφ′(x), x2φ(2)(x), . . . , xnφ(n)(x) for N ≥ 2 and this
vector space has dimension k, with k as in the statement. In the case N = 1, notice
that

D + D† = −(2 + ν) − 2x + xφ′(x) (4.6)

and so D† is a linear combination of 1,D, x and xφ′(x) and so the dimension of g is
k + 1 in this case, as desired. ��
Remark 4.4 As a direct consequence of the above results, gφ has finite dimension of
and only if D,D† ∈ FR(P). Indeed, by Proposition 4.3, gφ is finitely dimensional if
and only if φ is a polynomial, and by Corollary 3.7, φ is a polynomial if and only if
D,D† ∈ FR(P).

Remark 4.5 By the proof of Proposition 4.3, if φ(x) = a0 + a1x + . . . + anxn is a
polynomial of degree n with � non-zero coefficients and if {i1, . . . , i�} ⊆ {0, . . . , n}
is the set of indices such that ai j �= 0, then we have that

〈xφ′(x), x2φ(2)(x), . . . , xnφ(n)(x)〉 = 〈xi1 , . . . , xi�〉. (4.7)

Example 4.6 Let φ1(x) = x3 and φ2(x) = x3 + x2, by Proposition 4.3, the associated
Lie algebras gφ1 and gφ2 have the dimensions 5 and 6, respectively. Then, the Lie
algebras gφ1 and gφ2 are non-isomorphic.

4.2 Structure of g�

In this subsection, we give a classification of all finite dimensional Lie algebras gφ .

Lemma 4.7 The element z = D + D† + 2x − xφ′(x) is a symmetric differential
operator which belongs to the center of the Lie algebra gφ .

Proof It follows immediately from the definition of the bracket of gφ . ��
Remark 4.8 Thecentral element thatwe found inLemma4.7 is related to the symmetric
operator C that was considered in Lemma 3.1. This can be derived directly from (3.4).

In the sequel, given a polynomial φ(x) = a0 + a1x + · · · + anxn ∈ R[x] of
degree n ≥ 2 with � non-zero coefficients and k as in (4.5), we consider the following
notations

Iφ = {i ∈ {2, . . . , n} : ai �= 0} = { j1, . . . , jk−2}

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

{i3, . . . , i�} if a0 �= 0, a1 �= 0,

{i2, . . . , i�} if a0 = 0 and a1 �= 0,

{i2, . . . , i�} if a0 �= 0 and a1 = 0,

{i1, . . . , i�} if a0 = 0 and a1 = 0,

(4.8)

with jt < jt+1 and it < it+1.
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Theorem 4.9 Let φ(x) = a0 + a1x + · · · + anxn ∈ R[x] be a polynomial of degree
n ≥ 2 with � non-zero coefficients and k as in (4.5). If gφ is the associated Lie algebra
of φ as in (4.1), then we have that

gφ
∼=

{
C
2 ⊕ h for N ≥ 2

C ⊕ h for N = 1

where h is a solvable Lie algebra of dimension k, with an abelian nilradical of dimen-
sion k − 1. More precisely, if Iφ is as in (4.8) then

h ∼= 〈E〉 � 〈E1, . . . Ek−1〉

where 〈E1, . . . Ek−1〉 is abelian and the rest of the brackets satisfy

[E, E1] = E1 and [E, Et ] = jt−1Et for t = 2, . . . , k − 1. (4.9)

Proof By Lemma 4.7, the element z = D + D† + 2x − xφ′(x) belongs to the center
of gφ . So, for N ≥ 2, we obtain an element in the center that does not belong to 〈1〉,
and in the case N = 1, by (4.6), we obtain that z ∈ 〈1〉. Thus, if

h := 〈D, x, xφ′(x), x2φ(2)(x), . . . , xnφ(n)(x)〉

then we obtain that

gφ
∼=

{
C
2 ⊕ h for N ≥ 2,

C ⊕ h for N = 1,

with h a Lie algebra of dimension k.
Thus, it is enough to show that h is solvable with nilradical of dimension k − 1. Let

us consider

k = 〈x, xφ′(x), x2φ(2)(x), . . . , xnφ(n)(x)〉.

By definition of the bracket and by taking into account that

[x, xlφ(l)(x)] = [xiφ(i)(x), x jφ( j)(x)] = 0 for all i �= j, (4.10)

we obtain that [h, h] ⊆ k. Hence, by (4.10), we obtain that
[
[h, h], [h, h]

]
= 0, and

so h is solvable. Finally, notice that k is an abelian ideal of h of dimension

dim(k) = dim(h) − 1 = k − 1.

This implies that k is the nilradical of h, as desired.
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As in Remark 4.5, we have that

h = 〈D, x, x j1 , . . . , x jk−2〉.

In this case, 〈x, x j1 , . . . , x jk−2〉 is an abelian subalgebra of dimension k − 1. It is
enough to compute the brackets [D, x jt ] and [D, x]. We obtain that

[D, x] = −x and [D, x jt ] = − jt x
jt ,

so that 〈x, x j1 , . . . , x jk−2〉 is an abelian ideal. Finally, the correspondence

D �−→ −E, x �−→ E1, x ji �−→ Ei+1 for i = 1, . . . , k − 2,

is a Lie Algebra isomorphism between h and 〈E〉�〈E1, . . . Ek−1〉with brackets given
as in (4.9). ��

Next, we study the structure of the solvable Lie algebra hφ . In general, a Lie algebra
h′ with an abelian ideal of codimension 1 is called almost abelian. These algebras were
studied by V.V. Gorbatsevich in [10], where it is shown that there is a decomposition
of the form

C �ψ C
k−1,

where the semidirect product structure is given by a linear mapping ψ : C →
glk−1(C). More precisely, if B = {E1, . . . , Ek} is the canonical basis of C

k and
B′ = {E2, . . . , Ek}, then

[E1, Ei ] ∈ 〈B′〉 for i ≥ 2 and [Ei , E j ] = 0 for i, j ∈ {2, . . . , n}.

Hence, we can take the matrix

� =
[
[E1, E2]B′ , [E1, E2]B′, . . . , [E1, Ek]B′

]
∈ glk−1(C)

where [E1, Ei ]B′ is the coordinate vector of [E1, Ei ] with respect to the C-basis B′.
Thus, we can define ψ : C → glk−1(C) by

ψ(z) = z�

and so ψ is linear and ψ(1) = �.
In [10], the author showed that the structure of the Lie algebra is determined by the

matrix �. More precisely,

C �ψ C
k−1 ∼= C �ψ ′ C

k−1 ⇐⇒ � and � ′ are conformally similar. (4.11)

Recall that � and � ′ are conformally similar if and only if there exists a matrix P ∈
GLk−1(C) and a non-zero complex number λ ∈ C � {0} such that � = λP� ′P−1.
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Lemma 4.10 Let k be an integer greater than 1 and let 1 < j1 < . . . < jk−2 and
1 < j ′1 < . . . < j ′k−2 be two sequences of positive integers. Let us consider

� = diag(1, j1, . . . , jk−2) and � ′ = diag(1, j ′1, . . . , j ′k−2).

Then, � and � ′ are conformally similar if and only if � = � ′.

Proof If � = � ′, they are trivially conformally similar.
Now, assume that � and � ′ are conformally similar, so there exist λ ∈ C

∗ and
P ∈ GLk−1(C) such that

� ′ = λP�P−1.

By similarity, we obtain the following spectral relationship

Spec(� ′) = λ · Spec(�),

i.e., all of the eigenvalues of � ′ can be obtained from the eigenvalues of � by multi-
plication by λ. Since � and � ′ are both diagonal, we have that

Spec(�) = {1, j1, . . . , jk−2} and Spec(� ′) = {1, j ′1, . . . , j ′k−2}.

Since 1 belongs to both spectra and the rest of the eigenvalues of � and � ′ are greater
than 1, we obtain that λ = 1. Hence, we get that

Spec(� ′) = Spec(�).

Therefore, � = � ′. ��
We are now in a position to state ourmain theorem, which says when the Lie algebra

associated with two different polynomials (as in (4.1)) are isomorphic.

Theorem 4.11 Letφ1(x), φ2(x) be polynomials overR of degree greater than or equal
to 2. Let hφ1 and hφ2 be their associated solvable Lie algebras as in Theorem4.9. Then,

hφ1
∼= hφ2 ⇐⇒ Iφ1 = Iφ2 ,

where Iφ1 , Iφ2 are as in (4.8). Moreover, we have that

gφ1
∼= gφ2 ⇐⇒ Iφ1 = Iφ2 ,

where gφ1 and gφ2 are the associated Lie algebras of φ1 and φ2, respectively.

Proof From Theorem 4.9, we have that gφ1
∼= gφ2 if and only if hφ1

∼= hφ2 . So, it is
sufficient to verify that

hφ1
∼= hφ2 ⇐⇒ Iφ1 = Iφ2 .
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Now by (4.11), it is enough to see that the associated matrices �1 and �2 are confor-
mally similar. By Theorem 4.9 and (4.11), we have that �1 and �2 are conformally
similar to

� = diag(1, j1, . . . , jk−2) and � ′ = diag(1, j ′1, . . . , j ′k−2) respectively,

where { j1, . . . , jk−2} = Iφ1 and { j ′1, . . . , j ′k−2} = Iφ2 . Finally, by Lemma 4.10, we
obtain that� and� ′ are conformally similar if and only if� = � ′ which is equivalent
to saying that Iφ1 = Iφ2 . Therefore hφ1

∼= hφ2 if and only if Iφ1 = Iφ2 as asserted. ��
As a direct consequence, we obtain the following result.

Corollary 4.12 Let φ1(x), φ2(x) be polynomials over R with degree greater or equal
than 2. Then, we have the following cases:

1. If degφ1 = degφ2 = 2, then gφ1
∼= gφ2 .

2. If degφ1 �= degφ2, then gφ1 � gφ2 .

Remark 4.13 Notice that if we consider φm(x) = xm + ax with m ≥ 2, then
dim(hφm ) = 3. The structure of solvable Lie algebras of dimension 3 was stud-
ied by Patera and Zassenhaus in [22]. In p. 4, the authors define the Lie algebra
L3,6 = 〈a1, a2, a3〉 with brackets

[a1, a2] = a3, [a1, a3] = a3 − α · a2,
with parameter α satisfying α �= 0 and 1 − 4α �= 0. This parameter α is in one-to-
one correspondence with isomorphism classes of this kind of algebras. Its associated
matrix ψα(1) is

ψα(1) =
(
0 −α

1 1

)
.

The eigenvalues of ψα(1) are

λ0 = 1−√
1−4α
2 and λ1 = 1+√

1−4α
2 .

On the other hand, if we consider φm(x) = xm + ax with m ≥ 2, then hφm has
dimension 3 and its associated matrix �m is conformally similar to

(
1 0
0 m

)
.

Thus, �m is conformally similar to ψα(1) if and only if

λ0 = r , λ1 = rm for some complex number r ,

since diagonalizable matrices are similar if and only if their spectra are equal. This
system of equations has a solution r = 1

m+1 and α = m
(m+1)2

. Therefore hφm
∼= Lα

3,6

with α = m
(m+1)2

.
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4.3 Application: a problem by Ismail

In this subsection, we extend the differential operators D and D† by means of a real
function βn(x). Let us introduce the operators

D1,n = D + x + xβn(x), D2,n = D† + x + xβn(x). (4.12)

By taking into account that x and βn(x)x are symmetric with respect to W (ν)
φ (x), and

D, D† are mutually adjoint with respect to W (ν)
φ (x), we obtain that D1,n and D2,n

are mutually adjoint. We are mainly interested in differential operators D1,n andD2,n
which preserve polynomials. This is related with the fact that the coefficients xβn(x)
are polynomial.

Proposition 4.14 Let φ(x) and xβn(x) be analytic real functions supported on [0,∞).
Let gn be the Lie algebra generated byD1,n,D2,n, withD1,n,D2,n as in (4.12). Then,
the Lie algebra gn has a Lie subalgebra isomorphic to an := aαn , where aαn is given
by (4.1) with

αn(x) = x2φ(2)(x) + φ′(x)x + 2β ′
n(x)x

2 + 2βn(x)x . (4.13)

The following are equivalents:

1. gn is finite dimensional.
2. an is finite dimensional.
3. αn is a polynomial.
4. x(φ′(x) + 2βn(x)) is a polynomial.

Moreover, ifD1,n, D2,n ∈ FR(P), then the Lie algebra gn is finite dimensional if and
only if φ is a polynomial.

Proof Notice that

[D1,n ,D2,n ] = −x2φ(2)(x) − φ′(x)x − 2β ′
n(x)x2 − 2βn(x)x = −αn(x),

thus αn(x) ∈ gn . On the other hand, α′
n(x)x ∈ gn , since

p · [D1,n, αn] = p · [∂x x, αn] = (p(x) · ∂x x)αn(x) − (p(x)αn(x)) · ∂x x

= −p(x)α′
n(x)x,

and hence [D1,n, αn] = −α′
n(x)x .

Inductively, if we assume that α( j)
n (x)x j ∈ gn , then

p · [D1,n, α
( j)
n (x)x j ] = (p(x) · ∂x x)α

( j)
n (x)x j − (p(x)α( j)

n (x)x j ) · ∂x x

= −p(x)
(
α

( j+1)
n (x)x j+1 + jα( j)

n (x)x j ).
Then [D1,n, α

( j)
n (x)x j ] = α

( j+1)
n (x)x j+1+ jα( j)

n (x)x j ∈ gn , and since jα( j)
n (x)x j ∈

gn , α
( j+1)
n (x)x j+1 ∈ gn . Thus αi

n(x)x
i ∈ an for all i ∈ N0 and therefore an is a Lie

subalgebra of gn , as asserted.
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The fact that gn is finite dimensional if and only if an is finite dimensional follows
directly from the fact that

gn = 〈D1,n,D2,n, α
(i)
n (x)xi 〉i∈N0 .

From Lemma 4.2, we get that an is finite dimensional if and only if αn is a polyno-
mial.

Now, we claim that if F(x) = x(φ′(x) + 2βn(x)) is a polynomial then αn is
a polynomial as well. Indeed, the assertion follows immediately from the fact that
xF ′(x) = αn(x). Conversely, if αn(x) is a polynomial then xF ′(x) is a polynomial.
Since F(x) is real analytic, we have that

F(x) =
∞∑
i=0

ci x
i

thus, it is enough to show that there exists L ∈ N such that ci = 0 for all i > L . Notice
that

xF ′(x) =
∞∑
i=1

ici x
i ,

since xF ′(x) is a polynomial, then there exists L ∈ N such that ici = 0 for all i > L
and hence ci = 0 for all i > L . Therefore F(x) is a polynomial, as we wanted.

Finally, assume that D1,n and D2,n are in the right Fourier algebra.
Claim: xβn(x) is a polynomial. By taking into account that D1,n = ∂x x+x A+xβn(x)
and P0(x) = I , we have

(P · D1,n)(x, 0) = Ax + xβn(x) = (M1,n · P)(x, 0),

where M1,n ∈ FL(P) is such that P · D1,n = M1,n · P , for all P ∈ MN (C)[x]. Now,
since M1,n is as in (2.2), we obtain that (M1,n · P)(x) is a polynomial, and so xβn(x)
is a polynomial.

By the above statements, it is enough to show that φ(x) is polynomial if and only if
x(φ′(x)+2βn(x)). On the first hand, if φ is a polynomial,then xφ′(x) is a polynomial.
By the above claim,we know that xβn(x) is a polynomial. Therefore x(φ′(x)+2βn(x))
is a polynomial. Conversely, if x(φ′(x) + 2βn(x)) is a polynomial, then xφ′(x) is a
polynomial. Since φ(x) is an analytic real function, a similar argument to the one used
when proving that F(x) is a polynomial allows us to assure that φ is a polynomial, as
desired. ��

In the case N = 1, we have the weightw1(x) = e−φ(x)xν . We denote by (p(x, n))n
be the sequence of orthonormal polynomials with respect to w1(x). Let us define the
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sequence βn(x) as in (1.9). M. Ismail in [16] proved that

βn(x)

an
= ν

x

∫ ∞

0

pn(y)pn−1(y)

y
w1(y)dy + ψn(x)

= ν

x
pn−1(0)λn + ψn(x), (4.14)

with

ψn(x) =
∫ ∞

0

φ′(x) − φ′(y)
x − y

pn(y)pn−1(y)w1(y)dy, λn

=
∫ ∞

0

pn−1(y)

y
w1(y)dy (4.15)

and an is the coefficient given in (1.8). We have the following lemma.

Lemma 4.15 Let φ(x) and xβn(x) be analytic real functions supported on [0,∞). If
φ is a polynomial, then xβn(x) is a polynomial.

Proof We have that xβn(x) = anν pn−1(0)λn + anxψn(x), so it is enough to show
that xψn(x) is a polynomial.

Thus, if φ(x) = ∑m
k=0 akx

k then φ′(x) = ∑m
k=1 kakx

k−1.

xψn(x) = x
∫ ∞

0

φ′(x) − φ′(y)
x − y

pn(y)pn−1(y)w1(y)dy

= x
∫ ∞

0

m∑
k=1

kak
xk−1−yk−1

x−y pn(y)pn−1(y)w1(y)dy

= x
∫ ∞

0

m∑
k=1

kak
(
xk−2 + yxk−3 + · · · + yk−3x + yk−2)

pn(y)pn−1(y)w1(y)dy

=
m∑

k=1

k−2∑
j=0

kak
( ∫ ∞

0
y j pn(y)pn−1(y)w1(y)dy

)
xk− j .

Then, xψn(x) is a polynomial and therefore xβn(x) is a polynomial, as desired. ��
We have the following theorem.

Theorem 4.16 Let φ(x) and xβn(x) be analytic real functions supported on [0,∞). If
φ is a polynomial, then the Lie algebra generated by xL1,n, x L2,n is finite dimensional.
Moreover, if x L1,n, x L2,n is finite dimensional then x(φ′(x)+2βn(x)) is a polynomial.

Proof Notice that if N = 1 in (4.12), then D1,n = xL1,n and D2,n = xL2,n + 2 + ν,
where

L1,n = ∂x + βn(x), L2,n = −∂x + βn(x) + φ′(x)
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as in [16], and W (ν)
φ (x) = e−φ(x)xν = w1(x). In this case, we can observe that the

Lie algebra generated by D1,n , D2,n and 1 is isomorphic to the Lie algebra generated
by xL1,n, xL2,n and 1.

Now, if φ(x) is a polynomial,then xβn(x) is a polynomial by Lemma 4.15 and
hence x(φ′(x)+ 2βn(x)) is a polynomial. Thus, Proposition 4.14 implies that the Lie
algebra generated by D1,n and D2,n is finite dimensional and hence the Lie algebra
generated by xL1,n and xL2,n is finite dimensional.

Now if the Lie algebra generated by xL1,n and xL2,n is finite dimensional, then the
Lie algebra generated by D1,n and D2,n is finite dimensional. Thus, Proposition 4.14
implies that x(φ′(x) + 2βn(x)) is a polynomial, as asserted. ��

In the context of orthogonal polynomial, we are interested in differential operators
D with D ∈ FR(P). In particular, we want to solve the problem proposed by M.
Ismail in the case that xL1,n, xL2,n ∈ FR(P). The following corollary is an answer
to this problem.

Corollary 4.17 Let φ(x) and xβn(x) be analytic real functions supported on [0,∞). If
x L1,n, xL2,n ∈ FR(P), then the Lie algebra generated by xL1,n and xL2,n is finitely
dimensional if and only if φ(x) is a polynomial.

Proof By Theorem 4.16, if φ(x) is a polynomial, then the Lie algebra generated by
xL1,n and xL2,n is finitely dimensional.

Conversely, if the Lie algebra generated by xL1,n and xL2,n is finite dimensional,
then the Lie algebra generated by D1,n and D2,n is finite dimensional, and by Propo-
sition 4.14, we have that φ(x) is a polynomial, as desired. ��

5 The case �(x) = x

In this section, we study in detail the Lie algebra associated with the Laguerre type
case φ(x) = x . In this case, by Corollary 3.7, we have that D and D† belong to the
right Fourier algebra FR(P), which means there exist M and M† in FL(P) such that
P · D = M · P and P · D† = M† · P , respectively.

Following the strategy developed in [6] for a weight matrix of the form W (x) =
e−v(x)ex Aex A

∗
, we introduce an extra second-order differential operator D with

(P(x, n))n as its eigenfunctions. We investigate the structure of the Lie algebra gen-
erated by D, D† and D, and compute its Casimir elements. With this information, we
obtain explicit non-abelian relations for the coefficients of the three-term recurrence
relation and the squared norms.

5.1 The structure of the Lie algebra

Let A, J ∈ MN (C) be constant matrices as in (3.1) and let ν ∈ R>0. When φ(x) = x ,
apart from the first-order differential operators D and D†, we have a symmetric
second-order differential operator having the matrix orthogonal polynomials as eigen-
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functions. The weight matrix W (ν) is given by

W (ν)(x) = ex AT (ν)(x)ex A
∗
, T (ν)(x) = e−x

N∑
k=1

δ
(ν)
k xν+k Ek,k . (5.1)

Proposition 5.1 Let A, J ∈ MN (C) as in (3.1) and let W (ν)(x) be as in (5.1). Then,
the first-order differential operators

D = ∂x x + x(A − 1), D† = −∂x x − (1 + ν + J ),

are mutually adjoint with respect to W (ν). Moreover, if M = ϕ−1(D) and M† =
ϕ−1(D†), then

M = (A − 1)δ − (n + 1 + ν) − H(n)JH−1(n),

M† = −(n + ν + J + 1) + H(n)(A − 1)∗H−1(n − 1)δ−1.
(5.2)

Proof By taking φ(x) = x in Proposition 3.6, the first-order differential operators D
and D† are given by

D = ∂x x + x(A − 1), D† = −∂x x − (1 + ν + J ),

which are mutually adjoint by Proposition 3.6. By hypothesis, the corresponding ele-
ments in the left Fourier algebra are M = ϕ−1(D) and M† = ϕ−1(D†). Now, by
taking φ(x) = x in Corollary 3.3, we obtain that

M(n) = A0(n) + (A − 1)δ.

By Eqs. (2.4) and (2.5), if M†(n) = ∑k
j=−l A

†
j (n)δ j , then

A†
0(n) = H(n)A∗

0(n)(H(n))−1, A†
−1(n) = H(n)A∗

1(n − 1)(H(n))−1, A†
j (n) = 0

for j �= 0,−1. Hence, we have that

M†(n) = A†
0(n) + A†

−1(n)δ−1.

From the relation P · D† = M† · P , with D† = −∂x x − (1 + ν + J ), and Pn(x) =
xn + X(n)xn−1 + l.o.t , we obtain

(P · D†)(x, n) = −(n + 1 + ν + J )xn − nX(n)xn−1 + l.o.t .

(M† · P)(x, n) = H(n)(A − 1)∗(H(n))−1xn

+H(n)(A − 1)∗(H(n))−1(X(n) + 1)xn−1 + l.o.t .
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Comparing the coefficients of degrees n and n − 1, we obtain

M = (A − 1)δ − (n + 1 + ν) − H(n)JH−1(n),

M† = −(n + ν + J + 1) + H(n)(A − 1)∗H−1(n − 1)δ−1,

as desired. ��
The weight matrixW (ν)

φ admits a symmetric second-order differential operator. By
[18, Proposition 4.3] after conjugation by a lower triangular matrix, we obtain that the
operator

D = ∂2x x + ∂x ((A − 1)x + 1 + ν + J ) + Aν + J A − J

is symmetric with respect to the weight W (ν)
φ . Moreover, we have

P(x, n) · D = � · P(x, n) where �(n) = A(n + ν + 1 + J ) − n − J .

By direct computation, we verify that the following relations hold:

[D, x] = −x, [D†, x] = x, [D,D†] = x, [D, x] = −D + D†,

[D, D] = −D + D − (1 + ν), [D†, D] = D† − D + (1 + ν).
(5.3)

Let a be the Lie algebra with generators {x1, x2, x3, x4, x5} and brackets

[x1, x2] = −x4, [x1, x4] = −x4, [x2, x4] = x4, [x3, x4] = −x1 + x2,

[x1, x3] = −x2 + x3 + x4 − (1 + ν)x5 and [x2, x3] = x1 − x3 − x4 + (1 + ν)x5.

By means of the identification

x1 �−→ D + x, x2 �−→ D† + x, x3 �−→ D, x4 �−→ x, x5 �−→ 1, (5.4)

we get that the Lie algebra generated by {D,D†, D, x, I } is isomorphic with a.
We recall that a Lie algebra a is called reductive if its radical is equal to its center.

We have the following structure result.

Proposition 5.2 The Lie algebra a defined as above is a 5-dimensional reductive alge-
bra with a center of dimension two, given by Za = 〈x1 + x2 − x4, x5〉. Moreover,
a = [a, a] ⊕ Za with [a, a] isomorphic to sl(2, C). In particular,

C1 = −4x4(x1 − x3 − x4 + (1 + ν)x5) + (x4 − x1 + x2)
2 and

C2 = x1 + x2 − x4 and C3 = x5

are Casimir elements of a.
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Proof From the general theory (see, e.g., [14, 17]), the radical of a can be computed
from its Killing form. More precisely, the radical is the orthogonal complement of the
derived algebra a′ = [a, a] with respect to the Killing form

Rad(a) = {x ∈ a : κ(x, y) = 0, for all y ∈ a′}.

In our case, the derived Lie algebra a′ = [a, a] is given explicitly by

[a, a] = 〈{x4, x1 − x2, x1 − x3 − x4 + (1 + ν)x5}〉.

Given x ∈ a and the generators of a′, it is enough to compute Ad(x) and Ad(a) for
a ∈ {x4, x1 − x2, x1 − x3 − x4 + (1 + ν)x5}.

In this case, if x = ∑5
i=1 ai xi and B denotes the basis {x1, . . . , x5}, then after some

computation, we obtain that

[Ad(x)]B =

⎛
⎜⎜⎜⎜⎝

0 −a3 a2 + a4 −a3 0
a3 0 −a1 − a4 a3 0

−a3 a3 a1 − a2 0 0
a2 − a3 + a4 −a1 + a3 − a4 a1 − a2 −a1 + a2 0
(1 + ν)a3 −(1 + ν)a3 (1 + ν)(−a1 + a2) 0 0

⎞
⎟⎟⎟⎟⎠

and hence

[Ad(x4)]B =

⎛
⎜⎜⎜⎜⎝

0 0 1 0 0
0 0 −1 0 0
0 0 0 0 0
1 −1 0 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠ [Ad(x1 − x2)]B =

⎛
⎜⎜⎜⎜⎝

0 0 −1 0 0
0 0 −1 0 0
0 0 −2 0 0

−1 −1 2 −2 0
0 0 −2(1 + ν) 0 0

⎞
⎟⎟⎟⎟⎠ ,

[Ad(x1 − x3 − x4 + (1 + ν)x5)]B =

⎛
⎜⎜⎜⎜⎝

0 1 −1 1 0
−1 0 0 −1 0
1 −1 1 0 0
0 −1 1 −1 0

−(1 + ν) (1 + ν) −(1 + ν) 0 0

⎞
⎟⎟⎟⎟⎠ .

In order to compute the Killing form, we need to compute the trace of some multipli-
cation of these matrices. In this case, we have that

tr([Ad(x)]B[Ad(x4)]B) = −4a3, tr([Ad(x)]B[Ad(x1 − x2)]B) = 4(a1 − a2),

tr([Ad(x)]B[Ad(x1 − x3 − x4 + (1 + ν)x5)]B) = 4(a1 + a4).

We get

Rad(a) = 〈{x1 + x2 − x4, x5}〉,
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since x1 + x2 − x4 and x5 belong to the center of a, we obtain that Rad(a) = Za and
so, the Lie algebra a is reductive. Since a is reductive, we obtain

a = [a, a] ⊕ Za.

In our case, the [a, a] part is given explicitly by

[a, a] = 〈{x4, x1 − x2, x1 − x3 − x4 + (1 + ν)x5}〉.

Now, by taking a1 = x4, a2 = x1 − x2 and a3 = x1 − x3 − x4 + (1+ ν)x5,we obtain
that

[a1, a2] = −2a1, [a1, a3] = a1 − a2, [a2, a3] = −a3

and so if we take â2 = a1 − a2 and â3 = −a3 we have

[a1, â2] = 2a1, [a1, â3] = −â2, [â2, â3] = 2â3,

and so [a, a] is isomorphic to sl(2, C) by considering the identification a1 �→ e1
â2 �→ e2 and â3 �→ e3. In particular, the Casimir element of sl(2, C) given by
4e1e3 + e22 induces a Casimir element of [a, a]

C[a,a] = −4x4(x1 − x3 − x4 + (1 + ν)x5) + (x4 − x1 + x2)
2.

By taking into account that C[a,a] commutes with the central elements of a, we obtain
that C[a,a] commutes with all of the elements of a and so is a Casimir element of a.
Finally, C2 = x1 + x2 − x4 and C3 = x5 are central elements and hence are Casimir
elements of a. ��
Remark 5.3 Notice that

C = C2 + (1 + ν)C3 = D + D† + x + (1 + ν)

it is also a Casimir invariant of a. Hence, under the representation given by
D,D†, D, x, 1, the image of this Casimir satisfies

C = Ax − J .

Thus, in terms of M, M† and L , we obtain that

ϕ−1(C) = M + M† + L + (1 + ν). (5.5)

On the other hand, it can be verified that

C[a,a] = 1

8
(A2x2 + ν2 + J 2 + Ax − 2νAx − 2x J A + 2ν J − 1).
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Thus, C′ = A2x2 − 2x J A + J + J 2, it is also a Casimir since

C′ = 8C[a,a] − (1 − 2ν)C − (ν2 − 1)C3.

Moreover, notice that the relation [J , A] = A implies that C′ = C2 − C, and so we
obtain that

C[a,a] = 1
8

(
C2 − 2νC + (ν2 − 1)C3

)
.

Therefore, in this representation,the Casimir element corresponding to C[a,a] does not
give more information than C.

We can also consider the Lie subalgebra generated by {x1, x2, x4, x5}. With the
identification (5.4), this corresponds to removing the operator D from the generators
of a. Notice that a representation of this algebra was considered in Sect. 4 by taking
φ(x) = x . In this case, we have the following structure result.

Proposition 5.4 The Lie subalgebra a′ = 〈x1, x2, x4, x5〉 of a is isomorphic to g2⊕C
2

where g2 is the 2-dimensional solvable Lie algebra with bracket [e1, e2] = e2. In
particular, a′ has no non-central Casimir invariants.

Proof By taking the map

x2 �→ e1, x4 �→ e2, x1 + x2 − x4 �→ e3 and x5 �→ e4,

we obtain an isomorphic algebra of a′. In this case, the only non-vanishing bracket
of 〈e1, e2, e3, e4〉 is the bracket [e1, e2] = e2 and so a′ is isomorphic to g2 ⊕ C

2, as
asserted.

The last assertion is a consequence of g2 and has no central elements. Hence, the
only Casimir invariants of a′ are the central elements. ��

5.2 Non-abelian relations for the recurrence coefficients

The identification (5.4)maps the Lie algebra a into a Lie subalgebra of the right Fourier
algebraFR(P)which wewill still denote by a. This Lie subalgebra is isomorphic with
a Lie algebra ϕ−1(a) of difference operators in the left Fourier algebra FL(P). The
goal of this subsection is to investigate the compatibility equations between the bracket
relations (5.3) and the corresponding relations in ϕ−1(a). In the sequel, in order to
simplify the notation, we will consider

Bn = B(n), Cn = C(n), Hn = H(n), �n = �(n). (5.6)

The following Theorem, which is a consequence, of the relations between the brackets
of M, M†, L, �, could be an analog of [6, Eq. (22)].
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Theorem 5.5 Let A, J be matrices as in (3.1). Then,

[Bn, J ] = Bn − �nCn + Cn�n−1 + �n+1Cn+1 − Cn+1�n,

[Cn, J ] = 2Cn + Bn(�nCn − Cn�n−1) + (�nCn − Cn�n−1)Bn−1,

with Bn,Cn,Hn and �n as in (5.6).

Proof First we observe that the difference-differential relations discussed in the paper
give rise to the following identities:

Bn = [Bn, J ] + Hn(A − 1)∗H−1
n−1 − Hn+1(A − 1)∗H−1

n , (5.7)

2HnH−1
n−1 = [HnH−1

n−1, J ] − BnHn(A − 1)∗H−1
n−1 − Hn(A − 1)∗H−1

n−1Bn−1,

(5.8)

[�n,Cnδ
−1] = Hn(A − 1)∗H−1

n−1. (5.9)

Equations (5.7), (5.8) are obtained from the coefficients of δ0 and δ−1 in the bracket
relation [M†, L] = L . On the other hand, (5.9) is obtained from the coefficient of δ−1

in the bracket [�, L] = −M + M†.
By (5.7), we have that

[Bn, J ] = Bn − Hn(A − 1)∗H−1
n−1 + Hn+1(A − 1)∗H−1

n . (5.10)

On the other hand, by (5.9) and taking into account thatHn ∈ MN (R), we obtain that

Hn(A − 1)∗H−1
n−1 = [�n,Cnδ

−1] = �nCn − Cn�n−1. (5.11)

Evaluating (5.11) at n + 1, we obtain

Hn+1(A − 1)∗H−1
n = �n+1Cn+1 − Cn+1�n . (5.12)

If we subtract (5.12) from (5.11) and replace in (5.10), we get the first formula of the
proposition.

For the second equality, notice that since Cn = HnH−1
n−1, Eq. (5.8) implies that

[Cn, J ] = 2Cn + BnHn(A − 1)∗H−1
n−1 + Hn(A − 1)∗H−1

n−1Bn−1.

The second formula of the proposition is obtained by replacing (5.12) and (5.11) in
the previous equation. This completes the proof of the proposition. ��
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