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Abstract
In an earlier work, a method was introduced for obtaining indefinite q-integrals of
q-special functions from the second-order linear q-difference equations that define
them. In this paper, we reformulate the method in terms of q-Riccati equations, which
are nonlinear and first order. We derive q-integrals using fragments of these Ric-
cati equations, and here only two specific fragment types are examined in detail. The
results presented here are for the q-Airy function, the Ramanujan function, the discrete
q-Hermite I and II polynomials, the q-hypergeometric functions, the q-Laguerre poly-
nomials, the Stieltjes-Wigert polynomial, the little q-Legendre and the big q-Legendre
polynomials.
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1 Introduction and preliminaries

In [14], we introduced a method to obtain indefinite q-integrals of the form

∫
f (x)

( 1
q
Dq−1Dqh(x) + p(x)Dq−1h(x) + r(x)h(x)

)
y(x)dq x

= f (x/q)
(
y(x)Dq−1h(x) − h(x)Dq−1 y(x)

)

= f (x/q)
(
y(x/q)Dq−1h(x) − h(x/q)Dq−1 y(x)

)
, (1.1)

where the functions p(x) and r(x) are continuous functions in an interval I and the
function y(x) is a solution of the second-order q-difference equation

1

q
Dq−1Dq y(x) + p(x)Dq−1 y(x) + r(x)y(x) = 0, (1.2)

f (x) is a solution of

1

q
Dq−1 f (x) = p(x) f (x) (1.3)

and h(x) is an arbitrary function. We also introduced

∫
F(x)

( 1
q
Dq−1Dqk(x) + p(x)Dqk(x) + r(x)k(x)

)
y(x)dq x

= F(x)
(
y(x)Dq−1k(x) − k(x)Dq−1 y(x)

)
, (1.4)

where y(x) is a solution of

1

q
Dq−1Dq y(x) + p(x)Dq y(x) + r(x)y(x) = 0. (1.5)

F(x) is a solution of

Dq F(x) = p(x)F(x), (1.6)

and k(x) is an arbitrary function. The indefinite q-integral

∫
f (x)dq x = F(x), (1.7)

means that Dq F(x) = f (x), where Dq is the Jackson’s q-difference operator, which
is defined in (1.13) below. The indefinite q-integrals in (1.1) and (1.4) generalize
Conway’s indefinite integral
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Indefinite q-integrals from a method using q-Riccati equations 883

∫
f (x)

(
d2h

dx2
+ p(x)

dh

dx
+ r(x)h(x)

)
y(x)dx = f (x)

(
dh

dx
y(x) − h(x)

dy

dx

)
,

(1.8)

where y(x) is a solution of

d2y

dx2
+ p(x)

dy

dx
+ r(x)y(x) = 0, (1.9)

f (x) is a solution of f ′(x) = p(x) f (x) and h(x) is an arbitrary function. See [2–7,
10]. Conway in [8, 9] reformulated (1.8) to take the form

∫
f (x)h(x)

(
u′(x) + u2(x) + p(x)u(x) + r(x)

)
y(x)dx = f (x)h(x)

(
u(x)y(x) − y′(x)

)
,

(1.10)

where

h(x) = exp

(∫
u(x)dx

)
,

and u(x) is an arbitrary function. Then, he derived many indefinite integrals by con-
sidering fragments of the Riccati equation

u′(x) + u2(x) + p(x)u(x) + r(x) = 0,

of the form

u′(x) + u2(x) + p(x)u(x) = 0, (1.11)

or

u′(x) + p(x)u(x) + r(x) = 0. (1.12)

He identified (1.11) as the Bernoulli fragment, and (1.12) as the linear fragment.
This paper is organized as follows. In the remainder of this section, we present the
q-notations and concepts required in the next sections. In Sect. 2, we provide a q-
analogue of Conway’s indefinite integral formula in (1.10) to the q-setting, along
with applications to q-hypergeometric functions, q-Legendre polynomials, discrete
q-Hermite I and II polynomials, the q-Airy function, and the Ramanujan function.
Section3 contains applications to the discrete q-Hermite I and II polynomials, the q-
Airy function, and the Ramanujan function. In Sect. 4, we introduce new q-integrals
by setting u(x) = a

x +b, with appropriate choice of a and b in (6.2) and (6.4). Finally,
we added an appendix for all q-special functions, we used in this paper.

Throughout this paper, q is a positive number less than 1, N is the set of positive
integers, andN0 is the set of non-negative integers. We use I to denote an interval with
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884 G. E. Heragy et al.

zero or infinity as an accumulation point. We follow Gasper and Rahman [11] for the
definitions of the q-shifted factorial, q-gamma, q-beta function, and q-hypergeometric
series.

Aq-natural number [n]q is definedby [n]q = 1−qn

1−q , n ∈ N0. Jackson’sq-derivative
of a function f is denoted by Dq f (x) and is defined as

Dq f (x) =
{

f (x)− f (qx)
(1−q)x , if x �= 0;

f ′(0), if x = 0,
(1.13)

provided that f ′(0) exists (see [13–15]). Jackson’s q-integral of a function f is defined
by

a∫

0

f (t)dq t := (1 − q)a
∞∑
n=0

qn f (aqn), a ∈ R, (1.14)

provided that the corresponding series in (1.14) converges, see [16].
The fundamental theorem of q-calculus [1, Eq. (1.29)]

a∫

0

Dq f (t)dq t = f (a) − lim
n→∞ f (aqn). (1.15)

If f is continuous at zero, then

a∫

0

Dq f (t)dq t = f (a) − f (0).

2 q-Integrals from Riccati fragments

In this section, we extend Conway’s result (1.10) to functions satisfying homogenous
second-order q-difference equation of the form (1.2) or (1.5). Consider the q-Riccati
equations

1

q
Dq−1u(x) + 1

q
u(x)u(x/q) + A(x)u(x/q) + r(x) = 0, (2.1)

and

Dqu(x) + u(x)u(qx) + Ã(x)u(qx) + r(x) = 0, (2.2)
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Indefinite q-integrals from a method using q-Riccati equations 885

where A(x) and Ã(x) are defined as in (2.5) and (2.11), respectively. We can prove
that Eqs. (2.1), (2.2) are equivalent to Eqs. (1.2), (1.5) by setting Dq y(x)

y(x) = u(x)(
Dq−1 y(x)

y(x) = u(x)

)
, respectively. This leads to Theorems 2.1 and 2.2 below.

Theorem 2.1 Let y(x) and f (x) be solutions of Eqs. (1.2) and (1.3) in an open interval
I , respectively. Let u(x)bea continuous functionon I andh(x)beanarbitrary function
satisfying

Dqh(x) = u(x)h(x) (x ∈ I ). (2.3)

Then,

∫
f (x)h(x/q)

( 1
q
Dq−1u(x) + 1

q
u(x)u(x/q) + A(x)u(x/q) + r(x)

)
y(x)dq x

= f (x/q)h(x/q)
(
y(x/q)u(x/q) − Dq−1 y(x)

)
, (2.4)

where the functions p(x), r(x) are defined as in (1.2) and

A(x) = p(x) − 1

q
x(1 − q)r(x). (2.5)

Proof Equation (1.1) can be written as

∫
f (x)h(x/q)

[
1

q

Dq−1Dqh(x)

h(x/q)
+ p(x)

Dq−1h(x)

h(x/q)
+ r(x)h(x)

h(x/q)

]
y(x)dq x

= f (x/q)h(x/q)
[
y(x/q)

Dq−1h(x)

h(x/q)
− Dq−1 y(x)

]
. (2.6)

Then, from (2.3), we get

Dq−1u(x) = Dq−1

(Dqh(x)

h(x)

)
= h(x)Dq−1Dqh(x) − Dqh(x)Dq−1h(x)

h(x)h(x/q)
.

Hence,

Dq−1Dqh(x)

h(x/q)
= Dq−1u(x) + Dq−1h(x)

h(x/q)
u(x)

= Dq−1u(x) + u(x)u

(
x

q

)
. (2.7)
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886 G. E. Heragy et al.

Also,

r(x)
h(x)

h(x/q)
= r(x)

h(x/q)

(
h(x/q) + (

1 − 1

q

)
xDq−1h(x)

)

= r(x)

(
1 + (

1 − 1

q

)
xu

( x
q

))
. (2.8)

Substituting with (2.7) and (2.8) into (2.6), we get (2.4) and completes the proof. ��

Theorem 2.2 Let y(x) and F(x) be solutions of Eqs. (1.5) and (1.6) in an open interval
I , respectively. Let u(x)bea continuous function on I and k(x)beanarbitrary function
satisfying

Dq−1k(x) = u(x)k(x) x ∈ I . (2.9)

Then,

∫
F(x)k(qx)

(
Dqu(x) + u(x)u(qx) + Ã(x)u(qx) + r(x)

)
y(x)dq x

= F(x)k(x)
(
y(x)u(x) − Dq−1 y(x)

)
, (2.10)

where the functions p(x), r(x) are defined as in (1.5) and

Ã(x) = p(x) + x(1 − q)r(x). (2.11)

Proof The proof follows similarly as the proof of Theorem 2.1 and is omitted. ��

The q-integrals presented in the sequel are obtained by choosing the function u(x)
to be a solution of a fragment of the q-Riccati equations (2.1) or (2.2). Bernoulli and
linear fragments of (2.1) are defined as

1

q
Dq−1u(x) + 1

q
u(x)u(x/q) + A(x)u(x/q) = 0, (2.12)

1

q
Dq−1u(x) + p(x)u(x/q) + r(x) = 0, (2.13)

respectively. Similarly, the Bernoulli and linear fragments of (2.2) are defined as

Dqu(x) + u(x)u(qx) + Ã(x)u(qx) = 0, (2.14)

and

Dqu(x) + p(x)u(qx) + r(x) = 0, (2.15)
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Indefinite q-integrals from a method using q-Riccati equations 887

respectively. The trivial solution u(x) = 0 of (2.12) implies that h(x) = c is a solution
of (2.3), where c is a non-zero constant. Then, (2.4) becomes

∫
f (x)r(x)y(x)dq x = − f (x/q)Dq−1 y(x). (2.16)

Similarly, the trivial solution u(x) = 0 of (2.14) implies that k(x) = c is a solution
of (2.9), where c is a non-zero constant. Then, (2.10) becomes

∫
F(x)r(x)y(x)dq x = −F(x)Dq−1 y(x). (2.17)

Theorem 2.3 If g(x) is a solution of the first-order q-difference equation

1

q
Dq−1g(x) = A(x)g(x), g(0) = 1, (2.18)

where A(x) is the function which is defined in (2.5). Then,

u(x) = 1

g(x)
∫ x
0

1
g(t)dq t

, x ∈ I , (2.19)

is a solution of (2.12) and (2.4) takes the form

∫
f (x)h(x/q)r(x)y(x)dq x = f (x/q)h(x/q)

(
y(x/q)u(x/q) − Dq−1 y(x)

)
.

(2.20)

Proof In Theorem 2.1, we choose u(x) to be a solution of (2.12). This produces (2.20).
But one can verify that if we set u(x) = 1

v(x) , then (2.12) takes the form

Dq−1v(x) − q A(x)v(x) = 1, (2.21)

which can be rewritten as Dq−1

(
v(x)
g(x)

)
= 1

g(x/q)
or equivalently, Dq

(
v(x)
g(x)

)
= 1

g(x) .

Hence, from (1.15), we get v(x) = g(x)
∫ x
0

1
g(t)dq t . Hence, u(x) = 1

v(x) is defined as
in (2.19). ��
Theorem 2.4 Assume that g(x) is defined as in Theorem 2.3 in an interval I containing
zero. Then,

g(x)h(x) = 1

u(x)
.

Proof From (2.3),

Dqh(x)

h(x)
= u(x) =

1
g(x)∫ x

0
1

g(t)dq t
.
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888 G. E. Heragy et al.

Hence,

Dq

(
h(x)∫ x

0
1

g(t)dq t

)
= 0.

Therefore,

h(x) = c

x∫

0

1

g(t)
dq t,

where c is a constant, we can choose c = 1. Hence,

g(x)h(x) = g(x)

x∫

0

1

g(t)
dq t = 1

u(x)
.

��

Theorem 2.5 Let I be an interval containing zero. Let p(x) and r(x) be continuous
functions at zero. If f (x) is a solution of Eq. (1.3), then

u(x) = −1

f (x)

qx∫

0

f (t)r(t)dq t, (2.22)

is a solution of Eq. (2.13) in I and (2.4) takes the form

∫
f (x)h(x/q)

(
1

q
u(x)u(x/q) + 1

q
xr(x)(q − 1)u(x/q)

)
y(x)dq x

= f (x/q)h(x/q)
(
y(x/q)u(x/q) − Dq−1 y(x)

)
. (2.23)

Proof Multiplying both sides of (2.13) by f (x), we obtain

Dq−1

(
f (x)u(x)

)
= −q f (x)r(x),

or equivalently

Dq

(
f (x)u(x)

)
= −q f (qx)r(qx).

Hence, from (1.15), we get (2.22). If u(x) is a solution of the q-linear fragment
(2.13), then from (2.4), we obtain (2.23) and completes the proof. ��
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Indefinite q-integrals from a method using q-Riccati equations 889

3 q-Integrals from the Bernoulli fragment

This section contains indefinite q-integrals that are derived from the q-Bernoulli frag-
ment (2.12).

Theorem 3.1

∫
x cos(x; q) 2φ1

(
0, q; q3; q2, −x2

q
(1 − q)2

)
dq x

= −
q(q; q2)∞ cos

(
x
q ; q

)

(1 − q)

(
−x2
q (1 − q)2; q2

)
∞

+ √
qx sin

(
q

−1
2 x; q

)
2φ1

(
0, q; q3; q2, −x2

q
(1 − q)2

)
,

(3.1)∫
x sin(x; q) 2φ1

(
0, q; q3; q2, −x2

q
(1 − q)2

)
dq x

= −x cos(q
−1
2 x; q) 2φ1

(
0, q; q3; q2, −x2

q
(1 − q)2

)
− q(q; q2)∞ sin(x/q; q)

(1 − q)

(
−x2
q (1 − q)2; q2

)
∞

.

(3.2)

Proof By comparing Eq. (A4) with Eq. (1.2), we get p(x) = 0 and r(x) = −1. Then,
f (x) = 1 is a solution of (1.3) and g(x) = (−q(1 − q)2x2; q2)∞ is a solution of
(2.18) with A(x) = x

q (1 − q). By Theorem 2.3,

u(x) = 1

x(1 − q) 2φ1(−q(1 − q)2x2, q2; 0; q2, q)
,

using (A19), we get

u(x) = (q; q2)∞
x(1 − q)(−q(1 − q)2x2; q2)∞ 2φ1(0, q; q3; q2,−q(1 − q)2x2)

.

By Theorem 2.4,

h(x) = x(1 − q) 2φ1(0, q; q3; q2,−q(1 − q)2x2)

(q; q2)∞ .

Substituting with u(x), f (x), and h(x) into (2.20) and using the q-difference equa-
tions (A7) and (A8), we get (3.1) and (3.2), respectively. ��
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890 G. E. Heragy et al.

Theorem 3.2 Let 2φ1(qa, qb; qc; q, x) be the q-hypergeometric functions, a, b, and
c are real numbers, c < 1, δ > a + b − c, and c �= q−n, n ∈ N0. Then,

∫
(x; q)a+b−c 2φ1(q

a+b−c−δ+1, q1−c; q2−c; q, qδ−1x) 2φ1(q
a, qb; qc; q, x) dq x

= x

[c]q
(
x

q
; q

)
a+b+1−c

2φ1

(
qa+b−c−δ+1, q1−c; q2−c; q, qδ−1x

)
2φ1

×
(
qa+1, qb+1; qc+1; q,

x

q

)
+ μ[c − 1]q

[a]q [b]q
(
x

q
; q

)
δ
2φ1

(
qa, qb; qc; q,

x

q

)
,

where qδ = qa + qb − qa+b and μ = qc+1−c(a+b−c).

Proof By comparing (A17) with Eq. (1.2), we get

p(x) = [c]q − [a + b + 1]q x
q

qcx(1 − qa+b−cx)
, and r(x) = − [a]q [b]q

qcx(1 − qa+b−cx)
.

Then,

f (x) = xc
(x; q)∞

(xqa+b−c+1; q)∞
= xc(x; q)a+b+1−c,

is a solution of (1.3)

g(x) = xc
(qδx; q)∞

(xqa+b−c+1; q)∞
= xc(qδx; q)a+b+1−δ−c,

satisfies (2.18). By Lemmas 2.3 and A.1, we have

u(x) = q(1−c)(a+b−c)x−c

(qδx; q)a+b+1−δ−c Bq(1 − c, c − a − b + δ; qa+b−cx)
,

satisfies (2.21). Therefore, by Theorem 2.4, we obtain

h(x) = 1

g(x)u(x)
= q(c−1)(a+b−c)Bq(1 − c, c − a − b + δ; qa+b−cx).

By substituting with f (x), h(x), and u(x) into (2.20), we get

∫
xc−1(x; q)a+b−c Bq

(
1 − c, c − a − b + δ; qa+b−c−1x

)
2φ1

(
qa, qb; qc; q, x

)
dq x

= xc

[c]q
(
x

q
; q

)
a+b+1−c

Bq

(
1 − c, c − a − b + δ; qa+b−c−1x

)
2φ1

(
qa+1, qb+1; qc+1; q,

x

q

)

− qc−(c−1)(a+b−c)

[a]q [b]q
(
x

q
; q

)
δ
2φ1

(
qa, qb; qc; q,

x

q

)
,
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where Bq(α, β; x) is a function defined in (A18). Using (A18) and (A19), we get the
desired result. ��
Theorem 3.3 If y(x) = x1−c

2φ1(qa+1−c, qb+1−c; q2−c; q, x), c < 1, δ > a+ b− c,
and qc �= qn+2, n ∈ N0, is the q-hypergeometric functions. Then,

∫
x1−c(x; q)a+b−c 2φ1

(
qa+b−c−δ+1, q1−c; q2−c; q, qδ−1x

)
2φ1

×
(
qa+1−c, qb+1−c; q2−c; q, x

)
dq x

= λx2−c
(
x

q
; q

)
a+b+1−c

2φ1

(
qa+b−c−δ+1, q1−c; q2−c; q, qδ−1x

)
2φ1

×
(
qa+2−c, qb+2−c; q2−c; q2, x

q

)

+ μ[c − 1]q
[a]q [b]q

(
x

q
; q

)
δ

x1−c
2φ1

(
qa+1−c, qb+1−c; q2−c; q,

x

q

)
,

whereλ = [a + 1 − c]q [b + 1 − c]q
q1−c[a]q [b]q , μ = q−c(a+b−c−2), and qδ = qa + qb− qa+b.

Proof By substituting with f (x), h(x), and u(x) as in Theorem 3.2 and y(x) =
x1−c

2φ1(qa+1−c, qb+1−c; q2−c; q, x) into (2.20) and using (A18) and (A19), we get
the desired result. ��

Theorem 3.4 If y(x) = x−a
2φ1

(
qa, qa+1−c; qa+1−b; q,

qc−a−b+1

x

)
, c < 1, δ > a +

b − c, and qa �= qb−n−1, n ∈ N0 is the q-hypergeometric functions. Then,

∫
(x; q)a+b−cx

−a
2φ1

(
qa+b−c−δ+1, q1−c; q2−c; q, qδ−1x

)
2φ1

×
(
qa, qa+1−c; qa+1−b; q,

qc−a−b+1

x

)
dq x

= λx3−a
(
x

q
; q

)
a+b+1−c

2φ1

(
qa+b−c−δ+1, q1−c; q2−c; q, qδ−1x

)
2φ1

×
(
qa+2, qa+2−c; qa+2−b; q,

qc−a−b+1

x

)

+ μ[c − 1]q
[a]q [b]q

(
x

q
; q

)
δ

x−a
2φ1

(
qa, qa+1−c; qa+1−b; q,

qc−a−b+2

x

)
,

where λ = −q2−a−b+c[a + 1]q [a + 1 − c]q
[b]q [a + 1 − b]q , μ = q(a+1)+c(1−a−b+c), and qδ

= qa + qb − qa+b.
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892 G. E. Heragy et al.

Proof By substituting with f (x), h(x), and u(x) as in Theorem 3.2 and y(x) =
x−a

2φ1

(
qa, qa+1−c; qa+1−b; q,

qc−a−b+1

x

)
into (2.20) and using (A18) and (A19),

we get the desired result. ��

4 q-Integrals from the linear fragment

In the following results, we obtain new indefinite q-integrals from the linear fragment
(2.13).

Theorem 4.1 If | a |<
√

q
1−q , then

a∫

0

x2

(x2q−1(1 − q); q2)∞ cos(x; q)dq x

= q( a2
q (1 − q); q2)∞

(
a cos

(
a

q
; q

)
+ √

q sin
(
q

−1
2 a; q))

, (4.1)

a∫

0

x2(
x2q−1(1 − q); q2

)
∞

sin(x; q)dq x

= q(
a2
q (1 − q); q2

)
∞

(
a sin

(a
q

; q) − cos(q
−1
2 a; q)

)
+ q, (4.2)

where sin(x; q) and cos(x; q) are defined in (A5) and (A6), respectively.

Proof From (A4), we have p(x) = 0 and r(x) = −1. Then, f (x) = 1 is a solution of
(1.3). By Theorem 2.5, the function u(x) = qx is a solution of (2.13). Hence,

h(x) = 1

(qx2(1 − q); q2)∞ , (4.3)

is a solution of (2.3). Substituting with u(x) and h(x) into (2.23) and using the q-
difference equations (A7) and (A8), we get (4.1) and (4.2), respectively. ��
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Theorem 4.2 Let n ∈ N. If pn(x;−1; q) is the big q-Legendre polynomial which is

defined in (A22), rn = 2−q−n−qn+1

1−q , then

∫ x2
(
x2; q2

)
∞

(rnx2; q2)∞ pn(x;−1; q)dq x

=
qn+2

(
x2

q2
; q2

)
∞

[n]q [n + 1]q
(

rn x2

q2
; q2

)
∞

(
−q2 − x2

1 + q
pn−1(x;−q; q) − xpn

(
x

q
;−1; q

))
.

(4.4)

Proof By comparing (A23) with (1.2), we get

p(x) = −x(1 + q)

q2(1 − x2)
, r(x) = [n]q [n + 1]q

q1+n(1 − x2)
.

Then, f (x) = (1 − x2) is a solution of (1.3). From (2.22), we have

u(x) = −q−n[n]q [n + 1]q x

1 − x2
,

and h(x) =

(
x2;q2

)
∞(

rn x2;q2
)

∞

is a solution of (2.3). By substituting with u(x) and h(x) into

(2.23) and using the q-difference equation

Dq−1 pn(x;−1; q) = q1−n[n]q [n + 1]q
1 + q

pn−1(x;−q; q), (4.5)

we get (4.4). ��

Theorem 4.3 Let n ∈ N. If pn(x |q) is the little q-Legendre polynomials defined in

(A24), rn = 2−q−n−qn+1

1−q , then

∫
x(qx; q)∞
(qrnx; q)∞

pn(x |q)dq x

= qnx(x; q)∞
[n]q [n + 1]q(rnx; q)∞

(
1

q
(1 − x) 2φ1

(
q−n+1, qn+2; q2; q, x

)
− pn

(
x

q
|q

))
.

(4.6)
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Proof By comparing Eq. (A25) with (1.2), we get

p(x) = qx + x − 1

qx(qx − 1)
, r(x) = [n]q [n + 1]q

qnx(1 − qx)
.

Then, f (x) = x(1 − qx) is a solution of (1.3). From (2.22), we get u(x) =
−q1−n [n]q [n+1]q

(1−qx) , h(x) satisfies the q-difference equation (2.3). Consequently, h(x) =
(qx;q)∞

(rnqx;q)∞ . By substituting with u(x) and h(x) into (2.23) and using the q-difference
equation

Dq−1 pn(x |q) = −q−n[n]q [n + 1]q 2φ1(q
1−n, qn+2; q2; q, x), (4.7)

we get (4.6). ��

5 q-Integrals from arbitrary parts from Riccati equation

In this section, we discuss an approach that chooses u(x) to be a solution of a fragment
of the Riccati equation, where a fragment is an equation obtained from Riccati’s
equation by deleting one or more of the terms.

Theorem 5.1 Let n ∈ N and c be a real number. If hn(x; q) is the discrete q-Hermite
I polynomial of degree n which is defined in (A9), then

∫
(q2x2; q2)∞

(
(cq + x)[n]q − x

)
hn(x; q)dq x

= qn−1(1 − q)(x2; q2)∞
(
qhn

(
x

q
; q

)
− [n]q (cq + x)hn−1

(
x

q
; q

))
, (5.1)

∫
x(q2x2; q2)∞hn(x; q)dq x = qn−1(x2; q2)∞

[n − 1]q
(

(1 − q)hn

(
x

q
; q

)
− 1 − qn

q
xhn−1

(
x

q
; q

))
,

(5.2)∫
(q2x2; q2)∞

(q−(n+1)x2; q2)∞ hn(x; q)dq x

= (x2; q2)∞
[n + 1]q (q−(n+1)x2; q2)∞

(
xhn

(
x

q
; q

)
− qn(1 − qn)hn−1

(
x

q
; q

))
, (5.3)

and

∫
xn−2

(
q2x2; q2

)
∞
hn(x; q)dq x = xn(x2; q2)∞

[n − 1]q

⎛
⎜⎜⎝
hn

(
x
q ; q

)

x
− 1

q
hn−1

(
x

q
; q

)
⎞
⎟⎟⎠ .

(5.4)
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Proof The discrete q-Hermite I polynomial of degree n is defined in (A9) and satisfies
the second-order q-difference equation (A10). By comparing (A10) with (1.2), we get

p(x) = − x

1 − q
, r(x) = q1−n[n]q

1 − q
. (5.5)

Then,

f (x) = (q2x2; q2)∞ (5.6)

is a solution of (1.3). Therefore Eq. (2.4) becomes

∫
(q2x2; q2)∞h(x/q)

(
1

q
Dq−1u(x) + 1

q
u(x)u(x/q) − q−nx

1 − q
u(x/q) + q1−n[n]q

(1 − q)

)
y(x)dq x

= (x2; q2)∞h(x/q)
(
y(x/q)u(x/q) − Dq−1 y(x)

)
. (5.7)

By taking the fragment

Dq−1u(x) + u(x)u(x/q) = 0, (5.8)

we get

u(x) = 1

x + c
. (5.9)

Hence,

h(x) =
{
1 + x

c , ifc �= 0;
x, if c = 0,

(5.10)

is a solution of (2.3). Substituting with the values of h(x) into (5.7) and using

Dq−1hn(x; q) = [n]qhn−1

(
x

q
; q

)
, (5.11)

see [17, Eq. (3.28.7)], we get (5.1) for c �= 0 and (5.2) for c = 0. To prove (5.3), we
consider the fragment

1

q
u(x)u(x/q) − q−nx

1 − q
u(x/q) = 0,

then u(x) = q1−n

1−q x and h(x) = 1

(q1−nx2; q2)∞ is a solution of (2.3). Substituting

with h(x) and u(x) into (5.7) and using (5.11), we get (5.3). Finally, the proof of (5.4)
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follows by taking the fragment

− q−nx

1 − q
u(x/q) + q1−n[n]q

(1 − q)
= 0.

In this case, u(x) = [n]q
x and h(x) = xn is a solution of (2.3). Substituting with

h(x) and u(x) into (5.7) and using (5.11), we get (5.4). ��

Theorem 5.2 Let n ∈ N and c be a real number. If h̃n(x; q) is the discrete q-Hermite
II polynomial of degree n which is defined in (A11), then

∫
1

(−x2; q2)∞
(
qx[n − 1]q + c[n]q

)
h̃n(x; q)dq x

= 1 − q

(−x2; q2)∞
(
h̃n(x; q) − q1−n[n]q (c + x )̃hn−1(x; q)

)
, (5.12)

∫
x

(−x2; q2)∞ h̃n(x; q)dq x = 1 − q

[n − 1]q (−x2; q2)∞
(
1

q
h̃n(x; q) − q−n[n]q xh̃n−1(x; q)

)
,

(5.13)∫
(−qn+3x2; q2)∞

(−x2; q2)∞ h̃n(x; q)dq x

= (−qn+1x2; q2)∞
[n + 1]q (−x2; q2)∞

(
qnxh̃n(x; q) − q1−n(1 − qn )̃hn−1(x; q)

)
, (5.14)

and

∫
xn−2

(−x2; q2)∞ h̃n(x; q)dq x = xn

[n − 1]q(−x2; q2)∞
(
h̃n(x; q)

x
− h̃n−1(x; q)

)
.

(5.15)

Proof The discrete q-Hermite II polynomial of degree n is defined in (A11) and sat-
isfies the second-order q-difference equation (A12). By comparing (A12) with (1.5),
we get

p(x) = − x

1 − q
, r(x) = [n]q

1 − q
.

Then, F(x) = 1
(−x2;q2)∞ is a solution of (1.6), and (2.10) becomes

∫
k(qx)

(−x2; q2)∞
(
Dqu(x) + u(x)u(qx) − qnx

(1 − q)
u(qx) + [n]q

(1 − q)

)
y(x)dq x

= k(x)

(−x2; q2)∞
(
y(x)u(x) − Dq−1 y(x)

)
. (5.16)
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Consider the fragment

Dqu(x) + u(x)u(qx) = 0. (5.17)

Hence,

u(x) = 1

x + c
(5.18)

and

k(x) =
{
1 + x

c , ifc �= 0;
x, if c = 0,

(5.19)

is a solution of (2.9). Substituting with u(x) and the values of k(x) into (5.16), and
using [17, Eq. (3.29.7)] (with x is replaced by x

q )

Dq−1 h̃n(x; q) = q1−n[n]q h̃n−1(x; q), (5.20)

we get (5.12) for c �= 0 and (5.13) for c = 0. The fragment

u(x)u(qx) − qnx

1 − q
u(qx) = 0.

Then, u(x) = qn

1−q x and k(x) = (−qn+1x2; q2)∞ is a solution of (2.9). Substitut-

ing with k(x) into (5.16), we get (5.14). Similarly, to prove (5.15), we consider the
fragment

− qnx

1 − q
u(qx) + [n]q

1 − q
= 0,

then we obtain u(x) = q1−n[n]q 1
x
and k(x) = xn . Substituting with u(x) and k(x)

into (5.16) yields (5.15). ��
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Theorem 5.3 Let c be a real number. If Aiq(x) is the q-Airy function which is defined
in (A13), then

∞∑
n=0

(−1)nqn
(
c − 1 + q2 + qnx

)
Aiq(q

nx)

= qc + x

q(1 + q)
1φ1(0;−q2; q,−x) − (1 − q)Aiq

(
x

q

)
, (5.21)

∞∑
n=0

(−1)nqn
(
1 − q2 − qnx

)
Aiq(q

nx)

= (1 − q)Aiq(
x

q
) − x

q(1 + q)
1φ1(0;−q2; q,−x), (5.22)

∞∑
n=0

qn+1
(
q − q3 − qnx

)
(−q−3x; q)n Aiq(q

nx)

= − x

1 + q
1φ1(0;−q2; q,−x) +

(
q(1 + q) + x

q

)
Aiq

(
x

q

)
. (5.23)

Proof The q-Airy function is defined in (A13) and satisfies the second-order q-
difference equation (A14). By comparing (A14) with (1.2), we get

p(x) = − 1 + q

q(1 − q)x
, r(x) = 1

q(1 − q)2x
. (5.24)

By taking the fragment (5.8), we get u(x) and h(x) as in (5.9) and (5.10), respec-
tively. Therefore, (2.4) takes the form

∫
f (t)h(t/q)

(
−q(1 + q) + t

q2(1 − q)t
u(t/q) + 1

q(1 − q)2t

)
y(t)dq t

= f (x/q)h(x/q)
(
y(x/q)u(x/q) − Dq−1 y(x)

)
. (5.25)

Denote the right hand side of Eq. (5.25) by H(x). I.e

H(x) = f (x/q)h(x/q)
(
y(x/q)u(x/q) − Dq−1 y(x)

)
.

Then, from (1.15), we obtain

x∫

0

f (t)h(t/q)

(
−q(1 + q) + t

q2(1 − q)t
u(t/q) + 1

q(1 − q)2t

)
y(t)dq t = H(x) − lim

n→∞ H(qnx).

(5.26)

123



Indefinite q-integrals from a method using q-Riccati equations 899

From (1.3), we obtain f (qx) = −q f (x),

n−1∏
k=0

f (qk+1x)

f (qkx)
=

n−1∏
k=0

(−q),

then we get

f (qnx) = (−1)nqn f (x) (n ∈ N0). (5.27)

Since

Dq−1 Aiq(x) = 1

1 − q2
1φ1(0;−q2; q,−x), (5.28)

and using the value of h(x) at c �= 0, we get

H(x) = f (x)

cq

(
cq + x

q
(
1 − q2

) 1φ1(0;−q2; q,−x) − Aiq(
x

q
)

)
. (5.29)

Hence, lim
n→∞ H(qnx) = 0. From (1.14),(5.9), (5.10) with c �= 0 and (5.26), we

obtain

∫ x

0
f (t)h(t/q)

(
−q(1 + q) + t

q2(1 − q)t
u(t/q) + 1

q(1 − q)2t

)
y(t) dq t

= f (x)

cq(1 − q)

∞∑
n=0

(−q)n
(
c − 1 + q2 + qnx

)
y(qnx) = H(x). (5.30)

Combining Eqs. (5.29) and (5.30) yields (5.21). Substituting with the value of
h(x) = x at (c = 0) yields (5.22). Now, we prove (5.23), by taking the fragment

1

q
u(x)u(x/q) − q(1 + q) + x

q2(1 − q)x
u(x/q) = 0,

which implies that u(x) = q(1 + q) + x

q(1 − q)x
. Since h(x) satisfies (2.3), then

h(qx) = −
(
q + x

q

)
h(x),

n−1∏
k=0

h(qk+1x)

h(qkx)
=

n−1∏
k=0

(−q)k+1
(
1 + qk−2x

)
,
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then we get

h(qnx) = (−q)n+1
(−x

q2
; q

)
n
h(x)

(
n ∈ N0

)
. (5.31)

Substituting with u(x) into (2.4) and using equations (5.27), (5.28), and (5.31), we
get (5.23). ��

Theorem 5.4 Let c ∈ R. If Aq(x) is the Ramanujan function which is defined in (A15),
then

∞∑
n=0

q
n(n+1)

2 xn
(
1 − q + qc + qn+2x

)
Aq (qnx) = (1 − q)Aq

(
x

q

)
− (cq + x)Aq (qx),

(5.32)
∞∑
n=0

q
n(n+1)

2 xn
(
1 − q + qn+2x

)
Aq (qnx) = (1 − q)Aq

(
x

q

)
− x Aq (qx), (5.33)

∞∑
n=0

(
1 − q2 + qn+2x

)
(x; q)n Aq (qnx) = x(1 + q) − q

q
Aq

(
x

q

)
− x2

q
Aq (qx). (5.34)

Proof The Ramanujan function is defined in (A15) and satisfies the second-order q-
difference equation (A16). By comparing (A16) with (1.2), we get

p(x) = 1 − qx

q(1 − q)x2
, r(x) = 1

(1 − q)2x2
. (5.35)

By taking the fragment (5.8), we get u(x) and h(x) as in (5.9) and (5.10), respec-
tively. Therefore, (2.4) takes the form

∫
f (t)h(t/q)

(
1 − t(1 + q)

q(1 − q)t2
u(t/q) + 1

(1 − q)2t2

)
y(t)dq t

= f (x/q)h(x/q)
(
y(x/q)u(x/q) − Dq−1 y(x)

)
. (5.36)

Denote the right hand side of Eq. (5.36) by G(x). That is

G(x) = f (x/q)h(x/q)
(
y(x/q)u(x/q) − Dq−1 y(x)

)
.

Then, from (1.15), we get

∫ x

0
f (t)h(t/q)

(
1 − t(1 + q)

q(1 − q)t2
u(t/q) + 1

(1 − q)2t2

)
y(t)dq t = G(x) − lim

n→∞G(qnx).

(5.37)
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From (1.3), we obtain f (qx) = q2x f (x). Consequently,

n−1∏
k=0

f (qk+1x)

f (qkx)
=

n−1∏
k=0

qk+2x (n ∈ N0),

then

f (qnx) = q2n+ n(n−1)
2 xn f (x)

(
n ∈ N0

)
. (5.38)

Since

Dq−1 Aq(x) = q

1 − q
Aq(qx), (5.39)

substituting with the value of h(x) at c �= 0, then

G(x) = f (x)

cqx

(
Aq

(
x

q

)
− (cq + x)

1 − q
Aq(qx)

)
. (5.40)

Hence, lim
n→∞G(qnx) = 0. From (1.14), (5.9), (5.10) with c �= 0 and (5.37), we

obtain

∫ x

0
f (t)h(t/q)

(
−q(1 + q) + t

q2(1 − q)t
u(t/q) + 1

q(1 − q)2t

)
y(t) dq t

= f (x)

cq(1 − q)

∞∑
n=0

q
n(n−3)

2 xn−1
(
1 − q + qc + qn+2x

)
y(qnx) = G(x). (5.41)

Combining equations (5.40) and (5.41) yields (5.32). Substituting with the value
of h(x) = x at c = 0 yields (5.33). Now, we prove (5.34), by taking the fragment

1

q
u(x)u(x/q) + 1 − x(1 + q)

q(1 − q)x2
u(x/q) = 0,

which implies that u(x) = x(1+q)−1
(1−q)x2

. Since h(x) satisfies (2.3), then

h(qx) = 1 − qx

x
h(x),

n−1∏
k=0

h(qk+1)x

h(qkx)
=

n−1∏
k=0

1 − qk+1

qkx
,
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then we get

h(qnx) = (qx; q)n

q
n(n−1)

2 xn
h(x) (n ∈ N0). (5.42)

Substituting with u(x) into (2.4) and using (5.38), (5.39), and (5.42), we get (5.34).
��

Theorem 5.5 Let n ∈ N. The following statements are true:

(a) If hn(x; q) is the discrete q-Hermite I polynomial of degree n which is defined in
(A9), then

∫
(q2x2; q2)∞hn(x; q)dq x = −qn−1(1 − q)(x2; q2)∞hn−1

(
x

q
; q

)
. (5.43)

(b) If pn(x; a, b; q) is the big q-Laguerre polynomial of degree n which is defined in
(A26), then

∫
( xa , x

b ; q)∞
(x; q)∞

pn(x; a, b; q)dq x = abq2(1 − q)

(1 − aq)(1 − bq)

(
x
aq , x

bq ; q
)

∞
(x; q)∞

pn−1(x; aq, bq; q).

(5.44)

(c) If α > −1 and Lα
n (x; q) is the q-Laguerre polynomial of degree n which is defined

in (A28), then

∫
xα

(−x; q)∞
Lα
n (x; q)dq x = xα+1

[n]q(−x; q)∞
Lα+1
n−1(x; q). (5.45)

Proof The proof of (a) follows by substituting with r(x) and f (x) from (5.5) and
(5.6), respectively, into (2.16). The proof of (b) follows by comparing (A27) with
(1.2) to get

p(x) = x − q(a + b − qab)

abq2(1 − q)(1 − x)
, r(x) = − q−n−1[n]q

ab(1 − q)(1 − x)
.

Hence, f (x) = ( xa , x
b ; q)∞

(qx; q)∞
is a solution of (1.3). Substituting with r(x) and f (x)

into Eq. (2.16) and using

Dq−1 pn(x; a, b; q) = q1−n[n]q
(1 − aq)(1 − bq)

pn−1(x; aq, bq; q), (5.46)

see [17, Eq. (3.11.7)], we get (5.44). To prove (c), compare (A29) with (1.2) to obtain

p(x) = 1 − qα+1(1 + x)

qα+1x(1 + x)(1 − q)
, r(x) = [n]q

x(1 − q)(1 + x)
.
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Hence, f (x) = xα+1

(−qx; q)∞
is a solution of (1.3). Finally, we prove (5.45) by

substituting with r(x) and f (x) into (2.16) and using

Dq−1Lα
n (x; q) = −qα+1

(1 − q)
Lα+1
n−1(x; q), (5.47)

see [17, Eq. (3.21.8)]. ��
Remark 1 (a) The indefinite q-integral (5.44) is nothing else but [14, Eq. (42)] or [17,

Eq. (3.11.9)] (with n is replaced by n − 1 )

Dq
(
w(x; aq, bq; q)pn−1(x; aq, bq; q)

) = (1 − aq)(1 − bq)

abq2(1 − q)
w(x; a, b; q)pn(x; a, b; q),

where w(x; a, b; q) = ( xb , xa ;q)∞
(x;q)∞ .

(b) The indefinite q-integral (5.45) is equivalent to [14, Eq. (46)] (if m = n ) and to
[17, Eq. (3.21.10)] (if m = 0) (with α is replaced by α + 1 and n is replaced by
n − 1 )

Dq

(
w(x;α + 1; q)Lα+1

n−1(x; q)
)

= [n]qw(x;α; q)Lα
n (x; q),

where w(x;α; q) = xα

(−x; q)∞
.

Theorem 5.6 The following statements are true:

(a) If h̃n(x; q) is the discrete q-Hermite II polynomial of degree n which is defined in
(A11), then

∫
h̃n(x; q)

(−x2; q2)∞ dq x = −q1−n(1 − q)

(−x2; q2)∞ h̃n−1(x; q). (5.48)

(b) If ν is a real number, ν > −1, then

∫ qx2 − q1−ν[ν]2q
x(−x2(1 − q)2; q2)∞ J (2)

ν (x |q2)dq x = −x

(−x2(1 − q)2; q2)∞ Dq−1 J (2)
ν (x |q2).

Proof The proof of (a) follows by substituting with r(x) and F(x) as in the proof of
Theorems (5.2) into Eq. (2.17). To prove (b), compare (A21) with (1.5) to obtain

p(x) = 1 − qλ2x2(1 − q)

x
, r(x) = qλ2x2 − q1−v[v]2q

x2
.

Hence, F(x) = x

(−x2λ2(1 − q)2; q2)∞ is a solution of (1.6). Substituting with

r(x) and F(x) into Eq. (2.17). ��
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Remark 2 The indefinite q-integral (5.48) is equivalent to [14, Eq. (68)] and to

Dq
(
w(x; q )̃hn−1(x; q)

) = qn−1

1 − q
w(x; q )̃hn(x; q),

where w(x; q) = 1
(−x2;q2) , see [17, Eq. (3.29.9)].

Theorem 5.7 The following statements are true:

(a) If Aiq(x) is the q-Airy function which is defined in (A13), then

∞∑
k=0

(−q)k Aiq(q
kx) = 1

1 + q
1φ1(0;−q2; q,−x). (5.49)

(b) If Aq(x) is the Ramanujan function which is defined in (A15), then

∞∑
k=0

q
k(k+1)

2 xk Aq(q
kx) = − 0φ1(−; 0; q,−q2x). (5.50)

(c) If Sn(x; q) is the Stieltjes–Wigert polynomial of degree n (n ∈ N)which is defined
in (A30), then

∞∑
k=0

q
k(k+1)

2 xk Sn(q
kx; q) = 1

1 − qn
Sn−1(qx; q). (5.51)

Proof The proof of (a) follows by substituting with r(x) from (5.24) into (2.16) and
using (5.27) and (5.28). The proof of (b) follows by substituting with r(x) from (5.35)
into (2.16) and using (5.38) and (5.39). To prove (c), compare Eq. (A31) with (1.2) to
get

p(x) = 1 − qx

qx2(1 − q)
, r(x) = [n]q

x2(1 − q)
.

From (1.3), we obtain f (qx) = q2x f (x). Consequently,

k−1∏
j=0

f (q j+1)x

f (q j x)
=

k−1∏
j=0

q j+2x (n ∈ N0),

then

f (qkx) = q2k+
k(k−1)

2 xk f (x) (n ∈ N0). (5.52)

Substituting with r(x) into (2.16) and using (1.14), (5.52), and

Dq−1Sn(x; q) = −q

1 − q
Sn−1(qx; q), (5.53)
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see [17, Eq. (3.27.7)], we get (5.51). ��

6 q-Integrals from substitution of simple algebraic forms

In this section, we substitute into Eq. (2.4) with simple algebraic forms for u(x)which
involve arbitrary constants, such as

u(x) = a

x
+ b, (6.1)

to derive indefinite q-integrals. Set

Sq(x) := 1

q
Dq−1u(x) + 1

q
u(x)u(x/q) + A(x)u(x/q) + r(x). (6.2)

Then, (2.4) will be

∫
f (x)h(x/q)Sq(x)y(x)dq x = f (x/q)h(x/q)

(
y(x/q)u(x/q) − Dq−1 y(x)

)
,

(6.3)

where the constants a and b in Eq. (6.1) are chosen so that Sq(x) has a simple form.
Also, we define

Tq(x) := Dqu(x) + u(x)u(qx) + Ã(x)u(qx) + r(x). (6.4)

Then, (2.10) will be

∫
F(x)k(qx)Tq(x)y(x)dq x = F(x)k(x)

(
y(x)u(x) − Dq−1 y(x)

)
. (6.5)

Theorem 6.1 Let n ∈ N, n ≥ 2. Let hn(x; q) be the discrete q-Hermite I polynomial
of degree n which is defined in (A9). Then,

∫
x(q2x2; q2)∞hn(x; q)dq x = (1 − q)x(x2; q2)∞

[n]q − 1

(
qn

x
hn

(
x

q
; q

)

−qn−1[n]qhn−1

(
x

q
; q

))
, (6.6)

and

∫
xn−2(q2x2; q2)∞hn(x; q)dq x = xn(x2; q2)∞

[n − 1]q

(
hn(

x
q ; q)

x
− 1

q
hn−1

(
x

q
; q

))
.

(6.7)
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Proof From (A10),

p(x) = − x

1 − q
, r(x) = q1−n[n]q

1 − q
.

Hence, f (x) = (q2x2; q2)∞ is a solution of Eq. (1.3). Set u(x) as in (6.1). Then,

Sq(x) = a(a − 1)

x2
+ ab(1 + q)

qx
+ q1−n([n]q − a) − q−nbx

1 − q
+ b2

q
. (6.8)

If a = 1 and b = 0 in (6.8), then

Sq(x) = q2−n[n − 1]q
1 − q

,

and h(x) = x is a solution of (2.3). By substituting with u(x), Sq(x), and h(x) into
(6.3) and using (5.11), we get (6.6). If a = [n]q and b = 0 in (6.8), then

Sq(x) = q[n]q [n − 1]q 1

x2
.

Hence, h(x) = xn is a solution of (2.3). Substituting with u(x), Sq(x), and h(x) into
(6.3) and using (5.11), we get (6.7). ��
Remark 3 The indefinite q-integral (6.7) is equivalent to (5.4) in Theorem 5.1.

Theorem 6.2 Let n ∈ N, n ≥ 2. Let h̃n(x; q) be the discrete q-Hermite II polynomial
of degree n which is defined in (A11). Then,

∫
x

(−x2; q2)∞ h̃n(x; q)dq x = (1 − q)x

[n − 1]q (−x2; q2)∞
(
h̃n(x; q)

qx
− q−n[n]q h̃n−1(x; q)

)
,

(6.9)

and

∫
xn−2

(−x2; q2)∞ h̃n(x; q)dq x = xn

[n − 1]q(−x2; q2)∞
(
h̃n(x; q)

x
− h̃n−1(x; q)

)
.

(6.10)

Proof From (A12),

p(x) = − x

1 − q
, r(x) = [n]q

1 − q
.

Then, F(x) = 1
(−x2;q2)∞ is a solution of (1.6). Set u(x) as in (6.1), we get

Tq(x) = a(a − 1)

qx2
+ ab(1 + q)

qx
+ [n]q − qn(q−1a + bx)

1 − q
+ b2. (6.11)
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If a = 1 and b = 0 in (6.11), then

Tq(x) = [n − 1]q
1 − q

.

Therefore, k(x) = x is a solution of (2.9). By substituting with u(x), Tq(x), and
k(x) into (6.5) and using Eq. (5.20), we get (6.9). If a = q1−n[n]q and b = 0 in (6.11),
then

Tq(x) = q1−2n[n]q [n − 1]q 1

x2
.

Therefore, k(x) = xn is a solution of (2.9). By substituting with u(x), Tq(x), and
k(x) into (6.5) and using (5.20), we get (6.10). ��
Remark 4 The indefinite q-integral (6.10) is equivalent to [14, Eq. (69)] (if m = n)
and to (5.15) in Theorem 5.2.

Theorem 6.3 Let n ∈ N. If Sn(x; q) is the Stieltjes-Wigert polynomial of degree n
defined in (A30), then

∞∑
k=0

q
k(k−1)

2 +nk xk Sn(q
kx; q) = Sn

(
x

q
; q

)
+ x

1 − qn
Sn−1(qx; q), (6.12)

and

∞∑
k=0

q
k(k+1)

2 xk
(
1 + q2+k[n − 1]q x

)
Sn(q

kx; q) = Sn

(
x

q
; q

)
+ x

1 − q
Sn−1(qx; q).

(6.13)

Proof By comparing (A31) with (1.2), we get

p(x) = 1 − qx

qx2(1 − q)
, r(x) = [n]q

x2(1 − q)
.

Set u(x) as in (6.1). Then,

Sq(x) = b + q[n]q
q(1 − q)x2

+ a(a − [n]q)
x2

+ ab(1 + q) − qb[n − 1]q
qx

+ a(1 − x)

(1 − q)x3
− b

q(1 − q)x
+ b2

q
. (6.14)

We set a = [n]q and b = 0 in (6.14) then

Sq(x) = [n]q
(1 − q)x3

.
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Therefore, h(x) = xn is a solution of (2.3). By substituting with h(x), Sq(x), and
u(x) into (6.3), using (5.52) and (5.53), we get (6.12).

If a = 1 and b = 0 in (6.14), then

Sq(x) = 1 + q2[n − 1]q x
(1 − q)x3

.

Therefore, h(x) = x ia a solution of (2.3). By substituting with h(x), Sq(x), and
u(x) into (6.3) and using (5.52) and (5.53), we get (6.13). ��

7 Conclusions

A method of deriving q-integrals using fragments of q-Riccati equations has been
presented. The method of fragmentation used is analogous to but not equivalent to that
presented in [14]. Only two q-Riccati fragments have been presented here in detail,
and these give the quadrature formulas presented in Eqs. (2.20) and (2.22)–(2.23).

8 Appendix A: q-Functions

Jackson introduced three q-analogues of Bessel functions [11, 16], they are defined
by

J (1)
ν (z; q) := (qv+1; q)∞

(q; q)∞

∞∑
n=0

(−1)n

(q, qv+1; q)n
(z/2)2n+ν, |z| < 2, (A1)

J (2)
ν (z; q) := (qv+1; q)∞

(q; q)∞

∞∑
n=0

(−1)nqn(n+ν)

(q, qv+1; q)n
(z/2)2n+ν, z ∈ C, (A2)

J (3)
ν (z; q) := (qv+1; q)∞

(q; q)∞

∞∑
n=0

(−1)nq
n(n+1)

2

(q, qv+1; q)n
(z)2n+ν, z ∈ C. (A3)

The solutions of the second-order q-difference equation, see [1],

1

q
Dq−1Dq y(x) − y(x) = 0 (x ∈ R), (A4)

under the initial conditions

y(0) = 0, Dq y(0) = 1, and y(0) = 1, Dq y(0) = 0,
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are the functions sin(x; q) and cos(x; q), respectively. The functions sin(z; q) and
cos(z; q) are defined for z ∈ C by

sin(z; q) := (q; q)∞
(q1/2; q)∞

z1/2 J (3)
1/2(z(1 − q); q2) =

∞∑
n=0

(−1)n
qn

2+nz2n+1

�q (2n + 2)
, (A5)

cos(z; q) := (q; q)∞
(q1/2; q)∞

(zq−1/2)1/2 J (3)
−1/2(z(1 − q)/

√
q; q2) =

∞∑
n=0

(−1)n
qn

2
z2n

�q (2n + 1)
.

(A6)

The q-trigonometric functions satisfy the q-difference equations

Dq−1 sin(z; q) = cos

(
q

−1
2 z; q

)
, (A7)

Dq−1 cos(z; q) = −q
1
2 sin

(
q

−1
2 z; q

)
. (A8)

The discrete q-Hermite I polynomial of degree n

hn(x; q) := q(n2) 2φ1

(
q−n, x−1

0,
| q;−qx

)
, n ∈ N0 (A9)

satisfies the second-order q-difference equation, see [17, Eq. (3.28.5)],

1

q
Dq−1Dq y(x) − x

1 − q
Dq−1 y(x) + q1−n[n]q

1 − q
y(x) = 0. (A10)

The discrete q-Hermite II polynomials of degree n

h̃n(x; q) := xn 2φ1

(
q−n, q−n+1

0,
| q2; −q2

x2

)
, n ∈ N0, (A11)

satisfies the second-order q-difference equation, see [17, Eq. (3.29.5)],

1

q
Dq−1Dq y(x) − x

1 − q
Dq y(x) + [n]q

1 − q
y(x) = 0. (A12)

The q-Airy function

Aiq(x) := 1φ1(0;−q; q,−x), (A13)

satisfies the second-order q-difference equation, see [19, Eq. (4)],

1

q
Dq−1Dq y(x) − 1 + q

qx(1 − q)
Dq−1 y(x) + 1

qx(1 − q)2
y(x) = 0. (A14)
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The Ramanujan function

Aq(x) := 0φ1(−; 0; q,−qx), (A15)

satisfies the second-order q-difference equation, see [19, Eq. (5)],

1

q
Dq−1Dq y(x) + 1 − qx

qx2(1 − q)
Dq−1 y(x) + 1

x2(1 − q)2
y(x) = 0. (A16)

The q-hypergeometric series rφs is defined by

rφs

(
a1 a2 . . . ar
b1 b2 . . . bs ,

; q, z

)
=

∞∑
n=0

(a1; q)n(a2; q)n . . . (ar ; q)n

(q; q)n(b1; q)n(b2; q)n . . . (bs; q)n

(
(−1)nq(n2)

)1+s−r
zn,

whenever the series converges, see [11].
The q-hypergeometric functions 2φ1(qa, qb; qc; q, x) satisfy the second-order q-

difference equation [11]

1

q
Dq−1Dq y(x) + [c]q − [a + b + 1]q x

q

x(qc − qa+bx)
Dq−1 y(x) − [a]q [b]q

x(qc − qa+bx)
y(x) = 0.

(A17)

The functions

y1(x) = 2φ1

(
qa, qb; qc; q, x

)
, c �= q−n, n ∈ N0,

y2(x) = x1−c
2φ1

(
qa+1−c, qb+1−c; q2−c; q, x

)
, qc �= qn+2, n ∈ N0,

y3(x) = x−a
2φ1

(
qa, qa+1−c; qa+1−b; q,

qc−a−b+1

x

)
, qa �= qb−n−1, n ∈ N0,

and

y4(x) = x−b
2φ1

(
qb, qb+1−c; qb+1−a; q,

qc−a−b+1

x

)
, qb �= qa−n−1, n ∈ N0,

are solutions of the basic hypergeometric q-difference Eq. (A17), see [11].

Lemma A.1 Let α and β be complex numbers with positive real parts. Then,

Bq(α, β; x) :=
x∫

0

tα−1(qt; q)β−1 dq t

= xα(1 − q)(qx; q)β−1 2φ1(q
βx, q; qx; q, qα), (A18)
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where (qt; q)β−1 = (qt; q)∞
(qβ t; q)∞

.

Proof From (1.14),

Bq(α, β; x) = xα(1 − q)

∞∑
n=0

qnα (qn+1x; q)∞
(qn+βx; q)∞

, (� (α > 0)).

Since (a; q)n = (a; q)∞
(aqn; q)∞

, then

Bq(α, β; x) = xα(1 − q)
(qx; q)∞
(qβx; q)∞

∞∑
n=0

qnα (qβx; q)n(q; q)n

(qx; q)n(q; q)n

= xα(1 − q)(qx; q)β−1 2φ1(q
βx, q; qx; q, qα).

��

It is worth noting that from Lemma A.1,

Bq(α, β; 1) = Bq(α, β) = �q(α)�q(β)

�q(α + β)
.

One of Heine’s transformations of 2φ1 series

2φ1(a, b; c; q, z) = (b, az; q)∞
(c, z; q)∞

2φ1(c/b, z; az; q, b), (A19)

see [11, Eq. (III.1)]. The second Jackson q-Bessel function

J (2)
ν (x |q2) := J (2)

ν (2x(1 − q); q2), (A20)

satisfies the second-order q-difference equation [18]

1

q
Dq−1Dq y(x) + 1 − qx2(1 − q)

x
Dq y(x) + qx2 − q1−v[v]2q

x2
y(x) = 0. (A21)

The big q-Legendre polynomials

pn(x;−1; q) := 3φ2

(
q−n, qn+1, x

q,−q,
| q; q

)
(A22)

satisfy the second-order q-difference equation, see [17, Eq. (3.5.17)],
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1

q
Dq−1Dq y(x) + x(1 + q)

q2(x2 − 1)
Dq−1 y(x) − [n]q [n + 1]q

q1+n(x2 − 1)
y(x) = 0.

(A23)

The little q-Legendre polynomials

pn(x |q) := 2φ1

(
q−n, qn+1

q,
| q; qx

)
(A24)

satisfy the second-order q-difference equation, see [17, Eq. (3.12.16)],

1

q
Dq−1Dq y(x) + qx + x − 1

qx(qx − 1)
Dq−1 y(x) + [n]q [n + 1]q

qnx(1 − qx)
y(x) = 0. (A25)

The big q-Laguerre polynomial

pn(x; a, b; q) := 3φ2

(
q−n, 0, x
aq, bq,

| q; q
)

(A26)

satisfies the second-order q-difference equation, see [17, Eq. (3.11.5)],

1

q
Dq−1Dq y(x) + x − q(a + b − qab)

abq2(1 − q)(1 − x)
Dq−1 y(x) − q−n−1[n]q

ab(1 − q)(1 − x)
y(x) = 0.

(A27)

The q-Laguerre polynomial of degree n

Lα
n (x; q) := 1

(q; q)n
2φ1

(
q−n,−x

0
| q; qn+α+1

)
, α > −1, n ∈ N, (A28)

satisfies the second-order q-difference equation, see [17, Eq. (3.21.6)],

1

q
Dq−1Dq y(x) + 1 − qα+1(1 + x)

qα+1x(1 + x)(1 − q)
Dq−1 y(x) + [n]q

x(1 − q)(1 + x)
y(x) = 0.

(A29)

The Stieltjes–Wigert polynomials

Sn(x; q) := 1

(q; q)n
1φ1

(
q−n

0,
| q;−qn+1x

)
, (n ∈ N0), (A30)
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satisfy the second-order q-difference equation, see [17, Eq. (3.27.5)],

1

q
Dq−1Dq y(x) + 1 − qx

qx2(1 − q)
Dq−1 y(x) + [n]q

x2(1 − q)
y(x) = 0. (A31)
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