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Abstract

Ramanujan in his notebook recorded two modular equations involving multipliers with
moduli of degrees (1,7) and (1,23). In this paper, we find some new Ramanujan-type
modular equations involving multipliers with moduli of degrees (3,5) and (1,15), and
give concise proofs by employing Ramanujan’s multiplier functional equation.
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1 Introduction

Ramanujan defined modular equations as follows: Suppose that

ey

holds for some positive integer n or positive rational fraction n = i/j (i and j are
coprime). The relation between « and 8 induced by the above equation is called a
modular equation of degree n, and we say that 8 over « is of degree n. Let
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— F 1 1.1. — F 1 1.1./3 (2)
21—21 272’ o ’ Zn—21 2’29 ’ .

The multiplier m of the modular equation is defined by

mo= 2L 3)

Zn

Before proceeding to the main theta function identity of this paper, we shall first
recall certain known theta function identities which we need in the sequel. Throughout
the paper, we assume |g| < 1. The following is the well-known Jacobi triple product
identity:

00
f(a,b): — Z an(n+1)/2bn(n71)/2

n=—oo

= (—a; ab)so(—b; ab)(ab; ab)s, |ab| < 1. 4

The two particular facts of f(a, b) (See [1], Entry 22, p. 36), are as follows

0(q) = f(q.q) = (—q; qz)iO (q2; q2)oo,
V@ =1 (a.0°) = (-a:a?) (%07 _- )

Let the base ¢ in the classical theory of elliptic functions be defined by
F (L l; ;1 —«
q=exp<—ﬂ2 1(2 2 )) (6)

We have the following well-known identities (See [1], Entry 10 and 11, pp. 122-123)

2
a=0q). wm=9¢@q" m= ‘Z—(’” )
»=(q™)
and
Vv @) _Ja o) g e VB
9(q) 27 el ' @ (g™ 2
v (q")
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and

Yav(@)  Ya  o(—q») N q"*v(q") VB

o) V2 e VY Teqn T2
p(—q*") — YT=§. )
@ (g™

Ramanujan found and recorded the following modular equations involving multi-
pliers with moduli of degrees 7 and 23, in the case degree (n mod 8) = 7, respectively.

Theorem 1 (See [1], Entry 19, pp. 314-315) If B has degree 7 over o, and m is the
multiplier for degree 7, then

@)+ - - pRE =1, (10)

and

m— % =2(@p) = {1 —a)(1 = P8 2+ (@B)/* + {1 — ) (1 — p)}/Y),

(1D
and Ramanujan’s theta functions form is
2 2(,7
= (q) % (‘I ) 2 2
-7 =202X—Y) (24 2X)2+71?),
o’ (q7) V@ ( ) ( %) )
_ Y@v@) _ v (@) v(e") (12)

To@wea@ ~ v (@)
v (=P p(—q' _ vy (—47)
e(@e(q") v@v(q7)

The Eq. (11) has been proved by B. C. Berndt using the method of parametrization.
Recently, K. R. Vasuki and R. G. Veeresha [2] have given the proof of the equivalent
representation (12) by the theta function identity for degree 7.

Theorem 2 (See [1], Entry 15, p. 411) If B is of the 23 degree over o, and m is the
multiplier for same degree, then

@B+ 11— = Y+ 223 a1 —) (1 = B}/ =1, (13)

and

" %3 =2(@p)"® — {1 )1 = pI'F) (11 = 13- 22 {ep(l —a) (1 = )}/

+18 - 23 ap(1 — a)(1 — B)}/12 — 14{aB(1 —a)(1 — p)}'/3 (14)
+2°P (Bl - a)(1 - HY/°).
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Berndt finished the proof of (14) by the theory of modular forms (See [1], Entry
15, pp. 415-416). Similarly, in this paper, we also find some new Ramanujan-type
modular equations involving multipliers with moduli of degrees (3,5) and (1,15).

2 Some new Ramanujan-type modular equations of degrees 15 and g

The beautiful Ramanujan-type modular equations of degrees 15 and % (See [1], Entry
21, p.435): Let o and B have degrees (n1, n2) = (3, 5); or (1, 15), respectively. Then

@B+ {1 —a)(1 — BB £ {aB(1 — ) (1 — )} /8
1
= \/5(1 +VaB + /A —a)1 — p)).

15)

where the minus sign is chosen in the first case and the plus sign is selected in the last
case.

For modular equations in the form of Russell, we redefine (See [3], Entry 21, p.
435),

nl4n2

P=1+ED" (@) + 11—y - p1),

nl+n2

0 =4 (@S + {1 =1 = BN + (=1 FH @Bl — 1 = pY'F),
R =4(@p(1 —a)(1 - p)'/*.

(16)
If « and B have degrees (11, n2) = (1, 15) (See [3], Entry 21, p. 435), then
P(P>— Q)+ R =0, (17)
and, if o« and B have degrees (11, n3) = (3, 5),
P(P 4+ Q)+ R=0. (18)

We can verify that these two modular equations (17) and (18) are equivalent formula-
tions of (15).

Theorem 3 (new modular equations for degrees (n, n2) = (1, 15)) Let « and B have
degrees (n1,ny) = (1, 15), and m = ZZTIS is the multiplier for degree n = 15. Then
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1. The natural form

=2 =2 (@B~ (1 -1 ')
m
x[143 (@) + (1 )1 - p)'7F)
+3 (@) +{(1 =1 = BN'*) +2@B(1 — )1 — B/
x (3+ @)+ (1 -1 = )] (19)

2. The emphatic form

15
m——==2(@p)* — (1 —a)(1 =P}

x [4\/;(1 +Vap+ /1 —a)1 =) +4— (@f)* + {1 —a)(1 — /3)}1/4)} :

(20)
3. Ramanujan’s theta functions form:
@ 026 [, a V@Y e e(=ae(=q")
¢*(q") 9*(q) o(@)e(g") P(@)e(g")
9@ vgHv g™
4 4 21
X[ (sv(q)sv(q”) 9@ (¢") @y
4 2 30 15
V@IV (@) | e(=pe(—q>)
4— (4
" < v@ead™ | e@e@™ )}

Proof (i). According to Ramanujan’s multiplier function equation (See [1], Entry
24(vi), p. 217), we can write

do _ot(l—oz) 5

n—= m-.
g B —p)

(22)

Let
x:=x) = (aﬂ)l/g,

23
y =y = {1 —a)(1 - )13, 2
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and employing the technique adopted in the proof of modular equation of degree 7 by
Berndt ([1], p316-319), one can deduce that

1
o ::ot(t):—<1+x8—y8+\/1—2x8—2y8—2x8y8+x16+y16>,

2
B = p(t) = % <1 +x¥ -y — \/1 —2x8 —2y8 — 2x8y8 4 x16 +y16> , @9
O<B<a<l,
and using the Egs. (22)—(24), we deduce
n _a(l-aw)dp/dt _ _ocyx’(t) + (I —a)xy'(z) 25)
m? Bl —pyda/dr  Byx'(t)+ (1= B)xy' (1)’
and
(m- g)z _ n(@tpY O +x(—a— B+ Y1) 06
m (ayx'(1) + (1 — a)xy' (1)) (Byx'(t) + (1 — B)xy' (1))

Again, from the Eq. (17), we have the equivalent modular equation of degree 15 in
the form of x and y, it reads

1—x—x2+x3—y—2xy—x2y—y2—xy2+y3=0. 27
From the Eqgs. (19) and (23), we also have
— E — _ 2 2 2 2
m p” =2(x —y)(I1 +3x +3x" +3y +6xy + 2x"y + 3y~ + 2xy°). (28)
Now set
(] (] + 29)
X = — - — , = — — B
2\t ¢ =2\ ¢
using the Eq. (27), we obtain

10’ =141—1° (30)

Solving the above equation for ¢ and noticing that x < y, we get

7x_
Vi 2

N

2

. Vitr—12 1(1 \/l—i—t—tz) 1(1+\/1+z—z2>
= = ) y_ N
/ N

€1y
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Employing (31) and (24) in (26) with n = 15, we deduce

15\2 (141 —12) (1 +5¢ + 562 +33)°
(m——) _ | J(1+ S (32)
m t
and employing (31) in (28), we obtain
15 VT4t —12(145t+56% +383) 33
m——=— .

m t1/2

We can verify that these two Eqs. (32) and (33) are equivalent. So far, we employed
the method of parameterization to prove the modular equation of degree 15 which
involves the multiplier m. O

Proof (ii). Substituting (27) into (28), we obtain

L=(14+3x43x2+3y+6xy+2x>y +3y> +2xy>) = 0
=L—(l—x—-x>+x—y—2xy—x’y—y> —xy2 +y%) (34)
=+ Y@ +y+xy) +4—x" =),

By using the Eq. (15), we can write

1
X+Y+xy=\/§(1+\/0l73+\/(1—a)(l—ﬂ)), (35)

Substituting (34) and (35) into (28), we arrive at

m— 1,75 =202 - y2><4\/%<1 +Vap +/(1 =)= ) +4—x? = y7).36)

which completes the proof. O

Proof (iii). If B over « is degree 15, we employ the identity (See [1],p. 433 eq. (20.6))

1 1—-4J1— 1—-J1—
\/5(1+\/07ﬂ+\/(1—a)(1—ﬂ))=\/ oy p

V2 V2 37)
+\/1+m\/1+m
V2 N/

and translate this identity in form of Ramanujan’s theta functions (See [1], Entry 10
and 11, pp. 122-123)

1 9(q)e(q™) N C Y ACA)
—(1+ + \/ﬁ = +4 , (38
\/2( B tyU=al=F) (@ (q") T @)y (¢") %)
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and use (8), we get

2 30 15
14 _ 44 ¥ @IV @) Ll — gyyi/a = EDeEa™) g
@ T o @e@™ (= =p) P(@eq") 49
Substituting (38) and (39) into (20), we completes the proof. O

Theorem 4 (New modular equations for degrees (n, n2) = (3, 5)) Let « and B have
degrees (n1,nz) = (3,5), and m = ?—2 is the multiplier for degree n = % Then

1. The natural form

5 2
m—=- =2 (@'~ (1 -1 - py')

3m
x[1-3 (@) + (1 -1 - p)'"*)
(40)
+3 (@ 411 = (1 = YY) +2(@B(1 — )1 - p)' /P
x (3= @'F — 11— - py7F)].

2. The emphatic form

2
m= =2 (@) = {1 -1 - p)
x [4\/;(1 +Vap + V(1 —a) (1= p) =4+ (@B + {1 —a)(1 - 5)}1/4)] :
(41)
3. Ramanujan’s theta functions form
0@ _5¢°@) _2 (,v@vE")  e-ade(=q)
02> 3¢%q® 3\ e@de(4d) (@ (¢°)
9@e@'") " @Y E*™)
4 4 42
* [ ( 99 (4°) 0(*)e (%) @
L4y (4CY@OWED) | p(=aDe(=q")
0(@>e (4°) @ (@) )|

The proof of Theorem 4 is similar to the proof of the Theorem 3. Hence we omit
the details.
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