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Abstract
We explore a generalization of theMarkov numbers that is motivated by a specific gen-
eralized cluster algebra arising from an orbifold, in the sense of Chekhov and Shapiro.
We give an explicit algorithm for computing these generalized Markov numbers and
exhibit several patterns analogous to those that appear within the ordinary Markov
numbers. Along the way, we present formulas related to continued fractions and snake
graphs.
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1 Introduction

This article concerns a generalization of Markov numbers. Markov numbers appear
in tuples which are solutions to a certain Diophantine equation.

Definition 1 A Markov triple is a tuple, (a, b, c), of positive integers which satisfy
a2 + b2 + c2 = 3abc. A number which appears in at least one Markov triple is called
aMarkov number. We call x2 + y2 + z2 = 3xyz theMarkov equation.

Markov triples and numbers first appeared in Markov’s theorem in [20]. They have
remained of interest to mathematicians ever since, in no small part due to Frobenius’
famous Uniqueness Conjecture which remains open to this day [15]. This conjecture
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1022 E. Banaian, A. Sen

states that each Markov number is the largest number in a unique Markov triple. For
a history of work on this conjecture, see [1].

The tuple (1, 1, 1) is a natural first example of a Markov triple. We can construct
more Markov triples by the following observation. Given a Markov triple (a, b, c),
we can replace c with a2+b2

c to obtain a distinct Markov triple, (a, b, a2+b2
c ). This

process is an example of Vieta jumping. It is clear that a2+b2
c is positive, and since

3ab−c2 = a2+b2
c , we also know this new number is an integer. Note that this process is

an involution, and thatwe could similarly replace a or bwith thismethod. Furthermore,
one can show that every Markov triple is the result of applying a sequence of Vieta
jumping to the Markov triple (1, 1, 1). A complete proof can be found in [3].

The process of going from a Markov triple (a, b, c) to another of the form
(a, b, a2+b2

c ) is reminiscent of mutation in a cluster algebra. In [5] and [23], the
respective authors explain the connection between Markov numbers and the cluster
algebra arising from a once-punctured torus. Every triangulation of a once-punctured
torus has three arcs and has adjacency quiver QT (known as theMarkov quiver), given
below.

2

1 3

More precisely, Markov numbers exactly correspond to the cluster variables in the
cluster algebra from the Markov quiver when we set all initial cluster variables to 1.
Since this cluster algebra arises from a surface, we can also interpret Markov numbers
as the number of perfect matchings of snake graphs, as were defined in [21]. Recall
that a perfect matching of a graph G = (V , E) is a subset of the edge set P ⊆ E
such that every vertex is incident to exactly one edge in P . The snake graphs which
correspond to Markov numbers were studied in detail in [9].

In this paper, we study solutions to a Diophantine equation inspired by the Markov
equation and its connection to the theory of cluster algebras. We refer to our equation
as the generalized Markov equation although there are many other interesting ways
to generalize the equation.

Definition 2 The generalized Markov equation is

x2 + y2 + z2 + xy + xz + yz = 6xyz.

A generalized Markov triple is a tuple of positive integers (a, b, c) satisfying the
generalized Markov equation. If m is an element of at least one generalized Markov
triple, we call m a generalized Markov number.

Generalized Markov triples and numbers were studied by Gyoda in [17] and in a
broader context by Gyoda and Matsushita in [18]. In particular, it is shown in [17]
that all generalizedMarkov triples can be reached from the triple (1,1,1) by exchanges
similar to those used for the ordinary Markov equations.
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Generalized Markov numbers 1023

Theorem 1 ([17], Theorem 1.1) Every generalized Markov triple can be reached from

the tuple (1, 1, 1) by a sequence of exchanges of the form (a, b, c) → (a, b, a2+ab+b2
c ).

The form of these exchanges resembles mutation in a generalized cluster algebra,
in the sense of Chekhov and Shapiro [11]. The relevant generalized cluster algebra,
A3, arises from a once-punctured sphere with three orbifold points, which we will
denote O3. In parallel to the case of ordinary Markov numbers, generalized Markov
numbers are given by generalized cluster variables inA3 whenwe specialize the initial
cluster variables to 1. By following the construction of snake graphs from orbifolds
in [4], we can again interpret these generalized Markov numbers as the number of
perfect matchings of snake graphs. This is the perspective we will take.

Throughout the article, we will compare the features of our generalized Markov
numbers with the ordinary Markov numbers. In our combinatorial context, it appears
that generalized Markov numbers have the same nice properties as the ordinary case.
We believe that further work on these numbers would unveil even further similar
properties and patterns. For instance, in [19], the authors prove a conjecture from [1]
concerning orderings on Markov numbers. We believe that the constructions in our
paper could show the same conjecture is true in our setting. In particular, the extension
of our algorithm in Sect. 5 was inspired by calculations in [19] and would likely play
a role in proving these orderings hold for the generalized Markov numbers.

In Sect. 2,we briefly give someof the background needed to explore our results. This
includes discussion of snake graphs, continued fractions, and the labeling of ordinary
Markov numbers via rational numbers q such that 0 ≤ q ≤ 1. We will not define
cluster algebras as the main results can be given without reference to cluster algebras.
We direct a reader instead to the original papers on ordinary [14] and generalized
cluster algebras [11] as well as a survey on ordinary cluster algebras by Glick and
Rupel [16].

Our first main result is an algorithm to compute the number of perfect matchings
of these snake graphs via continued fractions. The algorithm is outlined in Sect. 3,
with the proof that it gives the correct continued fraction given in Theorem 6. We use
properties of these continued fractions to give both recurrences and growth behavior
for certain sequences within the set of all generalized Markov numbers in Sect. 4.
The generalized Markov numbers correspond to arcs (with no self-intersection) on
the orbifold associated to A; in Sect. 5, we consider generalized arcs (i.e. those with
possibly self-intersection) and closed curves on this orbifold. Our final result in this
section is Theorem 5, which gives recurrences on this extended family of numbers. In
order to compute this recurrence, we provide Proposition 7, which gives a formula for
computing the number of perfect matchings of a band graph, and Theorem 8, which
computes the number of good matchings of certain band graphs coming from the
orbifoldO3. Finally, in Sect. 6, we give suggestions for how our work could possibly
be extended to solutions of similar Diophantine equations.
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1024 E. Banaian, A. Sen

2 Background

2.1 LabelingMarkov numbers with rational numbers

There is a convenient labeling ofMarkov numbers larger than 1 using rational numbers
in the interval (0, 1]. Oneway to illustrate this labeling is by viewing triangulations and
arcs on the universal cover of the once-punctured torus, Z2. If our initial triangulation
is T0 = {τ1, τ2, τ3}, with τ2 following τ1 in clockwise order, then we can lift τ1 to all
line segments of the form y = −x + a, τ2 to all line segments of the form x = b, and
τ3 to all line segments of the form y = c for a, b, c ∈ Z, where we consider segments
between two consecutive lattice points. We will say these lines, and the arcs in the
once-punctured torus which they represent, have slopes −1

1 , 1
0 ,

0
1 respectively, and we

descriptively rename them τ−1
1

, τ 1
0
, τ 0

1
.

We associate our initial triangulation {τ−1
1

, τ 1
0
, τ 0

1
} to the Markov triple (1, 1, 1).

We can apply Vieta jumping to any number in this Markov triple to reach (1, 1, 2).
For the arcs, we pick the convention that we flip τ−1

1
. The flip of τ−1

1
will have slope

+1 in the cover. Thus, we have that the Markov number labeled by 1
1 , n 1

1
, is 2.

Since Vieta jumping is an involution, at the Markov triple (1, 1, 2) we must apply
Vieta jumping to one of the entries of 1, reaching (1, 2, 5). In the triangulation
{τ 1

1
, τ 1

0
, τ 0

1
}, we pick the convention that we will flip τ 1

0
, which was associated with

lines of slope 1
0 . The resulting new arc will have slope 1

2 . From this we have n 1
2

= 5.
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Fig. 1 The initial portions of the exchange trees for Markov Numbers and Q ∩ (0, 1)

At this point, if we continue to flip arcs in the torus and do not flip the same arc two
times in a row, their lifts will always have slope less than 1. This is a consequence of
the following lemma.

Lemma 1 1. The set of slopes of each triangulation of the once-punctured torus are
of the form { ac , a+b

c+d , b
d }.

2. Mutation has the following effect on the slopes of a triangulation

{a
c
,
a + b

c + d
,
b

d
} → { (a + b) + b

(c + d) + d
,
a + b

c + d
,
b

d
}

The operation of combining a
c and

b
d to a+b

c+d is referred to as a Farey sum. Triangles
of the form mentioned in Lemma 1 form the Farey tesselation of the upper-half plane.

We display the exchange trees for Markov numbers and rational numbers with
respect to Vieta jumping and the Farey sum respectively in Figure 1. For example, we
can see that n 2

3
= 29 by noting the positions where 2

3 and 29 first appear in each tree.
Çanakçı and Schiffler discuss a combinatorial way to compute the Markov number
associated to each rational number in [9].

Since all generalized Markov numbers are also reachable by a sequence of Vieta
jumping, we can also index generalized Markov numbers larger than 1 with rational
numbers in the interval (0, 1]. By comparing Figures 1 and 2, we can for instance see
that the generalized Markov number associated to 2

3 , m 2
3
, is 217. In Sect. 3, we will

give a direct way to compute m p
q
.
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(1, 1, 1) (1, 1, 3) (1, 3, 13)

(1, 13, 61)

(3, 13, 217)

(1, 61, 291)

(13, 61, 4683)

(3, 217, 3673)

(13, 217, 16693)

Fig. 2 The initial portions of the exchange tree for generalized Markov triples

2.2 Snake graphs on surfaces and orbifolds

Consider a connected, oriented 2-dimensional Riemann surface S with a finite subset
M of points called marked points, and pick a triangulation T of the surface. As is
thoroughly studied in [12] and [13], we can associate a cluster algebra to the tuple
(S, M), such that the arcs are in bijection with cluster variables; in particular, arcs in
T are associated to initial cluster variables. In [21], Musiker, Schiffler, and Williams
gave a direct way to compute the cluster variable xγ associated to the arc γ via an edge-
labeled graph called a snake graph. If γ crosses arcs τi1 , . . . , τid in the triangulation
T , then the snake graph Gγ,T consists of d square tiles, G1, . . . ,Gd , glued along
edges. The tile G j represents the quadrilateral around the arc τi j in T . Then, we can
calculate xγ with respect to the initial cluster associated to T by looking at all perfect
matchings of Gγ,T . In the following, cross(γ, T ), x(P) is the product of the weights
of the edges in P , and y(P) is another statistic associated to a perfect matching. We
do not dwell on these details as they will not be necessary for our main results.

Theorem 2 ([21], Theorem 4.9) Given a triangulation T on a surface with marked
points (S, M), let γ be an arc on (S, M). Then, the expansion of the cluster variable
xγ in the cluster algebra arising from (S, M) with initial cluster from T is given by

xTγ = 1

cross(γ, T )

∑

P

x(P)y(P)

where we sum over perfect matchings P of Gγ,T .

For an example of a snake graph, see Figure 3.

2.3 Orbifolds

An orbifold is a generalization of a manifold where the local structure is given by
quotients of open subsets of R

n under finite group actions. For our considerations, an
orbifold (S, M, Q) is a marked surface with an additional set of special points called
orbifold points Q. Each orbifold point comes with an order p ∈ Z≥2. Arcs in an
orbifold have endpoints in M and cannot pass through orbifold points. An arc which
cuts out an unpunctured monogon with exactly one point in Q is called a pending arc.
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Fig. 3 First part of G 1
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Part of the story about cluster algebras from surfaces was extended to orbifolds by
Chekhov and Shapiro in [11]. The relevant algebra is a generalized cluster algebra.
These cluster algebras are generalized in the sense that the exchange polynomials
can have more than 2 terms. A generalized cluster algebra arising from an orbifold
will have exchange polynomials with 2 or 3 terms; the number of terms depends on
whether the variable corresponds to a standard arc or a pending arc. In particular, in
the generalized cluster algebra arising from O3, the exchange polynomials are all of
the form u + v or u2 + uv + v2. The snake graph expansion formula was extended to
generalized cluster variables in a generalized cluster algebra from an orbifold by the
first author and Elizabeth Kelley [4].

Theorem 3 ([4], Theorem 1.1) Given a triangulation T on an orbifoldO, let γ be an
arc on O. Then, the expansion of the generalized cluster variable xγ in the cluster
algebra arising from O with initial cluster from T is given by

xTγ = 1

cross(γ, T )

∑

P

x(P)y(P)

where we sum over perfect matchings P of Gγ,T .

In this paper we specifically consider the orbifold O3, a sphere with one puncture
and three orbifold points of order three. Every triangulation of O3 consists of three
pending arcs which are all based at the unique marked point. Arcs on an orbifold
can be flipped just as arcs on a surface; moreover, a flip of a pending arc will always
be another pending arc. Thus we see that the only effect that a flip has on the initial
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triangulation on O3 is flipping the relative orientation of the arcs in the triangulation,
just as in the case of a once-punctured torus.

×
×

×

τ1τ2

τ3

The combinatorics of the orbifold O3, Theorem 1 and Theorem 3 allow us to
interpret the generalized Markov numbers and tuples in terms of a generalized cluster
algebra. Given a graph G, let η(G) be the number of perfect matchings of G.

Corollary 1 ([17], Corollary 3.9) Let γ1, γ2, γ3 be a triangulation of O3.

• For any i , the number η(Gγi ,T ) is a generalized Markov number. All generalized
Markov numbers appear in this way.

• The triple (η(Gγ1,T ), η(Gγ2,T ), η(Gγ3,T )) is a generalized Markov triple. All
generalized Markov triples appear in this way.

Remark 1 The description of generalized snake graphs in [4] was only concerned with
orbifolds without punctures. When punctures are present in a surface, in order to
consider the corresponding cluster algebra one must use tagged arcs and tagged trian-
gulations. However, any triangulation ofO3 consists of three pending arcs, whichmust
all have the same tagging at the unique puncture. Thus, if we consider an initial trian-
gulation with all arcs tagged plain, we can use generalized snake graphs to compute
the generalized cluster variables resulting from any finite sequence of mutations.

2.4 Continued fractions

Çanakçı and Schiffler give a method to compute the number of perfect matchings of
a snake graph via continued fractions in [9]. This method first requires knowledge of
a sign function on a snake graph.

Definition 3 Given a snake graph G, a sign function on G labels all edges of the snake
graph with + or − such that

1. the signs on the South and East edges of a tile are the same,
2. the signs on the North and West edges of a tile are the same,
3. the signs on the North and South edges of a tile are the opposite, and
4. the signs on the East and West edges of a tile are the opposite.

In order to have a unique sign function on each snake graph, we instill the convention
that the South edge of the first tile is assigned the sign −.

The sign sequence of a snake graph G with m − 1 tiles is f1, . . . , fm where f1 is
the sign on the south edge of the first tile (− by convention), for 1 < i < m, fi is the
sign of the edge shared by tiles Gi and Gi+1, and fm = fm−1.
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Generalized Markov numbers 1029

We call the edge shared by tiles Gi and Gi+1 an internal edge.
A consequence of the definition of a sign function is that the sign is constant on a

diagonal line through the edges of the snake graph traveling North-East. Moreover,
we can see that a snake graph is determined by its sign sequence.

From the sign sequence, we can compute the number of perfect matchings of a
snake graph by looking at the numerator of an associated continued fraction.

Definition 4 Let a1, . . . , an be a sequence of integers. Then, the continued fraction,
[a1, . . . , an] is given by

[a1, . . . , an] = a1 + 1

a2 + 1

a3 + 1

. . . + 1

an

Every rational number can be expressed as a continued fraction. This expression is
unique if we require an > 1; it is straightforward to see that if an > 1, [a1, . . . , an] =
[a1, . . . , an − 1, 1].

Given a snake graph with sign sequence f1, . . . , fm , we form a continued fraction
[a1, . . . , an] by counting the lengths of subsequences of the sign sequence which have
the same sign. For example, if the sign sequence is−−+++−−, then the continued
fraction will be [2, 3, 2]. Since [a1, . . . , an] = [a1, . . . , an − 1, 1], we can choose
fm−1 = fm in the sign sequence from a snake graph G on m tiles. Pictorially, we can
choose the sign of either the North or East edge of the last tile, so we always choose
the one which has the same sign as the internal edge of the last tile.

Let N ([a1, . . . , an]) be the numerator of the continued fraction [a1, . . . , an]. Let
G[a1, . . . , an] be the snake graph whose sign function gives the continued fraction
[a1, . . . , an]; after fixing our conventions, this snake graph is unique.

Theorem 4 ([9], Theorem A) Let a1, . . . , an be a sequence of positive integers such
that an > 1. Then,

[a1, . . . , an] = η(G[a1, . . . , an])
η(G[a2, . . . , an]) ,

where the right-hand side is reduced. In particular, η(G[a1, . . . , an]) =
N [a1, . . . , an].

Example 1 We display the entire sign function on the following 5-tile snake graph.
The sign sequence from this snake graph is −,−,−,+,+,+.
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− +
+

−−
−

+−
−

++
+ −

−

+ +

The continued fraction to compute in this case is [3, 3]. We have that [3, 3] =
3 + 1

3 = 10
3 , and indeed this snake graph has 10 perfect matchings.

We record a few results concerning continued fractions which will be useful for
our later calculations. The first two are well-known.

Lemma 2 Let a1, . . . , an be positive integers. Then,

N [a1, . . . , an] = N [an, . . . , a1].

Lemma 3 Let n ≥ 2 and let a1, . . . , an be positive integers. Then,

N [a1, . . . , an] = a1N [a2, . . . , an] + N [a3, . . . , an]

and

N [a1, . . . , an] = anN [a1, . . . , an−1] + N [a1, . . . , an−2].

where we define N [] = 1.

It is clear that [a1, . . . , an, 1] = [a1, . . . , an + 1]. Combining this with Lemma 2
gives us a result for continued fractions with 1 as the first entry.

Lemma 4 Let a1, . . . , an be positive integers. Then,

N [1, a1, . . . , an] = N [a1 + 1, . . . , an].

The final result in this section will be useful in the proof of Theorem 8.

Lemma 5 Let k ≥ 2 and let a1, . . . , ak be positive integers. Then,

N [a2, . . . , ak + 1, ak, . . . , a1] = N [a1, . . . , ak + 1, ak, . . . , a2] + (−1)k

Proof We prove this by induction. For the base case, we directly compute

N [a1, a2, a2 + 1] = a1(a
2
2 + a2 + 1) + a2 + 1
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Generalized Markov numbers 1031

and

N [a1, a2 + 1, a2] = a1(a
2
2 + a2 + 1) + a2.

Now, we assume the claim for k − 1 and analyze the case for k. We expand the first
term using Lemma 3 ,

N [a2, . . . , ak + 1, ak, . . . , a1]
= a1N [a2, . . . , ak + 1, ak, . . . , a2] + N [a2, . . . , ak + 1, ak, . . . , a3]
= a1N [a2, . . . , ak + 1, ak, . . . , a2] + N [a3, . . . , ak + 1, ak, . . . , a2] − (−1)k−1,

where the last equality comes from applying the inductive hypothesis.
Then we also apply Lemma 3 to the continued fraction on the righthand side,

N [a1, a2, . . . , ak + 1, ak, . . . , a2]
= a1N [a2, . . . , ak, ak + 1, . . . , a2] + N [a3, . . . , ak + 1, ak, . . . , a2].

Thus,we see thatN [a2, . . . , ak+1, ak, . . . , a1] = N [a1, . . . , ak+1, ak, . . . , a2]−
(−1)k−1. Therefore, (−1)k = −(−1)k−1; since the base case showed the sign is 1 in
the k = 2 case, we are done. �	

3 Algorithm

Recall from Sect. 2.1 that we index generalized Markov numbers with (reduced)
rational numbers p

q in the interval (0, 1]. However, given such a rational number p
q , it

is not immediately clear what the generalized Markov number m p
q
is. In this section,

we give a direct way to compute m p
q
. By Corollary 1, there is an arc γ p

q
such that

m p
q

= η(Gγ p
q

,T ). Our algorithm is inspired by the shape of the snake graph Gγ p
q

,T .

However, it is more compact to give the continued fraction [a1, . . . , an] associated to
this snake graph. It will also turn out that we can get all necessary information from
the universal cover of the torus and in particular can simply consider γ p

q
, the line

segment from (0, 0) to (q, p). We remark that, for the ordinary Markov case, Çanakçı
and Schiffler give a similar construction in [9].

In what follows, we will describe a function f which maps from Q ∩ (0, 1]
to sequences from the alphabet {−,+} of varied length. In particular, f( p

q ) =
( f0, . . . , f4(p+q)−6) where fi ∈ {−,+}. In Theorem 5, we show f( p

q ) is the sign
sequence of Gγ p

q
,T .

Throughout, we fix the lattice given by all lines through integral points with slopes
0, 1, and ∞. We will consider each line segment between consecutive pairs of integer
points as a distinct arcs.
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1032 E. Banaian, A. Sen

For convenience, we will orient γ p
q
from (0, 0) to (q, p). We can describe f( p

q ) =
( f0, . . . , f4(p+q)−6) as the following. We always set f0 = − and f4(p+q)−6 = +. For
1 ≤ i ≤ 2(p + q) − 3, let σi be the i-th line segment in the lattice which γ p

q
crosses,

and let si be this intersection point. The odd-indexed entries keep track of whether si
is closer to endpoint of σi which lies to the right or to the left of γ p

q
; if it is closer to

the endpoint on the right, we assign f2i+1 = − and otherwise we assign f2i+1 = +.
There is only one intersection point which is at the midpoint of an arc, and we will see
we can choose either sign here. The even-indexed entries record whether the endpoint
shared by σi and σi+1 lies to the right or left of γ p

q
. Again, if this endpoint is to the

right, then assign f2i = −, and assign f2i = + if it lies to the left.
In the following,we give formulas to directly compute f( p

q ). First, we recall notation
given in [9].

v1 = � q
p
�

vi = �qi
p

� − (v1 + · · · + vi−1) 1 < i < p

vp = (q − 1) − (v1 + · · · + vp−1)

The quantity vi tell us how many vertical lines γ p
q
crosses between its crossing of

the horizontal lines y = i − 1 and y = i . For 0 < i < p, we define

ṽi = �qi
p

� + i

The ṽi give information about which arcs σ j are horizontal. In particular σ j is
horizontal if and only if j = 2ṽi . It will later be convenient to set ṽ0 = 0 and
ṽp = p + q − 1.

As in [9], we can compute the even-indexed terms f2i using the vi and ṽi . First
we specify f2i if there exists 0 < j < p such that 2ṽ j − 2 ≤ i ≤ 2ṽ j + 1,. This
corresponds to the crossings near a crossing of γ p

q
and a horizontal line segment; in

particular, since the slope is less than 1, we know that the arcs crossed by γ p
q
near

a crossing with a horizontal arc will have the pattern: vertical, diagonal, horizontal,
diagonal, vertical. Thus, we set

f2(2ṽ j−2) = f2(2ṽ j−1) = +
f4ṽ j = f2(2ṽ j+1) = −
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Generalized Markov numbers 1033

The rest of the even-indexed entries correspond to γ p
q
crossing an alternating

sequence of vertical and diagonal edges. Precisely, if for some 0 ≤ j < p, i satisfies
2ṽ j + 1 < i < 2ṽ j+1 − 2, then

f2i =
{

− i is even

+ otherwise.

Finally, we also set f0 = f2 = − and f4(p+q)−6 = +.
Next we turn to the odd-indexed entries. The entries f j for j ≡ 3 (mod 4) of f( p

q )

record information about the crossing points of γ p
q
and horizontal and vertical line

segments. We know that the segment σ2ṽ j lies on the line y = j . Thus, we compute
whether the intersection of γ p

q
and σ2ṽ j is closer to the right or left endpoint with the

following,

f4(ṽ j−1)+3 =
{

− � jq
p � − jq

p < 1
2

+ otherwise.

All other entries fi with i ≡ 3 (mod 4) record information about the crossing of
γ p

q
and a vertical edge. If i �= ṽ j for any 1 ≤ j ≤ p − 1, let i ′ be the largest integer

in [0, p − 1] such that i > ṽi ′ . This implies that arc σ2 j lies on the line x = i − i ′.
Therefore, we set

f4(i−1)+3 =
{

− (i−i ′)p
q − � (i−i ′)p

q � < 1
2

+ otherwise.

Finally, we look at the intersections of γ p
q
and diagonal arcs. Note that all arcs σ j

for odd j are diagonal. We define wi for 1 ≤ i ≤ p + q − 1,

wi = qi

p + q
.
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Table 1 Numbers m(q,p) for small values of p ≤ q ≤ 7. When gcd(p, q) = 1, these are generalized
Markov numbers m p

q
. For discussion of the other values, see Sect. 5

p\q 1 2 3 4 5 6 7

1 3 13 61 291 1393 6673 31971

2 51 217 1001 4683 22,265 106,153

3 846 3673 16,693 77,064 360,517

4 14,637 62,221 282,317 1,285,131

5 247,965 1,054,081 4,778,353

6 4,200,768 17,857,153

7 71,165,091

Table 2 Continued fractions given from sign sequences f(q, p). In each case, m(q,p) is the numerator of
this continued fraction

p\q 1 2 3 4 5

1 [3] [3,4] [4,1,2,4] [4,1,2,3,1,4] [4,1,3,1,2,3,1,4]

2 [3,5,3] [3,4,5,3] [3,4,5,1,3,3] [4,2,1,4,5,1,2,4]

3 [3,5,3,5,3] [3,5,3,4,5,3] [3,4,5,1,2,5,4,3]

4 [3,5,3,5,3,5,3] [3,5,3,4,5,3,5,3]

5 [3,5,3,5,3,5,3,5,3]

Since γ p
q
and y = −x + i intersect at (wi ,

p
q wi ), we set

f4(i−1)+1 =
{

− �wi� − wi < 1
2

+ otherwise.

In Table 2, we give the continued fractions for the sign sequences f( p
q ) and we give

the numerators of these continued fractions in Table 1. The values associated to (p, q)

with gcd(p, q) > 1 in both tables will be explained in Section 5.
For any p

q , the sequence f(
p
q ) = ( f0, f1, . . . , f4(p+q)−6) is anti-symmetric. That

is, for i < 2(p + q) − 3, fi = − f(4(p+q)−6)−i . Moreover, the middle term of the
sequence f( p

q ), f2(p+q)−3, always corresponds to a crossing which is the midpoint of
the segment of σp+q−1; no other crossing can occur at a midpoint, or else γ p

q
would

go through other integral points besides (0, 0) and (q, p). By Lemma 2, since the rest
of the sequence is anti-symmetric, the choice of sign at the midpoint does not matter.

In Theorem 5, we show that f( p
q ) exactly gives the sign sequence for the snake

graph Gγ,T which encodes the generalized Markov number m p
q
. Recall such an arc γ

and snake graph Gγ,T is guaranteed in Corollary 1.

Theorem 5 Let p, q ∈ Z be such that p < q and gcd(p, q) = 1. Let f( p
q ) be the sign

function on p
q , and let [a1, . . . , am] be the continued fraction from f( p

q ). Then, if m p
q
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is the generalized Markov number associated to p
q ,

m p
q

= N ([a1, . . . , am]) = η(Gγ p
q

,T0),

where γ p
q
is the arc on O3 associated to the generalized Markov number m p

q
and T0

is the initial triangulation of O3.

Proof We will induct on the number of flips to reach the arc with slope p
q . Once

we show that f( p
q ) is the same as the sign sequence of Gγ p

q
,T0 , the statement of the

theorem will follow from Theorem 4.
Since flipping arcs is an involution,we update howwe go between rational numbers,

as in Lemma 1, to also make it an involution. Let ( ab , c
d , e

f ) ∈ Q
3. We define the

mutation of e
f as μ e

f
( ab , c

d , e
f ) = ( ab , c

d , e′
f ′ ) where

e′

f ′ =
{

a+c
b+d

e
f �= a+c

b+d
c−a
d−b

e
f = a+c

b+d .

In the following, we analyze arcs on the orbifold O3, but we retain our labeling of
arcs with rational numbers. That is, we label the arcs in T0 as (τ 0

1
, τ 1

0
, τ−1

1
) and use the

convention that in a sequence of flips, the first arc flipped is τ−1
1
and, if the sequence

is at least length two, the next flip is at τ 1
0
. In general, the flip of τ e

f
in a triangulation

(τ a
b
, τ c

d
, τ e

f
) results in the triangulation (τ a

b
, τ c

d
, τ e′

f ′
) where e′

f ′ = μ e
f
( ab , c

d , e
f ).

For our base cases, one can check the claim for slopes 1
1 and 1

2 directly. Note these
correspond to one and two (distinct) flips from T0 respectively.

Let α = α1, . . . , α� be a sequence of rational numbers such that α1 = −1
1 , α2 = 1

0 ,
and for all 2 < i ≤ �, αi ∈ μαi−1 ◦ · · · ◦ μα1(

0
1 ,

1
0 ,

−1
1 ). We let μα denote the

composition μα�
◦ · · · ◦ μα1 . By Lemma 1, as long as our mutation sequence has

length at least one, we know that the tuple μα( 01 ,
1
0 ,

−1
1 ) is of the form ( ab , c

d , a+c
b+d )

where c ≥ a and d ≥ b. Since these are distinct numbers, at least one inequality is
strict.

We show that knowing f( cd ) and the sign sequence of Gτ c
d

,T0 are equal will also

tell us that f( a+c
b+d ) and the sign sequence of Gτ a+c

b+d
,T0 are equal. In the following, we

drop the overlines for arcs inO3. First, consider a triangulation ofO3, (τ a
b
, τ c

d
, τ a+c

b+d
).

Since these three arcs are compatible, we can see that there is an initial section of τ a+c
b+d

which is homotopic to τ c
d
. Suppose that τ c

d
crosses all three arcs from T0 at least once.

Then, the section of τ a+c
b+d

which is homotopic to τ c
d
is over halfway along the arc; note

that since pending arcs are loops, they all have a “halfway” point where they curve
around the orbifold point that they enclose. Thus, we know that the first 4(c + d) − 5
entries of the sign sequence for Gτ a+c

b+d
,T0 and Gτ c

d
,T0 are the same. By the symmetry

of the snake graph for a pending arc (given by the fact that pending arcs are drawn as
loops), this completely determines the sign sequence for Gτ a+c

b+d
,T0 .
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1036 E. Banaian, A. Sen

Since we already considered the base cases of slopes 1
1 and 1

2 , we do not need to
consider the case when τ c

d
only crosses one arc from T0. So we next suppose that

τ c
d
only crosses two of the arcs from T0. If τ a+c

b+d
also only crosses two arcs from

T0, then we have the same situation as above. Note in this case that a
b = 0

1 since
we are assuming we only flipped two of the arcs in the initial triangulation, which
by convention are τ−1

1
and τ 1

0
. Now suppose that τ a+c

b+d
does cross all three arcs

from T0; necessarily, τ a+c
b+d

is the result of flipping τ 0
1
in the tuple (τ 0

1
, τ 1

n
, τ 1

n+1
); i.e.,

a = c = 1, b = n ≥ 1, d = n + 1. Then the segment of τ a+c
b+d

which is homotopic to
τ c
d
is the portion until the first intersection of τ a+c

b+d
and τ 0

1
. Note that the halfway point

of τ a+c
b+d

occurs between its two intersections with τ 0
1
. In order to have our conventions

agree, suppose that τ 1
0
follows τ−1

1
in clockwise order, so that τ−1

1
follows τ 0

1
in

clockwise order. Then, the first part of the sign sequence for Gτ a+c
b+d

,T0 consists of the

sign sequence for Gτ c
d

,T0 followed by + since the last arc which τ c
d
crosses is τ−1

1
,

and the next arc τ a+c
b+d

crosses, after the section which is homotopic to τ c
d
, is τ 0

1
. The

next sign is the middle sign of the sign sequence for Gτ a+c
b+d

,T0 which depends on the

orientation of τ a+c
b+d

. All other signs are determined by the symmetry of sign sequences
for snake graphs from pending arcs.

Now we consider how the sequences f( cd ) and f( a+c
b+d ) compare and show it is

identical to the case for the snake graphs from the arcswith these labels. For a ≤ c, b ≤
d, we have � 4(a+b+c+d)−5

2 � = 2(a+b+c+d)−2 < 2(2c+2d−1)−2 = 4(c+d)−4.
By induction we can show that the triangle with vertices (0, 0), (d + b, a + c), (d, c)
has no interior vertices in Z

2; from this, we know the first 4(c + d) − 5 entries of
f( a+c

b+d ) are the same as the entries of f( cd ). When c > a and d > b, this covers over
half the sequence f( a+c

b+d ); by the anti-symmetry of the sign sequences, this completely
determines f( a+c

b+d ). Since we knew that f( cd ) matched the sign sequence for Gτ c
d

,T0 ,

we know the same for f( a+c
b+d ) and Gτ a+c

b+d
,T0

The case when we do not have both c > a and d > b is again when a
b = 1

n
and c

d = 1
n+1 . In this case, if f( a+c

b+d ) = f( 2
2n+1 ) = ( f0, . . . , f4(3+2n)−6), the first

4(n+2)−6 = 4n+2 entries are the same as f ( 1
n+1 ). We know that f4n+2 = + since

this corresponds to the shared vertex between a diagonal and horizontal line segment,
when traveling from the diagonal crossing to the horizontal. Then, f4n+3 can be either
+ or−, as this crossing occurs at themidpoint of σp+q−1. The rest of the entries follow
from the anti-symmetry. We can again see that, since the sign sequence for Gτ c

d
,T0

agrees with f( cd ), the sequence for Gτ a+c
b+d

,T0 will agree with f( a+c
b+d ), as long as we

choose the same sign at the middle term. (Moreover, this middle term will not affect
the number of perfect matchings of Gτ a+c

b+d
,T0 since it does not affect the numerator of

the corresponding continued fraction by Lemma 2.) �	

We note that a version of Theorem 5 is already known for ordinary Markov
numbers. Given p < q with gcd(p, q) = 1, let e( p

q ) be the sequence of length

2(p + q) − 2 which consists only of the even-indexed entries from f( p
q ); that is,
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e( p
q ) = ( f0, f2, . . . , f4(p+q)−6). This sequence was described in [9], but the result

was originally known by Frobenius.

Theorem 6 ([15], [9]) Let p, q ∈ Z be such that p < q and gcd(p, q) = 1. Let e( p
q )

be the even-indexed sign function on p
q , and let [b1, . . . , bm] be the continued fraction

from e( p
q ). Then, if n p

q
is the ordinary Markov number associated to p

q ,

n p
q

= N ([b1, . . . , bm]).

We have thus far considered arcs γ p
q
with p ≤ q so that each generalized Markov

number corresponds to a unique arc. However, we could equivalently consider arcs
between the origin and (p, q); this would correspond to flip sequences which begin
with flipping first τ−1

1
and then τ 0

1
. By our description of themeaning f at the beginning

of the section, we can extend the domain of f to include all Q>0. To line up the
conventions, we say that, if p < q, then f0 = + and f4(p+q)−6 = − in f( qp ).

Proposition 1 Let p < q and gcd(p, q) = 1. Suppose f( p
q ) = ( f0, . . . , f4(p+q)−6)

and f( qp ) = ( f ′
0, . . . , f ′

4(p+q)−6). Then for all 0 ≤ i ≤ 4(p+q)− 6, besides possibly
i = 2(p + q) − 3, fi = − if and only if f ′

i = +.

Proof One can check that at each stage of the algorithm, the signs will be reversed for
slopes p

q and q
p . We can again choose either sign for f2(p+q)−3 and f ′

2(p+q)−3. �	

4 Patterns

In this section, we explore patterns amongst the generalized Markov numbers m p
q

and the continued fraction expansions given in Sect. 3. Given integers p < q with
gcd(p, q) = 1, let C p

q
= a1, . . . , am be the sequence of positive integers such that

m p
q

= N ([C p
q
]), subject to our conventions. Similarly, let Cord

p
q

= b1, . . . , bm′ be the

sequence of positive integers such that n p
q

= N [Cord
p
q

], with the same conventions.

We begin this section by describing some properties of the sequence C p
q
and how it

compares toCord
p
q
. Then, we analyze the behavior of two special families of generalized

Markov numbers, m 1
q
and m q−1

q
, and compare these with the corresponding families

in the ordinary Markov case.

4.1 Properties of Cp
q

In this subsection, we explain more concretely how the continued fractions associated
to generalized and ordinary Markov numbers compare. This allows us to give an
elementary description of the continued fractions produced by the algorithm given in
Sect. 3.
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Lemma 6 Let p < q be such that gcd(p, q) = 1. Let C p
q

= a1, . . . , am1 , and C
ord
p
q

=
b1, . . . , bm2 . Then, m1 = m2 and

1. if bi = 1, ai ∈ {1, 2, 3}, and
2. if bi = 2, ai ∈ {3, 4, 5}.
Proof The fact m1 = m2 is implied by the observation that there will not be any
more sign changes amongst the full sequence f0, f1 . . . f4(p+q)−7, f4(p+q)−6 than if
we just consider the even-indexed terms f0, f2, . . . f4(p+q)−8, f4(p+q)−6. Consider
two consecutive even-indexed terms which are equal, f2i = f2i+2; this occurs if γ p

q

is crossing three arcs, say σi , σi+1, σi+2 which share an endpoint. Then, this shared
endpoint is also the endpoint of σi+1 which is closer to γ p

q
, guaranteeing that f2i =

f2i+1 = f2i+2.
The other statements follow quickly. If f2i−2 �= f2i and f2i �= f2i+2, the largest

subsequenceof the same signwhich includes f2i has length 3. Similarly, if f2i−2 = f2i ,
which necessarily means f2i−4 �= f2i−2 and f2i �= f2i+2, the largest subsequence of
the same sign which includes f2i has length 5. �	

We can combine this lemma with the following result given by Frobenius, and
reproven in [9] using snake graphs, to give a similar description in our generalized
case.

Theorem 7 [15] Let p < q be such that gcd(p, q) = 1. Let Cord
p
q

= b1, . . . , bm. Then,

bi ∈ {1, 2} for all i , m is necessarily even, and bi = bm−i+1.

1. If p + 1 = q, then each bi = 2 and m = 2p.
2. If p + 1 < q, there exists a unique positive integer c satisfying c−1

c <
p
q < c

c+1 ,
and

(a) there are at most p + 1 subsequences of 2s; the first and last are of length
2c − 1 and all others are of length 2c or 2c + 2;

(b) there are at most p subsequences of 1s, with the i-th subsequence having length
2μi , where the μi satisfy |μi − μ j | ≤ 1 for all i, j .

Corollary 2 Let p < q be such that gcd(p, q) = 1. Let C p
q

= a1, . . . , am with

a1, am > 1. Then,

1. 1 ≤ ai ≤ 5;
2. m = 2(q − 1);
3. if i < q − 1, ai = a2(q−1)−i+1, and |aq−1 − aq | = 1;
4. if p + 1 = q, each ai ∈ {3, 4, 5};
5. if p + 1 < q, let c be as in Theorem 7.

(a) There are at most p + 1 subsequences of numbers in {3, 4, 5} which are not
all 3; the first and last have length 2c − 1 and all others are of length 2c or
2c + 2.

(b) There are at most p subsequences of numbers in {1, 2, 3} which are not all 3,
with the i-th subsequence having length 2μi where theμi satisfy |μi −μ j | ≤ 1
for all i, j .
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Proof Most parts of the result follow from combining Lemma 6 and Theorem 7. The
fact that m = 2(q − 1) follows from Lemma 6 and the description of the continued
fractions given in [9]. Part 3 follows from the antisymmetry of the terms. The fact that
the subsequences in part 5 each contain numbers other than 3 follows from noticing
that there is no configuration which would produce a consecutive pair of entries 3. �	

Part 3 of Corollary 2 shows that the middle terms in C p
q
will always differ by one.

Here, we show any such pair of adjacent integers, with both being between one and
five, is attainable by analyzing the middle terms.

Lemma 7 Let p, q ∈ Z>0 be such that p < q and gcd(p, q) = 1. Let G p
q

=
G[a1, . . . , a2(q−1)].
1. If p and q are odd, then {aq−1, aq} = {1, 2}.
2. If p is even and q is odd, then, {aq−1, aq} = {4, 5}.
3. If p is odd, q is even, and p < 2q, then {aq−1, aq} = {2, 3}.
4. If p is odd, q is even, and p > 2q, then, {aq−1, aq} = {3, 4}.
Proof For each part, the statement follows from analyzing the local configuration of
the arcs around the central crossing of γ p

q
. If p and q are both odd, so that the central

crossing is a diagonal line segment which lies on y = −x + p+q
2 and if � denotes the

central crossing, then we see the sign sequence near � is − + � − + where, as usual,
− represents shared endpoints or crossing points to the right and + to the left.

If p is even and q is odd, so that the central arc crossed is horizontal, then the local
configuration is as below, and the sign sequence near �must be+−−−−�++++−.

If p is odd and q is even, then there are two cases for the type of local configuration
around the central arc crossed. First, suppose p

q < 1
2 . Then, the local configuration

includes only vertical and diagonal arcs.Here, the sign sequence near � is−++�−−+.

If p
q > 1

2 , then there are horizontal arcs near the central arc crossed, and the sign
sequence near � is − + + + � + + + +−.

�	
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4.2 GeneralizedMarkov numbers for 1
q

For ordinary Markov numbers, the sequence {n 1
q
}q is every other Fibonacci number:

n 1
1

= 2, n 1
2

= 5, n 1
3

= 13, and so on. Here we study {m 1
q
}q . We begin by giving a

linear recurrence which the sequence {m 1
q
}q satisfies.

Proposition 2 Set m 1
0

= 1 and m 1
1

= 3. Then, for all q ≥ 2,

m 1
q

= 5m 1
q−1

− m 1
q−2

− 1

Proof In the Farey tree in Figure 1, we see that we reach a tuple with 1
q by replacing

1
q−2 in the tuple ( 01 ,

1
q−2 ,

1
q−1 ). Therefore,

m 1
q

=
m2

1
q−1

+ m 1
q−1

m 0
1

+ m2
0
1

m 1
q−2

.

Since (m 0
1
,m 1

q−2
,m 1

q−1
) is a generalized Markov triple, we can use the generalized

Markov equation to change the numerator,

m 1
q

=
6m 1

q−1
m 1

q−2
m 0

1
− m 1

q−1
m 1

q−2
− m2

1
q−2

− m 1
q−2

m 0
1

m 1
q−2

= 5m 1
q−1

− m 1
q−2

− 1

where we simply by canceling terms and using the fact that m 0
1

= 1.
�	

Note the sequence {n 1
q
}q has the recurrence n 1

q
= 3n 1

q−1
− n 1

q−2
.

The recurrence in Proposition 2 can be used to describe the limiting behavior of a
ratio of the generalized Markov numbers m 1

q
.

Proposition 3

lim
q→∞

m 1
q

m 1
q−1

= 5 + √
21

2

The corresponding limit for ordinary Markov numbers is well-known

lim
q→∞

n 1
q

n 1
q−1

→ 3 + √
5

2
= 1 + ϕ.
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Our next goal is to give a cluster-algebraic interpretation to the limit given in
Proposition 3. It will be useful for us to have a direct formula for the continued
fractions which compute these generalized Markov numbers. In the following, let
α = (1, 3) and let α−1 = (3, 1).

Lemma 8 Let q ≥ 3. If q is odd, then C 1
q

= [4, α q−3
2 , 2, 1, (α−1)

q−3
2 , 4]. If q is even,

then C 1
q

= [4, α q−4
2 , 1, 2, 3, 1, (α−1)

q−4
2 , 4].

Proof When q >> 0, we can see a pattern when we are far from the middle crossing
point. To the left of the middle crossing point, then γ 1

q
will cross each arc closer to

its right endpoint. The shared endpoints alternate between right and left since γ 1
q
only

crosses diagonal and vertical line segments. The same is true to the right of the middle
crossing point, except that γ 1

q
now crosses all arcs closer to their right endpoint. The

first and last entries are 4 because of our convention to add an extra− at the beginning
and an extra + at the end of our sign sequence.

Next we check how the pattern deviates near the middle crossing. As discussed in
Lemma 7, this will depend on the parity of q. If q is odd, we can see that after three
entries −, γ 1

q
enters the quadrilateral around the diagonal line segment which is the

central arc crossed. Then, choosing + at the middle crossing point, we have entries
++,−.

If q is even, then the pattern is interrupted at the middle crossing point in a different
way. After a single entry+, γ 1

q
enters the quadrilateral around the vertical line segment

which is the central arc crossed; here, we have entries + + +,−−.

�	
Next, we give one technical lemma regarding computation of nearly two-periodic

continued fractions, which will be useful in the proof of our next main result.

Lemma 9 Let z1, z2, r be nonzero elements of a ring R. Then, if the continued fraction
[z1, z2, r z1, r−1z2, r2z1, r−2z2, . . .] converges, it converges to

r(1 + z1z2) − 1 ± √
(1 − r(1 + z1z2))2 + 4r z1z2
2r z2

.
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for some choice of sign.

Proof Let L = [z1, z2, r z1, r−1z2, r2z1, r−2z2, . . .], assuming z1, z2, r are chosen
such that the infinite continued fraction converges. The proof follows from the fact
that [ra1, r−1a2, ra3, . . . , r (−1)m−1

am] = r [a1, a2, . . . , am]; this is for example given
as Lemma 2.3 in [8]. By taking the limit of this fact to an infinite continued fraction,
we see that [r z1, r−1z2, r2z1, r−2z2, . . .] = r L . Then, L satisfies the following,

L = z1 + 1

z2 + 1
r L

,

which, by simplifying, implies that L satisfies the following quadratic equation,

r z2L
2 + (1 − r(1 + z1z2))L − z1 = 0.

The statement follows from solving this quadratic equation. �	
Now that we understand the continued fraction C 1

q
= a1, . . . , am , we will describe

a labeling scheme for the edges of the snake graph G[a1, . . . , am]. With these edge
labels, we will produce the snake graph G 1

q
for the arc γ 1

q
on O3 associated to m 1

q
.

Then, we set xT01
q

= 1
cross(γ 1

q
,T0)

∑
P x(P), using notation from Theorem 2. Note that

cross(γ 1
q
, T0) = x2q−1

1
x2(q−1)
1
0

, where we continue our labeling scheme for the three

arcs in T0.
In [8], the authors give a way to compute the quantity χ(Gγ,T ) :=
1

cross(γ,T )

∑
P x(P) via continued fractions. Given the snake graph Gγ,T , the authors

define a family of Laurent polynomials L1, . . . , Lm such that xγ = [L1, . . . , Lm].
These are given by considering certain subgraphs of Gγ,T determined by the sign
sequence. Let a1, . . . , am be such that the shape ofGγ,T isG[a1, . . . , am], and suppose
Gγ,T has d tiles. For 1 ≤ i ≤ m−1, let �i = ∑i

j=1 a j ; for convenience, set �0 = 0 and
�m = d + 1. Then for 1 ≤ i ≤ m, if ai > 1, set Hi = (G�i−1+1,G�i−1+2, . . . ,G�i−1)

(this is the subgraph of Gγ,T given by only considering these tiles), and if ai = 1, we
set Hi as the edge shared by tiles G�i−1 and G�i . If a0 = 1, we set H1 as the edge
where we have chosen the first sign of the sequence, and similarly for Hm .

We also define a family of terms bi . For 1 ≤ i ≤ m − 1, let bi be the label of the
tile G�i . Set b0 as the label of the edge in {S(G1),W (G1)} which is not used in the
sign sequence and choose bm similarly. In summary, the variables bi record the edges
and tiles that we ignore when forming the subgraphs Hj .

Then, the Laurent polynomials Li are defined by L1 = 1
b1

χ(H1), L2 = b1
b0b2

χ(H2),
and for i ≥ 3,

Li =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

b0b22b
2
4 ···b2i−3bi−1

b21b
2
3 ···b2i−2bi

χ(Hi ) i is odd

b21b
2
3 ···b2i−3bi−1

b0b22b
2
4 ···b2i−2bi

χ(Hi ) i is even.
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In Section 7 of [8], the authors compute a few limits of the form χ(Gi )/χ(Gi−1)

for snake graphs Gi growing increasingly larger. We can follow their reasoning to
compute similar limits in our construction.

We introduce the snake graphG 1
q
for q ≥ 1. In this section, for simplicity in figures

and calculations we set x −1
1

= x1, x 1
0

= x2, and x 0
1

= x3. The snake graph G 1
q
has

4q − 2 tiles, and for q >> 1 the first section is as in Figure 3. Since we will only be
concerned with limiting behavior of χ(G 1

q
), we will not give a complete example of

a snake graph G 1
q
.

If G = G[a1, . . . , an], let Ĝ = G[a2, . . . , an]; this will of course depend on our
choice of sign on the first tile of G. We let Ĝ 1

q
be G 1

q
with the first (southwest-

most) tile removed, thus breaking from convention and using the expression G 1
q

=
G[1, 3, . . . , 3, 1].
Proposition 4 Let δ = x1 + x2 + x3.

1. The limit of the ratio of χ(G 1
q
) and χ(Ĝ 1

q
) converges as q goes to infinity, and this

limit is equal to

x21 + δx3 − x22 +
√

(x22 − x21 − δx3)2 + 4x22 x3δ

2δx2
.

2. The limit of the ratio of x 1
q
and x 1

q−1
converges as q goes to ∞, and this limit is

equal to

δx3 + x21 + 2x1x2 − x22 +
√

(x21 − x22 − δx3)2 + 4x21 x3δ

2x1x2

Proof (1) We consider the infinite snake graph G[1, 3], with labels as in Figure 3.
Then, H2i−1 for i ≥ 1 is a single edge with label x3 while Hi for even i is as below.

x1 x1

x2

x2x2

x1 x3x1 x2

We have that χ(H2i−1) = x3 and χ(H2i ) = x21 x2+x1x22+x1x2x3
x1x2

= x1 + x2 + x3 =: δ.

Moreover, b2i−1 = x1 and b2i = x2. Thus, L1 = x3
x2

and L2 = δx2
x21

; moreover, we

can see from the periodicity of the terms χ(Hi ) and bi that L2i+1 = x21
x22
L2i−1 and

L2i+2 = x22
x21
L2i .

We first determine that [L1, L2, . . .] converges for any values x1, x2, x3 ∈ R>0.
This uses an argument similar to Lemma 7.2 in [8]. We know [L1, L2, . . . , ], with all
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1044 E. Banaian, A. Sen

Li evaluated at a choice of real numbers x1, x2, x3, converges if and only if
∑

i≥1 Li

diverges. We in fact can show that limi→∞ Li �= 0. The limit of the even-indexed

terms L2i is given by limi→∞
(

x22
x21

)i
δx2
x1

while the limit of the odd-indexed terms is

given by limi→∞
(

x21
x22

)i
x3
x2
. It is not possible for both of these limits to converge; thus,

the sequence {Li } diverges and [L1, L2, . . .] converges for any choice of positive real
numbers x1, x2, x3.

Therefore, to calculate the infinite continued expression [L1, L2, L3, . . .], we can
use Lemma 9 with z1 = L1 = x3

x2
, z2 = L2 = δx2

x21
, and r = x21

x22
. We have that L

equals the expression in the statement of the Proposition by noting that we assume
x1, x2, x3 ∈ R>0. By Theorem 6.3 of [8], this is equal to the limit of the ratio of χ(G 1

q
)

and χ(Ĝ 1
q
).

(2) Throughout this part, we assume q >> 0; a few claims may not hold for small
q. If we want to consider the ratio of x 1

q
= χ(G 1

q
) and x 1

q−1
= χ(G 1

q−1
), we can

use the same method as part (1), but swap the sign chosen on the first tile so that
the associated infinite continued fraction is [4, 1, 3]; this guarantees that the snake
graph resulting from removing H1 from G 1

q
is equal to the snake graph G 1

q−1
. We will

use prime marks ′ to denote the quantities in this part, and then we will compare the
quantities to those in part (1). We have, for i ≥ 1, H ′

2i = H2i+1 and H ′
2i+1 = H2i+2.

The subgraph H ′
1 consists of the first three tiles of G 1

q
, as in Figure 3, and χ(H ′

1) =
(x1x2x3δ+x21 x2)

x21 x2
= x3δ+x1x2

x1
. Moreover, we have b′

0 = x3, and for i ≥ 1, b′
2i−1 = x2 and

b′
2i = x1. Thus, we have that L ′

1 = x3δ+x1x2
x1x2

, L ′
2 = x2x3

x1x3
= x2

x1
, L ′

3 = δx1x3
x32

, and for

i ≥ 1,
L ′
2i+2
L ′
2i

= x22
x21

and
L ′
2i+3

L ′
2i+1

= x21
x22

.

Since these ratios are the same as in part 1, we can use the same reasoning to
show that [L ′

1, L
′
2, . . .] converges for any choice of positive real numbers x1, x2, x3.

Therefore, we have that

L ′ := lim
q→∞

x 1
q

x 1
q−1

= [L ′
1, L

′
2, L

′
3, . . .]

= L ′
1 + 1

[L ′
2, L

′
3, . . .]

Then, we can compute L
′ = [L ′

2, L
′
3, . . .] with Lemma 9 by setting z1 = L ′

2 = x2
x1
,

z2 = L ′
3 = δx1x3

x32
and r = x22

x21
. By choosing the positive square root, we have that

L
′ =

x2(x22 + δx3 − x21 ) + x2
√

(x21 − x22 − δx3)2 + 4δx21 x3

2δx1x3
.
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Since L ′ = [L1, L
′], the statement follows after further algebraic manipulations. �	

4.3 GeneralizedMarkov numbers for q−1
q

Here we present some analogues results to Section 4.2 for the sequence {m q−1
q

}q . This
sequence for the ordinary case is known to consist of every other Pell number. We
begin with a linear recurrence which again allows us to compute the limiting behavior
of the ratio of consecutive terms.

Proposition 5 Set m 0
1

= 1 and m 1
2

= 3. Then for q ≥ 3, we have

m q−1
q

= 17m q−2
q−1

− m q−3
q−2

− 3

Proof Let q ≥ 3. We reach a Farey tuple with q−1
q by exchanging q−3

q−2 in the tuple

( 11 ,
q−3
q−2 ,

q−2
q−1 ). The proof follows the same reasoning as the proof of Proposition 2,

using the fact that m 1
1

= 3. �	
In the ordinary case, we have initial conditions n 0

1
= 1, n 1

2
= 2, and for q ≥ 3,

the recurrence n q−1
q

= 6n q−2
q−1

− n q−3
q−2

.

Proposition 6

lim
q→∞

m q−1
q

m q−2
q−1

= 17 + √
285

2

The corresponding limit in the ordinary Markov case is limq→∞ n q−1
q

/n q−2
q−1

=
3 + 2

√
2.

We next give an explicit description of the continued fractionsCq−1
q
. In the ordinary

case, these are [2, 2, . . . , 2] with an even number of terms 2.

Lemma 10 Let β be [3, 5]. Let q ≥ 2. Then, if q is even, C q−1
q

=
N [β q−2

2 , 3, 4, (β−1)
q−2
2 ]. If q is odd, then C q−1

q
= N [β q−3

2 , 3, 5, 4, 3, (β−1)
q−3
2 ].

Proof First consider a portion of the arc γ q−1
q

sufficiently to the left of the central

crossing point. Since the slope of the arc is closer to 1 than 0, it passes close to the
lattice points on its left and far from the lattice points on its right. This produces the
3, 5, 3, 5, . . . behavior. The central terms follow from Lemma 7, picking a convention
for the central crossing point, and by symmetry we see that to the right of the central
crossing point we again have the pattern 3, 5, 3, 5, . . .. �	

One could use the same ideas as in Proposition 4 to compute the limit of generalized

cluster variables limq→∞
x q−1

q
x q−2
q−1

. As is necessary in the proof of 6, this could be done

by considering the product of two continued fractions of Laurent polynomials. We do
not record this result as the polynomial has many terms and no clear factorization.
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4.4 Other interesting families

The previous two sections looked at the sequences of generalized Markov numbers
whose labels converged to 0 and 1. One could also pick a rational number r between
0 and 1 and look at Markov numbers whose indices converge to r . However, when
the number is strictly between 0 and 1, there will be two options; one sequence which
approaches from above and one which approaches from below. For example, given
the number 1

2 , one could consider the sequences {m q
2q−1

}q and {m q
2q+1

}q . By similar

reasoning to Lemmas 8 and 10, for large q, C q
2q−1

approaches the infinite continued

fraction [3, 4, 5, 1, 2, 4, 5] and C q
2q+1

approaches [4, 2, 1, 5]. One could use these to

showgrowth behavior and,with some knowledge about how to form snake graphs from
orbifolds, one could also compute limits of ratios of cluster variables corresponding
to these infinite continued fractions.

It is straightforward to give linear recurrences as well for these families. The terms
approaching 1

2 from above can be found in Markov triples (m 1
2
,m q−1

2q−3
,m q

2q−1
). With

the same reasoning as in Propositions 2 and 5, we can show that

m q
2q−1

= 77m q−1
2q−3

− m q−2
2q−5

− 13

with initial conditions m 1
2

= 13 and m 2
3

= 217. The recurrence is in fact the same for
the sequence {m q

2q+1
}q , but the initial conditions are different.

5 Extending the algorithm

In order to provide a partial proof of the famous uniqueness conjecture, the authors of
[19] extend the correspondence between ordinary Markov numbers and rational num-
bers to include an assignment of numbers to integer points (kq, kp) for gcd(p, q) = 1
and k ∈ Z. Geometrically, they take the line segment between (0, 0) and (kq, kp), and
deform the line segment slightly to the left or right at each lattice point (mq,mp) for
1 ≤ m < k. The deformation moves to the same side at each intermediate point. They
show that the two snake graphs one gets from choosing a left or right deformation have
the same number of perfect matchings, and they associate this number to the point
(kq, kp). When k = 1, this is just the Markov number n q

p
.

We consider these left or right deformed arcs in our setting as well. For clarity, we
sometimes replace notation using p

q with (q, p) so that it is clear that our assignment
of a number to (kq, kp) is distinct from an assignment to (q, p). Recall that if γ p

q
is the

line segment from (0, 0) to (q, p)with gcd(p, q) = 1, there is an intersection between
γ p

q
and a line segment τ in the lattice which occurs at the midpoint of τ . This meant

that the middle entry of f( p
q ) could be + or −, and this choice would not affect the

numerator of the continued fraction associated to f( p
q ). However, now if we consider

an arc from (0, 0) to (kq, kp) with k > 1, and if we deform our arc to the left (right)
at the points (iq, i p) for 1 ≤ i ≤ k − 1, we will always assign + (−) to the central
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crossing point between each pair of lattice points ((i − 1)q, (i − 1)p) and (iq, i p)
since the deformation means this crossing point is now slightly to the left (right) of
the midpoint. Then, by considering the crossing sequence as our arc makes a small
half circle to the left of a lattice point, we see that if C(q,p) = C p

q
= [a1, . . . , an],

then CL
(kq,kp) = [a1, . . . , an, 5, 1, a1 − 1, . . . , an, 5, . . . , 1, a1 − 1, . . . , an] such that

there are k − 1 entries of 5 that connect two segments of the form a1, . . . , an or
1, a1 − 1, . . . , an . If we instead consider deforming the midpoint to the right, then
CR

(kq,kp) = [a1, . . . , an − 1, 1, 5, a1, . . . , an − 1, 1, 5, a1, . . . , an].
The sequence CL

(kq,kp) is equal to the reversal of CR
(kq,kp). For example, con-

sider p
q = 2

3 . Then, since C 2
3

= [3, 4, 5, 3] or [3, 5, 4, 3], we have that CL
(kq,kp) =

[3, 5, 4, 3, 5, 1, 2, 5, 4, 3] andCR
(kq,kp) = [3, 4, 5, 2, 1, 5, 3, 4, 5, 3]. By Lemma 2, the

numerators of these continued fractions are the same; hence, the choice of deforming
to the right or left will not affect the assignment of the number m(kq,kp). We choose
to use left deformations as a convention.

For positive integers p, q, k with gcd(p, q) = 1, we set m(kq,kp) = N (CL
(kq,kp)).

In the case of ordinary Markov numbers and a cluster algebra from a torus, the left
or right deformed arc between (0, 0) and (kq, kp) for k > 1 would correspond to an
arc on the torus with (k − 1) self-intersections. Thus, we could apply skein relations
to resolve the self-intersections; this provides relations amongst the numbers n(kq,kp).
We show that our orbifold Markov numbers and their extensions, m(kq,kp), satisfy the
same types of relations. Since the resolution of a self-intersection results in a closed
curve, we first discuss band graphs.

5.1 GeneralizedMarkov band graphs

In this section, we define band graphs and give a formula for computing the number
of perfect matchings of such graphs. For notation, let G = (G1, . . . ,Gm) be a snake
graph onm tiles. Let S(Gi ) be the south edge ofGi , and defineW (Gi ), N (Gi ), E(Gi )

similarly.
We also recall the notion of minimal and maximal matchings. In [22], the authors

show that the set of perfect matchings of a snake graph form a lattice. The minimal
and maximal elements of this lattice correspond to the two matchings of a snake graph
which only use boundary edges; these are edges which only border one tile of the
graph. Deciding which is the minimal matching is up to a convention; we will use the
convention that S(G1) is always an edge in the minimal matching.

Band graphs were introduced in [22] to describe bases of cluster algebras of surface
type. Given a snake graph G = (G1, . . . ,Gm), we form a band graph by gluing one
of the edges e ∈ {S(G1),W (G1)} with one of the edges e′ ∈ {N (Gm), E(Gm)} in
such a way that e is in the minimal matching if and only if e′ is not in the minimal
matching. Therefore, there are two ways to form a band graph from a given snake
graph G.

Given a band graph G, with vertices x, y along the glued edge e = e′, we say a
perfect matching P is a good matching if e ∈ P or if the two edges in P which are
adjacent to x and y, lie on the same side of the glued edge e = e′. Good matchings
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of a band graph G̃ correspond to perfect matchings of the underlying snake graph G
which use e or e′. By construction, the minimal matching of G uses e and the maximal
matching uses e′, or vice versa, so these always descend to good matchings of the
band graph G̃.

For convenience we introduce the idea of a dominant edge.

Definition 5 Let e ∈ {S(G1),W (G1)} be the unique edge whose two vertices are both
only adjacent toG1.We call e dominant, andwe call the other edge in {S(G1),W (G1)}
non dominant. We similarly call the unique edge in {N (Gm), E(Gm)} with both
vertices only adjacent to Gm dominant.

dominant

non dominant

dominant

non dominant

Each snake graph has two dominant edges. The following is straightforward.

Lemma 11 Let G = G[a1, . . . , an] where a1 > 1 and an > 1.

• If n is even, then either the minimal matching uses both dominant edges and the
maximal matching uses neither dominant edge or vice versa.

• If n is odd, then theminimal andmaximalmatchings each use exactly one dominant
edge.

Proof We induct on n; the values of ai will not affect the statement. The claim is
immediately true for n = 1 by analyzing minimal and maximal matchings on a
zig-zag snake graph.

Now assume we have shown the claim for snake graphs G[a1, . . . , an−1] for any
choices of ai ∈ Z>0, and consider a snake graph G[a1, . . . , an]. Assume that n is even.
Then, we know that the minimal matching of G ′ = G[a1, . . . , an−1 + 1] uses exactly
one dominant edge. Suppose that this is the dominant edge on G1, so that we use the
non dominant edge on the final tile of G ′. Call this final tile Gm′ . We form G by gluing
the non-dominant edge of the first tile of G ′′ = G[an] onto the dominant edge on Gm′ .
Thus, we can complete the minimal matching on G by taking the minimal/maximal
matching on G ′′ which uses the non dominant edge on the first tile. By the base case,
this matching of G ′′ uses the dominant edge on its last tile. Therefore, in this case the
minimal matching on G uses both dominant edges, which immediately implies that
the maximal matching uses neither. The other cases can be proven similarly. �	

By considering the fact that the minimal and maximal matchings on G descend to
goodmatchings for either choice of band graph coming fromG, we have the following
corollary to Lemma 11.

Corollary 3 Let G = G[a1, . . . , an].
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• If n is even, then either band graph arising from G involves gluing exactly one
dominant edge.

• If n is odd, then one band graph arising from G involves gluing neither dominant
edge and the other involves gluing both dominant edges.

By Corollary 3, a band graph formed from G[a1, . . . , an] is determined by
knowing whether or not the dominant edge on G1 is the glued edge. We let
G◦
D[a1, . . . , an] denote the band graph which involves gluing the dominant edge

on G1 and G◦
N [a1, . . . , an] denote the band graph which involves gluing the non-

dominant edge onG1. Similarly, letN ◦
X [a1, . . . , an] be the number of good matchings

of G◦
X [a1, . . . , an] for X either D or N .

Proposition 7 Let a1, . . . , an be positive integers with a1 > 1 and an > 1.

1. If n is even, then

N ◦
D[a1, . . . , an] = N [a1, . . . , an] − N [a2, . . . , an − 1]

and

N ◦
N [a1, . . . , an] = N [a1, . . . , an] − N [a1 − 1, . . . , an−1]

2. If n is odd , then

N ◦
D[a1, . . . , an] = N [a1, . . . , an] − N [a2, . . . , an−1]

and

N ◦
N [a1, . . . , an] = N [a1, . . . , an] − N [a1 − 1, . . . , an − 1]

Note that in the n = 1 case, N ◦
D[a1] = a1 and N ◦

N [a1] = 2.

Proof Each case is proven by counting the number of matchings of the un-glued snake
graph G which do not lift to a good matching of the band graph B. These are exactly
the matchings which do not use either of the edges which are identified to form the
band graph.Whenwe have a dominant edge in the gluing, then not using this dominant
edge forces a minimal/maximal matching on the first or last section of G; hence, we
are ignoring the first or last entry of the continued fraction. When a nondominant edge
is in the gluing, then if we instead use the adjacent dominant edge we have not forced
any additional edges to be used in the matching. �	

Other formulas for computing the number of good matchings of a band graph will
appear in [2].

We use the results above to analyze the number of perfect matchings of band graphs
coming from the arcs γ(q,p) = γ p

q
. Following Sect. 4.3 of [9], we take the arc γ p

q
and

nudge both endpoints an infinitesimal amount away from the lattice point to the points
(ε, ε) and (q + ε, p + ε) for small ε > 0; we also change the arc so that it no longer
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passes through (q, p) by nudging the path to the left or right, as in the case of arcs
γ(kq,kp). Then, we identify these points; this corresponds to a simple (i.e. without
self-intersections) closed curve in the orbifold O3.

Let γ
L,◦
p
q

and γ
R,◦
p
q

be these two arcs with identified endpoints, and let mL,◦
p
q

and

mR,◦
p
q

be the number of good matchings of the corresponding band graphs. Call these

band graphs GL,◦
p
q

and GR,◦
p
q

. The proof of Theorem 8 will describe the structure of

these graphs and show that mL,◦
p
q

= mR,◦
p
q

.

Theorem 8 For p, q ∈ Z>0 with p ≤ q and gcd(p, q) = 1, we have

mL,◦
p
q

= mR,◦
p
q

= 6m p
q

− 1.

Proof We consider p = q = 1 separately. The arc γ 1
1
only crosses one arc, τ−1

1
, so

G 1
1

= G[3]. The sign sequence for γ
L,◦
1
1

, keeping the convention a1 > 1 and an > 1,

is+++−−−−−−. Since the first arc that γ L,◦
1
1

crosses is τ−1
1
and the last arc is τ 1

0
,

we will form the graph GL,◦
1
1

by gluing the end tiles on the edges labeled τ 0
1
. Thus, we

can compute mL,◦
1
1

once we determine whether this edge is dominant on the first tile.

Using the convention that the orientation of the labels of the first tile should match the
orientation of the lattice (and ofO), we see that the edge labeled x 0

1
on the first tile is

the non-dominant edge. By Proposition 7,mL,◦
1
1

= N ◦
N [3, 6] = N [3, 6]−N [2] = 17.

x 1
0

x 0
1

x −1
1

x −1
1

. .
.

If we instead consider γ R,◦
1
1

, then the sign sequence is−−−++++++. The last

arc that γ R,◦
1
1

crosses is instead τ 0
1
, and the first two tiles of GR,◦

1
1

are glued vertically

instead of horizontally. Thus, mL,◦
1
1

= N ◦
N [3, 6] as well.

Now consider p
q < 1. The first arc γ

L,◦
p
q

crosses is τ−1
1
and the last arc γ

L,◦
p
q

crosses

is τ 1
0
. Thus, we know that the band graph G◦

p
q
glues along τ 0

1
. For p

q < 1 the first two

entries of the sign sequence will be −−, regardless of the direction of nudging. This
implies that the first two tiles will always be glued vertically, as below. Thus, we will
be gluing along the dominant edge on the first tile.
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x 0
1

x 1
0

x −1
1

x −1
1

. .
.

We next evaluate how the continued fraction associated to γ
L,◦
p
q

compares with that

for γ p
q
. As mentioned above, at the central crossing point for γ p

q
, we now use + since

this crossing is now slightly closer to the left endpoint. Then, by similar reasons as
for arcs γ L

(kq,kp), we see that if C p
q

= [a1, . . . , a1], then CL,◦
p
q

= [a1, . . . , a1, 6] where
CL,◦

p
q

gives the continued fraction from the sign sequence for the arc γ L
(kq,kp) ignoring

the identification. Thus, we have that mL,◦
p
q

= N ◦
D[a1, . . . , a1, 6].

We know that n is even, so we can compute this using Proposition 7,

N ◦
D[a1, . . . , a1, 6] = N [a1, . . . , a1, 6] − N [a2, . . . , a1].

By Lemma 3, we further manipulate the first term,

N ◦
D[a1, . . . , a1, 6] = 6N [a1, . . . , a1] + N [a1, . . . , a2] − N [a2, . . . , a1].

Since N [a1, . . . , a1] = m p
q
, we are left with showing N [a1, . . . , a2] −

N [a2, . . . , a1] = −1. First, suppose that the number of terms in a1, . . . , a2 is 4� − 1
for some � ≥ 1. Then, we have that CL,◦

p
q

= a1, a2, . . . , a2� + 1, a2�, . . . , a2, a1, 6,

since even-indexed entries count the length of subsequences of +’s and we assign +
to the central crossing point. Thus, by Lemma 5, N [a1, . . . , a2] − N [a2, . . . , a1] =
−c2� = −1.

Next, suppose that the number of terms in a1, . . . , a2 is 4� + 1. Then, CL,◦
p
q

=
a1, a2, . . . , a2�+1, a2�+1 + 1, . . . , a2, a1, 6, so

N [a1, . . . , a2�+1, a2�+1 + 1, . . . , a2] − N [a2, . . . , a2�+1, a2�+1 + 1, . . . , a1]
= N [a2, . . . , a2�+1 + 1, a2�+1, . . . , a1] − N [a1, . . . , a2�+1 + 1, a2�+1, . . . , a1]

= c2�+1 = −1,

where we again apply Lemma 5.
Next we turn to γ

R,◦
p
q

. As when analyzing arcs γ R
(kq,kp), we have that if C p

q
=

[a1, . . . , a1], then CR,◦
p
q

= [a1, . . . , a1 −1, 1, 6]. In this case, the first arc γ
R,◦
p
q

crosses
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is τ−1
1

and the last arc crossed is τ 0
1
. Therefore, we form GR,◦

p
q

by gluing along the

edge labeled with τ 1
0
on the first tile; this is the non-dominant edge. Therefore,mR,◦

p
q

=
N ◦

N [a1, . . . , a1−1, 1, 6]. Since the number of terms is even, by Proposition 7 we have
that

N ◦
N [a1, . . . , a1 − 1, 1, 6] = N [a1, . . . , a1 − 1, 1, 6] − N [a1 − 1, . . . , a1 − 1, 1]

= 6N [a1, . . . , a1 − 1, 1] + N [a1, . . . , a1 − 1]
− N [a1 − 1, . . . , a1 − 1, 1]
= 6m p

q
+ N [a1, . . . , a1 − 1] − N [a1 − 1, . . . , a1]

We can rewrite

N [a1, . . . , a1 − 1] − N [a1 − 1, . . . , a1] = N [1, a1 − 1, . . . , a1 − 1]
−N [a1 − 1, . . . , a1 − 1, 1],

and then by a similar argument as before, using Lemma 5, we can show that
N [1, a1 − 1, . . . , a1 − 1] − N [a1 − 1, . . . , a1 − 1, 1] = −1. �	

Seeing in Theorem 8 that our choice of direction to navigate around the lattice point
does not matter, we now will write m◦

p
q

= mL,◦
p
q

= mR,◦
p
q

. In [9], the authors show that

for ordinary Markov numbers and arcs on a torus, n◦
p
q

= 3n p
q
.

5.2 Recurrence onm(kq,kp)

In the following, we show how m(kq,kp) compares with m(q,p).

Theorem 9 Let p
q ≤ 1 have gcd(p, q) = 1. Let k ≥ 2, and define m0 = 0. Then,

m kp
kq

= m◦
p
q
m (k−1)p

(k−1)q
− m (k−2)p

(k−2)q
.

Proof We will show this relation by using snake graph calculus, which was intro-
duced in [6]; we will look at resolving snake graphs with “self-intersection”, which
was explained in a follow-up work [7]. We will use notation from [7] and invite the
interested reader to consult this source for more precise definitions.

Given a snake graph G = (G1, . . . ,Gd), for i ≤ j , let G[i, j] be the subgraph
(Gi , . . . ,G j ).

We consider the k = 2 case separately. In this case, we expect that m(2q,2p) =
m◦

(q,p)m(q,p). If G(q,p) has d tiles, then G(2q,2p) has 2d + 6 tiles. Naturally, the
subgraphs G(2q,2p)[1, d] and G(2q,2p)[d + 7, 2d + 6] are isomorphic. Call this graph
G. The two inclusions i1 and i2 a of G into G(kq,kp) are maximal in the sense that there
is no pair of larger isomorphic subgraphs of G(2q,2p) which contain i1(G) and i2(G).
This shows G(2q,2p) has a self-overlap in the sense of [7]. Since the inclusions i1, i2
both map the southwest-most tile of G to the southwest most tile of the corresponding
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subgraphs, this self-overlap is in the same direction. We denote by s and t the labels
of the first and last tiles of i1(G); that is, s = 1 and t = d. Similarly, let s′ = d + 7
and t ′ = 2d + 6 be the same indices for the first and last tiles of i2(G).

Next, we check that G(2q,2p) satisfies Definition 2.6 in [7]. Since s = 1 and t ′ =
2d + 6, where our graph has 2d + 6 tiles, we check that the sign on the internal edge
between Gt and Gt+1 (call this edge et ) is the same as the sign on the internal edge
between Gs′−1 and Gs (es′−1).These signs correspond to the entries ft and fs′−1 in
the sign function f((2q, 2p)). By our convention, both of these entries will have sign
+, since they correspond to a crossings right before and after the small circle γ(2q,2p)
takes around (q, p)).

Thus, G(2q,2p) self-crosses. This allows us to follow the construction in [7] of a
resolution of the crossing; this will give an equation relating the number of perfect
matchings of several snake graphs.

• First, we have that G3 = G[s, t] ∪G[t ′ + 1, 2d + 6] = G[1, d]; this is isomorphic
to G p

q
. By definition, the number of matchings of this subgraph is m p

q
.

• Next, G◦
4 is the band graph with underlying snake graphG[s, s′ −1] = G[1, d+6]

and (using a left nudge) which glues on the edges labeled with τ 0
1
. From Theorem

8, the number of good matchings of this snake graph is m◦
(q,p).• Since s = 1 and t = 2d + 6, where our graph has 2d + 6 tiles, to find G56 we are

in subcase 2d of case 1 in Section 3 of [7]. Then, G′
56 = G[d +7, d +1] where the

overline denotes a reversal of the snake graph; this is a zig-zag on 6 tiles. We have
that G56 is the section of G′

56 between the first edge with the same sign as es′−1
and the last edge with the same sign as et . As discussed, each of these signs is +.
However, every interior edge of G′

56 has sign − since this subgraph corresponds
to the portion of the arc which forms a small half-circle to the left of a point on
the lattice, hence closer to the right endpoints of the arcs crossed. Therefore, G56
is an empty graph with zero perfect matchings.

By Theorem 4.5 in [7], we conclude that m(2q,2p) = m p
q
m◦

p
q
.

Now we turn to the case for k > 2. The snake graph G(kq,kp) has (6 + d)k − 6
tiles where each subgraph G(q,p)[(d + 6)(i − 1) + 1, (d + 6)i − 6] for 1 ≤ i ≤ k
is isomorphic to G(q,p). The connected subgraphs of the complement, of the form
G[(d+6)i −5, (6+d)i] for 1 ≤ i ≤ k−1, each form a zig-zag shape. Therefore, the
subgraphs G[1, (d + 6)(k − 1) − 6] and G[d + 7, . . . , (6+ d)k − 6] are isomorphic.
Call this subgraph G; by the same reasoning as in the k = 2 case, we see that G(kq,kp)

has a self-overlap in the same direction, and this counts as a self-crossing. Here, we set
s = 1, t = (d + 6)(k − 1) − 6, s′ = d + 7, and t ′ = (d + 6)k − 6. The computations
for G3 and G◦

4 are similar to the k = 2 case while the analysis for the graph G56 is
different.

• The graph G3 is G[1, t] = [1, (d + 6)(k − 1) − 6], which is the same as the graph
G((k−1)q,(k−1)p). Thus, η(G3) = m((k−1)q,(k−1)p).

• The band graph G◦
4 has underlying graph G[s, s′ − 1] = G[1, d + 6] and is glued

on the edges on the extreme tiles labeled with τ 0
1
. Just as in the k = 2 case,

η(G◦
4) = m◦

(q,p).
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• Since s′ < t for k > 2, we are now in Subcase 1 of Case 1 in Section 3.2 of
[7], so G56 = −G[s′, t] = −G[d + 7, (d + 6)(k − 1) − 6], where we have that
η(−G) = −η(G). Thus, we have that η(G56) = −m(k−2)q,(k−2)p.

Therefore, by Theorem 4.12 in [7], we have that

m(kq,kp) = η(G(kq,kp)) = m((k−1)q,(k−1)p)m
◦
(q,p) − m((k−2)q,(k−2)p).

�	
Define the family of (normalized) Chebyshev polynomials of the second kind by

U0(x) = 1,U1(x) = x , and for k ≥ 2, Uk(x) = xUk−1(x) − Uk−2(x). By repeated
use of Theorem 9 and Theorem 8 we can also express m(kq,kp) completely in terms of
m(q,p) = m p

q
.

Corollary 4 Let p ≤ q satisfy gcd(p, q) = 1. Let k ≥ 1. Then,

m(kq,kp) = Uk−1(m
◦
(q,p))m(q,p) = Uk−1(6m(q,p) − 1)m(q,p).

For example, from Table 1, m3,3 = N [3, 5, 3, 53] = 846 = U2(m◦
(1,1))m(1,1) =

3U2(17).

6 Other diophantine equations

In [18], Gyoda and Matsushita study Diophantine equations of the form

x2 + y2 + z2 + k1x + k2y + k3z

for nonnegative integers k1, k2 and k3; one can see k1 = k2 = k3 = 0 is the ordinary
Markov equation and k1 = k2 = k3 = 1 is our generalized Markov equation. They
show that for any choice of k1, k2, k3, the solution set is reachable by exchanges akin
to those in Theorem 1. It is likely that our results could be extended to other choices
of ki .

If all ki ∈ {0, 1}, one can find a related geometric model, including orbifold points
of order two and three, which yields a cluster algebra whose variables specialize to the
solutions of the equation. To deal with orbifold points of order two, one can consult
[10]. If we have ki �= k j for some pair i, j , there will be an asymmetry in the variables
x, y, z, so onemay need a larger indexing set thanQ∩[0, 1]. Nonetheless, there should
still be nice patterns in this case, which potentially can be refined to cluster-algebraic
expressions as in Proposition 4.

In order to preserve the symmetry, one could instead study the case k1 = k2 = k3 =
d ∈ Z>1. In this case, one could use the same snake graph construction as motivated
our work here, but some of the internal edges of the snake graph would have to be
weighted by d. The connection between snake graphs and continued fractions only
handles snake graphs with all edges having weight 1. It is possible that one could
replace each weight d edge with a larger subgraph with edges of weight 1, and then
compute with continued fractions.
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8. Çanakçı, İ, Schiffler, R.: Cluster algebras and continued fractions. Compos. Math. 154(3), 565–593

(2018)
9. Çanakçı, İ, Schiffler, R.: Snake Graphs and continued fractions. Eur. J. Combin. 86, 103081 (2020)
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