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Abstract
In this paper, we begin to consider the problem of computing p-adic periods of
certain genus 2 curves with totally split reduction, using techniques of the arithmetic–
geometric mean. For this, we synthesise the work of Henniart and Mestre on a p-adic
arithmetic–geometric mean in genus 1 with the work of Bost and Mestre on a real
arithmetic–geometric mean in genus 2 (via the so-called Richelot isogeny). We prove
that, for a certain class of p-adic genus 2 curves, the Richelot isogeny plays the same
role in the genus 2 theory as the maps appearing in Henniart–Mestre, in that the
Richelot isogeny squares the p-adic periods, and leads to a quadratically converging
sequence of genus 2 curves. This suggests that this may provide a quadratically con-
vergent method to compute p-adic periods for these curves, once we have a suitably
explicit p-adic Tate uniformisation in genus 2.

Keywords p-adic periods · Genus 2 curves · Richelot isogeny

Mathematics Subject Classification 14G20 · 14H42 · 11G20

1 Introduction

Given two numbers a ≥ b > 0, we set a0 = a, b0 = b, and define an+1 = (an +bn)/2
and bn+1 = √

anbn . The two sequences (an) and (bn) converge quadratically to a
common limit M = M(a, b), known as the arithmetic–geometric mean (AGM). The
elementary theory is beautifully presented in the article of Cox [6]. If we define

I (a, b) =
∫ π/2

0

dθ√
a2 cos2 θ + b2 sin2 θ
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936 R. Chow, F. Jarvis

there is a (fairly complicated) change of variable, known to Gauss, which shows that
I (a, b) = I ( a+b

2 ,
√
ab). It follows that

I (a, b) = I (a0, b0) = I (a1, b1) = · · · = I (M, M) = π

2M
.

Thuswe have a quickway to compute the elliptic integrals I (a, b), at least numerically.
A change of variable leads to these integrals appearing as

∫ dx√
P(x)

, where P is a quartic

polynomial, and where the limits are roots of P . Writing y2 = P(x), we see that we
can evaluate numerically quickly the period integrals for this elliptic curve.

If wewrite P for the quartic coming from the integral I (a, b) and P ′ for that coming
from I (a1, b1), then it turns out that there is a 2-isogeny between the elliptic curves
y2 = P(x) and y2 = P ′(x), which we refer to as the AGM isogeny. If the complex
uniformisation of y2 = P(x) is given by C/Z + Zτ , then y2 = P ′(x) has a complex
uniformisation isomorphic to C/Z + Z.(2τ), i.e. there is a doubling of the period.
Indeed, if we use the usual theta functions to embed the elliptic curves into projective
space:

θ3(q) =
∑
n∈Z

qn
2
, θ4(q) =

∑
n∈Z

(−1)nqn
2

(q = eπ iτ ),

then

θ23 (q2) = θ23 (q) + θ24 (q)

2
, θ24 (q2) = θ3(q)θ4(q),

so that the AGM process takes q into q2, which corresponds to a doubling of the
period τ .

Gauss understood the behaviour of the algorithm when a and b are not necessarily
positive real numbers (issues arise because the square root is no longer well-defined),
and Cremona and Thongjunthug [7] explained how to adapt the algorithm for com-
puting periods of real elliptic curves to the complex case.

There is also a p-adic version of the algorithm, due to Henniart and Mestre [11].
It is easy to see that this will not converge unless the two p-adic integers a and b are
in the same p-adic disc. This leads to an algorithm for computing the p-adic periods
of elliptic curves with split multiplicative reduction defined over non-archimedean
complete fields, so that there exists a p-adic uniformisation (they also require that the
residue characteristic differs from 2). We will review this below.

Bost and Mestre [3] define a version of the AGM suitable for computing periods
of curves of genus 2. This depends on the Richelot isogeny between two curves of
genus 2. If we are given a genus 2 curve in the form y2 = f (x)where f (x) is a sextic, a
quadratic splitting is a factorisation of f as a product f = P1P2P3 of three quadratics.
Corresponding to this factorisation is the Richelot isogeny, a (2, 2)-isogeny between
Jacobians, which we will discuss further below; the algorithm as given by Bost and
Mestre computes the periods when the three quadratics are all real. Again, there are
issues when the quadratics are complex.
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A p-adic study of the Richelot isogeny... 937

There is also some literature on p-adic periods of curves of genus 2. Given a genus 2
curve X , there is a p-adic uniformisation of the curve (due to Mumford [20]) when
X has totally split reduction. Abelian varieties also have p-adic uniformisation (again
due to Mumford [21]); the link between the uniformisations of the curves and their
Jacobians was explained by Manin and Drinfeld [14]. Teitelbaum used these ideas
in his thesis (see [27]) to compute some p-adic periods for some totally split curves
over genus 2; subsequently, Kadziela [13] did something similar in his thesis. Neither
exploits the arithmetic–geometric mean, and we hope to explain in this article how
this might work, thereby giving a quadratically convergent algorithm. However, some
details, especially an explicit description of the Mumford uniformisation, remain to
be completed, and we intend to consider this further in future work.

2 A p-adic AGM in genus 1

The material in this section follows Henniart–Mestre [11] closely; more details can be
found there. We let K denote a non-archimedean complete field of residue character-
istic p > 2. If we are given a0 and b0 in K× such that a/b ≡ 1 (mod 8p), where p|p
denotes the maximal ideal inOK , then the formulae we gave above for the arithmetic–
geometric mean converge quadratically in K× (so that the p-adic precision of the
agreement of an and bn doubles at each iteration).

We recall Tate’s work on p-adic uniformisation. We let E/K denote an elliptic
curve with split multiplicative reduction, and suppose it to be of the form y2 =
x(x + a)(x + a − b). Then the j-invariant of E is not an integer of K , and there
is a value q ∈ p characterised by j = q−1 + 744 + · · · . There is then a p-adic
uniformisation φ : K×/qZ

∼−→E . Further, if dx/y is the canonical differential on E ,
and t is the coordinate on K×, we have φ∗(dx/2y) = u dt/t ; the AGM can be used
to compute the value of u; an extension allows us to compute q from a Weierstrass
equation for E .

Indeed, as remarked above, the AGM gives a 2-isogeny between E and a curve E ′
given by y2 = x(x+a′)(x+a′−b′), where a′ and b′ denote (slightlymodified versions
of) the arithmetic and geometric means of a and b. If E has a p-adic uniformisation,
so does E ′. We have a diagram

K×/q2Z K×/qZ

E ′ E .

f


 

g

The bottommap here is the AGM isogeny, and the vertical maps come from the p-adic
uniformisation. There are p-adic theta functions which satisfy the same duplication
rules as over C, so that the p-adic period q doubles. The top map is therefore induced
by the identity map on K×.

This leads to a simple way to determine q using the AGM process. After choosing
the models for E ′ and E above, there is an explicit description of the isogeny g, and
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938 R. Chow, F. Jarvis

(0, 0) is the non-trivial element of the kernel. The non-trivial element in the kernel of
f is clearly given by q (mod q2Z).
This leads to the following method. Start with the elliptic curve E = E0 in Weier-

strass form for which one wishes to compute the p-adic period q.
Applying the AGM isogeny repeatedly, and p-adic uniformisation, gives a com-

mutative diagram

· · · K×/q4Z K×/q2Z K×/qZ

· · · E2 E1 E0

f2 f1

φ2 


f0

φ1 
 φ0 

g2 g1 g0

in which the maps fn are induced by the identity on K×, and the bottom maps are
explicit isogenies between elliptic curves with explicitly given Weierstrass equations,
En : y2 = x(x + an)(x + an − bn). The vertical maps coming from Tate’s p-adic
uniformisation are a little more mysterious. However, were we to extend the diagram
infinitely far to the left, we can see that the top sequence would have projective limit
K×, while the bottom one would have a limit curve E∞ with an explicit equation
y2 = x2(x + M), where M is the arithmetic–geometric mean M = M(a1, b1). The
vertical maps are given by a formula of Tate (see, for example, [26], p. 323). These
are complicated series, but they degenerate in the limit into a very simple map. Tate’s
vertical map for a point w ∈ K× and period q involves the p-adic theta series

ϑ(w, q) = (1 − w)

∞∏
n=1

(1 − qnw)(1 − qnw−1)(1 − qn) =
∑
n∈Z

(−1)nq
n2−n
2 wn,

the equality being the Jacobi triple product, and as q → 0, we see that this approaches
1− w. This leads to a simple explicit map at infinity, φ∞ : K× −→ E∞, and at each
finite stage, the vertical map φn can be regarded as an approximation of φ∞ agreeing
up to precision of order q2

n
.

So one can take P1 = (0, 0) on E1, explicitly pull it back to P2 on E2, then to
P3 on E3 etc., up to desired precision; then apply φ−1∞ to get something in K×, and
this should be the value q. Explicit details and formulae are given in [11]; from the
formulae, it is clear that there is a natural right choice of pull back Pn+1 of Pn which
is in the same p-adic disc.

More generally, one can start with any point P0 on E0 and carry out this procedure.
This gives a p-adic Landen transformation in this setting.

Before moving on to genus 2, we remark that this also allows one to compute tiny
Coleman elliptic integrals. So let E/Qp be an elliptic curve with an explicit model
y2 = (x − e1)(x − e2)(x − e3) such that e2 − e1 ≡ e3 − e1 (mod pZp). Suppose
that P and Q are points on E(Qp) inside the same residue disc. Then recall that
φ : Q×

p /qZ −→ E has φ∗(dx/2y) = u dt/t . Properties of Coleman integration now
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imply that

∫ Q

P

dx

2y
=

∫ φ−1(Q)

φ−1(P)

φ∗
(
dx

2y

)
=

∫ φ−1(Q)

φ−1(P)

u
dt

t
= u Log

(
φ−1(Q)

φ−1(P)

)
,

where Log denotes a branch of the p-adic logarithm.
We record this as an algorithm:

Algorithm 2.1 Let E/Qp be an elliptic curve, and P , Q ∈ E(Qp) in the same residue
disc.

1. Let α = e2 − e1, β = e3 − e1.
2. Compute the quantity u2 ∈ Qp using the AGM, as in [11].
3. Apply the Landen transformation to both P and Q to get φ−1(P) and φ−1(Q).
4. Then

∫ Q

P

dx

2y
= u Log

(
φ−1(Q)

φ−1(P)

)
.

When programmed in Sage, this converges quadratically, and gives the same result
as existing algorithms of Balakrishnan and others, which have linear convergence.
(However,wenote that ourmethodonly applies to those curveswith splitmultiplicative
reduction, whereas those already in Sage apply more generally.)

However, the main aim of this paper is to begin to try to extend the algorithm of
Henniart and Mestre to curves of genus 2.

3 The Richelot isogeny and periods of curves of genus 2

Richelot ([23]), in 1836, gave a construction for genus 2 curves which has some
resemblances to the AGM isogeny for curves of genus 1. In particular, it allows the
numerical computation of period integrals of the form

∫ b

a

lx + m√|P(x)| dx,

where P is a polynomial of degree 6 with real roots, and a and b are consecutive real
roots of P . It resembles Gauss’s work on elliptic integrals, but is significantly more
complicated. The method was subsequently refined by Königsberger and Humbert,
and was given a modern treatment by Bost and Mestre [3], which we follow in this
paper.

Let X denote a curve over C of genus 2. It therefore has a model y2 = f (x), for
some sextic f . Then X has a Jacobian, J = Pic0(X), the degree 0 divisors on X , up
to linear equivalence.

We shall explain how to construct a new curve X ′, with Jacobian J ′, such that there
is a (2, 2)-isogeny J ′ −→ J , which shares some of the properties of the AGM isogeny
for elliptic curves.
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940 R. Chow, F. Jarvis

Definition 3.1 A quadratic splitting of f (x) is simply a factorisation of f as a product
P1P2P3 of three quadratics.

For curves of genus 2 over R, there is a natural quadratic splitting, coming from
taking pairs of consecutive roots. We shall see below that there is similarly a canonical
choice of quadratic splitting for certain totally split genus 2 curves over p-adic fields.
However, one of the main obstacles to a nice general theory over the complexes is that
there are 15 choices of quadratic splitting over C, and none is necessarily the correct
one. The first author partially considers this issue in his thesis [5].

We fix a splitting, f = P1P2P3, where Pi (x) = pi2x2 + pi1x + pi0. Then we
define

Q1 = [P2, P3] = P ′
2P3 − P2P

′
3

Q2 = [P3, P1] = P ′
3P1 − P3P

′
1

Q3 = [P1, P2] = P ′
1P2 − P1P

′
2

(with the bracket notation intended to remind the reader of the Lie bracket). If Pi and
Pj are quadratics, the derivatives P ′

i and P ′
j are linear, but the leading terms in the

brackets cancel, so that each Qk is again quadratic.
If we write 	 = det(pi j ), let X ′ be defined by the twist

	y2 = Q1Q2Q3.

There is a correspondence Z ⊂ X × X ′. Indeed, if we label the coordinates of X ′
so that they are given by 	y′2 = Q1(x ′)Q2(x ′)Q3(x ′), we let Z be given by

{
(x, y, x ′, y′)

∣∣∣∣ y
2 = P1(x)P2(x)P3(x), 	y′2 = Q1(x ′)Q2(x ′)Q3(x ′),
P1(x)Q1(x ′) + P2(x)Q2(x ′) = 0, P1(x)Q1(x ′)(x − x ′) = yy′

}
.

That is, Z is defined as the subset of X × X ′ by the extra two equations

P1(x)Q1(x
′) + P2(x)Q2(x

′) = 0,

P1(x)Q1(x
′)(x − x ′) = yy′.

Write π1 : Z −→ X , and π2 : Z −→ X ′ for the projections. Then the correspondence
Z induces amap δZ : �1(X ′) −→ �1(X) given by compositionπ1∗◦π∗

2 of the inverse
image π∗

2 : �1(X ′) −→ �1(Z) and of the trace π1∗ : �1(Z) −→ �1(X). With the
extra factor of 	 we added, it turns out (see [3]) that there is an identity

δZ

(
(lx ′ + m)

dx ′

y′

)
= (lx + m)

dx

y
.

So if we had used the same labels for both X and X ′, we would get

δZ

(
dx

y

)
= dx

y
, δZ

(
x dx

y

)
= x dx

y
,
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A p-adic study of the Richelot isogeny... 941

which explains how the differentials on the curves behave under the correspondence.
The correspondence Z also defines a map Div(X ′) −→ Div(X) on divisors by

the formula
∑

ni p′
i �→ ∑

niπ1π
−1
2 p′

i for points p′
i on X ′, and this gives a map

g : J ′ −→ J on degree 0 divisor classes, g([∑ ni p′
i ]) = [∑ niπ1π

−1
2 p′

i ]. In the
same way, Z induces a map g′ : J −→ J ′ by g′([∑ ni pi ]) = [∑ niπ1π

−1
2 pi ]. We

will refer to g as the Richelot isogeny; then g′ is the dual isogeny, in the sense that
g′g = [2]J ′ , multiplication by 2 on J ′, and gg′ = [2]J .

We remark that the correspondence Z depends on the choice of ordering of the three
quadratics within the splitting, but that all choices give the same isogeny on divisor
classes (see [25], sect. 8.4) so give the same map on Jacobians.

The kernel of g is a (2, 2)-subgroup, whose three non-zero elements are the divisor
classes [(qi , 0) − (q ′

i , 0)], where qi and q ′
i are the two roots of Qi , for each of the

quadratics Q1, Q2 and Q3.
Thus we have a map in genus 2 with analogous properties to the AGM isogeny in

genus 1. Before moving to the p-adic theory, we briefly explain that this can likewise
be viewed as a period-doubling map. This is already explained in [3] in the case of
real sextics, using integration. We will explain another approach, which will be more
useful when we come to consider the p-adic setting.

We first recall the definition of a theta function. Take a and b to be column vectors in
Q

2, and � in the Siegel upper half-spaceH2 of all 2× 2-symmetric complex matrices

with positive definite imaginary part. For a pair z =
(
z1
z2

)
of complex numbers, we

define the theta function with characteristic

[
a
b

]
as

θ

[
a
b

]
(z;�) =

∑
n∈Z2

eπ i t (n+a)�(n+a)+2π i t (n+a)(z+b).

These theta functions are analytic in z and satisfy a transformation law. Of particular
importance are the functions with a, b ∈ 1

2Z
2/Z2. Often formulae just involve the

theta constants, where z = 0, and then there are 6 pairs (a, b) for which these vanish;
the remaining 10 theta functions are as follows:

θ0(�) = θ

[
0 0
0 0

]
(�), θ1(�) = θ

[
0 0
0 1

2

]
(�),

θ2(�) = θ

[
0 0
1
2 0

]
(�), θ3(�) = θ

[
0 0
1
2

1
2

]
(�),

θ4(�) = θ

[ 1
2

1
2

1
2

1
2

]
(�), θ5(�) = θ

[ 1
2

1
2

0 0

]
(�),

θ6(�) = θ

[ 1
2 0
0 1

2

]
(�), θ7(�) = θ

[ 1
2 0
0 0

]
(�),

θ8(�) = θ

[
0 1

2
1
2 0

]
(�), θ9(�) = θ

[
0 1

2
0 0

]
(�).
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942 R. Chow, F. Jarvis

(Note that the numbering of these is not standardised in the literature, and our num-
bering is arbitrary.)

Given an equation y2 = f (x), where f is a sextic, there is some linear transforma-
tion taking three given roots to 0, 1 and ∞, respectively. This turns the original sextic
into a quintic, giving an equation in Rosenhain form

y2 = x(x − 1)(x − λ)(x − μ)(x − ν).

The classical Thomae formulae allow us to write λ, μ and ν in terms of the 10 genus 2
theta constants {θ0(�), . . . , θ9(�)}, where � is the period matrix of the Jacobian. We
now consider the quadratic splitting

P1(x) = x(x − λ), P2(x) = (x − 1)(x − μ), P3 = x − ν.

It turns out that when we apply the Richelot isogeny corresponding to this splitting
(making appropriate choices for the square roots in the formulae), we get a sextic
defining X ′; when we move three roots back to 0, 1 and ∞, we get an equation

y2 = x(x − 1)(x − λ′)(x − μ′)(x − ν′),

and we find that the remaining three roots are exactly given by the same functions
defining λ,μ and ν as for X , but evaluated at 2� rather than� (see [5] for more details
of the argument, e.g. which roots one moves to 0, 1 and∞, and which square roots one
should take). The proof involves a lengthy calculation with theta function duplication
formulae, and simplification via Maple. We should remark that the quadratic splitting
here is chosen for compatibility with the p-adic situation below.

Thus the Richelot isogeny is a period-doubling map in the same way as the AGM
isogeny in genus 1.

Thus all the ingredients are in place to try to extend the Henniart–Mestre algo-
rithm for finding p-adic periods of elliptic curves to genus 2, except for the p-adic
uniformisation theory, which we recall now.

4 p-adic uniformisation for genus 2 curves and their Jacobians

Ourmain reference here is Teitelbaum’s paper [27], togetherwith that ofKadziela [13].
We restrict ourselves to the parts of the theory which will be useful for us; see these
references for background on rigid analysis and in particular the structure of p-adic
domains in terms of the tree for PGL2. We will assume that the residue characteristic
of our field is odd, so that we can write genus 2 curves with a model of the form
y2 = f (x), where f is a sextic.

Just as not every elliptic curve has a p-adic uniformisation, so the same is true in
genus 2. Those curves which do have such a uniformisation are the totally split curves;
these are also known as Mumford curves. Essentially, these have special fibres with
components of genus 0 intersecting at ordinary double points. Whether or not a curve
is a Mumford curve can be read off from the equation (see [27], Proposition 9); there
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are three kinds of curve whose reduction is just bad enough to be totally split, which
Teitelbaum calls Types A, B and C. Modulo the maximal ideal p of OK , the equation
must reduce to

y2 = k(x − α)2(x − β)2(x − γ )(x − δ)

with α, β and γ in different residue classes.

• Type A refers to the case where δ is different from α, β and γ ;
• Type B refers to the case where δ ≡ γ , so that the equation reduces to y2 =
k(x − α)2(x − β)2(x − γ )2 modulo p;

• Type C refers to the case where δ ≡ α, so that the equation reduces to y2 =
k(x − α)3(x − β)2(x − γ ) modulo p.

Our work, like Teitelbaum’s, focuses on Type B; hismotivation is that genus 2modular
curves are of this form, since their reduction is known to have ordinary double points,
but it is also very useful for us, since the pairing of the roots by residue classes gives
us a canonical p-adic quadratic splitting of the sextic.

Indeed, we shall restrict to the case of Type B from now on. (Further, we suspect
that the arguments we give in this paper will not extend to the other cases, but this
may be a topic for future investigation.)

Thus theWeierstrass points of the curve are canonically partitioned into three pairs,
S1, S2 and S3, where these consist of pairs of points whose x-coordinates in the same
residue class.

Given a totally split curve X over a complete p-adic field K , Mumford ([20])
explained that there is a p-adic uniformisation for X . There is a Schottky group
� ⊂ PGL2(K ), i.e. a group all of whose non-identity elements are hyperbolic in
the p-adic sense that their eigenvalues have different valuations, and a rigid analytic
isomorphism �/� −→ X , where � = P

1
K − L, with L being the set of limit points

of �. Ihara showed that Schottky groups are free; Mumford showed that the number
of generators of � is equal to the genus of X .

We are interested in the case of a curve of genus 2, so our Schottky group is a free
group on two generators γ1 and γ2.

Mumford ([21]) also explained how to uniformise abelian varieties; the link between
the uniformisation of the curve and its Jacobian was given byManin andDrinfeld [14].
There is a pairing � × � −→ K×, given in terms of p-adic theta functions, which
allows us to regard � as contained in C� = Hom(�, K×). Then the quotient C�/�

is a uniformisation of the Jacobian J .
The map is fairly explicit. If � is as above, then an automorphic form on � is a

meromorphic function f on � such that f (ω) = χ(α) f (αω) for all α ∈ �. The con-
stant χ(α) ∈ K× is the automorphy factor. It is easy to see that χ is a homomorphism
� −→ K×.

Automorphic forms are generated by p-adic theta functions, and these are the most
important ingredient in the theory. Given a, b ∈ �, we define

�(a, b; z) =
∏
γ∈�

z − γ (a)

z − γ (b)
.
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944 R. Chow, F. Jarvis

This product converges to give a meromorphic function on �; if a and b are in the
same orbit under �, there are no poles or zeros, but otherwise there are simple zeros
on �a and simple poles on �b. We set

uα(z) = �(a, α(a); z),

which are independent of the choice of a, and satisfies uαβ(z) = uα(z)uβ(z) for all
α, β ∈ �. It turns out that uα(z) is constant if α ∈ [�,�]. The automorphy factor of
�(a, b; z) is

χa,b(α) = uα(a)

uα(b)
= �(a, α(a); z)

�(b, α(b); z) .

If we are given a homomorphism χ ∈ Hom(�, K×), then there is a unique auto-
morphic form fχ on � whose automorphy factor is χ . Then the map C�/� −→ J is
given by χ �→ [( fχ )], the class of the divisor of fχ .

The pairing � × � −→ K× is also easy to describe. If α and β are in �, then the
value of the pairing is

〈α, β〉 = uα(z)

uα(βz)
.

Then this is a symmetric pairing on �, valued in K×.
Let’s fix generators γ1 and γ2 for our Schottky group �. Since the pairing factors

through � × � −→ K×, where � = �/[�,�], every element can be written α ≡
γ
m1
1 γ

m2
2 , β ≡ γ

n1
1 γ

n2
2 , and the bilinearity and symmetricity give

〈α, β〉 = 〈γ1, γ1〉m1n1〈γ1, γ2〉m1n2+m2n1〈γ2, γ2〉m2n2

In particular, the pairing is determined by the effects on the two generators.
We recall that for genus 2 Mumford curves of Type B, the Weierstrass points were

canonically partitioned into three pairs S1, S2 and S3. We label these pairs arbitrar-
ily, following [27], as Si = {P+

i , P−
i }. Teitelbaum ([27], 2.1) writes down specific

generators γ1 and γ2, defines γ3 so that γ1γ2γ3 = 1, and defines p-adic periods by

q1 = 〈γ2, γ3〉−1, q2 = 〈γ3, γ1〉−1, q3 = 〈γ1, γ2〉−1.

Clearly these three periods determine the pairing.
Teitelbaum defines “half-periods” by

p1 = χP+
1 ,P+

2
(γ2), p2 = χP+

2 ,P+
3

(γ3), p3 = χP+
3 ,P+

1
(γ1),

and shows that p2i = q−1
i . These half-periods are used to construct particular theta

functions on the Jacobian.
Once generators are fixed for the free group �, there is a natural isomorphism

Hom(�, K×)
∼−→(K×)2, given by χ �→ (χ(γ1), χ(γ2)). The pairing � × � −→ K×
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gives a map � ↪→ Hom(�, K×), which we might write γ �→ χγ . The image of �

under the isomorphism is generated by

(χγ1(γ1), χγ1(γ2)) = (〈γ1, γ1〉, 〈γ1, γ2〉) = (q2q3, q
−1
3 )

and

(χγ2(γ1), χγ2(γ2)) = (〈γ2, γ1〉, 〈γ2, γ2〉) = (q−1
3 , q1q3).

Thus the image of � is the subgroup

H� = {(qa2qa−b
3 , qb1q

b−a
3 ) | a, b ∈ Z}.

We conclude that there is an isomorphism

C�/�
∼−→(K×)2/H�.

Our strategy should now be clear. Given a curve X0 = X of genus 2, we consider
its Jacobian J0, and uniformisations of both, by a Schottky group�0.We use the Bost–
Mestre algorithm to find a Richelot-isogenous curve X1, inducing a map on Jacobians
J1 −→ J0 whose kernel is a (2, 2)-group, which we know. We pick an element in the
kernel, and lift it by a sequence of Richelot isogenies Jn −→ Jn−1 −→ · · · −→ J1
to some desired precision, then map this up to the uniformisation C�n/�n , and then
to (K×)2/H�n , to recover the periods qi (or equivalently the half-periods pi ).

5 A p-adic study of the Richelot isogeny

Teitelbaum gives a (linearly) convergent algorithm for computing the half-periods of
a genus 2 curve. Essentially, this involves finding a p-adic version of the Thomae
formulae, and expressing the coefficients in terms of certain p-adic theta series related
to those given in the previous section. The theta series have “q-expansions” which are
power series in the three half-periods p1, p2 and p3; these are then explicitly inverted
to compute the half-periods. (Note that Guitart–Masdeu [10] remark that a Newton
scheme method is a better approach to this inversion than the one given in [27].)

Let us record the following:

Lemma 5.1 If X is a Type B genus 2 curve, and if X ′ −→ X is a Richelot isogeny,
then X ′ also has Type B.

Proof The simplest way to prove this is simply to observe that if Pi (x) ≡ (x − αi )
2,

then (x − αi ) is a factor of P ′
i (x) over the residue field. Then Q1 = P ′

2P3 − P2P ′
3

has a factor over the residue field of x − α2 as this is a factor of both P2 and P ′
2, and

similarly of x − α3 as this is a factor of both P3 and P ′
3. As Q1 is a quadratic, we see

that over the residue field,

Q1 ≡ c1(x − α2)(x − α3).
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Similarly,

Q2 ≡ c2(x − α3)(x − α1),

Q3 ≡ c3(x − α1)(x − α2),

so that X ′, given by 	y2 = Q1Q2Q3 again has three pairs of repeated roots over the
residue field. ��

Teitelbaum gives an example of a curve, X0(23), of genus 2, with the appropriate
reduction type (with p = 23), and computes the p-adic half-periods. As already noted,
there is a canonical choice of quadratic splitting, and therefore a canonical Richelot
isogeny to/from a curve X ′

0(23), which is easily computed also to have Type B. The
first author ([5]) computed this Richelot-isogenous curve for Teitelbaum’s example,
used Teitelbaum’s method to compute the half-periods, and observed that if p1, p2 and
p3 were the half-periods of the original curve, then p21, p

2
2 and p23 were the half-periods

of the isogenous curve up to fairly high p-adic precision, so the p-adic periods seem
to be squared under the isogeny, just as in the case of a real quadratic splitting. We
can prove this using the same methods as indicated above. We sketch this (see [5] for
more complete details).

Theorem 5.2 If X ′ −→ X is a Richelot isogeny between two Type B genus 2 curves,
then the half-periods of X ′ are the squares of the half-periods of X.

Proof Essentially we use the argument above, writing our curve in Rosenhain form,
applying the Richelot isogeny with a suitable quadratic splitting, and using Thomae
formulae to identify coefficients with theta functions. In the p-adic case, Teitelbaum
constructs p-adic theta functions (he only gives explicitly four of them – see (25) of
[27]; Guitart–Masdeu [10] give ϑ1, . . . , ϑ9 below), and gives a p-adic version of the
Thomae formulae.

There are 10 p-adic theta functions, which are power series in the half-periods p1,
p2 and p3:

ϑ0 = ∑
i, j∈Z p j2

1 pi
2

2 p(i− j)2

3 ϑ1 = ∑
i, j∈Z(−1) j p j2

1 pi
2

2 p(i− j)2

3

ϑ2 = ∑
i, j∈Z(−1)i p j2

1 pi
2

2 p(i− j)2

3 ϑ3 = ∑
i, j∈Z(−1)i+ j p j2

1 pi
2

2 p(i− j)2

3

ϑ4 = ∑
i, j∈Z(−1)i+ j p j2− j

1 pi
2−i
2 p(i− j)2

3 ϑ5 = ∑
i, j∈Z p j2− j

1 pi
2−i
2 p(i− j)2

3

ϑ6 = ∑
i, j∈Z(−1) j p j2

1 pi
2+i
2 p(i− j)2+(i− j)

3 ϑ7 = ∑
i, j∈Z p j2

1 pi
2+i
2 p(i− j)2+(i− j)

3

ϑ8 = ∑
i, j∈Z(−1)i p j2+ j

1 pi
2

2 p(i− j)2−(i− j)
3 ϑ9 = ∑

i, j∈Z p j2+ j
1 pi

2

2 p(i− j)2−(i− j)
3

Ifwemake a formal substitution� = 1

π i

(
log p2 p3 − log p3
− log p3 log p1 p3

)
into the classical com-

plex theta functions, then in fact, we recover (almost) exactly these p-adic expressions.

123



A p-adic study of the Richelot isogeny... 947

Indeed, an easy calculation gives the following:

θ0(�) = ϑ0, θ1(�) = ϑ1,

θ2(�) = ϑ2, θ3(�) = ϑ3,

θ4(�) = (p1 p2)
1
4 ϑ4, θ5(�) = (p1 p2)

1
4 ϑ5,

θ6(�) = (p2 p3)
1
4 ϑ6, θ7(�) = (p2 p3)

1
4 ϑ7,

θ8(�) = (p1 p3)
1
4 ϑ8, θ9(�) = (p1 p3)

1
4 ϑ9.

Thus every complex theta function identity has a p-adic counterpart. Since it was
exactly these identities which are used to prove the doubling of the period matrix
above, the same calculations work (with very minor modifications owing to the addi-

tional factors such as the (pi p j )
1
4 above) to give the result that the Richelot isogeny

corresponds to squaring the half-periods p1, p2 and p3. ��
This means that there is a commutative diagram like that of Sect. 2:

(K×)2/H ′ (K×)2/H

J ′ J

f


 

g

in which g is induced by the Richelot isogeny.

Conjecture 5.3 f is given by the identity map on (K×)2.

We state this as a conjecture because we do not yet have a good description of
the Mumford uniformisation maps. The corresponding result over C is fairly easy to
prove.We begin by noting (see [4], p. 2, or Sect. 6 below) that elements of the Jacobian
are essentially parametrised by pairs of points on the curve. Let P1 = (x1, y1) and
P2 = (x2, y2) be points on a genus 2 curve. Recall also that ω1 = dx

y and ω2 = x dx
y

are a basis for the differentials on a curve of genus 2. The Abel–Jacobi map, which
identifies the Jacobian with a quotient of C2 by a lattice is given by mapping (P1, P2)
to

(z1, z2) =
∫ P1

∞
+

∫ P2

∞
(ω1, ω2)

where the integral is defined modulo the lattice of periods. This equality implies that

dz1 = dx1
y1

+ dx2
y2

, dz2 = x1 dx1
y1

+ x2 dx2
y2

.

(See also [1], p. 36.) Finally, the equality δZ

(
(lx + m) dxy

)
= (lx + m) dxy under the

Richelot isogeny of Sect. 3 shows that dzi is mapped to dzi under f ∗, so that f is the
identity.
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In the p-adic case, we expect the same to hold, but need a better description of
the vertical maps; however, the correspondence between complex and p-adic theta
functions suggests that the result should continue to hold. We assume the conjecture
in what follows.

As in Sect. 2, we want to iterate this procedure to get a commutative diagram:

· · · (K×)2/H2 (K×)2/H1 (K×)2/H0

· · · J2 J1 J0

f2 f1

φ2 


f0

φ1 
 φ0 

g2 g1 g0

where Hn = {(q2na2 q2
n(a−b)

3 , q2
nb

1 q2
n(b−a)

3 ) | a, b ∈ Z}.
Next, we wish to iterate a sequence of Richelot isogenies. To fix notation, suppose

that X0 = X is given by y2 = f0, which reduces modulo p to y2 = (x − α)2(x −
β)2(x − γ )2. Write y2 = P1P2P3 for the corresponding quadratic splitting; i.e. P1 =
(x − α1)(x − α2), where α1 and α2 are the two roots of f0 which are congruent to α

modulo p, so that P1 ≡ (x − α)2, and similarly for P2 and P3. As above, when we
work out Q1 = P ′

2P3 − P2P ′
3, we find that Q1 ≡ (x − β)(x − γ ) etc., up to constant

factors. But in fact, we get p-adic convergence, and at a quadratic rate. For this, we
write α = (α1 + α2)/2, so that α1 = α + εα and α2 = α − εα , and assume that
εα ∈ pvα , with εβ , vβ , εγ and vγ defined analogously. Write v = min{vα, vβ, vγ ).
Then a simple manipulation of the quadratic formula shows that the roots of Q1 are
β + ε′

β and γ + ε′
γ , where ε′

β ∈ p2v and ε′
γ ∈ p2v . Thus an application of the Richelot

process leads to pairs of roots which are in a p-adic disc of the square of the radius of
the original pairs.

After one iteration, we get a curve X1 = X ′ given by 	y2 = Q1Q2Q3. If we used
these quadratics for the next step, we would return to the original curve. Instead, we
redistribute the roots, and write the equation of X1 as t21 y

2 = P(1)
1 P(1)

2 P(1)
3 , where

P(1)
1 denotes the quadratic whose roots are the roots of Q2 and Q3 congruent to α, and

so on. Thenwe can repeat the process with these new quadratics to find a curve X2, and
the above argument shows that the curves X0 = X , X1, X2, . . . converge quadratically
to a limit T 2y2 = (x − a)2(x − b)2(x − c)2. That is, if we write tk y2 = fk for the
curve Xk , where fk is monic, we see that if the pairs of roots of f0 are congruent mod
p, then the pairs of roots of fk are congruent mod p2

k
.

Let us record this result:

Proposition 5.4 The sequence of equations for X1, X2, X3, . . . converges quadrati-
cally.

We know that the kernel of f is generated by (q2q3, q
−1
3 ) and (q−1

3 , q1q3), and that
the kernel of g by the divisors corresponding to differences of Weierstrass points in
the same factor of the quadratic splitting.

Wewill lift divisors D1 in the kernel of g0 using the Richelot isogeny to divisors D2,
D3, etc., as far as some Dn , which we expect to give the result to our desired precision;
at this precision, the curve and divisor will not change further, so we can assume we
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are at X∞, and then lift via φ∞ to (K×)2, enabling us to recover information about
the periods.

We expect that the divisors can be chosen to converge p-adically also, and this
appears to be the case in examples we have calculated. However, as we will explain
below, our method for pulling back the Richelot isogeny is very indirect, and we do
not yet have a proof.

6 Practical implementation: lifting via the Richelot isogeny

In order to make this into a practical algorithm, we need to be able to lift a divisor
through the Richelot isogeny, and then invert a vertical map. So, given a divisor D on
a genus 2 curve X , and a Richelot isogeny g : X ′ −→ X , we need to work out the
divisor g−1(D). Further, we want to be able to see that if X ′ and X are congruent to
some p-adic precision, so are the divisors g−1(D) and D.

We now explain how to make the formula for g explicit.
We take a curve of the form y2 = P1P2P3, with Weierstrass points P+

1 , P−
1 ,

P+
2 , P−

2 , and P+
3 , P−

3 , corresponding to the three quadratics. Thenwewill be applying
our algorithm to the divisor D1 = (P+

1 ) − (P−
1 ) (and repeating it for the other pairs).

The formula in Sect. 3 for lifting divisors applies here; since it is a 2-to-1 map, each
point will lift to a pair of points, so that we would expect our divisor to be supported
at 4 points. However, it is well known, and explained in [4] (pp. 2–3), for example,
that any divisor is linearly equivalent to one supported at 2 points. For this, we note
that if (x, y) is any point on X , O = (x, y) + (x,−y) represents the canonical class
in Pic2(X) (note that any two divisors of this form are linearly equivalent). There is
an isomorphism Pic0(X)

∼−→Pic2(X) given by sending a divisor D to D + O. The
Riemann–Roch theorem tells us that in any divisor class other thanO, there is exactly
one effective divisor, i.e. a divisor of the form (P) + (Q). The group law on the
Jacobian in these terms is beautiful: given one divisor class represented by (P)+ (Q),
and another represented by (P ′) + (Q′), then (generically, at least) there is a unique
cubic y = m(x) passing through each of the points P , Q, P ′ and Q′. The cubic
y = m(x) meets X at two further points, P ′′ and Q′′, and the group law states that

((P) + (Q)) + ((P ′) + (Q′)) + ((P ′′) + (Q′′)) = 3O

in Pic6(X). The inverse of a divisor (P) + (Q) is (P) + (Q), where, if P = (x, y)
lies on the curve, P = (x,−y). We will call a divisor reduced if it is of the form
(P) + (Q).

The dual ĝ of the Richelot isogeny is, as noted above, given by exactly the same
correspondence (see [25], Proposition 8.4.12 and Corollary 8.4.14), and ĝ ◦ g = [2],
multiplication by 2. The strategy is to halve the given divisor D on J , and then apply
the dual isogeny ĝ. This gives the preimages under the Richelot isogeny. In practice,
one needs to find only one halving D2 with [2]D2 = D; we apply the dual Richelot
map to get g−1(D) = ĝ(D2), and to get the other preimages, we add the divisors in
the kernel of g, whose structure we mentioned earlier.
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The problem of halving a divisor is called bisection, and has been previously studied
in various papers on cryptography, in the context of halving divisors for hyperelliptic
curves over finite fields. For the particular models which we need, this was essentially
done by Miret, Pujolàs and Thériault in [17] (see also the recent preprint of Miret,
Pujolàs and Rio [16]). It works well for general curves of genus 2 with sextic models
(much of the literature used quintic models). We again write D = (x1, y1) + (x2, y2)
for the original divisor, and D2 = (u1, v1) + (u2, v2) for the bisection. There should
be 16 bisections D2. We write S = u1 + u2 and P = u1u2, so that again

x2 − Sx + P = (x − u1)(x − u2).

Unravelling the explicit group law on the Jacobian means that the bisection process is
equivalent to solving

f − m2 = c(x2 − sx + p)(x2 − Sx + P)2,

where m(x) is a cubic, c is a constant, and S and P are the sum and product of u1 and
u2, the x-coordinates of the points in the support of D2.

It is explained in [17] how to solve this. The cubic m is constrained to be of the
form

(k1x + k0)(x
2 − sx + p) − (γ x + δ),

where y = γ x + δ is the line joining (x1, y1) and (x2, y2).
By comparing coefficients, [17] explain that one can eliminate S and P , and also c,

and get 2 equations relating k0 and k1 coming from the equality above in the bottom 2
degrees. After clearing denominators, the resultant of these two equations with respect
to k0 is a degree 32 polynomial in k1, but there are some trivial factors (coming from
the clearing of the denominators) which can be removed, leaving a degree 16 equation
for k1. This degree 16 equation is explicit, but complicated.

We find a bisection for D by solving this degree 16 equation p-adically to get k1
up to the desired precision, finding k0 by substituting it into the two equations given,
and then recovering S and P . This indirect method works successfully, although one
expects as above that there should be a better way. Once the first bisection is identified
by thismethodwhich gives the preimage g−1(D) congruent to D, since the subsequent
curves are increasingly p-adically congruent, one can simply Hensel-lift each solution
in turn to get subsequent ones.

Remark 6.1 We hope that in the case where y2 = f = P1P2P3, then the degree 16
equation should somehow be expressible as a quartic function of a quartic, reflecting
the decomposition of [2] as the product of ĝ ◦ g. Miret, Pujolàs and Rio ([16]) show
at least that the degree 16 equation can naturally be written as the product of four
quartics, at least in the case where f is a monic quintic.

At the end of this process, we have a divisor Dn on Xn , which arises by successive
pull-backs of a divisor D1 on X1 in the kernel of g0 : J1 −→ J0. Assuming our
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precision is at the desired level, we know that it will not change with further iterations,
and can assume that it is D∞ on X∞, up to the desired precision. We then need to lift
it to (K×)2.

7 X0(23)

In order to begin to test our method, we compared the results with those given in Teit-
elbaum [27]. Teitelbaum uses the explicit equations for X0(23), X0(29) and X0(31)
(computed by Fricke), all of genus 2, and all with Type B reduction. Since most details
are given for X0(23), we have used this curve as our main test.

In Sect. 3.3 of [27], we find the equation for X = X0(23)/Q23 as

y2 = x6 − 14x5 + 57x4 − 106x3 + 90x2 − 16x − 19.

We find that

y2 ≡ (x + 2)2(x + 5)2(x + 9)2 (mod 23),

confirming that X has Type B reduction. The Weierstrass points of X are rational
over Q23(π), where π2 = −23. There are three pairs of roots; Teitelbaum arbitrarily
chooses one from each pair, and moves them to 0, 1 and ∞. This converts the curve
into one in Rosenhain form:

y2 = x(x − 1)(x − λ)(x − μ)(x − ν).

We can suppose π |λ, π |μ − 1 and π |ν−1 (as we have Type B reduction). Teitelbaum
works out an explicit model for a genus 2 curve in Rosenhain form in terms of p-adic
theta functions depending only on the half-periods; these resemble the function in the
previous section, except that they are really the theta constants, where w1 = w2 = 1.
Teitelbaum uses 4 of the theta functions listed above (the four functions appearing
in (25) of [27] are ϑ1, ϑ5, ϑ2 and ϑ4, respectively, in our numbering) and is able to
write down the coefficients λ, μ and ν in terms of these theta functions. Equating
the equation for X0(23) in Rosenhain form with Teitelbaum’s explicit model, one
can invert the theta functions to work out the half-periods, which Teitelbaum does
up to π10. Some formulae are given in [27], and these seem to become complicated
quickly. We hope that our method, assuming it can be completed, is more likely to be
computationally feasible for larger degree, and will, after a certain point, be faster to
implement.

We pulled a divisor in the kernel of X1 −→ X0 up to X2 and X3, and it certainly
appeared to converge quadratically.

Let us give some numerical results. All computations will be modulo π20. We first
give the roots of the quadratic in Q23(π); Hensel’s Lemma (or Magma) gives their
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values as follows:

a0 = 779959976562 + 33733491857π ,

a′
0 = 779959976562 − 33733491857π .

b0 = 241232708350,

b′
0 = 41266787476103,

c0 = 26196575459988 + 649618143166π,

c′
0 = 26196575459988 − 649618143166π.

We now compute the chain of isogenous curves Xi obtained as above:

X1 : y2 = 14509968966141x6 + 13535473244274x5

− 4366138213591x4 − 383149059076x3

+ 4532268917237x2 + 10611945668949x + 11501225120914

with roots

a1 = 29969023457189, a′
1 = 36816510168425,

b1 = 2703407962350, b′
1 = 41130794360331,

c1 = 37949541236172, c′
1 = 6221753140751.

We already know that all the curves Xi ’s are totally split and their roots lie in the same
p-adic discs as those of X0; indeed one checks that

a1 ≡ a′
1 ≡ 18 mod π, b1 ≡ b′

1 ≡ 21 mod π, c1 ≡ c′
1 ≡ 14 mod π.

Here is the equation for X2 and its roots:

X2 : y2 = 15963560922167x6 + 8915045081136x5 + 5655951820305x4

+ 7187214907216x3 + 9290858991658x2 + 18116669010963x

− 9470171526445 ,

a2 = 15634233532478, a′
2 = 38514512500429,

b2 = 41230679116716, b′
2 = 37806965241739,

c2 = 18164834403771, c′
2 = 30030908259387.

Finally, the equation for X3 and its roots:

X3 : y2 = 13413380228472x6 + 9889873468227x5 + 11869333871359x4

+ 19069176773695x3 − 9637185255233x2

+ 2318445679270x − 6104023778492 ,

a3 = 6361117409629, a′
3 = 6361117409629,
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b3 = 1577149810583, b′
3 = 36895404172314,

c3 = 23050359306739, c′
3 = 15552288918781.

In fact,

a0 ≡ a′
0 (mod π3), b0 ≡ b′

0 (mod π2), c0 ≡ c′
0 (mod π),

a1 ≡ a′
1 (mod π6), b1 ≡ b′

1 (mod π4), c1 ≡ c′
1 (mod π2),

a2 ≡ a′
2 (mod π12), b2 ≡ b′

2 (mod π8), c2 ≡ c′
2 (mod π4),

a3 ≡ a′
3 (mod π24), b3 ≡ b′

3 (mod π16), c3 ≡ c′
3 (mod π8),

an even stronger form of doubling of π -adic precision than proven above.
Next, let D0 ∈ J0 be the zero divisor, and we lift it along the chain of Jacobians.

(Note that we will switch betweenMumford representations and actual divisors when-
ever suitable.)

There are three non-zero divisors on J1 in the kernel of J1 −→ J0:

Du1 = [
(u0, 0) + (u′

0, 0)
] =

[
x2 + 3772686830795x + 4779300317558, 0

]
,

Dv1 = [
(v0, 0) + (v′

0, 0)
] =

[
x2 + 5235734615709x − 20478600731137, 0

]
,

Dw1 = [
(w0, 0) + (w′

0, 0)
] =

[
x2 + 1906593082874x + 1490035220585, 0

]
.

To lift these further onto J2, we use the bisection method as previously described. That
is, we wish to compute

Du1 −→ 1

2
Du1 −→ Du2,

and write ĝ1 for the second map in this composition.
This gives the bisection as

1

2
Du1 = [P1 + P2] =

[
x2 + 3772686830795x + 4779300317558, 0

]
,

where

P1 = (20843997281321 + 37869416972530π, 20700417432520 + 17537234561531π),

P2 = (24338480333321 + 40747895489590π, 13552216979968 + 12473332310983π).

Before mapping P1 and P2 to J2, one first has to scale by the square root of the x6

coefficient of X1 so that it lies on the curve y2 = P1Q1R1 (instead of T0y2 = U0V0W0
as it currently does). Nowmapping the scaled points via the Richelot isogeny, and then
rescaling it back gives

ĝ1(P1) = [
Q1 + Q′

1

]
,
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where

Q1 = (15588142880255 + 13614777038871π, 2026443975492 + 31565145522315π),

Q′
1 = (3503913201810 + 37211337310263π, 1634554359251 + 10681002910033π).

Similarly

ĝ1(P2) = [
Q2 + Q′

2

]
,

where

Q2 = (12952102174602 + 17872156829551π, 39129102600005 + 23905673565742π),

Q′
2 = (34057150363331 + 36281579638141π, 36203107768550 + 25761328056179π).

Combining everything, we have lifted Du1 to

ĝ1(Du1) = [
Q1 + Q′

1 + Q2 + Q′
2

]
= [x2 + 36833651358680x + 5787826917764,

3303842326834x + 16005171221467].

Note that there are four preimages of Du1, but only one has the property that the
support of the divisors are in the same p-adic discs as for Du1:

Du2 =
[
x2 + 570508136719x + 38814447073528,

39947032033123x + 23933496908852] .

Similarly, the lifts of Dv1 and Dw1 are given by

Dv2 = [
x2 + 28747176982521x + 15742432005809, 23856327829181x + 21330178054941

]
,

Dw2 = [
x2 + 14257352574105x + 16172605252402, 41179889101919x + 9512547229701

]
.

One checks that all the numbers defining the Mumford representation of Du2 are
congruent to those defining the Mumford representation of Du1 modulo π2, so that
the divisors are the same modulo 23. Similar results hold for Dv2 and Dv1, and Dw2
and Dw1.

Without a complete theory for the p-adic uniformisation maps, we are not yet able
to compute the periods to compare with Teitelbaum’s results. If we had such a theory,
this lift should already be sufficient to compute the periods modulo π8; we hope that
this method might eventually prove more efficient than existing methods for genus 2
curves with Type B reduction.
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