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Abstract
In this paper, we consider exceptional sets in the Waring–Goldbach problem for fifth
powers. We obtain new estimates of Es(N )(12 ≤ s ≤ 20), which denote the number
of integers n ≤ N such that n ≡ s(mod 2) and n cannot be represented as the sum of

s fifth powers of primes. For example, we prove that E20(N ) � N 1− 1
4− 27

1600+ε for any
ε > 0. This improves upon the result of Feng and Liu (Front Math China 16:49–58,
2021).

Keywords Waring–Goldbach problem · Exceptional sets · Circle method · Sieve
method
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1 Introduction

In 1937, Vinogradov [10] found a new method for estimating sums over primes, thus
he proved that every sufficiently large odd integer can be represented as the sum of
three prime numbers which is known as the three prime theorem. Vinogradov’s proof
provided a blueprint for the subsequent applications of the circle method to additive
prime number theory. Shortly after that, Vinogradov [11], and Hua [3] turned to study
Waring’s problem with prime variables which is known as the Waring–Goldbach
problem.

We focus on the Waring–Goldbach problem for fifth powers. In this topic, Kawada
and Wooley [4] proved that all sufficiently large odd integer can be represented as
the sums of 21 fifth powers of primes. We consider the exceptional sets related to the
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solvability of the equation

p51 + p52 + · · · + p5s = n, (1.1)

where p1, p2, . . . , ps are unknown primes. For the recent results on exceptional sets
in the Waring–Goldbach problem for fifth powers, readers can refer to Kumchev [6],
Liu [8], Liu [9] and Feng-Liu [2]. The main result of this paper is the following.

Theorem 1.1 For 12 ≤ s ≤ 20, let Es(N ) be the number of integers n ≤ N satisfying
n ≡ s(mod 2) forwhich (1.1) cannot be solved in primes p1, p2, . . . , ps. Let θ = 27

3200 .
Then, for arbitrary ε > 0, one has

E12(N ) � N 1−θ− 1
120+ε, E13(N ) � N 1−5θ+ε,

Es(N ) � N 1− s−11
40 −θ+ε for 14 ≤ s ≤ 18,

E19(N ) � N 1− 1
5−2θ+ε, E20(N ) � N 1− 1

4−2θ+ε .

Our result can be compared with previous results. For example, our results show that

E12(N ) � N 1− 1
120− 27

3200+ε, E14(N ) � N 1− 3
40− 27

3200+ε, E20(N ) � N 1− 1
4− 27

1600+ε .

This improves upon the results of Feng and Liu [2]

E12(N ) � N 1− 1
120− 73

9600+ε, E14(N ) � N 1− 7
120− 73

9600+ε, E20(N ) � N 1− 9
40− 73

9600+ε .

In fact, Feng and Liu [2] obtained E12(N ) � N 1−θ ′− 1
120+ε and E13(N ) �

N 1−5θ ′+ε with θ ′ = 73
9600 . The improvement on θ ′ comes from the application of

the sieve method and one can refer to Kumchev [6] for such method. The improve-
ment upon the bound of E14(N ) of Feng and Liu [2] comes from a new mean value
theorem involving the sixth moment of the complete Weyl sum over fifth powers (see
Lemma 2.8 in Section 2), and consequently, one can obtain new estimates of Es(N )

for 15 ≤ s ≤ 18. In order to obtain the estimates of E19(N ) and E20(N ), we apply
the method of Kawada and Wooley [5] to establish a relation between Es(N ) and
Es−4(N ).

As usual, we abbreviate e2π iα to e(α). And we write (a, b) = gcd(a, b) to denote
the greatest common divisor of a and b. The letter p, with or without indices, is a
prime number. The letter ε denotes a sufficiently small positive real number, and the
value of ε may change from statement to statement. Let N be a sufficiently large real
number in terms of ε. We use � and � to denote Vinogradov’s well-known notation,
while the implied constant may depend on ε. And f � g means f � g � f . We use
m ∼ M as an abbreviation for the condition M < m ≤ 2M .
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2 Preliminaries

Let

ψ(n, z) =
{
1, if (n,P(z)) = 1,

0, otherwise,
(2.1)

where

P(z) =
∏
p≤z

p.

We define wk(q) by

wk(p
uk+v) =

{
kp−u− 1

2 u ≥ 0 and v = 1,

p−u−1 u ≥ 0 and 2 ≤ v ≤ k.
(2.2)

The following two lemmas are from Kumchev [7].

Lemma 2.1 Let k ≥ 3 and 0 < ρ < (2k + 2)−1. Suppose that α ∈ R and that there
exist a ∈ Z and q ∈ N such that

1 ≤ q ≤ Q, (a, q) = 1, |qα − a| < Q−1 (2.3)

holds with Q subject to

P4kρ ≤ Q ≤ Pk−2kρ.

Let M ≥ N ≥ 2, |εm | ≤ 1, |ηn| ≤ q. Then,

∑
m∼M

∑
n∼N

mn∼P

εmηne(α(mn)k) � P1−ρ+ε + wk(q)1/2P1+ε

(1 + Pk |α − a/q|)1/2 ,

provided that

max
(
P2kρ, P(k−1+4kρ)/(2k+1)

)
≤ M ≤ P1−2ρ.

Proof This is [7, Lemma 3.1]. ��
Lemma 2.2 Let k ≥ 3 and 0 < ρ < (2k + 2)−1. Suppose that α ∈ R and that there
exist a ∈ Z and q ∈ N such that (2.1) holds with Q given by

Q = P(k2−2kρ)/(2k−1). (2.4)

Let M ≥ N ≥ 2, |εm | ≤ 1, and let ψ(n, z) be defined by (1.3), Then,
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∑
m∼M

∑
n∼N

mn∼P

εmψ(n, z)e(α(mn)k) � P1−ρ+ε + wk(q)1/2P1+ε

(1 + Pk |α − a/q|)1/2 ,

provided that

z ≤ min
(
P(k−(8k−2)ρ)/(2k−1), P1−(2k+2)ρ

)
(2.5)

and

M ≤ min
(
P(k−(2k+1)ρ)/(2k−1), P1−(2k−1+2)ρ

)
.

Proof This is [7, Lemma 3.3]. ��
We shall apply Buchstab’s combinatorial identity in the form

ψ(m, z′1) = ψ(m, z′2) −
∑

z′2 < p ≤ z′1
pj = m

ψ( j, p) (2 ≤ z′2 < z′1). (2.6)

Let

z0 = P1−34ρ.

Note that when k = 5 and ρ ≥ 1/67, z0 is the right hand side of the inequality in
(2.5). Let

z1 = (2P)1/3 and z2 = (2P)1/α,

where

α = 1

1 − 32ρ
.

Note that α ≥ 3 if ρ ≥ 1
48 . In fact, we shall choose ρ = 1

40 .
Suppose that m ≤ 2P . Applying (2.6), we obtain

ψ(m,
√
2P) = ψ(m, z0) −

∑
z0 < p ≤ √

2P
jp = m

ψ( j, p).

(2.7)

Splitting the summation in (2.7) into three parts, we have
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ψ(m,
√
2P) = ψ(m, z0) −

∑
z0 < p ≤ z2

j p = m

ψ( j, p) −
∑

z2 < p ≤ z1
j p = m

ψ( j, p)

−
∑

z1 < p ≤ √
2P

jp = m

ψ( j, p)

=: κ1(m) − κ2(m) − κ3(m) − κ4(m).

(2.8)

Applying (2.6), we obtain

κ3(m) =
∑

z2 < p ≤ z1
j p = m

ψ( j, z0) −
∑

z0 < p2 ≤ p1
z2 < p1 ≤ z1
j p1 p2 = m

ψ( j, p2),

(2.9)

and by splitting the second summation in (2.9) into two parts, we conclude that

κ3(m) =
∑

z2 < p ≤ z1
j p = m

ψ( j, z0) −
∑

z0 < p2 ≤ z2
z2 < p1 ≤ z1
j p1 p2 = m

ψ( j, p2)

−
∑

z2 < p2 ≤ p1
z2 < p1 ≤ z1
j p1 p2 = m

ψ( j, p2),

=: κ5(m) − κ6(m) − κ7(m).

(2.10)

To deal with κ4(m), we observe that for m ≤ 2P ,

κ4(m) =
∑

z1 < p ≤ √
2P

jp = m

ψ( j, z1),

and by (2.6), we obtain

κ4(m) =
∑

z1 < p ≤ √
2P

jp = m

ψ( j, z0) −
∑

z0 < p2 ≤ z1
z1 < p1 ≤ √

2P
jp1 p2 = m

ψ( j, p2).

(2.11)
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Dividing the second summation in (2.11) into two parts, we get

κ4(m) =
∑

z1 < p ≤ √
2P

jp = m

ψ( j, z0) −
∑

z0 < p2 ≤ z2
z1 < p1 ≤ √

2P
jp1 p2 = m

ψ( j, p2)

−
∑

z2 < p2 ≤ z1
z1 < p1 ≤ √

2P
jp1 p2 = m

ψ( j, p2)

=: κ8(m) − κ9(m) − κ10(m).

(2.12)

Now we introduce

ψg(m) = κ1(m) − κ2(m) − κ5(m) + κ6(m) − κ8(m) + κ9(m), (2.13)

and

ψb(m) = κ7(m) + κ10(m). (2.14)

Let ω(u) be the continuous solution of the differential equation

{(
uω(u)

)′ = ω(u − 1), if u > 2

ω(u) = 1
u , if 1 < u ≤ 2.

We introduce

C ′ =
∫ 1/3

1/α

∫ β

1/α
ω

(1 − β − γ

γ

) 1

γ 2β
dγ dβ

and

C ′′ =
∫ 1/2

1/3

∫ (1−β)/2

1/α
ω

(1 − β − γ

γ

) 1

γ 2β
dγ dβ.

In fact, one has
∑

m∼P κ7(m) ∼ C ′P(log P)−1 and
∑

m∼P κ10(m) ∼ C ′′P(log P)−1.
Let

Cb = C ′ + C ′′ and Cg = 1 − Cb.
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We have the following conclusion.

Lemma 2.3 Let P ≤ m ≤ 2P. Suppose that 1
48 ≤ ρ < 1

34 . We have

ψ(m,
√
2P) = ψg(m) + ψb(m) (2.15)

and

ψ(m,
√
2P) ≥ ψg(m). (2.16)

Moreover, we have

∑
m∼P

ψb(m) = Cb
P

log P
+ O

(
P

log2 P

)
, (2.17)

and

∑
m∼P

ψg(m) = Cg
P

log P
+ O

(
P

log2 P

)
. (2.18)

Proof Note that (2.15) follows from (2.8), (2.10), (2.12), (2.13), and (2.14). Then,
(2.16) follows by observing that ψb(m) ≥ 0. The asymptotic formulas (2.17) and
(2.18) can be proved by the standard argument in prime number theory (see also
Lemma 7.1 in [6]). ��

We point out that if ρ = 1
40 then

Cg > 0 and Cb < 1.

In fact, the value 1
40 can be further improved.

We view that ψg(m) is good, since the corresponding exponential summation can
be handed by Lemmas 2.1 and 2.2. Let

f (α) =
∑
m∼P

ψg(m)e(αm5).

Lemma 2.4 Suppose that 1
48 ≤ ρ < 1

34 . Suppose that α ∈ R and that there exist a ∈ Z

and q ∈ N such that (2.4) holds with Q given by (2.4). Then, for any fixed ε > 0, one
has

f (α) � P1−ρ+ε + w
1/2
5 (q)P1+ε

(1 + P5|α − a/q|)1/2 .
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Let

v j =
(
33

40

) j−1

, j = 1, 2, . . . , 6,

v7 =
(
33

40

)5 136

163
, v8 =

(
33

40

)5 576

815
, v9 = v10 =

(
33

40

)5 512

815
.

We write

v =
10∑
i=1

vi . (2.19)

Note that

v = 4.9817431213.

Let

P = (N/20)1/5.

We define

rs(n) =
∑

p51+···+p5s =n
pi∼Pvi (1≤i≤10)
pi∼P (11≤i≤s)

s−1∏
i=1

log pi .

Note that rs(n) is the (weighted) number of solutions to p51 + p52 + · · · + p5s = n in
prime variables. We also define

Rs(n) =
∑

p51+···+p5s−1+m5=n
pi∼Pvi (1≤i≤10)

pi∼P (11≤i≤s−1), m∼P

ψg(m)

s−1∏
i=1

log pi .

By (2.16), we have

rs(n) ≥ Rs(n). (2.20)

For 1 ≤ j ≤ 10, we define

g j (α) =
∑

p∼Pv j

(log p)e(α p5). (2.21)
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Then, we write

G(α) = f (α)

10∏
i=2

gi (α). (2.22)

For X ∈ [0, 1), we put

Rs(n,X ) =
∫
X
gs−10
1 (α)G(α)e(−nα)dα.

Note that

Rs(n) = Rs(n, [0, 1)).

Let

P0 = P2v9/5.

Then, we define

M =
⋃

1≤q≤P0

⋃
1 ≤ a ≤ q
(a, q) = 1

M(q, a), m = [0, 1)\M,

where

M(q, a) =
{
α :

∣∣∣∣α − a

q

∣∣∣∣ ≤ P0
qN

}
.

The singular series is defined by

Ss(n) =
∞∑
q=1

1

φ(q)s

∑
1 ≤ a ≤ q
(q, a) = 1

S∗(q, a)se

(
−an

q

)
,

where

S∗(q, a) =
∑

1 ≤ x ≤ q
(x, q) = 1

e

(
ax5

q

)
.
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And the singular integral is defined by

Js(n) =
∫ ∞

−∞
us−11
1 (β)u∗(β)

∏
1≤i≤10

ui (β)dβ,

where

ui (β) =
∫ 2Pvi

Pvi
e(x5β)dx, u∗(β) =

∫ 2P

P

e(x5β)

log x
dx .

The following result can be proved by the standard method of dealing with the major
arcs.

Lemma 2.5 Let n be an integer satisfying N < n ≤ 2N and n ≡ s(mod 2). One has

Rs(n,M) =
(
CgSs(n) + O(

1

log P
)

)
Js(n).

Moreover, one has

Ss(n) � 1 and Js(n) � Ps−15+v

log P
,

where v is given in (2.19).

Considering the underlying Diophantine equations and applying [4, Lemma 6.2],
one has the following result.

Lemma 2.6 Let g j (α) be defined in (2.21) and let G(α) be defined in (2.22). Then,
one has ∫ 1

0
|G2(α)|dα � Pv+ε . (2.23)

And for 1 ≤ j ≤ 10, one has

∫ 1

0
|G2(α)g2j (α)|dα � P2v−5+2v j+ε . (2.24)

We define the exponential sum

h(α) =
∑

X/2≤x≤X

e(αx5). (2.25)

For Z ⊆ [1, 2X5] ∩ Z, we introduce

K (α) =
∑
n∈Z

e(nα).
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And we use Z to denote the cardinality ofZ . The following result can be found in [1].

Lemma 2.7 (Lemma 3.1 [1])We have

∫ 1

0
|h2(α)K 2(α)|dα � Pε(P2− 1

8 Z + Z1+ 2
5 ) (2.26)

and

∫ 1

0
|h4(α)K 2(α)|dα � Pε(P4− 1

4 Z + Z1+ 4
5 ). (2.27)

We provide a similar result involving the sixth moment of h(α).

Lemma 2.8 We have

∫ 1

0
|h6(α)K 2(α)|dα � Pε(P6− 3

8 Z + PZ2). (2.28)

Proof Let

R =
⋃

q≤P
5
16

⋃
1 ≤ a ≤ q
(q, a) = 1

R(q, a), (2.29)

where

R(q, a) =
{
α : ∣∣qα − a

∣∣ ≤ P
5
16−5

}
.

Then, we define the function � : [0, 1) → [0,∞) as

�(α) = w5(q)P

(
1 + P5

∣∣∣∣α − a

q

∣∣∣∣
)−1

, (2.30)

when α ∈ R(q, a) ⊆ R, otherwise by taking �(α) = 0.
The following is well known (see for example (2.8) in [12])

h(α) � �(α) + P1− 1
16+ε,

and therefore,

h(α)6 � �(α)6 + P6− 3
8+ε .
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Then, we have

∫ 1

0
|h6(α)K 2(α)|dα �

∫ 1

0
�(α)6|K (α)|2dα + P6− 3

8+ε

(∫ 1

0
|K (α)|2dα

)
(2.31)

Since w5(q) ≤ q−1/5, one has

∫ 1

0
�(α)6|K (α)|2dα

≤ P6
∑

q≤P5/16

q−6/5
∫ P5/16−5

−P5/16−5
(1 + P5|β|)−6

∑
1≤a≤q

∣∣∣∣K
(
a

q
+ β

)∣∣∣∣
2

dβ

� Z P5/4 + Z2P1+ε .

(2.32)

Now (2.28) follows from (2.31) and (2.32). This completes the proof. ��
Lemma 2.9 We have

∫ 1

0
|h8(α)K 2(α)|dα � P7Z + P

11
2 +εZ

3
2 . (2.33)

Proof This follows from Lemma 6.1 of [5] (by choosing k = 5 and j = 3). ��

3 Proof of Theorem 1.1

First, we estimate the contribution from the minor arcsm,which were defined in Sect.
2. Denote

N =
⋃

q≤P
15
16

⋃
1 ≤ a ≤ q
(q, a) = 1

N(q, a),

where

N(q, a) =
{
α : ∣∣qα − a

∣∣ ≤ P
15
16−5

}
.

Lemma 3.1 One has

sup
α∈m∩N

|g1(α)| � P1− 1
32+ε (3.1)

and for j ∈ {1, 2},

sup
α∈m\N

|g j (α)| � Pv j (1− 1
48 )+ε . (3.2)
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Proof These estimates can be found on page 52 in [2]. ��
In particular, by Lemma 3.1, we have

sup
α∈m

|g1(α)| � P1− 1
48+ε . (3.3)

For n ⊆ m, we introduce

I (n) =
∫
n

|g21(α)G2(α)|dα. (3.4)

Lemma 3.2 One has
I (m ∩ N) � P2(1− 1

32 )+v+ε . (3.5)

Proof Note that (3.5) follows from (2.23) and (3.1). ��
Lemma 3.3 One has

I (m \ N) � P2v−3− 27
640+ε, . (3.6)

Proof Recalling R defined in (2.29) and �(α) defined in (2.30), we use B to denote
the set of ordered pairs (α, β) ∈ (m\N)2 for which α − β ∈ R(mod 1), and put
b = m2\B.

We introduce

ϒ1 = P2− 1
8+ε

∫
m\N

∫
m\N

|G2(α)G2(β)|dα dβ,

and

ϒ2 =
∫ ∫

B
�2(α − β)|G2(α)G2(β)|dα dβ.

The argument leading to (3) in [3] implies

I (m \ N)2 � P(ϒ1 + ϒ2). (3.7)

By (2.23), we have

ϒ1 � P2− 1
8+2v+ε . (3.8)

Note that

ϒ2 � sup
β∈m\N

| f 2(β)g22(β)g25(β) · · · g210(β)|
∫ 1

0
|g23(α)G2(α)|

×
(∫ 1

0
�2(α − β)|g24(β)|dβ

)
dα.

(3.9)
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By [12, Lemma 2.2], one has uniformly for α ∈ [0, 1) that
∫ 1

0
�2(α − β)|g24(β)|dβ � P2v4−3+ε . (3.10)

By Lemma 2.4,

f (α) � P1− 1
40+ε . (3.11)

Now conclude from (3.9)-(3.11) and (2.24) that

ϒ2 � P4v−8− 27
320+ε . (3.12)

From (3.7), (3.8), and (3.12), we obtain

I (m \ N) � P2v−3− 27
640+ε . (3.13)

This completes the proof. ��

Lemma 3.4 One has
I (m) � P2v−3− 27

640+ε, (3.14)

and ∫
m

|g41(α)G2(α)|dα � P2v−1− 27
640− 1

24+ε . (3.15)

Proof Note that (3.14) follows from (3.5) and (3.6). Combining (3.3) and (3.14), we
have

∫
m

|g41(α)G2(α)|dα �
(
sup
α∈m

|g21(α)|
) ∫

m
|g21(α)G2(α)|dα � P2v−1− 27

640− 1
24+ε .

This completes the proof. ��

Proof of Theorem 1.1 For 12 ≤ s ≤ 20, we introduce Es(N ) to denote the set of n
satisfying N/2 ≤ n ≤ N , n ≡ s (mod 2) and Rs(n) = 0. Then, we define

Ks(α) =
∑

n∈Es (N )

e(−nα).

By the definition of Es(N ), we have

∑
n∈Es (N )

Rs(n,M) = −
∑

n∈Es (N )

Rs(n,m) = −
∫
m
g1(α)s−10G(α)Ks(α)dα.
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Then, by Lemma 2.5, we obtain

∫
m

|g1(α)s−10G(α)Ks(α)|dα � Pv+s−15(log P)−1|Es(N )|, (3.16)

where |Es(N )| denotes the cardinality of Es(N ).
By Schwarz’s inequality, we have

∫
m

|g1(α)2G(α)K12(α)|dα �
(∫

m
|g41(α)G2(α)|dα

)1/2 (∫ 1

0
|K2

12(α)|dα
)1/2

.

(3.17)

Then, by (3.15), (3.16), and (3.17), we obtain

Pv−3(log P)−1|E12(N )| �
(
P2v−1− 27

640− 1
24+ε

)1/2 |E12(N )|1/2.

Thus, we can get

|E12(N )| � N 1−θ− 1
120+ε . (3.18)

Next we deal with s = 13. By Schwarz’s inequality, we have

∫
m

|g1(α)3G(α)K13(α)|dα

�
(∫

m
|g21(α)G2(α)|dα

)1/2 (∫ 1

0
|g41(α)K2

13(α)|dα
)1/2

. (3.19)

Then, by (2.27), (3.14), (3.16), and (3.19), we obtain

Pv−2(log P)−1|E13(N )|
� Pε

(
P2v−3− 27

640

)1/2 (
P4− 1

4 |E13(N )| + |E13(N )|1+ 4
5

)1/2
.

Therefore, we have

|E13(N )| � N 1−5θ+ε . (3.20)

Now we deal with s = 14. By Schwarz’s inequality, we have

∫
m

|g1(α)4G(α)K14(α)|dα

�
(∫

m
|g21(α)G2(α)|dα

)1/2 (∫ 1

0
|g61(α)K2

14(α)|dα
)1/2

. (3.21)
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We deduce from (2.28), (3.14), (3.16), and (3.21) that

Pv−1(log P)−1|E14(N )| � Pε
(
P2v−3− 27

640

)1/2 (
P6− 3

8 |E14(N )| + P|E14(N )|2
)1/2

.

Therefore, we have

|E14(N )| � N 1− 3
40−θ+ε . (3.22)

Let Es(M, N ) be the set of integers n satisfying M ≤ n ≤ N and n ≡ s(mod 2)
for which (1.1) cannot be solved in primes p1, p2, . . . , ps . In view of (2.20), one has

|Es(N/2, N )| � |Es(N )|,

and by the dyadic argument,

Es(N ) � (log N ) sup
2≤M≤N

|Es(M)|. (3.23)

Now we can obtain the desired estimates of Es(N ) for 12 ≤ s ≤ 14 from (3.18),
(3.20), (3.22), and (3.23).

To establish the upper bounds of Es(N ) for 15 ≤ s ≤ 18, we follow the proof in
[2]. In fact, by Lemma 4 (a) in [2], one can prove

Es(N ) � (log N ) sup
2≤M≤N

(
Mε− 1

40 Es−1(3M) + Mε− 2
3 Es−1(3M)5/3

)
. (3.24)

Now we can obtain the desired estimates of Es(N ) for 15 ≤ s ≤ 18 by using (3.24)
iteratively.

Let X = (N/16)1/5. For 1 ≤ m ≤ N , we introduce λ(m) to denote the number of
representations ofm in the formm = n− p41 − p42 − p43 − p44, where n ∈ Es(N/2, N )

and X/2 ≤ p1, p2, p4, p4 ≤ X . Note that if λ(m) ≥ 1, then m ∈ Es−4(1, N ). Then,
by Cauchy’s inequality,

( ∑
1≤m≤N

λ(m)
)2 ≤

( ∑
1≤m≤N
λ(m)≥1

1
)( ∑

1≤m≤N

λ(m)2
)

≤ |Es−4(1, N )|
( ∑
1≤m≤N

λ(m)2
)
.

(3.25)

We use λ+(m) to denote the number of representations of m in the form m = n −
x41 − x42 − x43 − x44 , where n ∈ Es(N/2, N ) and X/2 ≤ x1, x2, x4, x4 ≤ X . One has
trivially λ(m) ≤ λ+(m), and then by (3.25),

( ∑
1≤m≤N

λ(m)
)2 ≤ |Es−4(1, N )|

( ∑
1≤m≤N

λ+(m)2
)
. (3.26)
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We introduce

K (α) =
∑

n∈Es (N/2,N )

e(nα).

Then,

∑
1≤m≤N

λ+(m)2 =
∫ 1

0
|K (α)2h(α)8|dα, (3.27)

where h(α) is defined in (2.25). We also have

∑
1≤m≤N

λ(m) � X4(log X)−4|Es(N/2, N )|. (3.28)

We conclude from (3.26), (3.27), and (3.28) that

X8(log X)−8|Es(N/2, N )|2 � |Es−4(1, N )|
∫ 1

0
|K (α)2h(α)8|dα. (3.29)

We remark that the proof of (3.29) is based on themethod developed in [5].We deduce
from (2.33) and (3.29) that

X8(log X)−8|Es(N/2, N )|2

� |Es−4(1, N )|
(
X7|Es(N/2, N )| + X

11
2 +ε |Es(N/2, N )| 32

)
,

and therefore,

|Es(N/2, N )| � N− 1
5+ε |Es−4(1, N )| + N−1+ε |Es−4(1, N )|2. (3.30)

On invoking the estimate E15(N ) � N 1− 1
10−θ+ε and E16(N ) � N 1− 1

8−θ+ε , we
deduce from (3.30) that

|E19(N/2, N )| � N− 1
5+εE15(N ) + N−1+εE15(N )2 � N 1− 1

5−2θ+ε

and

|E20(N/2, N )| � N− 1
5+εE16(N ) + N−1+εE16(N )2 � N 1− 1

4−2θ+ε .

Finally, the desired estimates of E19(N ) and E20(N ) follow from the dyadic argument.
This completes the proof of Theorem 1.1. ��
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