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Abstract
In this manuscript, we obtain some supercongruences between truncated classical
hypergeometric series using the theory of classic hypergeometric series and p-adic
analysis. Using these supercongruences, we obtain some supercongruences for bino-
mial coefficients. We also derive some congruences for the p-adic Gamma function.
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1 Introduction and statement of results

For any complex number a, the Pochhammer symbol is define as (a)0 = 1, (a)k =
a(a + 1) . . . (a + k − 1), for k ≥ 1. For ai , bi ∈ C such that bi /∈ Z≤0, and for any
non negative integer n, the generalized hypergeometric series n+1Fn is defined by

n+1Fn

⎛
⎝
a1, a2, . . . , an+1

|z
b1, . . . , bn

⎞
⎠ :=

∞∑
k=0

(a1)k · · · (an+1)k

(b1)k · · · (bn)k
zk

k! . (1.1)

This series converges absolutely for |z| < 1, and also converges absolutely for |z| = 1
if Re(

∑
bi − ∑

ai ) > 0. For more details, see [2]. If one of the ai is negative integer
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then the hypergeometric series (1.1) terminates after finitely many terms. If m is a
positive integer, the truncated hypergeometric series is defined by

n+1Fn

⎛
⎝
a1, a2, . . . , an+1

|z
b1, . . . , bn

⎞
⎠

m

:=
m∑

k=0

(a1)k · · · (an+1)k

(b1)k · · · (bn)k
zk

k! . (1.2)

More details on hypergeometric series can be found in [1, 3, 11].Hypergeometric series
were first studied systematically by Heine. After that many other mathematicians such
as Euler, Gauss and Jacobi studied these hypergeometric series and related them to
other mathematical objects. The theory of partitions, founded by Euler, has led in a
natural way to the idea of basic hypergeometric series.

In [14], Greene introduced the hypergeometric function over a finite field Fq , q is
a prime power, analogous to classical hypergeometric series as finite character sums.
Many authors studied the hypergeometric function over a finite field in amanner that is
parallel to that of the classical hypergeometric series. Recently, lots of mathematicians
evaluated the number of Fq -points of certain algebraic varieties with the help of the
hypergeometric function over a finite field (for more details, see [4–6, 12, 19]).

Fundamental importance of classical hypergeometric series and Gaussian hyper-
geometric series lies in many areas such as Partition theory, Representation theory
of SL(2,R), Real periods of algebraic curves, Modular forms, Combinatorics etc. In
[27], Rouse provided uniform formulas for the real period and the trace of Frobenious,
associated to a family of elliptic curves Eλ : y2 = x(x−1)(x−λ), λ �= 1, 0 in terms of
2F1-hypergeometric functions. In [5], Barman et al. defined a period analogue for the
algebraic curves yl = x(x − 1)(x − λ), l ≥ 2 in terms of 2F1-hypergeometric series.
In [22], McCarthy discussed the real period of elliptic curves y2 = (x − 1)(x2 +λ) in
terms of 3F2-hypergeometric function. In general periods are complicated transcen-
dental numbers. In the case of CM elliptic curves any period is an algebraic multiple
of a quotient of gamma values.

Supercongruences are congruences which happen to hold modulo some higher
power of a prime p. In 2009, Zudilin [32] proved several Ramanujan type supercon-
gruences using the Wilf-Zeilberger method. In 2011, Long [20] proved Van Hamme
conjecture:

p−1
2∑

k=0

(4k + 1)

(( 1
2

)
k

k!
)3

(−1)k ≡ (−1)
p−1
2 p (mod p)3, (1.3)

where
(a
k

)
is the binomial coefficient defined in Eq. (2.5). The first proof of (1.3) was

given by Mortenson [25]. It is said to be of Ramanujan-type because it is a p-adic
version of Ramanujan’s formula

∞∑
k=0

(4k + 1)

(( 1
2

)
k

k!
)3

(−1)k = 2

π
.
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Some supercongruences related to truncated hypergeometric series 159

In 2011, Long gives a new proof of (1.3) and she proved several similar types of super-
congruences. For example, Long proved the following supercongruence conjectured
by Van Hamme [31], for any prime p ≥ 3

p−1
2∑

k=0

(−1)k
6k + 1

4k

(− 1
2
k

)3

≡ − p

�p(
1
2 )

2
(mod p3). (1.4)

Here �p is the p-adic Gamma function defined in Sect. 2 (for more details, see [20]).
In 2016, using the p-adic Gamma function and formulas on hypergeometric series,
Long and Ramakrishna [21] establishedmany supercongruences. In particular, for any
prime p ≥ 5, they established

p−1∑
k=0

(6k + 1)

( 1
3

)6
k

k!6 ≡
{

−p�p(
1
3 )

9 if p ≡ 1 (mod 6)

− 10
27 p

4�p(
1
3 )

9 if p ≡ 5 (mod 6)
(mod p6). (1.5)

Deines et al. [9], propose several supercongruences for truncated hypergeometric series
and p-adic�-function based onnumeric observations.Barman et al. [7], provedDeines
observation [9, Eqn. (7.4)] is correct for prime p ≡ 1 (mod 5), and gave a general-
ization. Various Supercongruences have been conjectured by many mathematician
including Van Hamme [31], Rodriguez-Villegas [26], Zudilin [32], Sun [28], Sun [29,
30] and Barman [7]. Recently, He [16] proved several supercongruences using a tech-
nique which relies on the relation between the classical and the p-adic �-functions.
For prime p ≥ 3, He [15] established the supercongruence

p−1
2∑

k=0

(3k + 1)
(2k
k

)3
16k

≡ p (mod p2), (1.6)

and in [17], he proved the following supercongruence

p2−1
2∑

k=0

(3k + 1)
(2k
k

)3
16k

≡ 0 (mod p2). (1.7)

In this paper, we derive supercongruences which give extensions of (1.6) and (1.7).
First, we derive a supercongruence modulo p2 between truncated 4F3 hypergeometric
series, with the help of this supercongruence we give a generalization of supercongru-
ences (1.6) and (1.7).

Theorem 1.1 If p is an odd prime and r ∈ N, then

4F3

⎛
⎝

1−pr

2 ,
1+pr

2 , 4
3 ,

1
2 |4

1 − pr , 1 + pr , 1
3

⎞
⎠

pr−1
2

≡ 4F3

⎛
⎝

1
2 ,

1
2 ,

4
3 ,

1
2 |4

1, 1, 1
3

⎞
⎠

pr−1
2

(mod p2).
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and

pr−1
2∑

k=0

(3k + 1)
(2k
k

)3
16k

≡ pr (mod p2).

In the following theorem we establish supercongruences between truncated hyperge-
ometric series and using this, we obtain a binomial coefficient sum p2.

Theorem 1.2 Let p be a prime such that p ≡ 1 (mod 4). Then

4F3

⎛
⎝

1−p
2 , 2, p+1

2 , 5
3 | 14

7−p
4 , 2

3 ,
7+p
4

⎞
⎠

p−1

≡ 4F3

⎛
⎝

1
2 , 2,

1
2 ,

5
3 | 14

7
4 ,

2
3 ,

7
4

⎞
⎠

p−1

(mod p2)

and
p−1
2∑

k=0

(k− 1
2

k

)2
(k + 1)(3k + 2)

(k+ 3
4

k

)2
22k+1

≡ 9

8
(mod p2).

In the following theorem, we obtain a supercongruence for the ratio of two truncated
3F2 hypergeometric series using a technique which relies on the relation between
p-adic and classic �-functions.

Theorem 1.3 For a prime p ≥ 5 and any integer r > 1,

3F2

⎛
⎝
1, 3

2 ,
1−pr

2 |1
2, 4−pr

2

⎞
⎠

pr−1

3F2

⎛
⎜⎝
1, 3

2 ,
1−pr−1

2 |1
2, 4−pr−1

2

⎞
⎟⎠

pr−1−1

≡ 0 (mod pr ).

In the last two theorems of this section, we obtain congruences modulo p for the p-
adic �-function using p-adic analysis and combinatorial identities which were given
by Mortenson in [24].

Theorem 1.4 If p is an odd prime, then
p−1
2∑

k=0

�p(
1
2 + k)2

�p(1 + k)2
≡ −1 (mod p).

We recall the following identity which is equivalent to Ramanujan-π like series.

1

π
= 1

4

∞∑
k=0

(2k
k

)2
(k + 1)24k

. (1.8)
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Some supercongruences related to truncated hypergeometric series 161

The above identity is equivalent to

∞∑
k=0

�( 12 + k)2

(k + 1)�(k + 1)2
= 4. (1.9)

In the following theorem, we derive a p-adic version of the above identity.

Theorem 1.5 If p is an odd prime and r ≥ 1 is any integer, then

p−1
2∑

k=0

�p(
1
2 + k)2

�p(1 + k)2
1

k + r
≡

{
0, if 1 ≤ r ≤ p−1

2
�p(

1
2 )2

r , if r = mp,m ∈ N
(mod p).

We note that in this paper we have not considered finite field hypergeometric series.

2 Preliminaries

We note that we use p as an odd prime in this paper. In this section, we recall some
preliminaries on p-adic numbers, the p-adic �-function, classical hypergeometric
series and the Pochhammer symbol. First, we recall the p-adic valuation on the field
of rational numbers. Let x be any non zero rational number, then it can be represented
by x = par

s , where p is a prime, r and s are integers relatively prime to p, then the
p-adic valuation of x is defined by

υp(x) =
{
a, if x �= 0;
∞, if x = 0.

(2.1)

and the p-adic norm is defined by

|x |p =
{
p−υp(x), if x �= 0;
0, if x = 0.

(2.2)

The set of p-adic numbers is the completion of the rational numbers Q with respect
to the p-adic norm. The set of p-adic numbers forms a field. It is denoted byQp. Any
p-adic number can be uniquely written as

∑∞
k=m ak pk , where m is some integer such

that am �= 0 and ak ∈ {0, 1, . . . , p − 1}.
A p-adic integer is a p-adic number of the form

∑∞
k=m ak pk , where m ≥ 0, and

ak ∈ {0, 1, . . . , p − 1}. The set of p-adic integers forms a ring. It is denoted by Zp.
Note that Zp is the unit ball with center 0 in Qp.

The gamma function �(n) is defined to be an extension of the factorial to complex
and real number arguments. It is related to the factorial by �(n) = (n − 1)!, if n is
a positive integer. It is analytic everywhere except at n = 0,−1,−2, . . .. The p-adic
�-function is a function of a p-adic variable analogous to the �-function. It was first
explicitly defined by Morita [23] in 1975. In 1980, Boyarsky [8] pointed out that
Dwork [10] implicitly used the same function in 1964.
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162 P. K. Kewat, R. Kumar

Definition 2.1 [18] We define the p-adic �-function by setting �p(0) = 1, and for
n ∈ Z

+ by

�p(n) := (−1)n
∏

0< j<n,p� j

j, for n ∈ N.

The function has a unique extension to a continuous function on the ring of p-adic
integer Zp. If x( �= 0) ∈ Zp, then �p(x) is defined by

�p(x) := lim
xn→x

�p(xn), (2.3)

where in the limit, we take any sequence of positive integers p-adically approaching
to x .

Proposition 2.2 [18] If p is a prime and x, y ∈ Zp, then the following are true:

(1) �p(0) = 1 and �p(1) = −1.

(2) �p(x + 1) =
{

−x�p(x), if x ∈ Z
∗
p;

−�p(x), if x ∈ pZp.

(3) If n ≥ 1 and x ≡ y (mod pn), then �p(x) ≡ �p(y) (mod pn).
(4) �p(x)�p(1 − x) = (−1)a0(x), where a0(x) ∈ {1, . . . , p} satisfies x − a0(x) ≡ 0

(mod p).

For a complex number a and a non negative integer k, we define the Pochhammer
symbol or the rising factorial as

(a)k =
k−1∏
j=0

(a + j), k > 0 (2.4)

and (a)0 = 1. If a ∈ R and k ∈ N, then the binomial coefficient is defined by

(
a

k

)
= a(a − 1) . . . (a − k + 1)

k! . (2.5)

The rising factorial can be used to express the binomial coefficient as

(a)k =
(
a + k − 1

k

)
k!, (2.6)

Definition 2.3 [21] Let a be a rational number with vp(a) = 0. Let i ∈ {1, 2, . . . , p−
1} be a unique integer such that vp(a + i) > 0. We define a′ ∈ Q by a + i = pa′.

Lemma 2.4 [21] For a ∈ { 1
n , 2

n , . . . , n−1
n

}
and p ≡ 1 (mod n), a′ = a.

The following Lemma allows us to replace �-quotients with �p-quotients.
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Some supercongruences related to truncated hypergeometric series 163

Lemma 2.5 [21] Let a be a rational in (0, 1]
(1) If vp(a) = 0 and m, r ∈ N, then

�(a + mpr )

�(a + mpr−1)
= (−1)m pmpr−1 �p(a + mpr )

�p(a)

(a
′
)mpr−1

(a)mpr−1
.

(2) Suppose a + mpr ∈ N. (Here, a,m ∈ Q but need not be in Z.) Then

�(a + mpr )

�(a + mpr−1)
= (−1)a+mpr pa+mpr−1−1�p(a + mpr ).

Next, we recall the following combinatorial identities from [24], which are needed in
the proof of our main theorems.

Lemma 2.6 [24] If n ≥ 0 is an integer, then

n∑
k=0

(−1)k
(
n + k

k

)(
n

k

)
= (−1)n .

Lemma 2.7 [24] If n, r ≥ 1 are integers, then

n∑
k=0

(−1)k
(
n + k

k

)(
n

k

)
1

k + r
= (−1)n

r

n∏
j=1

(
r − j

r + j

)
.

Lemma 2.8 [24] If n, r ≥ 1 are integers, then

n∑
k=0

(−1)k
(
n + k

k

)(
n

k

)
k

k + r
= (−1)n − (−1)n

n∏
j=1

(
r − j

r + j

)
.

Remark 2.9 The identity in the right hand side of Lemma 2.8 becomes (−1)n when
1 ≤ r ≤ n.

3 Proof of the results

In this section, we prove our main results using the Gaussian hypergeometric series
and p-adic analysis.

Proof of Theorem 1.1 We recall the following result from [13], for any positive integer
n

5F4

⎛
⎝

−n, 1 − 2b, 1 − 2b + n, 4−4b
3 , 1−4b

2 |4
−2n, 1 − b, 2 − 4b + 2n, 1−4b

3

⎞
⎠
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164 P. K. Kewat, R. Kumar

= ( 32 − 2b)n

( 12 )n
,

Substituting n = pr−1
2 and b = 0 in above result, in view of Eqs. (1.1) and (1.2), we

obtain

5F4

⎛
⎝

1−pr

2 , 1, 1+pr

2 , 4
3 ,

1
2 |4

1 − pr , 1, 1 + pr , 1
3

⎞
⎠

pr−1
2

=
( 32 ) pr−1

2

( 12 ) pr−1
2

.

Canceling equal entries from the top and bottom rows of the hypergeometric series,
we have

4F3

⎛
⎝

1−pr

2 ,
1+pr

2 , 4
3 ,

1
2 |4

1 − pr , 1 + pr , 1
3

⎞
⎠

pr−1
2

=
( 32 ) pr−1

2

( 12 ) pr−1
2

. (3.1)

Now we see that ( 32 ) pr−1
2

= pr ( 12 ) pr−1
2

. In view of Eq. (3.1), we arrive at

4F3

⎛
⎝

1−pr

2 ,
1+pr

2 , 4
3 ,

1
2 |4

1 − pr , 1 + pr , 1
3

⎞
⎠

pr−1
2

= pr . (3.2)

From Eq. (1.2), we obtain

4F3

⎛
⎝

1−pr

2 ,
1+pr

2 , 4
3 ,

1
2 |4

1 − pr , 1 + pr , 1
3

⎞
⎠

pr−1
2

=
pr−1
2∑

k=0

(
1−pr

2

)
k

(
1+pr

2

)
k

( 4
3

)
k

( 1
2

)
k

(1 − pr )k(1 + pr )k
( 1
3

)
k

4k

k! . (3.3)

By Eq. (2.4), we have

(
1−pr

2

)
k

(1 − pr )k
=

k−1∏
j=0

(
1
2 − pr

2 + j
)

(1 − pr + j)
=

( 1
2

)
k

(1)k

k−1∏
j=0

(
1 − pr

1+2 j

)
(
1 − pr

1+ j

) .

Note that any p appearing in (1)k is canceled by p appearing in
( 1
2

)
k (p appears first in

( 1
2

)
k then in (1)k and then appears at gap of p in both

( 1
2

)
k and (1)k). Thus,

(
1
2

)
k

(1)k
∈ Zp.

For k ≤ pr−1
2 , we observe that 1 + 2 j and 1 + j , 0 ≤ j ≤ k − 1 are not a multiple
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Some supercongruences related to truncated hypergeometric series 165

of pr and υp(1+ 2 j), υp(1+ j) ≤ r − 1 and
∣∣∣ pr

1+ j

∣∣∣
p

< 1. Thus, for k ≤ pr−1
2 , there

exist constants Ak,r and Bk,r such that Ak,r pr , Bk,r pr ∈ Zp and

(
1−pr

2

)
k

(1 − pr )k
≡

( 1
2

)
k

(1)k
(1 − Ak,r p

r )(1 + Bk,r p
r ) (mod p2). (3.4)

Similarly,

(
1+pr

2

)
k

(1 + pr )k
≡

( 1
2

)
k

(1)k
(1 + Ak,r p

r )(1 − Bk,r p
r ) (mod p2). (3.5)

From Eqs. (3.3)–(3.5) and (1.2), we conclude that

4F3

⎛
⎝

1−pr

2 ,
1+pr

2 , 4
3 ,

1
2 |4

1 − pr , 1 + pr , 1
3

⎞
⎠

pr−1
2

≡ 4F3

⎛
⎝

1
2 ,

1
2 ,

4
3 ,

1
2 |4

1, 1, 1
3

⎞
⎠

pr−1
2

(mod p2).

(3.6)

In view of Eqs. (3.2) and (3.6), we write

4F3

⎛
⎝

1
2 ,

1
2 ,

4
3 ,

1
2 |4

1, 1, 1
3

⎞
⎠

pr−1
2

≡ pr (mod p2). (3.7)

From Eqs. (1.2) and (3.7), we have

pr−1
2∑

k=0

( 4
3

)
k

( 1
2

)3
k( 1

3

)
k (1)2k

4k

k! ≡ pr (mod p2).

By the definition of the Pochhammer symbol, we obtain

pr−1
2∑

k=0

(3k + 1)
(2k
k

)3
16k

≡ pr (mod p2)

This completes the proof of the theorem. ��
Proof of Theorem 1.2 From [13], we recall the following result:

5F4

⎛
⎝

−2n, 1 + 2a + 2b, b + 1, 2n − 2a + 2, 2b+5
3 | 14

1 + a + b − n, 2b+2
3 , 2 + b + n, 3−2a

2

⎞
⎠ = ( 12 )n(2 + b)n

(−a − b)n(
3
2 − a)n

,
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166 P. K. Kewat, R. Kumar

where n is a positive integer. Set a = 1
2 , b = 0 and n = p−1

4 in above result, we have

5F4

⎛
⎝

1−p
2 , 2, 1, p+1

2 , 5
3 | 14

7−p
4 , 2

3 ,
7+p
4 , 1

⎞
⎠

p−1
2

=
( 1
2

)
p−1
4

(2) p−1
4(−1

2

)
p−1
4

(1) p−1
4

. (3.8)

Canceling equal entries from the top and bottom rows of the hypergeometric series,
we have

4F3

⎛
⎝

1−p
2 , 2, p+1

2 , 5
3 | 14

7−p
4 , 2

3 ,
7+p
4

⎞
⎠

p−1
2

=
( 1
2

)
p−1
4

(2) p−1
4(−1

2

)
p−1
4

(1) p−1
4

.

Now we see that
(− 1

2

)
p−1
4

= − 2
p−3

( 1
2

)
p−1
4

and (2) p−1
4

= p+3
4 (1) p−1

4
. In view of

Eq. (3.8), we obtain

4F3

⎛
⎝

1−p
2 , 2, p+1

2 , 5
3 | 14

7−p
4 , 2

3 ,
7+p
4

⎞
⎠

p−1
2

= − p2 − 9

8
. (3.9)

In view of Eq. (1.2), the left side of Eq. (3.9) reduce to

4F3

⎛
⎝

1−p
2 , 2, p+1

2 , 5
3 | 14

7−p
4 , 2

3 ,
7+p
4

⎞
⎠

p−1
2

=
p−1
2∑

k=0

(
1−p
2

)
k
(2)k

(
1+p
2

)
k

(
5
3

)
k(

7−p
4

)
k

( 2
3

)
k

(
7+p
4

)
k

1

4kk! .

From Eqs. (3.4) and (3.5), for k ≤ p−1
2 , we have

(
1 − p

2

)

k
≡

(
1

2

)

k
(1 − Ak,1 p) (mod p2) (3.10)

and

(
1 + p

2

)

k
≡

(
1

2

)

k
(1 + Ak,1 p) (mod p2). (3.11)

We can write

(
7 − p

4

)−1

k
=

k−1∏
j=0

(
7

4
− p

4
+ j

)−1

=
(
7

4

)−1

k

k−1∏
j=0

(
1 − p

7 + 4 j

)−1

.
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Some supercongruences related to truncated hypergeometric series 167

Since p ≡ 1 mod 4, we can see that 7+ 4 j , 0 ≤ j ≤ k − 1 is not a multiple of p for
0 < k ≤ p−1

2 . Thus, there exit a constant Ck ∈ Zp such that

(
7 − p

4

)−1

k
≡

(
7

4

)−1

k
(1 + Ck p) (mod p2). (3.12)

Similarly,

(
7 + p

4

)−1

k
≡

(
7

4

)−1

k
(1 − Ck p) (mod p2). (3.13)

In view of Eqs. (3.10)–(3.13), we obtain

4F3

⎛
⎝

1−p
2 , 2, p+1

2 , 5
3 | 14

7−p
4 , 2

3 ,
7+p
4

⎞
⎠

p−1
2

≡4 F3

⎛
⎝

1
2 , 2,

1
2 ,

5
3 | 14

7
4 ,

2
3 ,

7
4

⎞
⎠

p−1
2

(mod p2)

(3.14)

From Eqs. (1.2), (3.9) and (3.14), we have

p−1
2∑

k=0

(k− 1
2

k

)2
(k + 1)(3k + 2)

(k+ 3
4

k

)2
22k+1

≡ 9

8
(mod p2).

This completes the proof of the theorem. ��

Proof of Theorem 1.3 From [3], we recall the following result:

3F2

⎛
⎝
a, b, −n

|1
b + 1

2 , a − n + 1
2

⎞
⎠

= √
π

�(a − n + 1
2 )�(b + 1

2 )�(b − a + n + 1
2 )

�(a + 1
2 )�(−n + 1

2 )�(b − a + 1
2 )�(b + a + 1

2 )
.

Letting a = 1, b = 3
2 , n = pr−1

2 and then n = pr−1−1
2 yield

3F2

⎛
⎝
1, 3

2 ,
1−pr

2 |1
2, 4−pr

2

⎞
⎠

pr−1
2

= √
π

�(
4−pr

2 )�(2)�(
1+pr

2 )

�( 32 )�(
2−pr

2 )�(1)�(3)
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and

⎛
⎜⎝
1, 3

2 ,
1−pr−1

2 |1
2, 4−pr−1

2

⎞
⎟⎠

pr−1−1
2

= √
π

�(
4−pr−1

2 )�(2)�(
1+pr−1

2 )

�( 32 )�(
2−pr−1

2 )�(1)�(3)
.

It follows from the above equations that

3F2

⎛
⎝
1, 3

2 ,
1−pr

2 |1
2, 4−pr

2

⎞
⎠

pr−1
2

3F2

⎛
⎜⎝
1, 3

2 ,
1−pr−1

2 |1
2, 4−pr−1

2

⎞
⎟⎠

pr−1−1
2

= �(
4−pr

2 )�(
1+pr

2 )�(
2−pr−1

2 )

�(
2−pr

2 )�(
4−pr−1

2 )�(
1+pr−1

2 )
. (3.15)

From the relation �(z + 1) = z�(z), z ∈ C except on the poles 0,−1,−2, . . ., we
obtain

�

(
4 − pr

2

)
= (2 − pr )

2
�

(
2 − pr

2

)
, (3.16)

and

�

(
4 − pr−1

2

)
= (2 − pr−1)

2
�

(
2 − pr−1

2

)
. (3.17)

Using Eqs. (3.16) and (3.17) in Eq. (3.15), we have

3F2

⎛
⎝
1, 3

2 ,
1−pr

2 |1
2, 4−pr

2

⎞
⎠

pr−1
2

3F2

⎛
⎜⎝
1, 3

2 ,
1−pr−1

2 |1
2, 4−pr−1

2

⎞
⎟⎠

pr−1−1
2

=
(2 − pr )�

(
1+pr

2

)

(2 − pr−1)�
(
1+pr−1

2

) . (3.18)

Then from (2) of Lemma 2.5, we obtain

�
(
1+pr

2

)

�
(
1+pr−1

2

) = (−1)
1+pr

2 p
pr−1−1

2 �p

(
1 + pr

2

)
. (3.19)
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From Eqs. (3.18) and (3.19), we obtain

3F2

⎛
⎝
1, 3

2 ,
1−pr

2 |1
2, 4−pr

2

⎞
⎠

pr−1
2

3F2

⎛
⎜⎝
1, 3

2 ,
1−pr−1

2 |1
2, 4−pr−1

2

⎞
⎟⎠

pr−1−1
2

= (−1)
pr+1
2

(2 − pr )(p
pr−1−1

2 )

(2 − pr−1)
�p

(
1 + pr

2

)
.

For p ≥ 5 and r > 1, we know that | pr−1

2 |p < 1 and pr−1 ≥ 2r + 1. Thus,

3F2

⎛
⎝
1, 3

2 ,
1−pr

2 |1
2, 4−pr

2

⎞
⎠

pr−1
2

3F2

⎛
⎜⎝
1, 3

2 ,
1−pr−1

2 |1
2, 4−pr−1

2

⎞
⎟⎠

pr−1−1
2

≡ 0 (mod pr ).

This completes the proof of the theorem. ��
Proof of Theorem 1.4 Setting n = p−1

2 in Lemma 2.6, we have

p−1
2∑

k=0

(−1)k
( p−1

2 + k

k

)( p−1
2
k

)
= (−1)

p−1
2 .

Using the properties of the binomial symbol, we deduce that

p−1
2∑

k=0

(−1)k
(
p−1
2 + k)!

k!2( p−1
2 − k)! = (−1)

p−1
2 .

In view of Definition 2.1, we obtain

p−1
2∑

k=0

(−1)k
�p(

p+1
2 + k)

�p(1 + k)2�p(
p+1
2 − k)

= (−1)
p−1
2 . (3.20)

In view of Proposition 2.2, we can write

�p

(
1 − p

2
+ k

)
�p

(
p + 1

2
− k

)
= (−1)

p+1
2 (−1)k . (3.21)
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First we use Eq. (3.21) in Eq. (3.20) after that using Proposition 2.2 and simplifying
we obtain the desired result. ��
We require the following lemma in the proof of Theorem 1.5.

Lemma 3.1 If p is an odd prime and r ≥ 1 is any integer, then

p−1
2∏

j=1

(
r − j

r + j

)
≡

{
0, if 1 ≤ r ≤ p−1

2

−�p(
1
2 )

2, if r = mp. m ∈ N
(mod p).

Proof of Lemma 3.1 It is clear that
∏ p−1

2
j=1

(
r− j
r+ j

)
= 0 if 1 ≤ r ≤ p−1

2 . If r ≥ p+1
2 ,

then we can write

p−1
2∏

j=1

(
r − j

r + j

)
= (r − 1)!r !

(r + p−1
2 )!(r − p+1

2 )! . (3.22)

Setting r = mp, m ∈ N in Eq. (3.22), we deduce that

p−1
2∏

j=1

(
r − j

r + j

)
= (mp − 1)!(mp)!(

(2m+1)p−1
2

)
!
(

(2m−1)p−1
2

)
!
. (3.23)

In view of Definition 2.1 and Eq. (3.23), we can write

p−1
2∏

j=1

(
r − j

r + j

)
= − (m)!(m − 1)!p2m−1�p(mp)2

(m)!(m − 1)!p2m−1�p

(
(2m−1)p+1

2

)
�p

(
(2m+1)p+1

2

) .

Therefore,

p−1
2∏

j=1

(
r − j

r + j

)
= − �p(mp)2

�p

(
(2m−1)p+1

2

)
�p

(
(2m+1)p+1

2

) .

We observe that �p

(
(2m−1)p+1

2

)
�p

(
(2m−1)p+1

2

)
, for any m ∈ N is not a multiple of

p. Using Proposition 2.2, we have

p−1
2∏

j=1

(
r − j

r + j

)
≡ − 1

�p(
1
2 )

2
(mod p).

Thus, we have the desired result. ��
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Now we are ready to prove Theorem 1.5.

Proof of Theorem 1.5 Setting n = p−1
2 in Lemma 2.7, we have

p−1
2∑

k=0

(−1)k
( p−1

2 + k

k

)( p−1
2
k

)
1

k + r
= (−1)

p−1
2

r

p−1
2∏

j=1

(
r − j

r + j

)
. (3.24)

Firstwe simplify the left side of Eq. (3.24) using the properties of binomial coefficients.
We can write

p−1
2∑

k=0

(−1)k
( p−1

2 + k

k

)( p−1
2
k

)
1

k + r
=

p−1
2∑

k=0

(−1)k
(
p−1
2 + k)!

k!2( p−1
2 − k)!

1

k + r
.

From Definition 2.1, we deduce that

p−1
2∑

k=0

(−1)k
( p−1

2 + k

k

)( p−1
2
k

)
1

k + r

=
p−1
2∑

k=0

(−1)k
�p

(
p+1
2 + k

)

�p(1 + k)2�p

(
p+1
2 − k

) 1

k + r
. (3.25)

If 1 ≤ j ≤ p−1
2 , then from Proposition 2.2, we can write

�p

(
1

2
+ p

2
− k

)
�p

(
1

2
− p

2
+ k

)
= (−1)

p+1
2 −k . (3.26)

Combining Eqs. (3.25) and (3.26), we have

p−1
2∑

k=0

(−1)k
( p−1

2 + k

k

)( p−1
2
k

)
1

k + r

= −
p−1
2∑

k=0

(−1)
p−1
2

�p

(
p+1
2 + k

)
�p

(
1−p
2 + k

)

�p(1 + k)2
1

k + r
.

In view of Proposition 2.2, we deduce that

p−1
2∑

k=0

(−1)k
( p−1

2 + k

k

)( p−1
2
k

)
1

k + r
≡ −

p−1
2∑

k=0

(−1)
p−1
2

�p(
1
2 + k)2

�p(1 + k)2
1

k + r
(mod p).

(3.27)
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In view of Lemma 3.1, and combining Eqs. (3.24) and (3.27), we have

p−1
2∑

k=0

�p(
1
2 + k)2

�p(1 + k)2
1

k + r
≡

{
0, if 1 ≤ r ≤ p−1

2
�p(

1
2 )2

r , if r = mp,m ∈ N
(mod p).

��
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