

Algebraic aspects of rooted tree maps

Hideki Murahara[1](http://orcid.org/0000-0002-4176-0407) · Tatsushi Tanaka2

Received: 15 September 2021 / Accepted: 11 June 2022 / Published online: 30 July 2022 © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract

Based on the Connes–Kreimer Hopf algebra of rooted trees, rooted tree maps are defined as linear maps on the noncommutative polynomial algebra $\mathbb{Q}\langle x, y \rangle$. It is known that they induce a large class of linear relations for multiple zeta values. In this paper, we show for any rooted tree *f* there exists a unique polynomial in $\mathbb{Q}\langle x, y \rangle$ that gives Let α is defined as linear maps on the noncommutative polynomial algebra $\mathbb{Q}\langle x, y \rangle$. It is known that they induce a large class of linear relations for multiple zeta values. In this paper, we show for any rooted tr as the conjugation by the special map τ .

Keywords Connes–Kreimer Hopf algebra of rooted trees · Rooted tree maps · Harmonic products · Multiple zeta values

Mathematics Subject Classification 05C05 · 16T05 · 11M32

1 Introduction

Let H be the Connes–Kreimer Hopf algebra of rooted trees introduced in [\[3\]](#page-16-0). For any *f* ∈ *H*, the rooted tree map \tilde{f} is introduced in [\[11\]](#page-16-1) as an element in End(*A*), where *A* is the noncommutative polynomial algebra $\mathbb{Q}\langle x, y \rangle$. It is known that rooted tree maps induce a large class of linear relations for multiple zeta values. In [\[1](#page-16-2), [2\]](#page-16-3), we find some results in algebraic properties of rooted tree maps to make some applications to multiple zeta values clear. In [\[8](#page-16-4)], the quasi-derivation operator introduced in [\[7\]](#page-16-5) can be

 \boxtimes Hideki Murahara hmurahara@mathformula.page

> Tatsushi Tanaka t.tanaka@cc.kyoto-su.ac.jp

² Department of Mathematics, Faculty of Science, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto 603-8555, Japan

The second author is partially supported by JSPS KAKENHI Grant Number (C) 19K03434.

¹ The University of Kitakyushu, 4-2-1 Kitagata, Kokuraminami-ku, Kitakyushu, Fukuoka 802-8577, Japan

interpreted by a certain kind of harmonic product \diamond (introduced in [\[4\]](#page-16-6)). In this paper, we establish similar algebraic formulas for rooted tree maps in the harmonic algebra.

Theorem 1.1 *For any* $f \in H$ *and* $w \in A$ *, there exists a unique* $F_f \in A$ *such that*

$$
\tilde{f}(wx) = (F_f \diamond w)x.
$$

Remark 1.2 The fact that rooted tree maps are commutative pairwisely, which is intri-cately shown in [T], follows immediately from our Theorem [1.1](#page-1-0) because the product \Diamond is commutative. We call the rooted tree with *n* vertices among which there is only one leaf the ladder tree, which is denoted by λ_n . The corresponding rooted tree map λ_n is closely related to the derivation operator ∂_n , which gives the derivation relation for multiple zeta value's (see [BT] for details). On the other hand, one finds $F_{\lambda_n} = y(x + 2y)^{n-1}$ (see Sect. [3\)](#page-4-0). Combining these two, the derivation operator is expressed by the product \Diamond . The expression agrees with Theorem 2.2 in [KMM] when $c = 0$. It's not been clear how the quasi-derivation operator relates to rooted tree maps, i.e., how our theorem [1.1](#page-1-0) relates to Theorem 2.2 in [KMM] for arbitrary *c*.

We also have similar formulas for $\widetilde{S(f)} \in \text{End}(\mathcal{A})$, where *S* denotes the antipode of *H*.

Theorem 1.3 *For any* $f \in H$ *and* $w \in A$ *, there exists a unique* $G_f \in A$ *such that*

$$
\widetilde{S(f)}(wx) = (G_f \diamond w)x.
$$

By Theorems [1.1](#page-1-0) and [1.3,](#page-1-1) we have $(G_f \diamond w)x = \widetilde{S(f)}(wx) = (F_{S(f)} \diamond w)x$ for $w \in A$. Thus we obtain

Corollary 1.4 *For any* $f \in H$ *, we have*

$$
G_f = F_{S(f)}.
$$

Let τ be the anti-automorphism on *A* characterized by $\tau(x) = y$ and $\tau(y) = x$. This τ is an involution and gives the well-known duality formula for multiple zeta values. We also have the following property.

Theorem 1.5 *For any* $f \in H$ *, we have*

$$
\widetilde{S(f)} = \tau \tilde{f} \tau.
$$

In Sect. [2,](#page-2-0) we give some basic tools including the Connes–Kreimer Hopf algebra of rooted trees, rooted tree maps, and harmonic products. Sections [3](#page-4-0)[–5](#page-14-0) are devoted to Proofs of Theorems [1.1,](#page-1-0) [1.3,](#page-1-1) and [1.5](#page-1-2) in turn.

2 Preliminaries

2.1 Connes–Kreimer Hopf algebra of rooted trees

We review briefly the Connes–Kreimer Hopf algebra of rooted trees introduced in [\[3](#page-16-0)]. A tree is a finite and connected graph without cycles and a rooted tree is a tree in which one vertex is designated as the root. We consider rooted trees without plane structure, e.g., \bullet $\bullet = \bullet$ forest is a finite collection of rooted trees t_1, \ldots, t_n , which we denote by $t_1 \cdots t_n$. • • , where the topmost vertex represents the root. A (rooted) Then the Connes–Kreimer Hopf algebra of rooted trees H is the $\mathbb Q$ -vector space freely generated by rooted forests with the commutative ring structure. We denote by \mathbb{I} the empty forest, which is regarded as the neutral element in *H*.

We define the linear map B_+ on H sending a forest $t_1 \cdots t_n$, where t_j 's are trees, to the tree obtained by grafting all roots of t_i 's onto a single vertex which is the new root, and $B_+(\mathbb{I}) = \bullet$. We find that, for a rooted tree $t \neq \mathbb{I}$, there is a unique forest f such that $t = B_+(f)$. The coproduct Δ on $\mathcal H$ is defined by the following two rules.

(1) $\Delta(t) = \mathbb{I} \otimes t + (B_+ \otimes id) \circ \Delta(f)$ if $t = B_+(f)$, (2) $\Delta(f) = \Delta(g)\Delta(h)$ if $f = gh$ with $g, h \in H$.

Note that components of the tensor product are reversely defined compared to those in [\[3\]](#page-16-0). We denote by *S* the antipode of *H*. In the sequel, we often employ the Sweedler (2) $\Delta(f) = \Delta(g)\Delta(h)$ if $f = g$
Note that components of the tensin [3]. We denote by S the antipod

A subtree *t'* of the rooted tree *t* (denoted by $t' \subset t$) is a subgraph of *t* that is connected and contains the root of t (hence the empty tree $\mathbb I$ cannot be a subtree in our sense), and we denote by $t \setminus t'$ their subtraction. For example, we have $t \setminus t' = \bullet$ if $t = \bullet$ and $t' = \bullet$. *(i)* $\text{if } t = \leftarrow \text{ and } t' = \text{.}$
Proposition 2.1 [3] *Formal (1)* $\Delta(t) = \mathbb{I} \otimes t + \sum$

Proposition 2.1 [3] For a rooted tree t, we have
\n(1)
$$
\Delta(t) = \mathbb{I} \otimes t + \sum_{t' \subset t} t' \otimes (t \setminus t'),
$$

\n(2) $S(t) + \sum_{t' \subset t} t' S(t \setminus t') = 0.$

2.2 Rooted tree maps

•

We here define rooted tree maps introduced in [\[11](#page-16-1)]. For $u \in A$, let L_u and R_u be \mathbb{Q} -linear maps on *A* defined by $L_u(w) = uw$ and $R_u(w) = wu$ ($w \in A$). For $f \in H$, we define the Q-linear map \tilde{f} : $A \rightarrow A$, which we call the rooted tree map, recursively by

(1) $\mathbb{I} = id$, (2) $\tilde{f}(x) = yx$ and $\tilde{f}(y) = -yx$ if $f = \bullet$, (3) $\tilde{t}(u) = L_y L_{x+2y} L_y^{-1} \tilde{f}(u)$ if $t = B_+(f)$, (4) $f(x) = \tilde{g}(\underline{h}(u))$ if $f = gh$, (1) $\mathbb{I} = \text{id}$,

(2) $\tilde{f}(x) = yx$ and $\tilde{f}(y) = -yx$ if $f = \bullet$,

(3) $\tilde{t}(u) = L_y L_{x+2y} L_y^{-1} \tilde{f}(u)$ if $t = B_+(f)$,

(4) $\tilde{f}(u) = \tilde{g}(\tilde{h}(u))$ if $f = gh$,

(5) $\tilde{f}(uw) = \sum_{(f)} \tilde{f}'(u) \tilde{f}''(w)$ for $\Delta(f) = \sum_{(f)} f'$

126
Where $w \in \mathcal{A}$ and $u \in \{x, y\}$. It is known that $\tilde{C}: \mathcal{H} \to \text{End}(\mathcal{A})$ is an algebra where $w \in A$ and $u \in \{x, y\}$. It is known that \sim is image by $\widetilde{\mathcal{H}}$
homomorphism. We sometimes denote its image by $\widetilde{\mathcal{H}}$ homomorphism. We sometimes denote its image by \mathcal{H} . (Note that in this definition the order of the concatenation product on A is treated reversely compared to that in [\[11](#page-16-1)]. Since the coproduct Δ on $\mathcal H$ is also defined reversely as above, this definition makes sense.)

Let $z = x + y$. It is known that rooted tree maps commute with each other and with L_z and R_z .

Lemma 2.2 [\[11\]](#page-16-1) *For* $f \in \mathcal{H}$ *and* $w \in \mathcal{A}$ *, we have* $\tilde{f}(zw) = z\tilde{f}(w)$ *and* $\tilde{f}(wz) = \tilde{f}(w)z$.

2.3 Harmonic products

Let $A^1 = \mathbb{Q} + y\mathcal{A}$ be a subalgebra of \mathcal{A} . We define the \mathbb{Q} -bilinear product $*$ on \mathcal{A}^1 , which is called the harmonic product, by

$$
w * 1 = 1 * w = w,
$$

\n
$$
yx^{k_1-1} \cdots yx^{k_r-1} * yx^{l_1-1} \cdots yx^{l_s-1}
$$

\n
$$
= yx^{k_1-1}(yx^{k_2-1} \cdots yx^{k_r-1} * yx^{l_1-1} \cdots yx^{l_s-1})
$$

\n
$$
+ yx^{l_1-1}(yx^{k_1-1} \cdots yx^{k_r-1} * yx^{l_2-1} \cdots yx^{l_s-1})
$$

\n
$$
+ yx^{k_1+l_1-1}(yx^{k_2-1} \cdots yx^{k_r-1} * yx^{l_2-1} \cdots yx^{l_s-1}).
$$

It is known that this product is commutative and associative, and has one of the product structures of multiple zeta values (see [\[5](#page-16-7)]). There are many properties of the harmonic product. We here recall the following identity (see [\[6,](#page-16-8) Proposition 6] or [\[9,](#page-16-9) Proposition 7.1]). For yx^{k_1-1} · · · yx^{k_r-1} ∈ \mathcal{A}^1 , we have

$$
\sum_{i=0}^{r} (-1)^{i} y x^{k_1 - 1} \cdots y x^{k_i - 1} * y x^{k_r - 1} z x^{k_{r-1} - 1} \cdots z x^{k_{i+1} - 1} = 0.
$$
 (1)

Next, we define the $\mathbb{O}\text{-bilinear product}\bar{\ast}$ on \mathcal{A}^1 by

$$
w \overline{*} 1 = 1 \overline{*} w = w,
$$

\n
$$
yx^{k_1-1} \cdots yx^{k_r-1} \overline{*} yx^{l_1-1} \cdots yx^{l_s-1}
$$

\n
$$
= yx^{k_1-1} (yx^{k_2-1} \cdots yx^{k_r-1} \overline{*} yx^{l_1-1} \cdots yx^{l_s-1})
$$

\n
$$
+ yx^{l_1-1} (yx^{k_1-1} \cdots yx^{k_r-1} \overline{*} yx^{l_2-1} \cdots yx^{l_s-1})
$$

\n
$$
- yx^{k_1+l_1-1} (yx^{k_2-1} \cdots yx^{k_r-1} \overline{*} yx^{l_2-1} \cdots yx^{l_s-1}).
$$

Let d_1 be the automorphism on A given by $d_1(x) = x$ and $d_1(y) = z$. We define the \mathbb{Q} -linear map $d: \mathcal{A}^1 \to \mathcal{A}^1$ by $d(1) = 1$ and $d(\gamma w) = \gamma d_1(w)$ for $w \in \mathcal{A}$. The map *d* intermediates between the two products in the following sense.

Lemma 2.3 [\[10\]](#page-16-10) *For* $w_1, w_2 \in A^1$ *, we have*

$$
d(w_1 \overline{\ast} w_2) = d(w_1) \ast d(w_2).
$$

Lastly, following [\[4\]](#page-16-6), we define the product \diamond on *A* by

$$
w \diamond 1 = 1 \diamond w = w,
$$

\n
$$
xw_1 \diamond xw_2 = x(w_1 \diamond xw_2) - x(yw_1 \diamond w_2),
$$

\n
$$
xw_1 \diamond yw_2 = x(w_1 \diamond yw_2) + y(xw_1 \diamond w_2),
$$

\n
$$
yw_1 \diamond xw_2 = y(w_1 \diamond xw_2) + x(yw_1 \diamond w_2),
$$

\n
$$
yw_1 \diamond yw_2 = y(w_1 \diamond yw_2) - y(xw_1 \diamond w_2)
$$
\n(2)

for w, $w_1, w_2 \in A$ together with $\mathbb Q$ -bilinearity. We find that the product \diamond is associative and commutative. Let ϕ be the automorphism on $\mathcal A$ given by $\phi(x) = z$ and $\phi(y) = -y$. We note that ϕ is an involution. The product \Diamond is thought of a kind of the harmonic product by virtue of $w_1 \diamond w_2 = \phi(\phi(w_1) * \phi(w_2))$ for $w_1, w_2 \in A^1$.

Lemma 2.4 [\[4,](#page-16-6) Proposition 2.3] *For* $w_1, w_2 \in A$ *, we have*

$$
zw_1 \diamond w_2 = w_1 \diamond zw_2 = z(w_1 \diamond w_2).
$$

Lemma 2.5 *For* $w_1, w_2 \in A$ *, we have*

$$
w_1xw_2 \diamond y = (w_1 \diamond y)xw_2 + w_1x(w_2 \diamond y).
$$

Proof It is enough to consider the case that w_1 is a word. We prove the lemma by induction on $deg(w_1)$. When $deg(w_1) = 0$, we easily see the lemma holds.

Assume $\deg(w_1) \ge 1$. If $w_1 = zw'_1(w'_1 \in \mathcal{A})$, by the induction hypothesis and Lemma [2.4,](#page-4-1) we have

LHS =
$$
z(w'_1 x w_2 \diamond y) = z(w'_1 \diamond y) x w_2 + z w'_1 x (w_2 \diamond y) =
$$
RHS.

If $w_1 = xw'_1$ ($w'_1 \in A$), by the induction hypothesis and [\(2\)](#page-4-2), we have

LHS =
$$
x(w'_1 x w_2 \diamond y) + yw_1 x w_2
$$

= $x(w'_1 \diamond y) x w_2 + w_1 x (w_2 \diamond y) + yw_1 x w_2$ = RHS.

This finishes the proof.

3 Proof of Theorem [1.1](#page-1-0)

In this section, we prove Theorem [1.1.](#page-1-0) For a forest f , we define the polynomial $F_f \in \mathcal{A}^1$ recursively by

 (1) $F_{\mathbb{I}} = 1$,

(2) $F_{\bullet} = v$, (3) $F_t = L_y L_{x+2y} L_y^{-1} (F_f)$ if $t = B_+(f)$ and $f \neq \mathbb{I}$, (4) $F_f = F_g \diamond F_h$ if $f = gh$.

The subscript of *F* is extended linearly. Put $L = L_y L_{x+2y} L_y^{-1}$. To prove Theorem [1.1,](#page-1-0) next proposition plays a key role. is extended linearly
 w_1 , $w_2 \in A$ and f
 $w_1 x w_2 \diamond F_f = \sum$

Proposition 3.1 *For* $w_1, w_2 \in A$ *and* $f \in H$ *, we have*

$$
w_1 x w_2 \diamond F_f = \sum_{(f)} (F_{f'} \diamond w_1) x (F_{f''} \diamond w_2),
$$

 $w_1 x w_2 \diamond$.

where $\Delta(f) = \sum_{(f)} f' \otimes f''$.

Proof It is enough to consider the case that *f* is a forest. We prove the proposition by induction on deg (f) .

When deg(f) = 1, by Lemma [2.5,](#page-4-3) we find the proposition holds.

Assume deg(f) \geq 2. If $f = gh (g, h \neq \mathbb{I})$, by the induction hypothesis and the multiplicativity of the coproduct, we have

$$
w_1 x w_2 \diamond F_f = w_1 x w_2 \diamond (F_g \diamond F_h)
$$

= $(w_1 x w_2 \diamond F_g) \diamond F_h$
= $\sum_{(g)} (F_{g'} \diamond w_1) x (F_{g''} \diamond w_2) \diamond F_h$
= $\sum_{(g)} \sum_{(h)} (F_{h'} \diamond (F_{g'} \diamond w_1)) x (F_{h''} \diamond (F_{g''} \diamond w_2))$
= $\sum_{(g)} \sum_{(h)} ((F_{h'} \diamond F_{g'}) \diamond w_1) x ((F_{h''} \diamond F_{g''}) \diamond w_2)$
= $\sum_{(f)} (F_{f'} \diamond w_1) x (F_{f''} \diamond w_2).$

If *f* is a tree (with deg(f) \geq 2), we have $F_f = L(F_g)$, where $f = B_+(g)$.

In this case, we prove the statement for a word w_1 by induction on deg(w_1). When $deg(w_1) = 0$, we have

$$
xw_2 \diamond F_f = xw_2 \diamond L(F_g)
$$

= $xw_2 \diamond yxL_y^{-1}F_g + xw_2 \diamond 2yF_g$
= $x(w_2 \diamond yxL_y^{-1}F_g) + y(xw_2 \diamond xL_y^{-1}F_g) + x(w_2 \diamond 2yF_g)$
+ $2y(xw_2 \diamond F_g)$
= $y(xw_2 \diamond xL_y^{-1}F_g) + x(w_2 \diamond L(F_g)) + 2y(xw_2 \diamond F_g).$

For the last term on the right-hand side, we have

$$
2y(xw_2 \diamond F_g) = 2\sum_{(g)} yF_{g'}x(F_{g''} \diamond w_2)
$$
 (by induction)

 \mathcal{D} Springer

$$
= 2yx(F_g \diamond w_2) + 2 \sum_{\substack{(g) \\ g' \neq \mathbb{I}}} yF_{g'}x(F_{g''} \diamond w_2)
$$

= $2yx(F_g \diamond w_2) + \sum_{\substack{(g) \\ g' \neq \mathbb{I}}} L(F_{g'})x(F_{g''} \diamond w_2)$
 $- \sum_{\substack{(g) \\ g' \neq \mathbb{I}}} yxL_y^{-1}F_{g'}x(F_{g''} \diamond w_2).$

Then we find

we find
\n
$$
xw_2 \diamond F_f = y(xw_2 \diamond xL_y^{-1}F_g) + x(w_2 \diamond L(F_g)) + 2yx(F_g \diamond w_2) + \sum_{\substack{(g) \\ g' \neq \mathbb{I}}} L(F_{g'})x(F_{g''} \diamond w_2) - \sum_{\substack{(g) \\ g' \neq \mathbb{I}}} yxL_y^{-1}F_{g'}x(F_{g''} \diamond w_2).
$$

Since

Since
\n
$$
g' \neq \mathbb{I}
$$
\nSince
\n
$$
x(w_2 \diamond L(F_g)) + yx(F_g \diamond w_2) + \sum_{\substack{(g) \\ g' \neq \mathbb{I}}} L(F_{g'})x(F_{g''} \diamond w_2) = \sum_{(f)} F_{f'}x(F_{f''} \diamond w_2)
$$

(by Proposition 2.1(1) or the definition of $\Delta)$

and

$$
y(xw_2 \diamond xL_y^{-1}F_g) = y(xL_y^{-1}F_g \diamond xw_2)
$$

=
$$
yx(L_y^{-1}F_g \diamond xw_2) - yx(F_g \diamond w_2),
$$

we have

$$
= yx(L_y^{-1}F_g \diamond xw_2) - yx(F_g \diamond w_2)
$$

$$
xw_2 \diamond F_f = \sum_{(f)} F_{f'}x(F_{f''} \diamond w_2) + yx(L_y^{-1}F_g \diamond xw_2)
$$

$$
- \sum_{(g)} yxL_y^{-1}F_{g'}x(F_{g''} \diamond w_2).
$$

Here we see

$$
g^{\circ}\neq 1
$$

$$
L_y^{-1}F_g \diamond xw_2 = \sum_{(g)} L_y^{-1}F_{g'}x(F_{g''} \diamond w_2)
$$

since

$$
y(L_y^{-1}F_g \diamond xw_2) = yL_y^{-1}F_g \diamond xw_2 - x(w_2 \diamond F_g)
$$

H.1
\n
$$
= F_g \diamond x w_2 - x(w_2 \diamond F_g)
$$
\n
$$
= \sum_{(g)} F_{g'} x(F_{g''} \diamond w_2) - x(w_2 \diamond F_g)
$$
\n
$$
= \sum_{(g)} F_{g'} x(F_{g''} \diamond w_2).
$$
\nH.1
\n
$$
= \sum_{(g)} F_{g'} x(F_{g''} \diamond w_2).
$$

Hence we get

$$
g'\neq \mathbb{I}
$$

$$
xw_2 \diamond F_f = \sum_{(f)} F_{f'} x (F_{f''} \diamond w_2).
$$

Now we proceed to the case when deg $(w_1) \geq 1$. If $w_1 = zw'_1$ ($w'_1 \in \mathcal{A}$), we have

$$
zw'_1 x w_2 \diamond F_f = z(w'_1 x w_2 \diamond F_f)
$$

= $z \sum_{(f)} (F_{f'} \diamond w'_1) x (F_{f''} \diamond w_2)$
= $\sum_{(f)} (F_{f'} \diamond w_1) x (F_{f''} \diamond w_2)$

by the induction hypothesis.

If $w_1 = xw'_1$ ($w'_1 \in A$), since we have already proved the identity in the case of $w_1 = 1$, we have n hypothesis.
 $y'_1(w'_1 \in A)$, since v
 $w_1xw_2 \diamond F_f = \sum$

$$
w_1 x w_2 \diamond F_f = \sum_{(f)} F_{f'} x (F_{f''} \diamond w_1' x w_2)
$$

=
$$
\sum_{(f)} F_{f'} x \sum_{(f'')} (F_{f''_a} \diamond w_1') x (F_{f''_b} \diamond w_2),
$$

where we put
$$
\Delta(f'') = \sum_{(f'')} f''_a \otimes f''_b.
$$

We also have It $\Delta(f'') = \sum_{(f'')} f''_a \otimes f''_b$.

nave
 $(F_{f'} \diamond w_1)x(F_{f''} \diamond w_2) = \sum$

$$
\sum_{(f)} (F_{f'} \diamond w_1) x (F_{f''} \diamond w_2) = \sum_{(f)} (F_{f'} \diamond x w_1') x (F_{f''} \diamond w_2)
$$

=
$$
\sum_{(f)} \sum_{(f')} F_{f'_a} x (F_{f'_b} \diamond w_1') x (F_{f''} \diamond w_2),
$$

where we put $\Delta(f') = \sum_{(f')} f'_a \otimes f'_b$.

By the coassociativity of Δ , we find the result. \square

Proof of Theorem [1.1](#page-1-0) We prove the theorem only for forests *f* and words w by induction on deg(f) and deg(w). Note that the existence and the uniqueness of $F_f \in \mathcal{A}$

can also be confirmed by following the proof. First, we prove the theorem when $deg(f) = 1.$

If deg(w) = 0, we easily find the result.

Suppose deg(w) ≥ 1 . If $w = zw'(w' \in A)$, by Lemmas [2.2](#page-3-0) and [2.4,](#page-4-1) and the induction hypothesis, we have

LHS =
$$
\tilde{f}(zw'x) = z\tilde{f}(w'x) = z(F_f \diamond w')x = (F_f \diamond zw')x =
$$
RHS.

On the other hand, if $w = xw'$ ($w' \in A$), we have

LHS =
$$
f(xw'x) = yxw'x + xf(w'x)
$$

and

RHS =
$$
(y \diamond xw')x = yxw'x + x(y \diamond w')x
$$
.

By the induction hypothesis, we find the result.

Next, suppose deg(f) \geq 2. If $f = gh$ ($g, h \neq \mathbb{I}$), we have

$$
\tilde{f}(wx)
$$

= $\tilde{g}\tilde{h}(wx) = \tilde{g}((F_h \diamond w)x) = (F_g \diamond (F_h \diamond w))x$
= $((F_g \diamond F_h) \diamond w)x = (F_f \diamond w)x$.

Let *f* be a rooted tree and put $f = B_+(g)$. When $deg(w) = 0$, we have

$$
\tilde{f}(x) = (yxL_y^{-1} + 2y)\tilde{g}(x) = (yxL_y^{-1} + 2y)F_g x = F_f x.
$$

Suppose deg(w) ≥ 1 . If $w = zw'(w' \in A)$, we have

$$
\tilde{f}(zw'x) = z\tilde{f}(w'x) = z(F_f \diamond w')x = (F_f \diamond zw')x
$$

by Lemmas [2.2](#page-3-0) and [2.4.](#page-4-1)

If $w = xw'$ ($w' \in A$), we have

2 and 2.4.
\n
$$
(w' \in A)
$$
, we have
\n
$$
\tilde{f}(xw'x) = \sum_{(f)} \tilde{f}'(x) \tilde{f}''(w'x) = \sum_{(f)} F_{f'}x(F_{f''} \diamond w')x
$$

by the induction hypothesis.

By Proposition [3.1,](#page-5-0) we have

hesis.
we have

$$
(F_f \diamond xw')x = \sum_{(f)} F_{f'}x(F_{f''} \diamond w')x.
$$

This completes the proof.

4 Proof of Theorem [1.3](#page-1-1)

Let \mathcal{A}_*^1 be the commutative \mathbb{Q} -algebra with the harmonic product ∗. We define the \mathbb{Q} linear map *u* : $A \rightarrow A^* \otimes A^*$ by $u(1) = 1$ and sending a word $w = yx^{k_1-1} \cdots yx^{k_r-1}$ to

$$
\sum_{i=0}^r (-1)^i y x^{k_1-1} \cdots y x^{k_i-1} \otimes y x^{k_r-1} z x^{k_{r-1}-1} \cdots z x^{k_{i+1}-1}.
$$

The notation u_w is sometimes used instead of $u(w)$ for convenience. Let $\mathcal{B} \subset \mathcal{A}_*^1 \otimes \mathcal{A}_*^1$ the notation u_w is sometimes assessmented by u_w 's. The product of the tensor algebra algebraically generated by u_w 's. The product of the tensor algebra

is given component wisely so that
\n
$$
u(yx^{k_1-1} \cdots yx^{k_r-1}) * u(yx^{l_1-1} \cdots yx^{l_s-1})
$$
\n
$$
= \sum_{i=0}^{r} \sum_{j=0}^{s} (-1)^{i+j} (yx^{k_1-1} \cdots yx^{k_i-1} * yx^{l_1-1} \cdots yx^{l_j-1})
$$
\n
$$
\otimes (yx^{k_r-1}zx^{k_{r-1}-1} \cdots zx^{k_{i+1}-1} * yx^{l_s-1}zx^{l_{s-1}-1} \cdots zx^{l_{j+1}-1}).
$$

Now we define the Q-linear map $\rho: y\mathcal{A} \to y\mathcal{A}$ by setting $\rho(1) = 1$ and $\rho = L_y \in L_y^{-1}$, where ϵ is the anti-automorphism on *A* such that $\epsilon(x) = x$ and $\epsilon(y) = y$. Note that $\rho(yx^{k_1-1} \cdots yx^{k_r-1}) = yx^{k_r-1} \cdots yx^{k_1-1}$. Put $L'_a(w_1 \otimes w_2) = yx^{a-1}w_1 \otimes w_2$ for $a \in \mathbb{Z}_{\geq 1}$.

Lemma 4.1 *For* $w_1, w_2 \in A^1$ *, we have*

$$
u(w_1 \overline{\ast} w_2) = u(w_1) \ast u(w_2).
$$

Proof It is enough to show the lemma for $w_1 = yx^{k_1-1} \cdots yx^{k_r-1}$ and $w_2 =$ $yx^{l_1-1} \cdots yx^{l_s-1}$. The proof goes by induction on $r + s$. The lemma holds when $r + s \le 1$ since $u(1) = 1 \otimes 1$. Assume $r + s \ge 2$. Note that

$$
u(w) = 1 \otimes yx^{m_t - 1}zx^{m_{t-1} - 1} \cdots zx^{m_1 - 1} - L'_{m_1}u(yx^{m_2 - 1} \cdots yx^{m_t - 1})
$$

= 1 $\otimes d\rho(w) - L'_{m_1}u(yx^{m_2 - 1} \cdots yx^{m_t - 1})$ (3)

holds for $w = yx^{m_1-1} \cdots yx^{m_t-1}$. By definitions and the induction hypothesis, we have

$$
u(w_1 \overline{\ast} w_2)
$$

= $u(yx^{k_1-1}(yx^{k_2-1} \cdots yx^{k_r-1} \overline{\ast} w_2) + yx^{l_1-1}(w_1 \overline{\ast} yx^{l_2-1} \cdots yx^{l_s-1})$
 $- yx^{k_1+l_1-1}(yx^{k_2-1} \cdots yx^{k_r-1} \overline{\ast} yx^{l_2-1} \cdots yx^{l_s-1}))$
= $1 \otimes d\rho(w_1 \overline{\ast} w_2) - L'_{k_1}(u(yx^{k_2-1} \cdots yx^{k_r-1}) \ast u(w_2))$
+ $1 \otimes d\rho(w_1 \overline{\ast} w_2) - L'_{l_1}(u(w_1) \ast u(yx^{l_2-1} \cdots yx^{l_s-1}))$

 \mathcal{D} Springer

$$
- 1 \otimes d\rho(w_1 \overline{*} w_2)
$$

+ $L'_{k_1+l_1}(u(yx^{k_2-1} \cdots yx^{k_r-1}) * u(yx^{l_2-1} \cdots yx^{l_s-1}))$ (by (3))
= $1 \otimes d\rho(w_1 \overline{*} w_2) - L'_{k_1}(u(yx^{k_2-1} \cdots yx^{k_r-1}) * u(w_2))$
- $L'_{l_1}(u(w_1) * u(yx^{l_2-1} \cdots yx^{l_s-1}))$
+ $L'_{k_1+l_1}(u(yx^{k_2-1} \cdots yx^{k_r-1}) * u(yx^{l_2-1} \cdots yx^{l_s-1}))$

and

$$
u(w_1) * u(w_2)
$$

= $(1 \otimes d\rho(w_1) - L'_{k_1}u(yx^{k_2-1} \cdots yx^{k_r-1})) * (1 \otimes d\rho(w_2)$
 $- L'_{l_1}u(yx^{l_2-1} \cdots yx^{l_s-1}))$
= $1 \otimes (d\rho(w_1) * d\rho(w_2)) - L'_{k_1}u(yx^{k_2-1} \cdots yx^{k_r-1}) * (1 \otimes d\rho(w_2))$
 $- (1 \otimes d\rho(w_1)) * L'_{l_1}u(yx^{l_2-1} \cdots yx^{l_s-1})$
+ $L'_{k_1}u(yx^{k_2-1} \cdots yx^{k_r-1}) * L'_{l_1}u(yx^{l_2-1} \cdots yx^{l_s-1}).$

Let us show that these two coincide. Because of Lemma [2.3](#page-3-1) and $\rho(w_1 \ast w_2)$ = $\rho(w_1) \bar{*} \rho(w_2)$, we have

$$
d\rho(w_1 \overline{\ast} w_2) = d\rho(w_1) \ast d\rho(w_2).
$$

Also we find that

$$
-L'_{k_1}(u(yx^{k_2-1}\cdots yx^{k_r-1}) * u(w_2)) + L'_{k_1}u(yx^{k_2-1}\cdots yx^{k_r-1}) * (1 \otimes d\rho(w_2))
$$

= $-L'_{k_1}(u(yx^{k_2-1}\cdots yx^{k_r-1}) * u(w_2) - u(yx^{k_2-1}\cdots yx^{k_r-1}) * (1 \otimes d\rho(w_2)))$
= $-L'_{k_1}(u(yx^{k_2-1}\cdots yx^{k_r-1}) * L'_{l_1}u(yx^{l_2-1}\cdots yx^{l_s-1}))$

and

$$
- L'_{l_1}(u(w_1) * u(yx^{l_2-1} \cdots yx^{l_s-1})) + (1 \otimes d\rho(w_1)) * L'_{l_1}u(yx^{l_2-1} \cdots yx^{l_s-1})
$$

= $- L'_{l_1}(u(w_1) * u(yx^{l_2-1} \cdots yx^{l_s-1}) - (1 \otimes d\rho(w_1)) * u(yx^{l_2-1} \cdots yx^{l_s-1}))$
= $- L'_{l_1}(L'_{k_1}u(yx^{k_2-1} \cdots yx^{k_r-1}) * u(yx^{l_2-1} \cdots yx^{l_s-1})).$

Since

$$
L'_{k_1+l_1}(u(yx^{k_2-1}\cdots yx^{k_r-1}) * u(yx^{l_2-1}\cdots yx^{l_s-1}))
$$

\n
$$
- L'_{k_1}u(yx^{k_2-1}\cdots yx^{k_r-1}) * L'_{l_1}u(yx^{l_2-1}\cdots yx^{l_s-1})
$$

\n
$$
= L'_{k_1}(u(yx^{k_2-1}\cdots yx^{k_r-1}) * L'_{l_1}u(yx^{l_2-1}\cdots yx^{l_s-1}))
$$

\n
$$
+ L'_{l_1}(L'_{k_1}u(yx^{k_2-1}\cdots yx^{k_r-1}) * u(yx^{l_2-1}\cdots yx^{l_s-1})),
$$

 $\underline{\textcircled{\tiny 2}}$ Springer

we have the result. \Box

H. Murahara, T. Tanaka

have the result.

Write $u_w = \sum_{i=0}^r u'_{w,i} \otimes u''_{w,i} = \sum_w u'_w \otimes u''_w$. We define the ℚ-linear maps $p, q: \mathcal{B} \to \mathcal{A}^* \otimes \mathcal{A}^*$ by *P*(*u*w₁ $= \sum_{i=0}^{r} u'_{w,i} \otimes u'_{v}$
 p(*u*_{w₁ * · · · * *u*_{w_r}) = $\sum_{i=0}^{r} u'_{v,i}$}

$$
p(u_{w_1} * \cdots * u_{w_r}) = \sum_{\substack{u'_{w_1} \cdots u'_{w_r} \notin \mathbb{Q} \\ v_1, \ldots, v_r}} yx L_y^{-1}(u'_{w_1} * \cdots * u'_{w_r}) \otimes (u''_{w_1} * \cdots * u''_{w_r})
$$

+ 1 $\otimes (d\rho(w_1) * \cdots * d\rho(w_1))x$,

$$
q(u_{w_1} * \cdots * u_{w_r}) = \sum_{w_1, \ldots, w_r} y(u'_{w_1} * \cdots * u'_{w_r}) \otimes (u''_{w_1} * \cdots * u''_{w_r})
$$

- 1 $\otimes (d\rho(w_1) * \cdots * d\rho(w_1))z$.

Lemma 4.2 *We have* Im p , Im $q \subset B$.

Proof From Lemma [4.1,](#page-9-1) we have

$$
u_{w_1} * \cdots * u_{w_r} = u(w_1 \overline{*} \cdots \overline{*} w_r).
$$

Thus, we need only to prove the lemma for the case $r = 1$. Since

$$
u_{w_1} * \cdots * u_{w_r} = u(w_1 \overline{*} \cdots \overline{*} w_r).
$$

thus, we need only to prove the lemma for the case $r = 1$. Since

$$
p(u_w) = 1 \otimes d\rho(w)x + \sum_w yxL_y^{-1}u'_w \otimes u''_w = u(yx^{k_1}yx^{k_2-1} \cdots yx^{k_r-1}) \in \mathcal{B},
$$

$$
q(u_w) = L'_y(u_w) - 1 \otimes d\rho(w)z = u(y^2x^{k_1-1}yx^{k_2-1} \cdots yx^{k_r-1}) \in \mathcal{B},
$$

we obtain the result.

For a forest *f*, we define the polynomial $G_f \in A^1$ recursively by

(1) $G_{\mathbb{I}} = 1$, (2) G [•] = −*y*, (3) $G_t = R_{2x+y}(G_f)$ if $t = B_+(f)$ and $f \neq \mathbb{I}$, (4) $G_f = G_g \diamond G_h$ if $f = gh$.

The subscript of *G* is extended linearly. The following lemma is immediate from Lemmas [4.1](#page-9-1) and [4.2,](#page-11-0) and definitions. **Lemma 4.3** *Let f be any forest with* $f \neq \mathbb{I}$. *If* $\sum_{(f)} \phi(F_f) \otimes \phi(G_f) = B$ *, we have*
 Lemma 4.3 *Let f be any forest with* $f \neq \mathbb{I}$. *If* $\sum_{(f)} \phi(F_f) \otimes \phi(G_f) \in B$ *, we have*

Lemma 4.1 and 4.2, and definitions.
\n**Lemma 4.3** Let f be any forest with
$$
f \neq \mathbb{I}
$$
. If $\sum_{(f)} \phi(F_{f'}) \otimes \phi(G_{f''}) \in \mathcal{B}$, we have
\n
$$
p\left(\sum_{(f)} \phi(F_{f'}) \otimes \phi(G_{f''})\right) = \sum_{\substack{(f) \\ f' \neq \mathbb{I}}} yxL_y^{-1}\phi(F_{f'}) \otimes \phi(G_{f''}) + \phi(F_{\mathbb{I}}) \otimes \phi(G_f)x \in \mathcal{B},
$$
\n
$$
q\left(\sum_{(f)} \phi(F_{f'}) \otimes \phi(G_{f''})\right) = \sum_{\substack{(f) \\ f' \neq \mathbb{I}}} y\phi(F_{f'}) \otimes \phi(G_{f''}) + y\phi(F_{\mathbb{I}}) \otimes \phi(G_f)
$$
\n
$$
= \phi(F_{\mathbb{I}}) \otimes \phi(G_f)z \in \mathcal{B}.
$$

² Springer

Proposition 4.4 *For any forest* $f \neq \mathbb{I}$ *, we have*

$$
\sum_{(f)} \phi(F_{f'}) \otimes \phi(G_{f''}) \in \mathcal{B}.
$$

Proof We prove the proposition by induction on $deg(f)$. When $deg(f) = 1$, we easily see the statement holds.

Assume deg(f) \geq 2. If $f = gh$ ($g, h \neq \mathbb{I}$), since $\phi(F_g \diamond F_h) = \phi(F_g) * \phi(F_h)$, we have tatement holds.
me deg(*f*) ≥ 2. If *f* = ϕ
 $\phi(F_{f'}) \otimes \phi(G_{f''}) = \sum$

$$
\sum_{(f)} \phi(F_{f'}) \otimes \phi(G_{f''}) = \sum_{\substack{(g) \ (h)}} \phi(F_{g'} \diamond F_{h'}) \otimes \phi(F_{g''} \diamond F_{h''})
$$

$$
= \sum_{(g)} \sum_{(h)} (\phi(F_{g'}) \otimes \phi(G_{g''})) * (\phi(F_{h'}) \otimes \phi(G_{h''})).
$$

By the induction hypothesis, we find the result.

If *f* is a tree, we put $f = B_+(g)$.

Since

$$
\Delta(f) = \mathbb{I} \otimes f + (B_+ \otimes \mathrm{id}) \Delta(g),
$$

we have

$$
\sum_{(f)} \phi(F_{f'}) \otimes \phi(G_{f''})
$$
\n
$$
= \phi(F_{\mathbb{I}}) \otimes \phi(G_{B_{+}(g)}) + \sum_{(g)} \phi(F_{B_{+}(g')}) \otimes \phi(G_{g''})
$$
\n
$$
= \phi(F_{\mathbb{I}}) \otimes \phi(G_{g}(2x + y))
$$
\n
$$
+ \sum_{(g)} \phi((yxL_{y}^{-1} + 2y)F_{g'}) \otimes \phi(G_{g''}) + \phi(yF_{\mathbb{I}}) \otimes \phi(G_{g})
$$
\n
$$
= \sum_{(g)} \left(yzL_{y}^{-1} - 2y\right) \phi(F_{g'}) \otimes \phi(G_{g''})
$$
\n
$$
= y\phi(F_{\mathbb{I}}) \otimes \phi(G_{g}) + \phi(F_{\mathbb{I}}) \otimes \phi(G_{g})(x + z).
$$

Then we get

$$
\sum_{(f)} \phi(F_{f'}) \otimes \phi(G_{f''}) = (p - q) \left(\sum_{(g)} \phi(F_{g'}) \otimes \phi(G_{g''}) \right).
$$

By the induction hypothesis, we have $\sum_{(g)} \phi(F_{g'}) \otimes \phi(G_{g''}) \in \mathcal{B}$. Then, by Lemma

[4.3,](#page-11-1) we find the result. \Box

² Springer

Let Aug = \bigoplus $\bigoplus_{n\geq 1} \mathcal{H}_n$ be the augmentation ideal, where \mathcal{H}_n is the degree *n* homogeneous part of *H*. We define the Q-linear map $M: A^1_* \otimes A^1_* \to A^1_*$ by *M*(*w*₁ ⊗ *w*₂) = *w*₁ $*$ *w*₂. Note that *M*(*w*) = 0 for *w* ∈ *B* by [\(1\)](#page-3-2) in Sect. [2.3.](#page-3-3)

Proposition 4.5 *For any* $f \in \text{Aug}, we have$

$$
\sum_{(f)}F_{f'}\diamond G_{f''}=0.
$$

Proof We note that $\phi(w_1) * \phi(w_2) = \phi(w_1 \diamond w_2)$ holds for $w_1, w_2 \in A$. By Proposition [4.4,](#page-11-2) we have that $\phi(w_1) * \phi(w_2) = \phi(w_1 \diamond w_2)$ holds
 $0 = \sum M(\phi(F_{f'}) \otimes \phi(G_{f''})) = \sum$

$$
0 = \sum_{(f)} M(\phi(F_{f'}) \otimes \phi(G_{f''})) = \sum_{(f)} \phi(F_{f'} \diamond G_{f''}).
$$

Then we find the result.

Proof of Theorem [1.3](#page-1-1) We prove the theorem by induction on $deg(f)$. Note that the existence and the uniqueness of $G_f \in \mathcal{A}$ can also be confirmed by following the proof. It is easy to see the theorem holds if deg(f) = 1. Suppose deg(f) \geq 2. If $f = gh (g, h \neq \mathbb{I})$, we have

$$
\widetilde{S(f)}(wx) = \widetilde{S(gh)}(wx) = \widetilde{S(g)}((G_h \diamond w)x)
$$

= $(G_g \diamond (G_h \diamond w))x$
= $((G_g \diamond G_h) \diamond w)x$
= $(G_f \diamond w)x$.

If $f = t$ is a tree, by Proposition [4.5,](#page-13-0) Theorem [1.1,](#page-1-0) and the induction hypothesis, we have y Proposition 4.5, T
 $(G_t \diamond w)x = -\sum$

we have
\n
$$
(G_t \diamond w)x = -\sum_{t' \subset t} ((F_{t'} \diamond G_{t\setminus t'}) \diamond w)x
$$
\n
$$
= -\sum_{t' \subset t} (F_{t'} \diamond (G_{t\setminus t'} \diamond w))x
$$
\n
$$
= -\sum_{t' \subset t} \tilde{t'} ((G_{t\setminus t'} \diamond w)x)
$$
\n
$$
= -\sum_{t' \subset t} \tilde{t'} S(t\setminus t')(wx).
$$
\nSince $\widetilde{S(t)} + \sum_{t' \subset t} \tilde{t'} S(t\setminus t') = 0$ by Proposition 2.1 (2), we have

$$
(G_t \diamond w)x = \widetilde{S(t)}(wx).
$$

 \mathcal{D} Springer

 \Box

5 Proof of Theorem [1.5](#page-1-2)

Proof of Theorem [1.5](#page-1-2) First, we prove the theorem when $w \in y \mathcal{A}x$. Put $w = yw'x$. By Theorem [1.3](#page-1-1) and Corollary [1.4,](#page-1-3) we have

$$
\widetilde{S(f)}(w) = (F_{S(f)} \diamond yw')x.
$$

We also have

$$
\tau \tilde{f} \tau(w) = \tau \tilde{f}(y \tau(w')x)
$$

= $\tau ((F_f \diamond y \tau(w'))x)$ (by Theorem 1.1)
= $-\tau ((y \tau L_y^{-1}(F_{S(f)}) \diamond y \tau(w'))x)$ (by Proposition 5.1)
= $-y \tau (y \tau L_y^{-1}(F_{S(f)}) \diamond y \tau(w'))$
= $(F_{S(f)} \diamond y w')x$ (by Lemma 5.2).

Thus we have

$$
\widetilde{S(f)}(w) = \tau \tilde{f}\tau(w) \tag{4}
$$

for $w \in y \mathcal{A}x$.

Next, we prove the theorem when $w \in z\mathcal{A}x$ by induction on deg(w). Put $w = zw'x$. Then, by Lemma [2.2,](#page-3-0) we have

$$
\widetilde{S(f)}(w) = z \widetilde{S(f)}(w'x),
$$

\n
$$
\tau \widetilde{f} \tau(w) = \tau \widetilde{f} \tau(zw'x) = z \tau \widetilde{f} \tau(w'x).
$$

By [\(4\)](#page-14-2) and the induction hypothesis, we have

$$
\widetilde{S(f)}(w'x) = \tau \tilde{f}\tau(w'x) \tag{5}
$$

for any $w' \in A$, and hence the assertion.

Finally, we prove the theorem when $w \in A_z$ by induction on $deg(w)$. Put $w = w'z$. Then we have

$$
\widetilde{S(f)}(w) = (\widetilde{S(f)}(w'))z, \tau \widetilde{f}\tau(w) = \tau \widetilde{f}\tau(w'z) = (\tau \widetilde{f}\tau(w'))z.
$$

By the induction hypothesis and (5) , we have the assertion. Therefore we have $\widetilde{S(f)}(w) = \tau \widetilde{f} \tau(w)$ for any $w \in \mathcal{A}$.

Proposition 5.1 *For f* ∈ Aug*, we have*

$$
F_f = -y\tau L_y^{-1} F_{S(f)}.
$$

Proof It is sufficient to prove the proposition for forests f by induction on deg(f). Since $F_{\bullet} = y$ and $F_{S(\bullet)} = -y$, the proposition hols for deg(f) = 1.

Suppose deg(f) \geq 2. If $f = gh (g, h \neq \mathbb{I})$, we have

$$
F_f = F_g \diamond F_h
$$

= $y \tau L_y^{-1} (G_g) \diamond y \tau L_y^{-1} (G_h)$ (by induction and Corollary 1.4)
= $-R_x^{-1} \tau ((G_g \diamond G_h)x)$ (by Lemma 5.2)

and

$$
y\tau L_y^{-1}G_f = y\tau L_y^{-1}(G_g \diamond G_h) = R_x^{-1}\tau((G_g \diamond G_h)x).
$$

Thus we have the result.

If *f* is a tree, put $f = B_+(g)$. Then we have

$$
F_f = L(F_g)
$$

= $-L(y \tau L_y^{-1} G_g)$ (by induction and Corollary 1.4)
= $-y(x + 2y)R_x^{-1} \tau(G_g)$

and

$$
-y\tau L_y^{-1}G_f = -y\tau L_y^{-1}R_{2x+y}(G_g) = -y(x+2y)R_x^{-1}\tau(G_g).
$$

This finishes the proof. \Box

Now we define $\sigma \in Aut(\mathcal{A})$ such that $\sigma(x) = x$ and $\sigma(y) = -y$. By definitions, we have

$$
-\phi R_x^{-1} \tau R_x \phi = d\rho \sigma. \tag{6}
$$

We find that $d\sigma$ and ρ are homomorphisms with respect to the harmonic product \ast , and ρ commutes with σ . Hence the composition $d\rho\sigma$ is also a homomorphism with respect to the harmonic product $*$, and so is $-\phi R_x^{-1} \tau R_x \phi$ because of [\(6\)](#page-15-1). This implies the composition $-R_x^{-1} \tau R_x$ is a homomorphism with respect to the product \diamond (defined in Sect. [2\)](#page-2-0) and hence we conclude the following lemma.

Lemma 5.2 *For* $w_1, w_2 \in A$ *, we have*

$$
(yw_1 \diamond yw_2)x + y\tau(y\tau(w_1) \diamond y\tau(w_2)) = 0.
$$

Proof We have

$$
yw_1 \diamond yw_2 = R_x^{-1} L_y(w_1x) \diamond R_x^{-1} L_y(w_2x)
$$

= $R_x^{-1} \tau R_x \tau (w_1x) \diamond R_x^{-1} \tau R_x \tau (w_2x)$

$$
=-R_{x}^{-1}\tau R_{x}(w_{1}x\diamond w_{2}x).
$$

This gives the lemma.

Remark 5.1 According to [\[2](#page-16-3)], for any $w \in y\mathcal{A}x$, there exists $\tilde{f} \in \tilde{\mathcal{H}}$ such that $w =$ $\tilde{f}(x)$. Hence we have $(1 - \tau)(w) = (1 - \tau)(\tilde{f}(x)) = (\tilde{f} + \tau \tilde{f} \tau)(x) = (\tilde{f} + \tilde{S}(f))(x)$ due to Theorem [1.5,](#page-1-2) which means each of the duality formulas for multiple zeta values also appears in this form in the context of rooted tree maps.

Acknowledgements The authors would like to thank the referee for some advice.

References

- 1. Bachmann, H., Tanaka, T.: Rooted tree maps and the derivation relation for multiple zeta values. Int. J. Number Theory **14**, 2657–2662 (2018)
- 2. Bachmann, H., Tanaka, T.: Rooted tree maps and the Kawashima relations for multiple zeta values. Kyushu J. Math. **74**(1), 169–176 (2020)
- 3. Connes, A., Kreimer, D.: Hopf algebras, renormalization and noncommutative geometry. Commun. Math. Phys. **199**, 203–242 (1998)
- 4. Hirose, M., Murahara, H., Onozuka, T.: Q-linear relations of specific families of multiple zeta values and the linear part of Kawashima's relation. Manuscripta Math. **164**, 455–465 (2021)
- 5. Hoffman, M.E.: The algebra of multiple harmonic series. J. Algebra **194**, 477–495 (1997)
- 6. Ihara, K., Kajikawa, J., Ohno, Y., Okuda, J.: Multiple zeta values vs. multiple zeta-star values. J. Algebra **332**, 187–208 (2011)
- 7. Kaneko, M.: On an extension of the derivation relation for multiple zeta values. In: Weng, L., Kaneko, M. (eds.) The Conference on L-Functions (Fukuoka, 2006), pp. 89–94. World Scientific, Singapore (2007)
- 8. Kaneko, M., Murahara, H., Murakami, T.: Quasi-derivation relations for multiple zeta values revisited. Abh. Math. Semin. Univ. Hambg. **90**, 151–160 (2020)
- 9. Kawashima, G.: A class of relations among multiple zeta values. J. Number Theory **129**, 755–788 (2009)
- 10. Muneta, S.: Algebraic setup of non-strict multiple zeta values. Acta Arith. **136**, 7–18 (2009)
- 11. Tanaka, T.: Rooted tree maps. Commun. Number Theory Phys. **13**, 647–666 (2019)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.