
The Ramanujan Journal (2023) 60:123–139
https://doi.org/10.1007/s11139-022-00612-1

Algebraic aspects of rooted tree maps

Hideki Murahara1 · Tatsushi Tanaka2

Received: 15 September 2021 / Accepted: 11 June 2022 / Published online: 30 July 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
Based on the Connes–Kreimer Hopf algebra of rooted trees, rooted tree maps are
defined as linearmaps on the noncommutative polynomial algebraQ〈x, y〉. It is known
that they induce a large class of linear relations for multiple zeta values. In this paper,
we show for any rooted tree f there exists a unique polynomial in Q〈x, y〉 that gives
the image of the rooted tree map ˜f explicitly. We also characterize the antipode maps
as the conjugation by the special map τ .

Keywords Connes–Kreimer Hopf algebra of rooted trees · Rooted tree maps ·
Harmonic products · Multiple zeta values

Mathematics Subject Classification 05C05 · 16T05 · 11M32

1 Introduction

LetH be the Connes–Kreimer Hopf algebra of rooted trees introduced in [3]. For any
f ∈ H, the rooted tree map f̃ is introduced in [11] as an element in End(A), where
A is the noncommutative polynomial algebra Q〈x, y〉. It is known that rooted tree
maps induce a large class of linear relations for multiple zeta values. In [1, 2], we find
some results in algebraic properties of rooted tree maps to make some applications to
multiple zeta values clear. In [8], the quasi-derivation operator introduced in [7] can be

The second author is partially supported by JSPS KAKENHI Grant Number (C) 19K03434.

B Hideki Murahara
hmurahara@mathformula.page

Tatsushi Tanaka
t.tanaka@cc.kyoto-su.ac.jp

1 The University of Kitakyushu, 4-2-1 Kitagata, Kokuraminami-ku, Kitakyushu, Fukuoka
802-8577, Japan

2 Department of Mathematics, Faculty of Science, Kyoto Sangyo University, Motoyama, Kamigamo,
Kita-ku, Kyoto 603-8555, Japan

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11139-022-00612-1&domain=pdf
http://orcid.org/0000-0002-4176-0407


124 H. Murahara, T. Tanaka

interpreted by a certain kind of harmonic product � (introduced in [4]). In this paper,
we establish similar algebraic formulas for rooted tree maps in the harmonic algebra.

Theorem 1.1 For any f ∈ H and w ∈ A, there exists a unique F f ∈ A such that

f̃ (wx) = (Ff � w)x .

Remark 1.2 The fact that rooted tree maps are commutative pairwisely, which is intri-
cately shown in [T], follows immediately from our Theorem 1.1 because the product
� is commutative. We call the rooted tree with n vertices among which there is only
one leaf the ladder tree, which is denoted by λn . The corresponding rooted tree map
˜λn is closely related to the derivation operator ∂n , which gives the derivation rela-
tion for multiple zeta value’s (see [BT] for details). On the other hand, one finds
Fλn = y(x + 2y)n−1 (see Sect. 3). Combining these two, the derivation operator is
expressed by the product �. The expression agrees with Theorem 2.2 in [KMM] when
c = 0. It’s not been clear how the quasi-derivation operator relates to rooted tree maps,
i.e., how our theorem 1.1 relates to Theorem 2.2 in [KMM] for arbitrary c.

We also have similar formulas for S̃( f ) ∈ End(A), where S denotes the antipode
of H.

Theorem 1.3 For any f ∈ H and w ∈ A, there exists a unique G f ∈ A such that

S̃( f )(wx) = (G f � w)x .

By Theorems 1.1 and 1.3, we have (G f � w)x = S̃( f )(wx) = (FS( f ) � w)x for
w ∈ A. Thus we obtain

Corollary 1.4 For any f ∈ H, we have

G f = FS( f ).

Let τ be the anti-automorphism on A characterized by τ(x) = y and τ(y) = x . This
τ is an involution and gives the well-known duality formula for multiple zeta values.
We also have the following property.

Theorem 1.5 For any f ∈ H, we have

S̃( f ) = τ f̃ τ.

In Sect. 2, we give some basic tools including the Connes–Kreimer Hopf algebra
of rooted trees, rooted tree maps, and harmonic products. Sections 3–5 are devoted to
Proofs of Theorems 1.1, 1.3, and 1.5 in turn.
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2 Preliminaries

2.1 Connes–Kreimer Hopf algebra of rooted trees

We review briefly the Connes–Kreimer Hopf algebra of rooted trees introduced in [3].
A tree is a finite and connected graph without cycles and a rooted tree is a tree in
which one vertex is designated as the root. We consider rooted trees without plane

structure, e.g., •
••

••
•

= •
••

••
•
, where the topmost vertex represents the root. A (rooted)

forest is a finite collection of rooted trees t1, . . . , tn , which we denote by t1 · · · tn .
Then the Connes–Kreimer Hopf algebra of rooted treesH is theQ-vector space freely
generated by rooted forests with the commutative ring structure. We denote by I the
empty forest, which is regarded as the neutral element in H.

We define the linear map B+ on H sending a forest t1 · · · tn , where t j ’s are trees,
to the tree obtained by grafting all roots of t j ’s onto a single vertex which is the new
root, and B+(I) = •• . We find that, for a rooted tree t( �= I), there is a unique forest f
such that t = B+( f ). The coproduct � on H is defined by the following two rules.

(1) �(t) = I ⊗ t + (B+ ⊗ id) ◦ �( f ) if t = B+( f ),
(2) �( f ) = �(g)�(h) if f = gh with g, h ∈ H.

Note that components of the tensor product are reversely defined compared to those
in [3]. We denote by S the antipode ofH. In the sequel, we often employ the Sweedler
notation �( f ) = ∑

( f ) f ′ ⊗ f ′′.
A subtree t ′ of the rooted tree t (denoted by t ′ ⊂ t) is a subgraph of t that is

connected and contains the root of t (hence the empty tree I cannot be a subtree in our
sense), and we denote by t \ t ′ their subtraction. For example, we have t \ t ′ = •• •

•

if t = •
••

••
•
and t ′ = •• .

Proposition 2.1 [3] For a rooted tree t , we have

(1) �(t) = I ⊗ t +
∑

t ′⊂t

t ′ ⊗ (t \ t ′),

(2) S(t) +
∑

t ′⊂t

t ′S(t \ t ′) = 0.

2.2 Rooted treemaps

We here define rooted tree maps introduced in [11]. For u ∈ A, let Lu and Ru be
Q-linear maps onA defined by Lu(w) = uw and Ru(w) = wu (w ∈ A). For f ∈ H,
we define theQ-linear map f̃ : A → A, whichwe call the rooted treemap, recursively
by

(1) Ĩ = id,
(2) f̃ (x) = yx and f̃ (y) = −yx if f = •• ,
(3) t̃(u) = LyLx+2y L−1

y f̃ (u) if t = B+( f ),

(4) f̃ (u) = g̃(h̃(u)) if f = gh,
(5) f̃ (uw) = ∑

( f )
˜f ′(u)˜f ′′(w) for �( f ) = ∑

( f ) f ′ ⊗ f ′′,
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where w ∈ A and u ∈ {x, y}. It is known that ˜ : H → End(A) is an algebra
homomorphism. We sometimes denote its image by ˜H. (Note that in this definition
the order of the concatenation product on A is treated reversely compared to that in
[11]. Since the coproduct � on H is also defined reversely as above, this definition
makes sense.)

Let z = x + y. It is known that rooted tree maps commute with each other and with
Lz and Rz .

Lemma 2.2 [11] For f ∈ H and w ∈ A, we have f̃ (zw) = z f̃ (w) and f̃ (wz) =
f̃ (w)z.

2.3 Harmonic products

Let A1 = Q + yA be a subalgebra of A. We define the Q-bilinear product ∗ on A1,
which is called the harmonic product, by

w ∗ 1 = 1 ∗ w = w,

yxk1−1 · · · yxkr−1 ∗ yxl1−1 · · · yxls−1

= yxk1−1(yxk2−1 · · · yxkr−1 ∗ yxl1−1 · · · yxls−1)

+ yxl1−1(yxk1−1 · · · yxkr−1 ∗ yxl2−1 · · · yxls−1)

+ yxk1+l1−1(yxk2−1 · · · yxkr−1 ∗ yxl2−1 · · · yxls−1).

It is known that this product is commutative and associative, and has one of the product
structures of multiple zeta values (see [5]). There are many properties of the harmonic
product. We here recall the following identity (see [6, Proposition 6] or [9, Proposition
7.1]). For yxk1−1 · · · yxkr−1 ∈ A1, we have

r
∑

i=0

(−1)i yxk1−1 · · · yxki−1 ∗ yxkr−1zxkr−1−1 · · · zxki+1−1 = 0. (1)

Next, we define the Q-bilinear product ∗ on A1 by

w ∗ 1 = 1 ∗ w = w,

yxk1−1 · · · yxkr−1 ∗ yxl1−1 · · · yxls−1

= yxk1−1(yxk2−1 · · · yxkr−1 ∗ yxl1−1 · · · yxls−1)

+ yxl1−1(yxk1−1 · · · yxkr−1 ∗ yxl2−1 · · · yxls−1)

− yxk1+l1−1(yxk2−1 · · · yxkr−1 ∗ yxl2−1 · · · yxls−1).

Let d1 be the automorphism on A given by d1(x) = x and d1(y) = z. We define the
Q-linear map d : A1 → A1 by d(1) = 1 and d(yw) = yd1(w) for w ∈ A. The map
d intermediates between the two products in the following sense.
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Algebraic aspects of rooted tree maps 127

Lemma 2.3 [10] For w1, w2 ∈ A1, we have

d(w1 ∗ w2) = d(w1) ∗ d(w2).

Lastly, following [4], we define the product � on A by

w � 1 = 1 � w = w,

xw1 � xw2 = x(w1 � xw2) − x(yw1 � w2),

xw1 � yw2 = x(w1 � yw2) + y(xw1 � w2),

yw1 � xw2 = y(w1 � xw2) + x(yw1 � w2),

yw1 � yw2 = y(w1 � yw2) − y(xw1 � w2)

(2)

forw,w1, w2 ∈ A togetherwithQ-bilinearity.Wefind that the product� is associative
and commutative. Letφ be the automorphismonA given byφ(x) = z andφ(y) = −y.
We note that φ is an involution. The product � is thought of a kind of the harmonic
product by virtue of w1 � w2 = φ(φ(w1) ∗ φ(w2)) for w1, w2 ∈ A1.

Lemma 2.4 [4, Proposition 2.3] For w1, w2 ∈ A, we have

zw1 � w2 = w1 � zw2 = z(w1 � w2).

Lemma 2.5 For w1, w2 ∈ A, we have

w1xw2 � y = (w1 � y)xw2 + w1x(w2 � y).

Proof It is enough to consider the case that w1 is a word. We prove the lemma by
induction on deg(w1). When deg(w1) = 0, we easily see the lemma holds.

Assume deg(w1) ≥ 1. If w1 = zw′
1 (w′

1 ∈ A), by the induction hypothesis and
Lemma 2.4, we have

LHS = z(w′
1xw2 � y) = z(w′

1 � y)xw2 + zw′
1x(w2 � y) = RHS.

If w1 = xw′
1 (w′

1 ∈ A), by the induction hypothesis and (2), we have

LHS = x(w′
1xw2 � y) + yw1xw2

= x(w′
1 � y)xw2 + w1x(w2 � y) + yw1xw2 = RHS.

This finishes the proof. ��

3 Proof of Theorem 1.1

In this section, we prove Theorem 1.1. For a forest f , we define the polynomial
Ff ∈ A1 recursively by

(1) FI = 1,
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(2) F•• = y,
(3) Ft = LyLx+2y L−1

y (Ff ) if t = B+( f ) and f �= I,
(4) Ff = Fg � Fh if f = gh.

The subscript of F is extended linearly. Put L = LyLx+2y L−1
y . To prove Theorem

1.1, next proposition plays a key role.

Proposition 3.1 For w1, w2 ∈ A and f ∈ H, we have

w1xw2 � Ff =
∑

( f )

(Ff ′ � w1)x(Ff ′′ � w2),

where �( f ) = ∑

( f ) f ′ ⊗ f ′′.
Proof It is enough to consider the case that f is a forest. We prove the proposition by
induction on deg( f ).

When deg( f ) = 1, by Lemma 2.5, we find the proposition holds.
Assume deg( f ) ≥ 2. If f = gh (g, h �= I), by the induction hypothesis and the

multiplicativity of the coproduct, we have

w1xw2 � Ff = w1xw2 � (Fg � Fh)

= (w1xw2 � Fg) � Fh

=
∑

(g)

(Fg′ � w1)x(Fg′′ � w2) � Fh

=
∑

(g)

∑

(h)

(Fh′ � (Fg′ � w1))x(Fh′′ � (Fg′′ � w2))

=
∑

(g)

∑

(h)

((Fh′ � Fg′) � w1)x((Fh′′ � Fg′′) � w2)

=
∑

( f )

(Ff ′ � w1)x(Ff ′′ � w2).

If f is a tree (with deg( f ) ≥ 2), we have Ff = L(Fg), where f = B+(g).
In this case, we prove the statement for a word w1 by induction on deg(w1). When

deg(w1) = 0, we have

xw2 � Ff = xw2 � L(Fg)

= xw2 � yxL−1
y Fg + xw2 � 2yFg

= x(w2 � yxL−1
y Fg) + y(xw2 � xL−1

y Fg) + x(w2 � 2yFg)

+ 2y(xw2 � Fg)

= y(xw2 � xL−1
y Fg) + x(w2 � L(Fg)) + 2y(xw2 � Fg).

For the last term on the right-hand side, we have

2y(xw2 � Fg) = 2
∑

(g)

yFg′x(Fg′′ � w2) (by induction)
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= 2yx(Fg � w2) + 2
∑

(g)
g′ �=I

yFg′x(Fg′′ � w2)

= 2yx(Fg � w2) +
∑

(g)
g′ �=I

L(Fg′)x(Fg′′ � w2)

−
∑

(g)
g′ �=I

yxL−1
y Fg′x(Fg′′ � w2).

Then we find

xw2 � Ff = y(xw2 � xL−1
y Fg) + x(w2 � L(Fg)) + 2yx(Fg � w2)

+
∑

(g)
g′ �=I

L(Fg′)x(Fg′′ � w2) −
∑

(g)
g′ �=I

yxL−1
y Fg′x(Fg′′ � w2).

Since

x(w2 � L(Fg)) + yx(Fg � w2) +
∑

(g)
g′ �=I

L(Fg′)x(Fg′′ � w2) =
∑

( f )

Ff ′x(Ff ′′ � w2)

( by Proposition 2.1(1) or the definition of �)

and

y(xw2 � xL−1
y Fg) = y(xL−1

y Fg � xw2)

= yx(L−1
y Fg � xw2) − yx(Fg � w2),

we have

xw2 � Ff =
∑

( f )

Ff ′x(Ff ′′ � w2) + yx(L−1
y Fg � xw2)

−
∑

(g)
g′ �=I

yxL−1
y Fg′x(Fg′′ � w2).

Here we see

L−1
y Fg � xw2 =

∑

(g)

L−1
y Fg′x(Fg′′ � w2)

since

y(L−1
y Fg � xw2) = yL−1

y Fg � xw2 − x(w2 � Fg)
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= Fg � xw2 − x(w2 � Fg)

=
∑

(g)

Fg′x(Fg′′ � w2) − x(w2 � Fg)

=
∑

(g)
g′ �=I

Fg′x(Fg′′ � w2).

Hence we get

xw2 � Ff =
∑

( f )

Ff ′x(Ff ′′ � w2).

Now we proceed to the case when deg(w1) ≥ 1.
If w1 = zw′

1 (w′
1 ∈ A), we have

zw′
1xw2 � Ff = z(w′

1xw2 � Ff )

= z
∑

( f )

(Ff ′ � w′
1)x(Ff ′′ � w2)

=
∑

( f )

(Ff ′ � w1)x(Ff ′′ � w2)

by the induction hypothesis.
If w1 = xw′

1 (w′
1 ∈ A), since we have already proved the identity in the case of

w1 = 1, we have

w1xw2 � Ff =
∑

( f )

Ff ′x(Ff ′′ � w′
1xw2)

=
∑

( f )

Ff ′x
∑

( f ′′)
(Ff ′′

a
� w′

1)x(Ff ′′
b

� w2),

where we put �( f ′′) = ∑

( f ′′) f ′′
a ⊗ f ′′

b .
We also have

∑

( f )

(Ff ′ � w1)x(Ff ′′ � w2) =
∑

( f )

(Ff ′ � xw′
1)x(Ff ′′ � w2)

=
∑

( f )

∑

( f ′)
Ff ′

a
x(Ff ′

b
� w′

1)x(Ff ′′ � w2),

where we put �( f ′) = ∑

( f ′) f ′
a ⊗ f ′

b.
By the coassociativity of �, we find the result. ��

Proof of Theorem 1.1 We prove the theorem only for forests f and words w by induc-
tion on deg( f ) and deg(w). Note that the existence and the uniqueness of Ff ∈ A
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can also be confirmed by following the proof. First, we prove the theorem when
deg( f ) = 1.

If deg(w) = 0, we easily find the result.
Suppose deg(w) ≥ 1. If w = zw′ (w′ ∈ A), by Lemmas 2.2 and 2.4, and the

induction hypothesis, we have

LHS = f̃ (zw′x) = z f̃ (w′x) = z(Ff � w′)x = (Ff � zw′)x = RHS.

On the other hand, if w = xw′ (w′ ∈ A), we have

LHS = f̃ (xw′x) = yxw′x + x f̃ (w′x)

and

RHS = (y � xw′)x = yxw′x + x(y � w′)x .

By the induction hypothesis, we find the result.
Next, suppose deg( f ) ≥ 2. If f = gh (g, h �= I), we have

f̃ (wx)

= g̃h̃(wx) = g̃((Fh � w)x) = (Fg � (Fh � w))x

= ((Fg � Fh) � w)x = (Ff � w)x .

Let f be a rooted tree and put f = B+(g).
When deg(w) = 0, we have

f̃ (x) = (yxL−1
y + 2y)g̃(x) = (yxL−1

y + 2y)Fgx = Ff x .

Suppose deg(w) ≥ 1. If w = zw′ (w′ ∈ A), we have

f̃ (zw′x) = z f̃ (w′x) = z(Ff � w′)x = (Ff � zw′)x

by Lemmas 2.2 and 2.4.
If w = xw′ (w′ ∈ A), we have

f̃ (xw′x) =
∑

( f )

˜f ′(x)˜f ′′(w′x) =
∑

( f )

Ff ′x(Ff ′′ � w′)x

by the induction hypothesis.
By Proposition 3.1, we have

(Ff � xw′)x =
∑

( f )

Ff ′x(Ff ′′ � w′)x .

This completes the proof. ��
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4 Proof of Theorem 1.3

LetA1∗ be the commutative Q-algebra with the harmonic product ∗. We define the Q-
linear map u : A → A∗ ⊗A∗ by u(1) = 1 and sending a wordw = yxk1−1 · · · yxkr−1

to

r
∑

i=0

(−1)i yxk1−1 · · · yxki−1 ⊗ yxkr−1zxkr−1−1 · · · zxki+1−1.

The notation uw is sometimes used instead of u(w) for convenience. LetB ⊂ A1∗⊗A1∗
be theQ-subalgebra algebraically generated by uw’s. The product of the tensor algebra
is given component wisely so that

u(yxk1−1 · · · yxkr−1) ∗ u(yxl1−1 · · · yxls−1)

=
r

∑

i=0

s
∑

j=0

(−1)i+ j (yxk1−1 · · · yxki−1 ∗ yxl1−1 · · · yxl j−1)

⊗ (yxkr−1zxkr−1−1 · · · zxki+1−1 ∗ yxls−1zxls−1−1 · · · zxl j+1−1).

Nowwe define theQ-linear map ρ : yA → yA by setting ρ(1) = 1 and ρ = LyεL−1
y ,

where ε is the anti-automorphism on A such that ε(x) = x and ε(y) = y. Note that
ρ(yxk1−1 · · · yxkr−1) = yxkr−1 · · · yxk1−1. Put L ′

a(w1 ⊗ w2) = yxa−1w1 ⊗ w2 for
a ∈ Z≥1.

Lemma 4.1 For w1, w2 ∈ A1, we have

u(w1 ∗ w2) = u(w1) ∗ u(w2).

Proof It is enough to show the lemma for w1 = yxk1−1 · · · yxkr−1 and w2 =
yxl1−1 · · · yxls−1. The proof goes by induction on r + s. The lemma holds when
r + s ≤ 1 since u(1) = 1 ⊗ 1. Assume r + s ≥ 2. Note that

u(w) = 1 ⊗ yxmt−1zxmt−1−1 · · · zxm1−1 − L ′
m1
u(yxm2−1 · · · yxmt−1)

= 1 ⊗ dρ(w) − L ′
m1
u(yxm2−1 · · · yxmt−1)

(3)

holds for w = yxm1−1 · · · yxmt−1. By definitions and the induction hypothesis, we
have

u(w1 ∗ w2)

= u(yxk1−1(yxk2−1 · · · yxkr−1 ∗ w2) + yxl1−1(w1 ∗ yxl2−1 · · · yxls−1)

− yxk1+l1−1(yxk2−1 · · · yxkr−1 ∗ yxl2−1 · · · yxls−1))

= 1 ⊗ dρ(w1 ∗ w2) − L ′
k1(u(yxk2−1 · · · yxkr−1) ∗ u(w2))

+ 1 ⊗ dρ(w1 ∗ w2) − L ′
l1(u(w1) ∗ u(yxl2−1 · · · yxls−1))
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− 1 ⊗ dρ(w1 ∗ w2)

+ L ′
k1+l1(u(yxk2−1 · · · yxkr−1) ∗ u(yxl2−1 · · · yxls−1)) (by (3))

= 1 ⊗ dρ(w1 ∗ w2) − L ′
k1(u(yxk2−1 · · · yxkr−1) ∗ u(w2))

− L ′
l1(u(w1) ∗ u(yxl2−1 · · · yxls−1))

+ L ′
k1+l1(u(yxk2−1 · · · yxkr−1) ∗ u(yxl2−1 · · · yxls−1))

and

u(w1) ∗ u(w2)

= (1 ⊗ dρ(w1) − L ′
k1u(yxk2−1 · · · yxkr−1)) ∗ (1 ⊗ dρ(w2)

− L ′
l1u(yxl2−1 · · · yxls−1))

= 1 ⊗ (dρ(w1) ∗ dρ(w2)) − L ′
k1u(yxk2−1 · · · yxkr−1) ∗ (1 ⊗ dρ(w2))

− (1 ⊗ dρ(w1)) ∗ L ′
l1u(yxl2−1 · · · yxls−1)

+ L ′
k1u(yxk2−1 · · · yxkr−1) ∗ L ′

l1u(yxl2−1 · · · yxls−1).

Let us show that these two coincide. Because of Lemma 2.3 and ρ(w1 ∗ w2) =
ρ(w1) ∗ ρ(w2), we have

dρ(w1 ∗ w2) = dρ(w1) ∗ dρ(w2).

Also we find that

− L ′
k1(u(yxk2−1 · · · yxkr−1) ∗ u(w2)) + L ′

k1u(yxk2−1 · · · yxkr−1) ∗ (1 ⊗ dρ(w2))

= −L ′
k1(u(yxk2−1 · · · yxkr−1) ∗ u(w2) − u(yxk2−1 · · · yxkr−1) ∗ (1 ⊗ dρ(w2)))

= −L ′
k1(u(yxk2−1 · · · yxkr−1) ∗ L ′

l1u(yxl2−1 · · · yxls−1))

and

− L ′
l1(u(w1) ∗ u(yxl2−1 · · · yxls−1)) + (1 ⊗ dρ(w1)) ∗ L ′

l1u(yxl2−1 · · · yxls−1)

= −L ′
l1(u(w1) ∗ u(yxl2−1 · · · yxls−1) − (1 ⊗ dρ(w1)) ∗ u(yxl2−1 · · · yxls−1))

= −L ′
l1(L

′
k1u(yxk2−1 · · · yxkr−1) ∗ u(yxl2−1 · · · yxls−1)).

Since

L ′
k1+l1(u(yxk2−1 · · · yxkr−1) ∗ u(yxl2−1 · · · yxls−1))

− L ′
k1u(yxk2−1 · · · yxkr−1) ∗ L ′

l1u(yxl2−1 · · · yxls−1)

= L ′
k1(u(yxk2−1 · · · yxkr−1) ∗ L ′

l1u(yxl2−1 · · · yxls−1))

+ L ′
l1(L

′
k1u(yxk2−1 · · · yxkr−1) ∗ u(yxl2−1 · · · yxls−1)),
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we have the result. ��
Write uw = ∑r

i=0 u
′
w,i ⊗ u′′

w,i = ∑

w u′
w ⊗ u′′

w. We define the Q-linear maps
p, q : B → A∗ ⊗ A∗ by

p(uw1 ∗ · · · ∗ uwr ) =
∑

u′
w1

···u′
wr /∈Q

w1,...,wr

yx L−1
y (u′

w1
∗ · · · ∗ u′

wr
) ⊗ (u′′

w1
∗ · · · ∗ u′′

wr
)

+ 1 ⊗ (dρ(w1) ∗ · · · ∗ dρ(w1))x,

q(uw1 ∗ · · · ∗ uwr ) =
∑

w1,...,wr

y(u′
w1

∗ · · · ∗ u′
wr

) ⊗ (u′′
w1

∗ · · · ∗ u′′
wr

)

− 1 ⊗ (dρ(w1) ∗ · · · ∗ dρ(w1))z.

Lemma 4.2 We have Im p, Im q ⊂ B.
Proof From Lemma 4.1, we have

uw1 ∗ · · · ∗ uwr = u(w1 ∗ · · · ∗ wr ).

Thus, we need only to prove the lemma for the case r = 1. Since

p(uw) = 1 ⊗ dρ(w)x +
∑

w

yxL−1
y u′

w ⊗ u′′
w = u(yxk1 yxk2−1 · · · yxkr−1) ∈ B,

q(uw) = L ′
y(uw) − 1 ⊗ dρ(w)z = u(y2xk1−1yxk2−1 · · · yxkr−1) ∈ B,

we obtain the result. ��
For a forest f , we define the polynomial G f ∈ A1 recursively by

(1) GI = 1,
(2) G•• = −y,
(3) Gt = R2x+y(G f ) if t = B+( f ) and f �= I,
(4) G f = Gg � Gh if f = gh.

The subscript of G is extended linearly. The following lemma is immediate from
Lemmas 4.1 and 4.2, and definitions.

Lemma 4.3 Let f be any forest with f �= I. If
∑

( f ) φ(Ff ′) ⊗ φ(G f ′′) ∈ B, we have

p

(

∑

( f )

φ(Ff ′) ⊗ φ(G f ′′)

)

=
∑

( f )
f ′ �=I

yxL−1
y φ(Ff ′) ⊗ φ(G f ′′)+φ(FI)⊗φ(G f )x ∈ B,

q

(

∑

( f )

φ(Ff ′) ⊗ φ(G f ′′)

)

=
∑

( f )
f ′ �=I

yφ(Ff ′) ⊗ φ(G f ′′) + yφ(FI) ⊗ φ(G f )

− φ(FI) ⊗ φ(G f )z ∈ B.
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Proposition 4.4 For any forest f �= I, we have

∑

( f )

φ(Ff ′) ⊗ φ(G f ′′) ∈ B.

Proof We prove the proposition by induction on deg( f ). When deg( f ) = 1, we easily
see the statement holds.

Assume deg( f ) ≥ 2. If f = gh (g, h �= I), since φ(Fg � Fh) = φ(Fg) ∗ φ(Fh),
we have

∑

( f )

φ(Ff ′) ⊗ φ(G f ′′) =
∑

(g)
(h)

φ(Fg′ � Fh′) ⊗ φ(Fg′′ � Fh′′)

=
∑

(g)

∑

(h)

(

φ(Fg′) ⊗ φ(Gg′′)
) ∗ (φ(Fh′) ⊗ φ(Gh′′)) .

By the induction hypothesis, we find the result.
If f is a tree, we put f = B+(g).
Since

�( f ) = I ⊗ f + (B+ ⊗ id)�(g),

we have

∑

( f )

φ(Ff ′) ⊗ φ(G f ′′)

= φ(FI) ⊗ φ(GB+(g)) +
∑

(g)

φ(FB+(g′)) ⊗ φ(Gg′′)

= φ(FI) ⊗ φ(Gg(2x + y))

+
∑

(g)
g′ �=I

φ((yxL−1
y + 2y)Fg′) ⊗ φ(Gg′′) + φ(yFI) ⊗ φ(Gg)

=
∑

(g)
g′ �=I

(yzL−1
y − 2y)φ(Fg′) ⊗ φ(Gg′′)

− yφ(FI) ⊗ φ(Gg) + φ(FI) ⊗ φ(Gg)(x + z).

Then we get

∑

( f )

φ(Ff ′) ⊗ φ(G f ′′) = (p − q)

(

∑

(g)

φ(Fg′) ⊗ φ(Gg′′)

)

.

By the induction hypothesis, we have
∑

(g) φ(Fg′) ⊗ φ(Gg′′) ∈ B. Then, by Lemma
4.3, we find the result. ��
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Let Aug = ⊕

n≥1Hn be the augmentation ideal, where Hn is the degree n
homogeneous part of H. We define the Q-linear map M : A1∗ ⊗ A1∗ → A1∗ by
M(w1 ⊗ w2) = w1 ∗ w2. Note that M(w) = 0 for w ∈ B by (1) in Sect. 2.3.

Proposition 4.5 For any f ∈ Aug, we have

∑

( f )

Ff ′ � G f ′′ = 0.

Proof Wenote thatφ(w1)∗φ(w2) = φ(w1�w2)holds forw1, w2 ∈ A. ByProposition
4.4, we have

0 =
∑

( f )

M(φ(Ff ′) ⊗ φ(G f ′′)) =
∑

( f )

φ(Ff ′ � G f ′′).

Then we find the result. ��
Proof of Theorem 1.3 We prove the theorem by induction on deg( f ). Note that the
existence and the uniqueness of G f ∈ A can also be confirmed by following the
proof. It is easy to see the theorem holds if deg( f ) = 1. Suppose deg( f ) ≥ 2. If
f = gh (g, h �= I), we have

S̃( f )(wx) = S̃(gh)(wx) = S̃(g)((Gh � w)x)

= (Gg � (Gh � w))x

= ((Gg � Gh) � w)x

= (G f � w)x .

If f = t is a tree, by Proposition 4.5, Theorem 1.1, and the induction hypothesis,
we have

(Gt � w)x = −
∑

t ′⊂t

((Ft ′ � Gt\t ′) � w)x

= −
∑

t ′⊂t

(Ft ′ � (Gt\t ′ � w))x

= −
∑

t ′⊂t

t̃ ′((Gt\t ′ � w)x)

= −
∑

t ′⊂t

t̃ ′ S̃(t \ t ′)(wx).

Since S̃(t) + ∑

t ′⊂t t̃
′ S̃(t \ t ′) = 0 by Proposition 2.1 (2), we have

(Gt � w)x = S̃(t)(wx).

��
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5 Proof of Theorem 1.5

Proof of Theorem 1.5 First, we prove the theorem when w ∈ yAx . Put w = yw′x . By
Theorem 1.3 and Corollary 1.4, we have

S̃( f )(w) = (FS( f ) � yw′)x .

We also have

τ f̃ τ(w) = τ f̃ (yτ(w′)x)
= τ((Ff � yτ(w′))x) (by Theorem 1.1)

= −τ((yτ L−1
y (FS( f )) � yτ(w′))x) (by Proposition 5.1)

= −yτ(yτ L−1
y (FS( f )) � yτ(w′))

= (FS( f ) � yw′)x (by Lemma 5.2).

Thus we have

S̃( f )(w) = τ f̃ τ(w) (4)

for w ∈ yAx .
Next, we prove the theoremwhenw ∈ zAx by induction on deg(w). Putw = zw′x .

Then, by Lemma 2.2, we have

S̃( f )(w) = z S̃( f )(w′x),
τ f̃ τ(w) = τ f̃ τ(zw′x) = zτ f̃ τ(w′x).

By (4) and the induction hypothesis, we have

S̃( f )(w′x) = τ f̃ τ(w′x) (5)

for any w′ ∈ A, and hence the assertion.
Finally, we prove the theoremwhenw ∈ Az by induction on deg(w). Putw = w′z.

Then we have

S̃( f )(w) = (S̃( f )(w′))z,
τ f̃ τ(w) = τ f̃ τ(w′z) = (τ f̃ τ(w′))z.

By the induction hypothesis and (5), we have the assertion. Therefore we have
S̃( f )(w) = τ f̃ τ(w) for any w ∈ A. ��
Proposition 5.1 For f ∈ Aug, we have

F f = −yτ L−1
y FS( f ).
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Proof It is sufficient to prove the proposition for forests f by induction on deg( f ).
Since F•• = y and FS(••) = −y, the proposition hols for deg( f ) = 1.

Suppose deg( f ) ≥ 2. If f = gh (g, h �= I), we have

Ff = Fg � Fh

= yτ L−1
y (Gg) � yτ L−1

y (Gh) (by induction and Corollary 1.4)

= −R−1
x τ((Gg � Gh)x) (by Lemma 5.2)

and

yτ L−1
y G f = yτ L−1

y (Gg � Gh) = R−1
x τ((Gg � Gh)x).

Thus we have the result.
If f is a tree, put f = B+(g). Then we have

Ff = L(Fg)

= −L(yτ L−1
y Gg) (by induction and Corollary 1.4)

= −y(x + 2y)R−1
x τ(Gg)

and

−yτ L−1
y G f = −yτ L−1

y R2x+y(Gg) = −y(x + 2y)R−1
x τ(Gg).

This finishes the proof. ��
Now we define σ ∈ Aut(A) such that σ(x) = x and σ(y) = −y. By definitions,

we have

−φR−1
x τ Rxφ = dρσ. (6)

We find that dσ and ρ are homomorphisms with respect to the harmonic product ∗,
and ρ commutes with σ . Hence the composition dρσ is also a homomorphism with
respect to the harmonic product ∗, and so is−φR−1

x τ Rxφ because of (6). This implies
the composition−R−1

x τ Rx is a homomorphism with respect to the product � (defined
in Sect. 2) and hence we conclude the following lemma.

Lemma 5.2 For w1, w2 ∈ A, we have

(yw1 � yw2)x + yτ(yτ(w1) � yτ(w2)) = 0.

Proof We have

yw1 � yw2 = R−1
x L y(w1x) � R−1

x L y(w2x)

= R−1
x τ Rxτ(w1x) � R−1

x τ Rxτ(w2x)
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= −R−1
x τ Rx (w1x � w2x).

This gives the lemma. ��
Remark 5.1 According to [2], for any w ∈ yAx , there exists f̃ ∈ ˜H such that w =
f̃ (x). Hence we have (1−τ)(w) = (1−τ)( f̃ (x)) = ( f̃ +τ f̃ τ)(x) = ( f̃ + S̃( f ))(x)
due to Theorem 1.5, which means each of the duality formulas for multiple zeta values
also appears in this form in the context of rooted tree maps.
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