
The Ramanujan Journal (2022) 59:1225–1243
https://doi.org/10.1007/s11139-022-00594-0

Sign changes in restricted coefficients of Hilbert modular
forms

Rishabh Agnihotri1,2 · Kalyan Chakraborty3 · Krishnarjun Krishnamoorthy2

Received: 15 October 2021 / Accepted: 17 April 2022 / Published online: 6 June 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
Let f be an adelic Hilbert cusp form of weight k and level n over a totally real number
field F . In this paper, we study the sign changes in the Fourier coefficients of f when
restricted to square-free integral ideals and integral ideals in “arithmetic progression".
In both cases we obtain qualitative results and in the former case we obtain a quan-
titative result as well. Our results are general in the sense that we do not impose any
restriction to the totally real number field F , the weight k or the level n.

Keywords Sign changes · Hilbert modular forms · Arithmetic progressions ·
Square-free coefficients
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1 Introduction

Themodern theory ofmodular formswas probably seriously initiated first byRamanu-
jan when he studied the now famous Ramanujan � function. The attempts at proving
the conjectures he proposed in his seminal 1916 paper have led to various interest-
ing theories culminating in the work of Deligne. By that time, the study of modular
forms had become a centerpiece of modern analytic number theory. Modular forms
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owe their importance in number theory to the fact that their “Fourier coefficients"
are important arithmetic objects. Therefore the systematic study of modular forms is
directly connected to the arithmetic of these coefficients. Nowadays, in the framework
of the Langlands program, modular forms and its generalizations play a crucial role in
completing the rather remarkable (although conjectural) picture of connections with
various other branches of mathematics including Galois representations, motives etc.

Hilbert modular forms are analogues of classical modular forms over totally real
number fields. These are natural generalizations of classical (elliptical)modular forms.
Starting with a totally real number field F of degree n over Q, one defines a Hilbert
cusp form on an n-fold copy of the Poincaré upper half planeH. Of particular interest
to the study of modular forms is the L-function attached to a modular form. The
analytic properties of the L-function is closely tied up with the arithmetic of the
Fourier coefficients of the modular form f . Of particular interest is the question of
sign changes in the Fourier coefficients. TheRamanujan conjectures thatwementioned
earlier provide bounds on the absolute values of the Fourier coefficients of a cusp form
but does not provide any information regarding the signs of these coefficients. Apart
from containing arithmetic information, the Fourier coefficients of certain cusp forms,
specifically Hecke eigenforms are the eigenvalues of the form with respect to certain
linear operators known as Hecke operators. The “multiplicity one theorem" states
that these coefficients uniquely determine the form. A rather remarkable result of
Kowalski and others [9] states that, in the case of classical forms, the signs of these
Fourier coefficients uniquely determine the form. Furthermore, as we shall see, the
existence and frequency of sign changes is intricately related to the analytic properties
of the associated Dirichlet series.

Consequently over the years, sign changes in the Fourier coefficients of modular
forms have become quite an active area of research. In fact sign changes for Fourier
coefficients of classical cusp formswere shown to exist in restricted sets of coefficients,
including prime numbers, prime powers, arithmetic progressions and square-free inte-
gers. In 1983, Ram Murty studied the sign change of cusps forms at prime numbers
[15]. In [11], Kohnen and Martin proved the existence of infinitely many sign change
in sequence {a(pln)}n≥0 for all l in N and for all primes p. Similar results may be
found in [3, 5, 12, 14].

In the case of Hilbert modular forms, the qualitative question of sign changes
in the coefficients of an adelic Hilbert cusp form was first answered by Meher and
Tanabe [13] who showed the existence of infinitely many sign changes for the Fourier
coefficients provided all Fourier coefficients are real numbers. Later Kumar et al. [10]
studied simultaneous sign changes in Fourier coefficients of two Hilbert cusp forms.
Recent works include [17] among others.

It seemed natural for us to consider the question of the existence and the frequency
of sign changes in the Fourier coefficients of a Hilbert cusp form inside restricted
classes of coefficients. To the best of the authors’ knowledge, questions of this type
have not been studied.We take up this task in the present paper. In particular we answer
this question in the affirmative for the cases of square-free Fourier coefficients and
Fourier coefficients in “arithmetic progression" (these notions will be made precise
later on). Before we proceed forward, we let F be a totally real number field and let
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f be an adelic Hilbert cusp form on F of weight k and level n (see Sect. 2 below for
details) for the remainder of the paper.

We define the notion of a square-free integral ideal similar to that of a square-free
integer. For an integral idealm of F , we denote byC(m, f) them-th Fourier coefficient
of f. Suppose m = ∏l

i=1 p
ei
i is the unique factorization of m into prime ideals pi ’s.

The integral ideal m is said to be square-free if and only if e1 = e2 = · · · = el = 1.
Now we state the first main result of the paper.

Theorem 1.1 Let f be a primitive adelic Hilbert cusp form of weight k =
(k1, k2, . . . , kn) and level n with trivial Hecke character �. Then the sequence
{C(m, f)}m has infinitely many sign changes where m runs through the square-
free integral ideals of F. Furthermore the number of sign changes in C(m, f) with
N (m) ≤ X is � X1/2 for large enough X.

In Sect. 3 below we prove the above theorem by showing that the Dirichlet series
with coefficients C(m, f), where m runs through the square-free integral ideals of F ,
is absolutely convergent for Re(s) > 1 and has an analytic continuation to the half
plane Re(s) > 1

2 . Now the result follows from a well-known theorem of Meher and
Murty and a previous result [1].

Remark 1.1 We extend the proof of Theorem 1.1 to slighter generality, where we
remove the assumption of primitiveness on f at the expense of the assumption that n
is square-free.

In order to state the second main result of the paper, we make precise the notion of
“arithmetic progression". Letm0 be an integral ideal coprime to n andm = m0P∞ be
an F-modulus whereP∞ denotes the formal product of all the real embeddings of F .
LetR+

m denote the strict ray class group of F form and hm its cardinality. We say two
ideals1 a, b are in arithmetic progression if they belong to the same class inR+

m. This
definition is natural in the following sense. We say two integers are in an arithmetic
progression if they belong to the same equivalence class in (Z/NZ)× for some natural
number N . For the number field F , a natural analogue of (Z/NZ)×, in the sense of
class field theory, is the strict ray class group. The role of Dirichlet character is played
by Hecke characters. Now we state the second main theorem of the paper.

Theorem 1.2 Let f be a primitive adelic Hilbert cusp form of weight k =
(k1, k2, . . . , kn) and level n with trivial Hecke character �. Then for any given m
(as above) coprime to the level n and for any ideal class [a] in R+

m, the sequence
{C(b, f)}b has infinitely many sign changes where b runs through the integral ideals
lying in [a].
Remark 1.2 When we say a modulusm is coprime to an integral ideal n, we mean that
the finite part of m, namely m0 is coprime to n.

2 Preliminaries

In this section, we give a brief overview of the basic theory of Hilbert modular forms
and fix the notation along the way. Our account is in no way complete and our primary

1 It is safe to assume that a, b are integral ideals where the definition is much more natural.
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focus will be on reviewing the theory which shall be used in the sequel. We denote by
F a totally real number field of degree n over Q, and OF the ring of integers of F .
Let h denotes the strict class number of F . We denote by gothic lettersm, n, (integral)
ideals ofOF . Given an F modulusm = m0P∞ as above, we denote the strict ray class
group associated to m by R+

m. Hecke characters are characters on the groups R+
m for

various moduli m. As a special case the usual strict class group of F arises when we
choose our modulus to beOF (with trivial infinite part). We hasten to warn the reader
that the above definitions of Hecke characters and moduli are but special cases of a
much general definition. We content ourselves with these restrictive versions because
they are sufficient for our purposes. For a full and brief account of Hecke characters
in the classical and adelic setting, we refer the beautiful article of Shurman [20]. We
denote Hecke characters by upper case greek letters �,� etc.

Suppose two ideals a, b belong to the same class inR+
m. This means that the ideal

ab−1 is a principal ideal. Furthermore we can find a totally positive element ξ such
that ab−1 = ξOF (ξ is totally positive because the “infinite part" of the modulus m
has all the real embeddings of F).

2.1 Classical Hilbert modular forms

As before, let H denote the Poincaré upper half plane. Once and for all we fix an
embedding of F → Rn , where the map is given by ξ �→ (σ1(ξ), σ2(ξ), . . . , σn(ξ))

and (σ1, σ2, . . . , σn) are the real embeddings of F . There is an action of GL+
2 (R)n on

Hn by componentwise Möbius transformation. A subgroup � ⊂ GL+
2 (R)n is called

a congruence subgroup if it contains a subgroup of the form

�N =
{

γ ∈ SL2(OF )

∣
∣
∣
∣ γ −

(
1 0
0 1

)

∈ N · M2(OF )

}

(2.1)

for some positive integer N and if �/(�∩F) is commensurable with SL2(OF )/{±I }.
Classical Hilbert modular forms are (complex) analytic functions onHn which satisfy
certain symmetries with respect to the action of congruence subgroups on Hn . We
shall only define classical forms for special types of congruence subgroups2

Given an integral ideal c and a fractional ideal f in F , define

�(f, c) :=
{(

a b
c d

)

∈ GL2(F)

∣
∣
∣
∣a ∈ OF , b ∈ f−1, c ∈ cf, d ∈ OF , ad − bc ∈ O×

F

}

.

(2.2)

Let (OF
×)+ denotes the group of totally positive units of OF . Define a character χ

on �(f, c) as

χ

((
a b
c d

))

= χ1(ad − bc)χ0(a mod c, d mod c),

2 We omit a certain technical condition in the definition which can safely be ignored for the purposes of
this paper.
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where χ0 and χ1 are finite order characters of (OF/c)× × (OF/c)× and (OF
×)+

respectively. Suppose k = (k1, k2, . . . , kn) ∈ (Z+)n , z = (z1, z2, . . . , zn) ∈ Cn ,
γ = (γ1, γ2, . . . , γn) ∈ � and a is a scalar. Then we adopt the following notation:

(1) zk := ∏n
j=1 z

k j
j ,

(2) k0 := max{k1, k2, . . . , kn},
(3) det(γ ) := (det(γ1), det(γ2), . . . , det(γn)),
(4) ak := a

∑n
j=1 k j , and

(5) cz + d := (c1z1 + d1, c2z2 + d2, . . . , cnzn + dn),

where we have set

γ =
(∗ ∗
c d

)

= (γ1, γ2, . . . , γn) =
(( ∗ ∗

c1 d1

)

,

( ∗ ∗
c2 d2

)

, . . . ,

( ∗ ∗
cn dn

))

.

Consider a congruence subgroup � as in (2.2) and a character χ on �. A classical
Hilbert modular form of weight k is a complex analytic function f : Hn → C such
that for every γ ∈ � and for every z ∈ Hn , we have

f (z) = χ−1(γ ) det(γ )
k
2 (cz + d)−k f (γ z),

which are also holomorphic at the cusps of�. Such a function f has aFourier expansion
of the form

f (z) =
∑

ξ

c(ξ) exp(Tr(ξz)), (2.3)

where we have set exp(x) = e2π i x and Tr(ξz) = ∑n
j=1 σ j (ξ)z j . The summation in

(2.3) runs over zero and the totally positive elements of a lattice (determined by �). If
in the Fourier expansion at each cusp, we have c(0) = 0, then we say that f is a cusp
form.

2.2 Adelization of Hilbert modular Forms

Suppose we writeR+ for the strict ray class group associated to the modulusOFP∞
and we let h = |R+|. Let {t j }hj=1 be a collection of ideles with (t j )∞ = 1 for all

1 ≤ j ≤ h such that {t j }hj=1 is a complete set of representatives forR+. Here we have
let t j denote the fractional ideal of OF corresponding to the idele t j . For each j and
for a fixed integral ideal n let � j (n) denote the congruence subgroup �(t jd, n) where
d is the different ideal of F . For every 1 ≤ j ≤ h let fi be a classical Hilbert modular
form of fixed weight k for the congruent subgroup � j (n).

Following Shimura [18], one can associate to the h-tuple ( f1, f2, . . . , fh) of clas-
sical Hilbert modular forms, an adelic Hilbert modular form f . An adelic Hilbert
modular form is a function on GL2(AF ), where AF is the adele ring of F . The
Fourier expansion of f j takes on the following form:
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f j (z) =
∑

0�ξ∈t j
ξ=0

a j (ξ) exp(Tr(ξz)).

Here we have used the shorthand ξ � 0 to denote that ξ is totally positive. The
Fourier coefficients of the adelic form f are parameterized by integral ideals m of F .
As we have seen earlier for any given integral idealm it is possible to choose a unique
1 ≤ λ ≤ h and a totally positive element ξ ∈ tλ such thatm = ξ t−1

λ . With this choice,
we have the following relation between the Fourier coefficients of f and the Fourier
coefficients of fλ,

C(m, f) = aλ(ξ)ξ− k
2 N (m)

k0
2 .

Under some suitable conditions, there exists a finite order Hecke character (viewed
as an idelic character) � such that f(τg) = �(τ)f(g) for all τ ∈ A×

F and g ∈
GL2(AF ). The space of such adelic Hilbert cusp forms of weight k and level n and
character � forms a finite dimensional vector space and will be denoted by Sk(n, �).
We also mention in passing that like the classical modular forms, there is a well-
understood newform theory for Hilbert modular forms (see [18, 19]).

There is an algebra of operators (once again indexed by the integral ideals of F) on
the space Sk(n, �) called the Hecke operators. A cusp form f is said to be primitive if
it is a common Hecke eigenfunction in the space of newforms and ifC(OF , f) = 1. In
this case the eigenvalue of a primitive new form f with respect to the Hecke operator
T (m) is precisely C(m, f). Note that all the Fourier coefficients are real numbers if f
is a primitive form. For more details on the Hecke theory of adelic Hilbert newforms
we refer the reader to [6, 18].

Let f ∈ Sk(n, �) be a primitive adelic Hilbert cusp form and {C(m, f)}m denote its
Fourier coefficients. It is possible to associate an L-series to f. The L-series associated
to f is defined as

L(s, f) =
∑

m⊂OF
m
={0}

C(m, f)
N (m)s

. (2.4)

The Ramanujan conjecture is true for Hilbert modular forms [4]. More precisely3 for
every ε > 0,

C(m, f) �ε N (m)ε,

and therefore the above L-series is absolutely convergent for Re(s) > 1. The strip
0 < Re(s) < 1 is called the critical strip. The coefficients C(m, f) are multi-
plicative in m and satisfy a three term recursive relation connecting the values of
C(pi , f),C(pi+1, f),C(pi+2, f) for prime ideals p and i ∈ N. As a consequence the
L-series defined in (2.4) satisfies an Euler product formula, valid when Re(s) > 1;

3 After a suitable re-normalization, which we assume from now on.
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L(s, f) =
∏

p

(

1 + C(p, f)
N (p)s

+ C(p2, f)
N (p2)s

+ · · ·
)

=
∏

p

(
1 − C(p, f)N (p)−s + �∗(p)N (p)−2s

)−1
,

where N (m) denotes the norm of the ideal m and �∗ denotes the ideal version of
the idelic Hecke character �. We also mention that the L-series can be analytically
continued to the whole complex plane. We omit the details for the sake of brevity.

Finally we introduce the shift operator. More details can be found in [19]. Let q be
an integral ideal and q ∈ A×

F such that q∞ = 1 and qOF = q. The shift operator Bq

is defined as;

f |Bq = N (q)−k0/2f
∣
∣
∣

(
1 0
0 q−1

)

.

It is clear that Bq maps Sk(n) to Sk(nq) andC(m, f |Bq) = C(mq−1, f) (see Notation).

Notation

(1) The symbol ε is used to denote a small positive quantity, which might be different
in each instance.

(2) If a is a fractional ideal which is not an integral ideal, then the Fourier coefficient
C(a, f) is understood to be zero.

3 Sign changes in square-free coefficients

In this section we study the sign change in the coefficientsC(m, f)whenm is a square-
free integral ideal of F . From the definition of square-free above, we can generalize
the Möbius function (which we again denote by μ) to a function of all the integral
ideals of OF as follows:

μ(m) =
{

(−1)l if m is square-free and m = ∏l
i=1 pi ,

0 otherwise.

Note that μ satisfies properties analogous to the classical Möbius function defined on
the integers, and in particular we have

∑

r2|m
μ(r) =

{
1 m is square-free,

0 otherwise.
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1232 R. Agnihotri et al.

The proof of the Theorem 1.1 follows from comparing the growth of the sums,

∑

N (m)<X

#
C(m, f) and

∑

N (m)<X

#
C2(m, f) (3.1)

and then appealing to a theorem of Murty and Meher [12] which guarantees the
existence of sign changes in some short intervals. Here # in the summation indicates
that we are taking sum over square-free integral ideals4. The second sum in (3.1)
has already been investigated in [1] and hence we have to estimate the first sum.
Our approach is inspired by the work of Hulse et al. [8]. We start by considering the
following Dirichlet series:

L#(s, f) =
∑

m⊂OF
m
={0}

#C(m, f)
N (m)s

=
∏

p prime

(

1 + C(p, f)
N (p)s

)

,

which is absolutely convergent for Re(s) > 1 (this is clear by directly applying
the Ramanujan bound). We present a slightly longer proof of this fact because the
computations therein will be used later on.

Lemma 3.1 The Dirichlet series L#(s, f) is absolutely convergent for Re(s) > 1.

Proof It can be easily seen that

L#(s, f) =
∑

m⊂OF
m
={0}

#C(m, f)
N (m)s

=
∑

m⊂OF
m
={0}

C(m, f)
N (m)s

⎛

⎝
∑

r2|m
μ(r)

⎞

⎠

=
∑

r

μ(r)Dr2(s), (3.2)

where we have set

Dr(s) :=
∑

r|m

C(m, f)
N (m)s

=
∑

m⊂OF
m
={0}

C(rm, f)
N (rm)s

for an integral ideal r. Recalling the Ramanujan bound

C(m, f) �ε N (m)ε.

4 We follow this convention throughout the paper.
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We have

|Dr(1 + ε + i t)| �
∑

m

∣
∣
∣
∣

C(rm, f)
N (rm)1+ε+i t

∣
∣
∣
∣ � 1

N (r)1+ε

∑

m

∣
∣
∣
∣

C(rm, f)
N (m)1+ε+i t

∣
∣
∣
∣ .

The rightmost summation in the previous inequality is�ε N (r)ε . Therefore, for every
ε > 0, we get

|Dr(1 + ε + i t)| �ε

1

N (r)1+ε
. (3.3)

In particular we have

|Dr2(1 + ε + i t)| �ε

1

N (r)2+ε
. (3.4)

Therefore from (3.2) we can see that L#(s, f) is absolutely convergent for Re(s) >

1. ��
Nowour next aim is to show that L#(s, f) has analytic continuation up toRe(s) > 1

2 .

Lemma 3.2 For a given prime ideal p of OF and s ∈ C, define

Sp(s) :=
(

−C(p, f)2

N (p)2s
+ �∗(p)N (p)−2s

(
C(p, f)
N (p)s

+ 1

))

.

Then we have

L#(s, f) = L(s, f)
∏

p

(
1 + Sp(s)

)
,

where product runs over all prime ideals p of OF . Consequently L#(s, f) can be
analytically continued to the half plane Re(s) > 1

2 .

Proof Let f be a new form in Sk(n, �)and let Lp(s) denote the local p factor of L(s, f).
That is

Lp(s) =
(

1 + C(p, f)
N (p)s

+ C(p2, f)
N (p2)s

+ · · ·
)

= 1
(
1 − C(p, f)N (p)−s + �∗(p)N (p)−2s

) . (3.5)

Here �∗ denotes the ideal version of an idelic character �.
Define L(r)

p (s) to be the r tail of Lp. That is,

L(r)
p (s) =

∞∑

n=r

C(pn, f)
N (pn)

.
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Note that L(0)
p (s) = Lp(s) by definition.

Suppose r = ∏
p p

ep , where ep = 0 for almost all p. Then it is clear that

Dr(s) =
∏

p

L
(ep)
p (s).

Now suppose that r is a square-free ideal. Then we have

Dr2(s) = L(s, f)
∏

p|r
L(2)
p (s)/Lp(s)

= L(s, f)
∏

p|r
(Lp(s) − 1 − C(p, f)N (p)−s)/Lp(s)

= L(s, f)
∏

p|r

(

1 − 1

Lp(s)
− C(p, f)

N (p)s Lp(s)

)

= L(s, f)
∏

p|r

(
1 − (1 − C(p, f)N (p)−s + �∗(p)N (p)−2s)

− C(p, f)
N (p)s

(
1 − C(p, f)N (p)−s + �∗(p)N (p)−2s

) )

= L(s, f)
∏

p|r

(
C(p, f)2

N (p)2s
− �∗(p)N (p)−2s

(
C(p, f)
N (p)s

+ 1

))

.

Therefore,

μ(r)Dr2(s) = L(s, f)
∏

p|r

(

−C(p, f)2

N (p)2s
+ �∗(p)N (p)−2s

(
C(p, f)
N (p)s

+ 1

))

.

Thus we have

L#(s, f) = L(s, f)
∑

r

# ∏

p|r
Sp(s)

= L(s, f)
∏

p

(
1 + Sp(s)

)
.

(3.6)

The product on the right hand side of (3.6) is absolutely convergent for Re(s) > 1/2
and thereforewe can see that L#(s, f) has an analytic continuation to the planeRe(s) >

1/2. ��

Remark 3.1 By performing similar calculations as in the previous proof it is possible
to show that Dr(s)/L(s, f) is an entire function for all integral ideals r.
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Lemma 3.3 Let f be same as in Theorem 1.1. Then

∑

m
N (m)≤X

#
C(m, f) �ε X1/2+ε .

Proof From Lemma 3.2 we know that L#(s, f) has an analytic continuation to the half
plane Re(s) > 1/2. Furthermore, from the known properties of L(s, f) we can see
that L#(s, f) has polynomial growth in Im(s) for a given 1/2 < Re(s) < 1. From the
standard inverse Mellin transform we can see that

1

2π i

∫ 1+ε+i∞

1+ε−i∞
L#(s, f)�(s)Xsds =

∞∑

n=1

B(n, f)e−n/X , (3.7)

where we have set

B(n, f) :=
∑

m
N (m)=n

#
C(m, f).

We shift the line of integration in (3.7) to Re(s) = 1/2 + ε . Since L#(s, f) has
at worst polynomial growth in Im(s) inside the critical strip, this is justified by the
exponential decay of the � function. Furthermore, since the integrand is analytic in
the given region, we do not pick up any residues. Therefore, we see that

∞∑

n=1

B(n, f)e−n/X �ε X1/2+ε . (3.8)

Since B(n, f) �ε nε for every ε > 0, we can see that
∑

n≥X B(n, f)e−n/X = O(1),

for large enough X . Finally this gives us
∑

m
N (m)≤X

#C(m, f) �ε X1/2+ε . ��

We shall also need the following proposition from [1].

Proposition 3.1 [R. Agnihotri, K. Chakraborty] Let f be a positive and smooth func-
tion supported on [ 12 , 1]. Let f, g ∈ Sk(n) be primitive cusp forms. Then for any
1
2 < c < 1 and for every ε > 0 the following assertions hold:

(1) If f = g, then there exists a constant A(f, f ) > 0 such that,

#∑

m⊂OF
(m,n)=OF

|C(m, f)|2 f
(N (m)

X

)
= A(f, f )X + O

(
Xckn(1−c)+ε

0 N (n)2(
1−c
2 +ε)

)
.

123
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(2) If f 
= g,

#∑

m⊂OF
(m,n)=OF

C(m, f)C(m, g) f
(N (m)

X

)
= O

(
Xckn(1−c)+ε

0 N (n)2(
1−c
2 +ε)

)
.

The implied constants depend only on ε and F.

From Proposition 3.1, we deduce that

X �ε,F

∑

N (m)≤X

#
C2(m, f). (3.9)

Proof of Theorem 1.1 In order to prove the theorem we first state a result of Meher and
Murty [12].

Theorem 3.1 [Meher-Murty] Let a(n)(n≥1) be a sequence of real numbers satisfying
a(n) = O(nα) such that

∑

n≤X

a(n) � Xβ

and

∑

n≤X

a(n)2 = cX + O(Xγ )

where α, β, γ and c are non-negative constants. If α+β < 1, then for any r satisfying
max{α + β, γ } < r < 1, the sequence a(n)(n ≥ 1) has at least one sign change for
n ∈ (X , X + Xr ]. In particular, the sequence a(n) has infinitely many sign changes
and the number of sign changes for n ≤ X is � X1−r for sufficiently large X.

Since the Fourier coefficients are not indexed by natural numbers, we cannot apply
Theorem 3.1 directly. Nevertheless, we can modify the proof of Theorem 3.1 for our
purposes.

Without loss of generality assume the contrary that finitely many of C(m, f) are
negative. Therefore, for large enough X , we have C(m, f) > 0 whenever N (m) ∈
(X , X + Xr ] for some 1 > r > 1/2. Therefore we have

∑

N (m)∈(X ,X+Xr ]
C2(m, f) � X ε

∑

N (m)∈(X ,X+Xr ]
C(m, f) � X1/2+ε . (3.10)

The first inequality follows from the Ramanujan bound and the second inequality
follows from Lemma 3.3.

On the other hand, since r > 1/2 we have

Xr �
∑

N (m)∈(X ,X+Xr ]
C2(m, f)
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from (3.9), thus giving us a contradiction. The quantitative assertion of Theorem 1.1
follows easily from here. This completes the proof. ��

A slight generalization

In Theorem 1.1 the requirement that f be a primitive form can be relaxed when the
level n is square-free as follows. Suppose that f ∈ Sk(n) is an old form and that n is
square-free. We observe that there are new forms f( j,i) of lower levels qi and constants
α( j,i) such that

f =
∑

qi |n

∑

j

α( j,i)f( j,i)|Bqi .

The coefficients satisfy

C(m, f) =
∑

qi |n

∑

j

α( j,i)C(m, f( j,i)|Bqi )

=
∑

qi |n

∑

j

α( j,i)C(mq−1
i , f( j,i)). (3.11)

Without loss of generality, we can assume that f( j,i)s are primitive and therefore
C(m, f( j,i))’s are real. Starting from Eq. (3.11) it is possible to perform similar calcu-
lations as above and arrive at an analogue of Theorem 1.1 in this case. The assumption
that n is square-free will be used in finding lower bounds similar to that of Proposition
3.1 (see [1]).

Remark 3.2 Removing the square-free assumption on n should be possible after some
tedious calculations along the lines of [1]. The authors believe that the calculations
should be straight forward and do not require any serious mathematical ideas.

Remark 3.3 Themethods of this section seem adaptable to study sign changes in power
free coefficients, although in those cases, the only interesting problem is the density of
sign changes as the existence of infinitely many sign changes follows from the present
work.

Remark 3.4 Suppose� is a real-valued Hecke character modulo the level n. The above
methods can be adapted to study correlations between C(m, f) and �([m]). One but
needs to replace f with the twist f|�, and use the relation C(m, f|�) = �(m)C(m, f).

Remark 3.5 To the best of the authors’ knowledge, sign change for square-free coeffi-
cients has not been studied for the case of classical modular forms. Our methods will
yield results in that setting too.
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4 Sign change in arithmetic progressions

In this section, we shall prove Theorem 1.2. As we have seen, in the case of Hilbert
modular forms, the Fourier coefficients are parameterized by the integral ideals of the
totally real field F .

Suppose we choose an F modulus m coprime with the level n of f. In this section
we shall study the sign changes in C(b, f) as integral ideals b vary in a fixed class
insideR+

m, the strict ray class group of F for m. To that end we fix the F modulus m.
If two integral ideals a and b lie in the same ideal class insideR+

m, we shall denote
this by a ≡ b(m). First, we obtain an expression for the indicator function of an
ideal class insideR+

m. This is achieved using character theory as follows. For a given
(fractional) ideals a, b coprime to m, define an ideal function

δa(b) =
{
1 b ≡ a(m),

0 otherwise.
(4.1)

Since R+
m is a finite abelian group, we have from the orthogonality of characters [2]

that

δa(b) = 1

|R+
m|

∑

�

�([b])�([a]), (4.2)

where the sum runs over the Hecke characters of R+
m.

Let �̃ denote the idelic version of the Hecke character �. From the work of She-
manske [19] we can see that if f ∈ Mk(n, �), then the twist of f by �, f |� (see
[19] for the definition) lies inside the space Mk(nm

2, ��2). Further, Hecke eigen-
forms are mapped to Hecke eigenforms under such character twists. Also, the Fourier
coefficients of f and f |� are related as

C(a, f |�) = �∗(a)C(a, f). (4.3)

Here �∗ is defined as

�∗(a) =
{

�̃(a) (a,m) = OF ,

0 otherwise.

From here, it is clear that �∗ = �.
Given a fractional ideal a coprime to m, define

ga =
∑

�

�([a])f |�, (4.4)
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where the sum runs over the characters of R+
m. From previous discussions it is clear

that the Fourier coefficients of ga satisfy

C(b, ga) =
{
C(b, f) if [a] = [b] inside R+

m,

0 otherwise,

for all integral ideals b. Therefore when we consider the L-function associated to ga,
say L(s, ga), we can see that

L(s, ga) =
∑

�

�([a])L(s, f |�).

The above equation is initially true for some half plane and by analytic continuation
is valid everywhere in the complex plane. Furthermore, since we have chosen f to be
a cusp form, L(s, ga) is entire. We record this as a lemma for future reference.

Lemma 4.1 For every integral ideal a coprime to m, the L-series L(s, ga) is entire.

In order to prove the existence of sign changes, we appeal to a classical theorem of
Landau, but in order to do that successfully, we need to show that L(s, ga) has a finite
abscissa of convergence.

For the remaining of the Section we fix an equivalence class [a] inside R+
m. The

arguments in the remainder of this Section is inspired from Sect. 2 of [18].
Recall thatA×

F denotes the group of ideles of F , and for any t ∈ A×
F , tOF denotes the

fractional ideal of F associated with t in the natural way. As before, we let hm = |R+
m|

and choose {t1, t2, . . . , thm} such that {tiOF }hmi=1 forms a complete set of representatives
for the classes of R+

m. Let ti denote tiOF for 1 ≤ i ≤ hm.
It is clear that for every integral ideal b coprime to m, there is a unique λ with

1 ≤ λ ≤ hm and a totally positive element ξ ∈ tλ such that b = ξ t−1
λ . Now recall the

definition of Fourier coefficients of a Hilbert modular form,

C(b, f) = N (tλ)
−k0/2aλ(ξ)ξ (k01−k)/2,

where we have chosen ξ and λ such that b = ξ t−1
λ as before and 1 = (1, 1, . . . , 1).

Without loss of generality, assume that [t1] = [a], denote a1(ξ) as a(ξ) and t1 as t. It
follows that

L(s, ga) =
∑

b 
=0

C(b, ga)
N (b)s

= N (t)−k0/2
∑

ξ∈t−1

0�ξ

a(ξ)ξ (k01−k)/2

N (b)s
. (4.5)

To show that L(s, ga) has finite abscissa of convergence, we will show that∑
b∈[a]
b⊂OF

|C(b, f)| is not finite. We now consider the equivalence class of t1 in the

narrow class group and denote it by [t1]. Note that if f |� ∈ Sk(nm2, ��2), then by

123



1240 R. Agnihotri et al.

the Shimura correspondence [18] we have an h-tuple (( f |�)1, ( f |�)2, . . . , ( f |�)h)

of classical Hilbert modular forms such that

C(b, f |�) =
{
N (b)

k0
2 aλ(ξ)ξ

−k
2 if b = ξ t−1

λ ⊂ OF ,

0 otherwise
, (4.6)

and

( f |�)λ(z)=
∑

0�ξ∈tλ
aλ(ξ) exp(2π i Tr(ξ z))∈ Sk(�(tλ, nm

2), ψφ2)⊂Mk(�N (nm2)).

(4.7)

Consider the sum
∑

� �[a]( f |�)1 which is a classical Hilbert modular form in the
space Mk(�N (nm2)). Now using (4.6) and (4.7), we have

∑

�

�[a]( f |�)1 =
∑

�

�[a]
∑

0�ξ∈t1
aλ(ξ) exp(2π i Tr(ξ z)))

=
∑

�

�[a]
∑

ξ∈t1
b=ξt1

−1⊂OF

C(b, f |�)N (b)
−k0
2 ξ

k
2 exp(2π i Tr(ξ z))

=
∑

�

�[a]
∑

ξ∈t1
b=ξt−1

1 ⊂OF

�∗(b)C(b, f)N (b)
−k0
2 ξ

k
2 exp(2π i Tr(ξ z))

=
∑

ξ∈t1
b=ξt−1

1 ⊂OF

C(b, f)N (b)
−k0
2 ξ

k
2 exp(2π i Tr(ξ z))

∑

�

�[a]�([b])

=
∑

ξ∈t1
b=ξt−1

1 ⊂OF
(b,m)=1

C(b, f)N (b)
−k0
2 ξ

k
2 exp(2π i Tr(ξ z))

=
∑

b∈[a]∈R+
m

b⊂OF

C(b, f)N (ξ t−1
1 )

−k0
2 ξ

k
2 exp(2π i Tr(ξ z)).

In the last two equalities we have used the facts, C(b, f) = 0 whenever b � OF and

∑

�

�([a])�([b]) =
{
1 b ≡ a (mod m) and (b,m) = 1,

0 otherwise.

Note that N (ξ t−1
1 )

−k0
2 ξ

k
2 = N (t−1

1 )
k0
2 ξ

(k−k0 ·1)
2 , where 1 = (1, 1, . . . , 1). Therefore

the sum
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∑

b∈[a]∈R+
m

b⊂OF

∣
∣
∣
∣C(b, f)N (ξ t−1

1 )
−k0
2 ξ

k
2

∣
∣
∣
∣ =

∑

b∈[a]∈R+
m

b⊂OF

∣
∣
∣
∣C(b, f)N (t−1

1 )
k0
2 ξ

(k−k0 ·1)
2

∣
∣
∣
∣

≤ N (t−1
1 )

k0
2

∑

b∈[a]∈R+
m

b⊂OF

∣
∣C(b, f)

∣
∣.

To show that the sum
∑

b∈[a]∈R+
m

b⊂OF

∣
∣C(b, f)

∣
∣ is not finite it is enough to show that left

hand side of the above inequality is not finite. Note that
∑

� �[a]( f |�)1 is a classical

Hilbert modular form andC(b, f)N (ξ t−1
1 )

−k0
2 ξ

k
2 are its Fourier coefficients where ξ ∈

t1.Wewill show for a general classical Hilbert modular form g( 
= 0) ∈ Mk(�N (nm2)),
the sum of absolute value of Fourier coefficients diverges. Suppose g has following
Fourier expansion

g(z) =
∑

ξ∈t−1

0�ξ

a(ξ) exp(Tr(ξz))

and suppose that

∑

ξ∈t−1

0�ξ

|a(ξ)| < ∞.

Then we have

|g(z)| ≤ K < ∞, (4.8)

for all z ∈ Hn . Suppose that nm2 ∩ Z = κZ. From (4.4) we observe that for every

γn =
(
1 0
nκ 1

)

∈ �κ (c.f. (2.2)), we have

g(γn(z)) = (nκz + 1)kg(z).

Now observing (4.8) we see that

|g(z)| = |nκz + 1|−k|g(γ (z))| ≤ K |nκz + 1|−k.

If we let n → ∞, we see that g ≡ 0. In other words we can conclude that if g 
= 0,
then

∑

ξ∈t−1

0�ξ

|a(ξ)| → ∞.
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Now the following lemma is immediate.

Lemma 4.2 If ga 
= 0, then the L series L(s, ga) has a finite abscissa of convergence.
In other words, L(s, ga) is not absolutely convergent everywhere.

Proof of Theorem 1.2 In order to prove Theorem 1.2we first state the following famous
result of Landau (see [16]).

Theorem 4.1 [Landau] Suppose L(s) =
∑

n∈N
ann

−s is absolutely convergent on some

half plane and suppose that an ≥ 0 for all but finitely many n. Then either L(s) is
absolutely convergent everywhere or L(s) has a singularity at the abscissa of conver-
gence.

Weapply Theorem4.1 for the L series L(s, ga). FromLemma 4.1, L(s, ga) is entire
and from Lemma 4.2, L(s, ga) is not absolutely convergent everywhere. Therefore
the only possibility is that L(s, ga) does not satisfy the assumptions of the theorem.
In other words, we can conclude that B ′(n1) < 0 and B ′(n2) > 0 for infinitely many
choices of n1, n2 ∈ N, where we have defined B ′(κ) as

B ′(κ) =
∑

[b]=[a]
N (b)=κ

C(b, ga).

Now, Theorem 1.2 follows. ��
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