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Abstract

In recent work, Miezaki introduced the notion of a spherical T-design in R?, where T
is a potentially infinite set. As an example, he offered the Z>-lattice points with fixed
integer norm (a.k.a. shells). These shells are maximal spherical T-designs, where
T = Z* \ 4Z". We generalize the notion of a spherical T-design to special ellipses,
and extend Miezaki’s work to the norm form shells for rings of integers of imaginary
quadratic fields with class number 1.
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1 Introduction and statement of results

Spherical t-designs were introduced in 1977 by Delsarte, Goethals and Seidel [5],
and they have played an important role in algebra, combinatorics, number theory and
quantum mechanics (for background see [2—4, 6, 9, 10]). A spherical ¢-design is a
nonempty finite set of points on the unit sphere with the property that the average
value of any real polynomial of degree < ¢ over this set equals the average value over
the sphere. Namely, if $”~! denotes the unit sphere in R” centered at the origin, then
a finite nonempty subset X C S"~! is a spherical ¢-design if

1 1
m;P(X) = m /Sn—l P(x)do(x) (1.1)
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for all polynomials P(x) of degree < t. The right-hand side of (1.1) is the usual
surface integral over $”~!. In general, a finite nonempty subset X of S,_;(r), the
sphere of radius r centered at the origin, is a spherical ¢-design if }X satisfies (1.1).
Since a spherical 7-design is also a spherical ¢'-design for all #’ < ¢, we say that X has
strength t if it is the maximum of all such numbers.

Delsarte, Goethals and Seidel developed a very simple criterion for determining
spherical 7-designs. This criterion involves homogeneous harmonic polynomials of
bounded degree. A polynomial in n variables is harmonic if it is annihilated by the
Laplacian operator A := > "_, 3%/ axl?, and they showed [5] that X c §" !isa
spherical 7-design if

> Px)=0 (1.2)

xeX

for all homogeneous harmonic polynomials P (x) of nonzero degree < ¢. This criterion
is a consequence of two results from harmonic analysis. The first result is the mean
value property for harmonic functions [1,p. 5], which implies that the integral of a
harmonic polynomial over a sphere centered at the origin vanishes, combined with the
fact that homogeneous polynomials of fixed degree are spanned by certain harmonic
polynomials [1,Theorem 5.7].

In view of this framework, it is natural to ask whether there are generalizations of
spherical #-designs to other curves, surfaces and varieties. Here we consider certain
ellipsoids' in dimension two. To be precise, for square-free D > 1 we define the
norm r ellipses

{((x,y) e R : x2 4+ Dy?> =r}) ifD=1,2 (mod4),

1.3
{(x,y) eRZ:x2+xy+ HELy2 =r} if D=3 (mod 4). (13)

Cp(r) =

Remark These ellipses arise from certain imaginary quadratic orders.

For D = 1,2 (mod 4), we say that a finite nonempty subset X C Cp(r) is an
ellipsoidal t-design if

P(x,y)

md("(x, y) (]4)

1 1
— Px,y)=——
IX| Z 27D Jepo

(x,y)eX

for all polynomials P(x, y) of degree < r over R. For D = 3 (mod 4), instead we
require

1 D P(x,
— 3 Py = Y2 &%) do(x,y). (1.5)

X1 Sex 7T Jepty 2052 4+ (D2 42D + 5)y2 4+ (20 + 4D)xy

Here the right-hand sides are line integrals. As in the case of spherical z-designs, every
ellipsoidal 7-design is also an ellipsoidal #’-design for all #’ < ¢, and the maximum of

' We do not use the term ellipse to avoid possible confusion that might arise with the term elliptical.
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all such t’s is called the strength of X.These definitions coincide with the notion of
a spherical #-design when D = 1.

In analogy to Delsarte, Goethals and Seidel, we have a natural criterion for con-
firming ellipsoidal ¢-designs. To this end, we consider the 2-dimensional real vector
space

(Re(x + ~/—Dy)/, Im(x + ~/—Dy)’) ifD=1,2 (mod 4),
(Re(x + Y=L y)/ Im(x + 1=4=Ly)/) if D=3 (mod 4).

(1.6)
In terms of these vector spaces of polynomials, we have the following ellipsoidal
t-design criterion.

ng[x,y] =

Theorem 1.1 A finite nonempty set X C Cp(r) is an ellipsoidal t-design if

Y P,y =0

xeX
forall P(x,y) € H[H,Q’j[X, ylforall0 < j <t

Remark (1)Observethatif X c S! isaspherical #-design, then Y = {(x, y/\/5)|(x, y) €
X} C Cp (resp. Y = {(x + y/«/ﬁ, 2y/«/5|(x, y) € X} C Cp) is an ellipsoidal ¢-
design for D = 1,2 (mod 4) (resp. D = 3 (mod 4)). Therefore, the existence of
a spherical 7-design implies the existence of a corresponding ellipsoidal 7-design. In
fact, there is a one-to-one correspondence between spherical 7-designs and ellipsoidal
t-designs. However, the proof of Theorem 1.1 is not a direct consequence because
care is required for justifying the role of the vector spaces Hp, R [x y].

(2) Since there is one-to-one correspondence between sphencal and ellipsoidal
t-designs, we get a lower bound [5,p. 2] on the size of ellipsoidal ¢-design X,

I X|>r+1.

Recently, Miezaki in [9] introduced a generalization of the notion of spherical 7-
designs. Instead of restricting to polynomials of degree < ¢, he considered harmonic
polynomials of degree j € T C N, where T is a potentially infinite set. The main
theorem from [9] gives infinitely many spherical T-designs for T := Z \ 4Z7 in
dimension two. Namely, he considered norm r shells, integer points on x> 4 y*> = r
for fixed r € ZT. He showed that these r-shells are spherical T-designs. Moreover,
these sets have strength 7', meaning that (1.2) fails if any multiple of 4 is added to T'.
His proof makes use of theta functions arising from complex multiplication by Z[i].

We generalize Miezaki’s work to ellipsoidal 7'-designs. We call X C Cp an
ellipsoidal T-design if the condition in Theorem 1.1 is satisfied for all polyno-
mials in Hg/.[x, y] with j € T. We say X has strength 7T if it is maximal among
such sets. For each square-free positive integer D, let Op be the ring of integers of
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Q(+/—D). In particular, this means that

Z[v/—=D] ifD=1,2 (mod 4),

_ 17
P72z D=3 (mod 4). 17

We consider D € {1,2,3,7, 11, 19,43, 67, 163}, the square-free positive integers for
which Op has class number 1. To make this precise, we define the norm r shells in

Cp(r) by
A = Op N Cp(r). (1.8)

Generalizing Miezaki’s work for D = 1, we obtain the following theorem.

Theorem 1.2 If D € {1,2,3,7,11, 19,43, 67, 163}, then every non-empty shell A’
is an ellipsoidal Tp design with strength Tp, where

ZT\4Z*T  ifD =1,
Tp:=Z*\6Z" if D=3,
7\ 27t otherwise.

Remark The method used here seems to be well-poised only for the dimension 2 cases.
It would be interesting to obtain higher dimensional analogues.

Example We consider D = 3, and r = 691. Then we have

AP = {(11,19), (=11, =19), (19, 11), (=19, —11),
(11, =30), (—11, 30), (30, —19), (=30, 19),
(30, —11), (=30, 11), (19, —30), (—19, 30)}.

We consider the polynomial P (x, y) = 2x> +3462xy + 1729y H3H?2 [x, y],and
we find that Z(x, NEAP! P(x, y) = 0 which shows that Ag’gl is an elliptical 2-design
and 2 € T3. On the other hand, Theorem 1.2 implies that Aggl is not an ellipsoidal
6-design.To see this we choose Q(x, y) = 2x2+6x°y —15x*y? —40x3y3 — 15x2y* +
6xy’+2y° € Hy's(x, y), andwefindthat " agn Q(x, y) = —4818834696 # 0.

In Sect. 2 we prove Theorem 1.1, criterion for confirming that a set is an ellipsoidal
t-design, and in Section 3 we recall the theory of theta functions arising from complex
multiplication, and we prove Theorem 1.2.

2 Criterion for ellipsoidal t-design

In this section we prove Theorem 1.1, criterion for confirming ellipsoidal ¢-designs.
Throughout this section we assume that D > 1 is square-free and j > 1.

To prove that Theorem 1.1 is indeed a criterion for confirming ellipsoidal 7-designs,
we first need to show that the spaces Hg «lx, ¥yl for 0 < k < j, generate all the
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polynomials of degree < j when restricted to Cp(r). It suffices to show this for
PJR[x, v], the set of homogeneous polynomials of degree j.

Lemma 2.1 If D > 1 is square-free and j > 1, then the following are true:
() If D=3 mod 4, then we have

Li/2]
Pilx, vl = @ &* + Dy Hf j_ylx. yl.
k=0

) If D =3 mod 4, then we have

Li/2]
1+ D ,\k
Pilx,yl= B <x2 +xy + Ty2) Hp, j_ailx, yl.
k=0

Proof The lemma is well known for homogeneous harmonic polynomials (for exam-
ple, see [1,Theorem 5.7]). Namely, if H,ER[x, y] is the set of homogeneous harmonic
polynomials of degree k then

Li/2]
PR, y) = @ &2 + ¥y H 5L, y].
k=0

We extend it to general D. It is well known that H/R [x,y] = (Re(x +iy)/, Im(x +

iy)/), and so if we do the change of variable for D = 1,2 mod 4 (resp. D = 3
mod 4), x’ = x,y = @y (resp. x' = x +y/2,y = 2y/\/5), then H}R_z(x’, y) =
(Re(x’ 4+ iy")d, Im(x' 4 iy)7) gives
Li/2]
PRy 1= @ % + yDEHF 1. 31,
k=0
Therefore, if D = 1,2 mod 4, then we have
Li/2]
PR(x.y) = @ 2 + Dy HE ;_ylx. y].
k=0

If D =3 mod 4, then we have

Lj/2]
14D &
PJR(X, y) = GB (xz +xy+ Ty2> ngfzk[x, vl
k=0

We now prove Theorem 1.1.
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Proof of Theorem 1.1 Lemma 2.1 shows that the set of polynomials when restricted to
Cp are generated by the spaces ng[x, y] since x2 + Dy* = r (resp., x> + xy +
”TDyz = r) on Cp(r). Therefore, it suffices to show that if P(x, y) € ng[x, v,
then the following are true:

(H)If D=1,2 mod 4, then we have

P(x,
/ _ PO ey =o0.
Co(r) /x2/D? + y?

(2)If D =3 mod 4, then we have

P(x,y)
do(x,y) =0.
Cp(r) v/20x2 4+ (D2 + 2D + 5)y2 + (20 + 4D)xy

As Hg j[x, y] is a vector space, it is enough to show these claims for basis vectors.
Since X C Cp(r) is an ellipsoidal z-design if and only if % C Cp(1) is an ellipsoidal
t-design, it’s enough to consider» = 1.For D = 1,2 (mod 4), ng[x, v] = (Re(x+

V=Dy)/, Im(x + ~/—Dy)/). By the parametrization of Cp(1) : x2+ Dy? =1as
y :={(cosb, sinf/+/D)|0 < 6 < 27}, we have

/' Re(x + ~/—Dy)/ do(x. y)
Co()  /x2/D? +y? ’

_ [* Re(cos 0 + +/—D(sin 6/~/D))’
_/(.) V/cos62/D? 4+ sin62/D

\/sin 02 + cos 62/ DdO
2 .
= \/5/ Re(cos 6 + i sin6)’do
0
— Jﬁf Re(x +iy)/dz = 0.
SI

Since Re(x + iy)/ is harmonic, the last integral over § Liso.
A similar argument shows that

I ~—Dy)/
/ Mdo‘(x, y) = 0.
Cp(D)

Vx2/D? 4 y2

If D = 3 (mod 4), Hfj ;[x,y] = (Re(x + H¥=Ly)/ Im(x + H¥=Ly)/). By
the parametrization of Cp(1) : x> + xy + 1JrTDyz = 1as y := {(cosf —
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Modular forms and ellipsoidal T-designs 1251

sin@/\/ﬁ, 2sin0/\/5) :0 <6 <2m}, we have

Re(x + (1 ++/—D)y/2)/
/c,)m V/20x2 + (D2 42D + 5)y? + (20 + 4D)xy
B /2” Re(cos @ — sinf/+/D + (1 + /—Dsin6/+/ D)’
—Jo V4D sin 62 + 20 cos 62 + 8+/D sin 6 cos 0

do(x,y)

X \/siné’2 +5c0862/D + 2sin 6 cos6/+/Dd

1 2 . 1 )
= — Re(cos® +isinf)’/do = —/ Re(x +iy)/dz = 0.
NBfo 2VD Jsi '

A similar argument shows that

P(x)
do(x,y) =0.
Cp(1) v/20x2 + (D2 42D + 5)y% + (20 + 4D)xy

3 Ellipsoidal T-designs

Here we prove Theorem 1.2, the construction of ellipsoidal 7T-designs arising from
the ring of integers of imaginary quadratic fields with class number 1. We use the
theory of theta functions with complex multiplication. Throughout, we shall assume
that D € {1,2,3,7,11, 19,43, 67, 163}.

3.1 Theta functions

Given an n-dimensional lattice A and a polynomial P (x) of degree j in n variables,

the theta function of P(x) over the lattice A is defined by the Fourier series (note
. 2miz

q :=e7"")

9]

O(A. Piz) =Y P)g"™ =O(A, Pi2) =) a(A, P.n)q", (3.1)
xXeA n=0

where N(x) is the standard norm in R”. The theta functions for Ap = Op play
an important role in the study of ellipsoidal 7T-designs. Namely, if ®(Ap, P;z) =
Y ga(Ap, P,r)g", then

a(Ap.P.r)= Y P(x.y). (3.2)
(x,y)eA
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The theta function ® (A p, P; z) € My (T'0(4D), x), the space of holomorphic modu-
lar forms with weight k = j + 1 and nebentypus x (A) = (_d—D), where A = (ccl Z)
[7,Theorem 10.8]. Moreover, ® (A p, P; z) is a cusp form when j > 0.

To ease the study of these theta function, it is convenient to introduce the following
the polynomials for each j > 1:

R, i(x. %) Re(x + /—Dy)/ ifD=1,2 (mod 4), 3.3
i(x,y):= ) .
D.j% Y Re(x + =2y)/  if D=3 (mod 4),
and _
Ip. (e y) Im(x + ~/—Dy)/ if D=1,2 (mod 4), (3.4)
i(x,y):= . .
DI T I+ Dy ifD=3 (mod 4).

By definition, we have that ng[x, vl = (Rp,j(x,y),Ip, j(x,y)). In particular,
O(Ap, Rp,j; z) and O(Ap, Ip,;; z) are cusp forms. Theorem 1.1 together with the
discussion above gives the following lemma which transforms the problem of deter-
mining ellipsoidal T-designs into the vanishing of certain coefficients of special theta
functions.

Lemma3.1 The norm r shell Ay = Ap N Cp(r) is an ellipsoidal T -design if and
onlyifa(Ap, Rp,j,r) =0anda(Ap,Ip, j,r) =0forall j €T.

We require some standard facts from the theory of newforms. Since Op has class
number 1, each Hecke character mod Op is defined by its values on principal ideals.
Let («) C Op be a principal ideal. Let u p be the number of units in Op, namely

4 if D=1,
up :=16 if D =3, 3.5)
2 otherwise.

For each positive jp = 0 (mod up), define Hecke characters mod Op by:

) = ()"

||

Then by [8,Theorem 4.8.2], we have the following well known lemma about the
modular form

O(Ap, (x +/—Dy)/; 2) ifD=1,2 (mod 4),
TinGin: )= @(AD, (x n —”Py)"; z) ifD=3 (mod4)

Lemma 3.2 Assuming the notations above, we have

Fin@ipi =Y Lip(@)N@) gV @ € §,([To(N), x),
(@)cOp
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Modular forms and ellipsoidal T-designs 1253

the space of cusp forms of weight kp = jp + 1 with nebentypus x (mod N). Here
N :=|Ao, |, the absolute value of the discriminant of Op. Moreover, f;,({},; 2) is
a newform.

3.2 Other propositions and lemmas

Recall that A’ = Cp(r) N Op. Using well known facts about the positive definite
binary quadratic forms corresponding to class number 1 norm forms, we have the
following lemma.

Lemma 3.3 Suppose r is a positive integer. Then A’y is nonempty if and only if ord,, (r)
is even for every prime p { r for which A’I’) is nonempty.

Rewriting (3.2), we have

a(Ap.P.r)= Y P(x.y). (3.6)

(x,y)eA

Lemma 3.1 implies that A’ is an ellipsoidal T-design if and only if a(Ap, Rp,j, r)
and a(Ap, Ip,j, r) vanish forall j € T. Since A’ is antipodal (i.e. —A’, = A, for
allr),a(Ap, Rp,j,r)anda(Ap, Ip j,r) are O forall j € Z* \ 2Z". Therefore, we
have that following proposition.

Proposition 3.1 Supposer € Z™ such that A’ is nonempty. Then A, is an ellipsoidal
7+ \ 277" -design.

Our objective is to find maximal set Tp for which A’; is ellipsoidal T-design. By
proposition above we have that Z* \ 2Z* C Tp. So we only look for all even j which
canbein Tp.

Proposition 3.2 Suppose j =0 (mod 2), and r € Z+. Then the following are true:
(1) We have that a(Ap, Ip,j,r) = 0.
Z(xo,yo)eAG) (x +~/—=Dy)/ if D=1,2 (mod 4),

(2) We havethata(Ap, Rp,j,r) = 5 \/ X
/ Z(xo»’o)GA’D (x + LP)’) if D=3 (mod 4)

Proof Part (2) is an obvious consequence of part (/). So it is enough to prove part(/).
The idea is to show that points in A’ occur in pairs on which value of Ip ; cancel. If
D =1,2 (mod 4), then Ip ; = Im(x ++/—Dy)/. In this case (a, b), (a, —b) € A/,
such that Ip j(a, b) + Ip, j(a, —b) = 0. This is true because each term of Ip_;(x, y)
has odd power in both the variables x, y. If D = 3 (mod 4), then Ip ; = Im((x +

1y)+ Y52 y)i  Inthis case (a, b), (a+b, —b) € A)y suchthat I j(a, b)+ Ip j(a+
b, —b) = 0. This is because each term of Ip ;(x, y) has odd powerinx + y/2,y. O

We notice that if (xg, yo) € Op, then we have

Y Rojl@p(o,yo) =Rpj(xo,y0) Y. ap ()

apeOp:lap|=1 apeOp:lapl=1
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1254 B. V. Pandey

Proposition3.3 If r > 1, 1 < j # 0 (mod up), and A,y nonempty, then
a(A'y, Rp,j,r) =0

Proof The idea is that if (xo, yo) € A’ then ap(xp, yo) € A’, where ap is a unit in
Op. Therefore enough to show that the sum in RHS of (3.7) is 0. For D = 1, number of
units in Op, up = 4 whichare {1, —1, i, —i}. We have 1/ 4+ (—=1)/ +i/ + (—i)/ = 0.
For D = 3, number of units in Op, up = 6 which are {£1, %}. A brute force
calculation shows the result. For other D, the number of units in Op, up = 2 which
are {1, —1}. For all j odd, (1)/ + (=1)/ =0 o

From here on we will only consider the theta function @(AD, #R D,js z) so let’s
give its coefficients a shorthand.
1 o0
@(A ,—R <;)= a(D, j,rq". 3.8
Do oK. jiz Y a(D, j,r)q (3.8)

r=0

Proposition 3.2 together with Lemma 3.2 give us that if j = 0 (mod up), then the
theta function @(AD, #RDJ; z) € §j11(I'o(N), x) is a Hecke eigenform. So we
have the following lemma.

Lemma 3.4 Suppose j € upZ™. Then the following is true:
() Ifged (r1,1r2) = 1 then

a(D, j,rir2) =a(D, j,r)a(D, j,r).
(2) For p prime and o > 0, we have
a(D, j, p*) = a(D, j, pya(D, j. p*~") = x(p)p’a(D, j, p*~?).

(3) For p prime and a > 0, we have
a(D, j, p*) =a(D, j, p)* (mod p).

Suppose p be a prime such that A}) be nonempty. Let (xp, y,) € A} and j =0
(mod up). When p = D then it ramifies in Op and there are exactly up points in
Ag. From (3.7) we have a(D, j, p) = Rp j(xp, yp). If p # D then it’s unramified
and we get exactly 2u p solutions. In this case a(D, j, p) = 2Rp j(xp, yp).

Lemma 3.5 Suppose j € upZ™ and p be an odd prime such that A[Z) is nonempty.
Let (xp,yp) € A"[’) then Rp j(xp,yp) # 0 (mod p). In particular, a(D, j, p) is

non-zero.

Proof We will consider two cases, D = 1,2 (mod 4) and D = 3 (mod 4). Proof is
essentially same in both the cases.
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Modular forms and ellipsoidal T-designs 1255

If D=1,2 (mod 4) then p = xlz, + Dyf,, in particular x, # 0 (mod p). we
consider the binomial expansion

Rp. j(xp, yp) = Re(xp ++/—Dy,)’
! ik -] Jj—2n n 2\n
=52 (5, )0 0@
n=0
Jjr2

1 . j—2n n n
B -

i/2 .

1 .7 j R

= Ex[]) § :(Zn) =2/"2x) #£0 (mod p)
n=0

If D=1,2 (mod 4) then p = (x + y,/2)* + Dy} /4, in particular x, + y,/2 # 0
(mod p). we consider the binomial expansion

J
Rp.j(ps vp) = Re(%p + vp/2 + =Dy, /2)
/2 . . 2
1 ] j Yp j—2n Dy \n
= — L —1 "<_1’)
2Z<2n>(x"+2) =D
n=0
/2, . .
1< j Yp\J—2n Y\ 2\"
()3 e (e 2))
n=0

o2V L () =2 %) 20 s

n=0
O

Proposition 3.4 For prime 2, A%) is nonempty only for D = 1,2,7. In this case
a(D, j,2) does not vanish for all j € 27ZF. Moreover, we have that a(7, j,2) = 1
(mod 2)

Proof For D = 1,2,2|Ap, (= —4D) so the ideal (2) is ramified in Op, in particular
there are elements of norm 2. For D € {3,7, 11, 19,43, 67, 163}, 2 ¢ Ao, (= —D).
So the ideal (2) is unramified in Op. Here we need to check whether 2 splits or not.
We have the condition that 2 splits if and only if —D = 1 (mod 8). Only D = 7
satisfies the condition.

A brute force calculation shows that a(1, j,2) = (1 + i)/ # 0,a(2,j,2) =
112+ £0, and a(7, j,2) = 4Re(1+Tﬁ)J £0.

We prove that a(7, j,2) = 1 (mod 2) using induction on even j. First, note that
a(7,2,2) = =3 =1 (mod 2). Now we assume that a(7, j,2) = 1 (mod 2), which

J
implies that Re(#) = (2k +1)/2 for some k. The norm of (H'Tﬁ)] is even,
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1256 B. V. Pandey

so we get that Im(#)] =7 (2k/ +1)/2 for some k’. An easy calculation shows
thata(7, j +2,2) = 3Re(l+r) — /7Im (”ﬁ)’ =1 (mod 2). 0

3.3 Proof of Theorem 1.2

Propositions 3.1, 3.2 and 3.3 together imply that a(Ap, Rp j,r) and a(Ap, Ip j,r)
vanish for all j # 0 (mod up), which implies that every nonempty shell A’, is an
ellipsoidal Tp-design (remember that Tp = Z+ \ upZ™).

Now we prove the maximality of Tp. We show that a(D, j,r) # 0 (note that
a(D, j,r) = ﬁa(AD, Rp,j,r)) forall j ¢ Tp and A’ nonempty. By Lemma 3.4,
enough to take r to be a prime power. Suppose p be a prime and « > 1 be such that

A[; # ¢. There are two cases possible, either A[Z) is empty or it is not. First suppose
AZ isnonempty. If pis2thena(D, j, 2) # 0by Proposition 3.4. By part(2) of Lemma
3.4, we have thata(D, j,2%) = a(D, j,2)* # 0for D = 1, 2 since x(2) = 0. When
D = 7 then part(3) of Lemma 3.4, we have a(7, j, 2%) # 0. If p is an odd prime, then
Lemma 3.5 implies that a(D, j, p) # 0. Now using part(3) of Lemma 3.4 again, we
have a(D, j, p*) # 0. Suppose A% is empty then a(D, j, p) = 0 and Lemma 3.3
implies « is even. Now by part(2) of Lemma 3.5, we get a(D, j, p%) = p/®/? £ 0
(note that this case includes 2 too). So we get that a(D, j, p*) # 0 whenever A’Z; is
nonempty.
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