

Modular forms and ellipsoidal *T***-designs**

Badri Vishal Pandey[1](http://orcid.org/0000-0002-8226-3028)

Received: 23 March 2021 / Accepted: 8 March 2022 / Published online: 27 April 2022 © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract

In recent work, Miezaki introduced the notion of a *spherical T*-design in \mathbb{R}^2 , where *T* is a potentially infinite set. As an example, he offered the \mathbb{Z}^2 -lattice points with fixed integer norm (a.k.a. shells). These shells are *maximal* spherical *T* -designs, where $T = \mathbb{Z}^+ \setminus 4\mathbb{Z}^+$. We generalize the notion of a spherical *T*-design to special ellipses, and extend Miezaki's work to the norm form shells for rings of integers of imaginary quadratic fields with class number 1.

Keywords Modular forms · Combinatorics · Number theory · Spherical t-designs · Hecke eigenforms

Mathematics Subject Classification Primary 11F11 · 11F27 · 11E41; Secondary 05B30 · 11F30

1 Introduction and statement of results

Spherical t-*designs* were introduced in 1977 by Delsarte, Goethals and Seidel [\[5](#page-11-0)], and they have played an important role in algebra, combinatorics, number theory and quantum mechanics (for background see $[2-4, 6, 9, 10]$ $[2-4, 6, 9, 10]$ $[2-4, 6, 9, 10]$ $[2-4, 6, 9, 10]$ $[2-4, 6, 9, 10]$ $[2-4, 6, 9, 10]$ $[2-4, 6, 9, 10]$). A spherical *t*-design is a nonempty finite set of points on the unit sphere with the property that the average value of any real polynomial of degree $\leq t$ over this set equals the average value over the sphere. Namely, if S^{n-1} denotes the unit sphere in \mathbb{R}^n centered at the origin, then a finite nonempty subset $X \subset S^{n-1}$ is a spherical *t*-design if

$$
\frac{1}{|X|} \sum_{x \in X} P(x) = \frac{1}{\text{Vol}(S^{n-1})} \int_{S^{n-1}} P(x) d\sigma(x) \tag{1.1}
$$

 \boxtimes Badri Vishal Pandev bp3aq@virginia.edu

¹ Department of Mathematics, University of Virginia, Charlottesville, VA 22904, USA

for all polynomials $P(x)$ of degree $\leq t$. The right-hand side of [\(1.1\)](#page-0-0) is the usual surface integral over S^{n-1} . In general, a finite nonempty subset *X* of $S_{n-1}(r)$, the sphere of radius *r* centered at the origin, is a spherical *t*-design if $\frac{1}{r}X$ satisfies [\(1.1\)](#page-0-0). Since a spherical *t*-design is also a spherical *t*'-design for all $t' \leq t$, we say that *X* has *strength t* if it is the maximum of all such numbers.

Delsarte, Goethals and Seidel developed a very simple criterion for determining spherical *t*-designs. This criterion involves *homogeneous harmonic* polynomials of bounded degree. A polynomial in *n* variables is *harmonic* if it is annihilated by the Laplacian operator $\Delta := \sum_{i=1}^{n} \frac{\partial^2}{\partial x_i^2}$, and they showed [\[5](#page-11-0)] that $X \subset S^{n-1}$ is a spherical *t*-design if

$$
\sum_{x \in X} P(x) = 0 \tag{1.2}
$$

for all homogeneous harmonic polynomials $P(x)$ of nonzero degree $\leq t$. This criterion is a consequence of two results from harmonic analysis. The first result is the mean value property for harmonic functions $[1,p. 5]$ $[1,p. 5]$, which implies that the integral of a harmonic polynomial over a sphere centered at the origin vanishes, combined with the fact that homogeneous polynomials of fixed degree are spanned by certain harmonic polynomials [\[1,](#page-11-5)Theorem 5.7].

In view of this framework, it is natural to ask whether there are generalizations of spherical *t*-designs to other curves, surfaces and varieties. Here we consider certain *ellipsoids*^{[1](#page-1-0)} in dimension two. To be precise, for square-free $D \ge 1$ we define the norm *r* ellipses

$$
C_D(r) := \begin{cases} \{(x, y) \in \mathbb{R}^2 : x^2 + Dy^2 = r\} & \text{if } D \equiv 1, 2 \pmod{4}, \\ \{(x, y) \in \mathbb{R}^2 : x^2 + xy + \frac{1+D}{4}y^2 = r\} & \text{if } D \equiv 3 \pmod{4}. \end{cases}
$$
(1.3)

Remark These ellipses arise from certain imaginary quadratic orders.

For $D \equiv 1, 2 \pmod{4}$, we say that a finite nonempty subset $X \subset C_D(r)$ is an *elli psoidal t*-*design* if

$$
\frac{1}{|X|} \sum_{(x,y)\in X} P(x,y) = \frac{1}{2\pi\sqrt{D}} \int_{C_D(r)} \frac{P(x,y)}{\sqrt{x^2/D^2 + y^2}} d\sigma(x,y) \tag{1.4}
$$

for all polynomials $P(x, y)$ of degree $\leq t$ over \mathbb{R} . For $D \equiv 3 \pmod{4}$, instead we require

$$
\frac{1}{|X|} \sum_{(x,y)\in X} P(x,y) = \frac{\sqrt{D}}{\pi} \int_{C_D(r)} \frac{P(x,y)}{\sqrt{20x^2 + (D^2 + 2D + 5)y^2 + (20 + 4D)xy}} d\sigma(x,y). \tag{1.5}
$$

Here the right-hand sides are line integrals. As in the case of spherical *t*-designs, every ellipsoidal *t*-design is also an ellipsoidal *t*'-design for all $t' \leq t$, and the maximum of

¹ We do not use the term *elli pse* to avoid possible confusion that might arise with the term *elli ptical*.

all such *t*'s is called the *strength* of *X*.These definitions coincide with the notion of a spherical *t*-design when $D = 1$.

In analogy to Delsarte, Goethals and Seidel, we have a natural criterion for confirming ellipsoidal *t*-designs. To this end, we consider the 2-dimensional real vector space

$$
H_{D,j}^{\mathbb{R}}[x, y] := \begin{cases} \langle \text{Re}(x + \sqrt{-D}y)^j, \text{Im}(x + \sqrt{-D}y)^j \rangle & \text{if } D \equiv 1, 2 \pmod{4}, \\ \langle \text{Re}(x + \frac{1 + \sqrt{-D}}{2}y)^j, \text{Im}(x + \frac{1 + \sqrt{-D}}{2}y)^j \rangle & \text{if } D \equiv 3 \pmod{4}. \end{cases}
$$
(1.6)

In terms of these vector spaces of polynomials, we have the following ellipsoidal *t*-design criterion.

Theorem 1.1 *A finite nonempty set* $X \subset C_D(r)$ *is an ellipsoidal t-design if*

$$
\sum_{x \in X} P(x, y) = 0
$$

for all $P(x, y) \in H_{D,j}^{\mathbb{R}}[x, y]$ *for all* $0 < j \leq t$.

Remark (1) Observe that if $X \subset S^1$ is a spherical *t*-design, then $Y = \{(x, y/\sqrt{D}) | (x, y) \in S^1 \}$ *X*} ⊂ *C_D* (resp. *Y* = {(*x* + *y*/ \sqrt{D} , 2*y*/ \sqrt{D} |(*x*, *y*) ∈ *X*} ⊂ *C_D*) is an ellipsoidal *t*design for $D \equiv 1, 2 \pmod{4}$ (resp. $D \equiv 3 \pmod{4}$). Therefore, the existence of a spherical *t*-design implies the existence of a corresponding ellipsoidal *t*-design. In fact, there is a one-to-one correspondence between spherical *t*-designs and ellipsoidal *t*-designs. However, the proof of Theorem [1.1](#page-2-0) is not a direct consequence because care is required for justifying the role of the vector spaces $H_{D,j}^{\mathbb{R}}[x, y]$.

(2) Since there is one-to-one correspondence between spherical and ellipsoidal *t*-designs, we get a lower bound [\[5,](#page-11-0)p. 2] on the size of ellipsoidal *t*-design *X*,

$$
|X| \ge t+1.
$$

Recently, Miezaki in [\[9](#page-11-4)] introduced a generalization of the notion of spherical *t*designs. Instead of restricting to polynomials of degree $\leq t$, he considered harmonic polynomials of degree $j \in T \subset \mathbb{N}$, where *T* is a potentially infinite set. The main theorem from [\[9](#page-11-4)] gives infinitely many spherical *T*-designs for $T := \mathbb{Z}^+ \setminus 4\mathbb{Z}^+$ in dimension two. Namely, he considered norm *r* shells, integer points on $x^2 + y^2 = r$ for fixed $r \in \mathbb{Z}^+$. He showed that these *r*-shells are spherical *T*-designs. Moreover, these sets have strength T , meaning that (1.2) fails if any multiple of 4 is added to T . His proof makes use of theta functions arising from complex multiplication by $\mathbb{Z}[i]$.

We generalize Miezaki's work to ellipsoidal *T*-designs. We call $X \subset C_D$ an *elli psoidal T* -*design* if the condition in Theorem [1.1](#page-2-0) is satisfied for all polynomials in $H_{D,j}^{\mathbb{R}}[x, y]$ with $j \in T$. We say *X* has strength *T* if it is maximal among such sets. For each square-free positive integer *D*, let \mathcal{O}_D be the ring of integers of $\mathbb{Q}(\sqrt{-D})$. In particular, this means that

$$
\mathcal{O}_D = \begin{cases} \mathbb{Z}[\sqrt{-D}] & \text{if } D \equiv 1, 2 \pmod{4}, \\ \mathbb{Z}[\frac{1+\sqrt{-D}}{2}] & \text{if } D \equiv 3 \pmod{4}. \end{cases} \tag{1.7}
$$

We consider $D \in \{1, 2, 3, 7, 11, 19, 43, 67, 163\}$, the square-free positive integers for which \mathcal{O}_D has class number 1. To make this precise, we define the *norm r shells* in $C_D(r)$ by

$$
\Lambda_D^r := \mathcal{O}_D \cap C_D(r). \tag{1.8}
$$

Generalizing Miezaki's work for $D = 1$, we obtain the following theorem.

Theorem 1.2 *If* $D \in \{1, 2, 3, 7, 11, 19, 43, 67, 163\}$, *then every non-empty shell* Λ_D^r *is an ellipsoidal* T_D *design with strength* T_D *, where*

$$
T_D := \begin{cases} \mathbb{Z}^+ \setminus 4\mathbb{Z}^+ & \text{if } D = 1, \\ \mathbb{Z}^+ \setminus 6\mathbb{Z}^+ & \text{if } D = 3, \\ \mathbb{Z}^+ \setminus 2\mathbb{Z}^+ & \text{otherwise.} \end{cases}
$$

Remark The method used here seems to be well-poised only for the dimension 2 cases. It would be interesting to obtain higher dimensional analogues.

Example We consider $D = 3$, and $r = 691$. Then we have

$$
\Lambda_3^{691} = \{ (11, 19), (-11, -19), (19, 11), (-19, -11), (11, -30), (-11, 30), (30, -19), (-30, 19), (30, -11), (-30, 11), (19, -30), (-19, 30) \}.
$$

We consider the polynomial $P(x, y) = 2x^2 + 3462xy + 1729y^2$ ∈ $H_{3,2}^{\mathbb{R}}[x, y]$, and we find that $\sum_{(x,y)\in\Lambda_3^{69}} P(x, y) = 0$ which shows that Λ_3^{691} is an elliptical 2-design and $2 \in T_3$. On the other hand, Theorem [1.2](#page-3-0) implies that Λ_3^{691} is not an ellipsoidal 6-design. To see this we choose $Q(x, y) = 2x^2 + 6x^5y - 15x^4y^2 - 40x^3y^3 - 15x^2y^4 +$ $6xy^5 + 2y^6 \in H_{3,6}^{\mathbb{R}}(x, y)$, and we find that $\sum_{(x, y) \in \Lambda_3^{91}} Q(x, y) = -4818834696 \neq 0$.

In Sect. [2](#page-3-1) we prove Theorem [1.1,](#page-2-0) criterion for confirming that a set is an ellipsoidal *t*-design, and in Section 3 we recall the theory of theta functions arising from complex multiplication, and we prove Theorem [1.2.](#page-3-0)

2 Criterion for ellipsoidal *t***-design**

In this section we prove Theorem [1.1,](#page-2-0) criterion for confirming ellipsoidal *t*-designs. Throughout this section we assume that $D \ge 1$ is square-free and $j \ge 1$.

To prove that Theorem [1.1](#page-2-0) is indeed a criterion for confirming ellipsoidal *t*-designs, we first need to show that the spaces $H_{D,k}^{\mathbb{R}}[x, y]$, for $0 < k \leq j$, generate all the polynomials of degree $\leq j$ when restricted to $C_D(r)$. It suffices to show this for $P_j^{\mathbb{R}}[x, y]$, the set of homogeneous polynomials of degree *j*.

Lemma 2.1 *If* $D > 1$ *is square-free and* $j > 1$ *, then the following are true:* (1) *If* $D \equiv 3 \mod 4$ *, then we have*

$$
P_j^{\mathbb{R}}[x, y] = \bigoplus_{k=0}^{\lfloor j/2 \rfloor} (x^2 + Dy^2)^k H_{D, j-2k}^{\mathbb{R}}[x, y].
$$

(2) *If* $D \equiv 3 \mod 4$ *, then we have*

$$
P_j^{\mathbb{R}}[x, y] = \bigoplus_{k=0}^{\lfloor j/2 \rfloor} \left(x^2 + xy + \frac{1+D}{4} y^2 \right)^k H_{D, j-2k}^{\mathbb{R}}[x, y].
$$

Proof The lemma is well known for homogeneous harmonic polynomials (for exam-ple, see [\[1,](#page-11-5)Theorem 5.7]). Namely, if $H_k^{\mathbb{R}}[x, y]$ is the set of homogeneous harmonic polynomials of degree *k* then

$$
P_j^{\mathbb{R}}(x, y) = \bigoplus_{k=0}^{\lfloor j/2 \rfloor} (x^2 + y^2)^k H_{j-2k}^{\mathbb{R}}[x, y].
$$

We extend it to general *D*. It is well known that $H_j^{\mathbb{R}}[x, y] = \langle \text{Re}(x + iy)^j, \text{Im}(x +$ *iy*)^{*j*}), and so if we do the change of variable for $D \equiv 1, 2 \mod 4$ (resp. $D \equiv 3$ $\frac{1}{2}$ and 4), $x' = x$, $y' = \sqrt{D}y$ (resp. $x' = x + y/2$, $y' = 2y/\sqrt{D}$), then $H_{j-2}^{\mathbb{R}}(x', y') =$ $\langle \text{Re}(x' + iy')^j, \text{Im}(x' + iy')^j \rangle$ gives

$$
P_j^{\mathbb{R}}[x', y'] = \bigoplus_{k=0}^{\lfloor j/2 \rfloor} (x'^2 + y'^2)^k H_{j-2k}^{\mathbb{R}}[x', y'].
$$

Therefore, if $D \equiv 1, 2 \mod 4$, then we have

$$
P_j^{\mathbb{R}}(x, y) = \bigoplus_{k=0}^{\lfloor j/2 \rfloor} (x^2 + Dy^2)^k H_{D, j-2k}^{\mathbb{R}}[x, y].
$$

If $D \equiv 3 \mod 4$, then we have

$$
P_j^{\mathbb{R}}(x, y) = \bigoplus_{k=0}^{\lfloor j/2 \rfloor} \left(x^2 + xy + \frac{1+D}{4} y^2 \right)^k H_{D, j-2k}^{\mathbb{R}}[x, y].
$$

We now prove Theorem [1.1.](#page-2-0)

 \Box

Proof of Theorem **[1.1](#page-2-0)** Lemma [2.1](#page-4-0) shows that the set of polynomials when restricted to C_D are generated by the spaces $H_{D,j}^{\mathbb{R}}[x, y]$ since $x^2 + Dy^2 = r$ (resp., $x^2 + xy +$ $\frac{1+D}{4}y^2 = r$ on $C_D(r)$. Therefore, it suffices to show that if $P(x, y) \in H_{D,j}^{\mathbb{R}}[x, y]$, then the following are true:

(1) If $D \equiv 1, 2 \mod 4$, then we have

$$
\int_{C_D(r)} \frac{P(x, y)}{\sqrt{x^2/D^2 + y^2}} d\sigma(x, y) = 0.
$$

(2) If $D \equiv 3 \mod 4$, then we have

$$
\int_{C_D(r)} \frac{P(x, y)}{\sqrt{20x^2 + (D^2 + 2D + 5)y^2 + (20 + 4D)xy}} d\sigma(x, y) = 0.
$$

As $H_{D,j}^{\mathbb{R}}[x, y]$ is a vector space, it is enough to show these claims for basis vectors. Since $X \subset C_D(r)$ is an ellipsoidal *t*-design if and only if $\frac{1}{r} \subset C_D(1)$ is an ellipsoidal *t*-design, it's enough to consider $r = 1$. For $D \equiv 1, 2 \pmod{4}$, $H_{D,j}^{\mathbb{R}}[x, y] = \langle \text{Re}(x +$ $\sqrt{-D}y$ ^{*j*}, Im(*x* + $\sqrt{-D}y$ ^{*j*}). By the parametrization of *C_D*(1) : *x*² + *Dy*² = 1 as $\gamma := \{(\cos \theta, \sin \theta / \sqrt{D}) | 0 \le \theta \le 2\pi \}$, we have

$$
\int_{C_D(1)} \frac{\text{Re}(x + \sqrt{-D}y)^j}{\sqrt{x^2/D^2 + y^2}} d\sigma(x, y)
$$
\n
$$
= \int_0^{2\pi} \frac{\text{Re}(\cos\theta + \sqrt{-D}(\sin\theta/\sqrt{D}))^j}{\sqrt{\cos\theta^2/D^2 + \sin\theta^2/D}} \sqrt{\sin\theta^2 + \cos\theta^2/D} d\theta
$$
\n
$$
= \sqrt{D} \int_0^{2\pi} \text{Re}(\cos\theta + i\sin\theta)^j d\theta
$$
\n
$$
= \sqrt{D} \int_{S^1} \text{Re}(x + iy)^j dz = 0.
$$

Since $\text{Re}(x + iy)^j$ is harmonic, the last integral over S^1 is 0.

A similar argument shows that

$$
\int_{C_D(1)} \frac{\text{Im}(x + \sqrt{-D}y)^j}{\sqrt{x^2/D^2 + y^2}} d\sigma(x, y) = 0.
$$

If *D* \equiv 3 (mod 4), $H_{D,j}^{\mathbb{R}}[x, y] = \langle \text{Re}(x + \frac{1+\sqrt{-D}}{2}y)^j, \text{Im}(x + \frac{1+\sqrt{-D}}{2}y)^j \rangle$. By the parametrization of $C_D(1)$: $x^2 + xy + \frac{1+D}{4}y^2 = 1$ as $\gamma := \{(\cos \theta - \theta)^2 + (1-\theta)^2\}$ $\sin \theta / \sqrt{D}$, $2 \sin \theta / \sqrt{D}$) : $0 \le \theta \le 2\pi$, we have

$$
\int_{C_D(1)} \frac{\text{Re}(x + (1 + \sqrt{-D})y/2)^j}{\sqrt{20x^2 + (D^2 + 2D + 5)y^2 + (20 + 4D)xy}} d\sigma(x, y)
$$
\n
$$
= \int_0^{2\pi} \frac{\text{Re}(\cos\theta - \sin\theta/\sqrt{D} + (1 + \sqrt{-D}\sin\theta/\sqrt{D})^j}{\sqrt{4D\sin\theta^2 + 20\cos\theta^2 + 8\sqrt{D}\sin\theta\cos\theta}}
$$
\n
$$
\times \sqrt{\sin\theta^2 + 5\cos\theta^2/D + 2\sin\theta\cos\theta/\sqrt{D}} d\theta
$$
\n
$$
= \frac{1}{2\sqrt{D}} \int_0^{2\pi} \text{Re}(\cos\theta + i\sin\theta)^j d\theta = \frac{1}{2\sqrt{D}} \int_{S^1} \text{Re}(x + iy)^j dz = 0.
$$

A similar argument shows that

$$
\int_{C_D(1)} \frac{P(x)}{\sqrt{20x^2 + (D^2 + 2D + 5)y^2 + (20 + 4D)xy}} d\sigma(x, y) = 0.
$$

 \Box

3 Ellipsoidal T-designs

Here we prove Theorem [1.2,](#page-3-0) the construction of ellipsoidal *T* -designs arising from the ring of integers of imaginary quadratic fields with class number 1. We use the theory of theta functions with complex multiplication. Throughout, we shall assume that $D \in \{1, 2, 3, 7, 11, 19, 43, 67, 163\}.$

3.1 Theta functions

Given an *n*-dimensional lattice Λ and a polynomial $P(x)$ of degree *j* in *n* variables, the theta function of $P(x)$ over the lattice Λ is defined by the Fourier series (note $q := e^{2\pi i z}$

$$
\Theta(\Lambda, P; z) := \sum_{x \in \Lambda} P(x) q^{N(x)} = \Theta(\Lambda, P; z) = \sum_{n=0}^{\infty} a(\Lambda, P, n) q^n, \tag{3.1}
$$

where $N(x)$ is the standard norm in \mathbb{R}^n . The theta functions for $\Lambda_D = \mathcal{O}_D$ play $\sum_{r=0}^{\infty} a(\Lambda_D, P, r) q^r$, then an important role in the study of ellipsoidal *T*-designs. Namely, if $\Theta(\Lambda_D, P; z) =$

$$
a(\Lambda_D, P, r) = \sum_{(x, y) \in \Lambda_D^r} P(x, y). \tag{3.2}
$$

 \mathcal{D} Springer

The theta function $\Theta(\Lambda_D, P; z) \in \mathcal{M}_k(\Gamma_0(4D), \chi)$, the space of holomorphic modular forms with weight $k = j + 1$ and nebentypus $\chi(A) = \left(\frac{-D}{d}\right)$, where $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ [\[7](#page-11-6), Theorem 10.8]. Moreover, $\Theta(\Lambda_D, P; z)$ is a cusp form when $j > 0$.

To ease the study of these theta function, it is convenient to introduce the following the polynomials for each $j \geq 1$:

$$
R_{D,j}(x, y) := \begin{cases} \text{Re}(x + \sqrt{-D}y)^j & \text{if } D \equiv 1, 2 \pmod{4}, \\ \text{Re}(x + \frac{1 + \sqrt{-D}}{2}y)^j & \text{if } D \equiv 3 \pmod{4}, \end{cases}
$$
(3.3)

and

$$
I_{D,j}(x, y) := \begin{cases} \text{Im}(x + \sqrt{-D}y)^j & \text{if } D \equiv 1, 2 \pmod{4}, \\ \text{Im}(x + \frac{1 + \sqrt{-D}}{2}y)^j & \text{if } D \equiv 3 \pmod{4}. \end{cases}
$$
(3.4)

By definition, we have that $H_{D,j}^{\mathbb{R}}[x, y] = \langle R_{D,j}(x, y), I_{D,j}(x, y) \rangle$. In particular, $\Theta(\Lambda_D, R_{D,j}; z)$ and $\Theta(\Lambda_D, I_{D,j}; z)$ are cusp forms. Theorem [1.1](#page-2-0) together with the discussion above gives the following lemma which transforms the problem of determining ellipsoidal *T* -designs into the vanishing of certain coefficients of special theta functions.

Lemma 3.1 *The norm r shell* $\Lambda_D^r = \Lambda_D \cap C_D(r)$ *is an ellipsoidal T-design if and only if* $a(\Lambda_D, R_{D,i}, r) = 0$ *and* $a(\Lambda_D, I_{D,i}, r) = 0$ *for all* $j \in T$.

We require some standard facts from the theory of newforms. Since \mathcal{O}_D has class number 1, each *Hecke character* mod \mathcal{O}_D is defined by its values on principal ideals. Let $(\alpha) \subset \mathcal{O}_D$ be a principal ideal. Let u_D be the number of units in \mathcal{O}_D , namely

$$
u_D := \begin{cases} 4 & \text{if } D = 1, \\ 6 & \text{if } D = 3, \\ 2 & \text{otherwise.} \end{cases}
$$
 (3.5)

For each positive $j_D \equiv 0 \pmod{u_D}$, define Hecke characters mod \mathcal{O}_D by:

$$
\zeta_{j_D}(\left(\alpha\right)) = \left(\frac{\alpha}{\left|\alpha\right|}\right)^{j_D}
$$

Then by [\[8,](#page-11-7)Theorem 4.8.2], we have the following well known lemma about the modular form

$$
f_{j_D}(\zeta_{j_D}; z) := \begin{cases} \Theta(\Lambda_D, (x + \sqrt{-D}y)^j; z) & \text{if } D \equiv 1, 2 \pmod{4}, \\ \Theta\Big(\Lambda_D, \Big(x + \frac{1 + \sqrt{-D}}{2}y\Big)^j; z\Big) & \text{if } D \equiv 3 \pmod{4} \end{cases}
$$

Lemma 3.2 *Assuming the notations above, we have*

$$
f_{j_D}(\zeta_{j_D}; z) = \sum_{(\alpha) \subset O_D} \zeta_{j_D}((\alpha)) N(\alpha)^{j/2} q^{N(\alpha)} \in S_{k_D}(\Gamma_0(N), \chi),
$$

 \mathcal{L} Springer

the space of cusp forms of weight $k_D = j_D + 1$ *with nebentypus* χ (mod *N*)*. Here* $N := |\Delta_{\mathcal{O}_D}|$, the absolute value of the discriminant of \mathcal{O}_D . Moreover, $f_{in}(\zeta_{in}; z)$ is *a newform.*

3.2 Other propositions and lemmas

Recall that $\Lambda_D^r = C_D(r) \cap \mathcal{O}_D$. Using well known facts about the positive definite binary quadratic forms corresponding to class number 1 norm forms, we have the following lemma.

Lemma 3.3 *Suppose r is a positive integer. Then* Λ_D^r *is nonempty if and only if or* $d_p(r)$ *is even for every prime p* $\frac{1}{r}$ *r for which* Λ_D^p *is nonempty.*

Rewriting [\(3.2\)](#page-6-0), we have

$$
a(\Lambda_D, P, r) = \sum_{(x, y) \in \Lambda_D^r} P(x, y).
$$
 (3.6)

Lemma [3.1](#page-7-0) implies that Λ_D^r is an ellipsoidal *T*-design if and only if $a(\Lambda_D, R_{D,j}, r)$ and $a(\Lambda_D, I_{D,j}, r)$ vanish for all $j \in T$. Since Λ_D^r is antipodal (*i.e.* $-\Lambda_D^r = \Lambda_D^r$ for all *r*), $a(\Lambda_D, R_{D,j}, r)$ and $a(\Lambda_D, I_{D,j}, r)$ are 0 for all $j \in \mathbb{Z}^+ \setminus 2\mathbb{Z}^+$. Therefore, we have that following proposition.

Proposition 3.1 *Suppose* $r \in \mathbb{Z}^+$ *such that* Λ_D^r *is nonempty. Then* Λ_D^r *is an ellipsoidal* $\mathbb{Z}^+ \setminus 2\mathbb{Z}^+$ *-design.*

Our objective is to find maximal set T_D for which Λ_D^r is ellipsoidal T-design. By proposition above we have that $\mathbb{Z}^+ \setminus 2\mathbb{Z}^+ \subset T_D$. So we only look for all even *j* which can be in T_D .

Proposition 3.2 *Suppose* $j \equiv 0 \pmod{2}$ *, and* $r \in \mathbb{Z}^+$ *. Then the following are true:* (1) We have that $a(\Lambda_D, I_{D,i}, r) = 0$.

(2) We have that
$$
a(\Lambda_D, R_{D,j}, r) = \begin{cases} \sum_{(x_0, y_0) \in \Lambda_D'} (x + \sqrt{-D}y)^j & \text{if } D \equiv 1, 2 \pmod{4}, \\ \sum_{(x_0, y_0) \in \Lambda_D'} (x + \frac{1 + \sqrt{-D}}{2}y)^j & \text{if } D \equiv 3 \pmod{4} \end{cases}
$$

Proof Part *(2)* is an obvious consequence of part *(1)*. So it is enough to prove part*(1)*. The idea is to show that points in Λ_D^r occur in pairs on which value of $I_{D,j}$ cancel. If $D = 1, 2 \pmod{4}$, then $I_{D,j} = \text{Im}(x + \sqrt{-D}y)^j$. In this case $(a, b), (a, -b) \in \Lambda_D^r$ such that $I_{D,i}(a, b) + I_{D,i}(a, -b) = 0$. This is true because each term of $I_{D,i}(x, y)$ has odd power in both the variables *x*, *y*. If $D \equiv 3 \pmod{4}$, then $I_{D,i} = \text{Im}((x +$ $\frac{1}{2}y$ + $\frac{\sqrt{-D}}{2}y$ *j*. In this case (a, b) , $(a + b, -b) \in \Lambda_D^j$ such that $I_{D,j}(a, b) + I_{D,j}(a + b)$ *b*, −*b*) = 0. This is because each term of $I_{D,i}(x, y)$ has odd power in $x + y/2$, y . \Box

We notice that if $(x_0, y_0) \in \mathcal{O}_D$, then we have

$$
\sum_{\alpha_D \in \mathcal{O}_D: |\alpha_D| = 1} R_{D,j}(\alpha_D(x_0, y_0)) = R_{D,j}(x_0, y_0) \sum_{\alpha_D \in \mathcal{O}_D: |\alpha_D| = 1} \alpha_D^j.
$$
 (3.7)

 \mathcal{L} Springer

Proposition 3.3 *If* $r \geq 1, 1 \leq j \neq 0 \pmod{u_D}$, and Λ_D^r nonempty, then $a(\Lambda_D^r, R_{D,j}, r) = 0$

Proof The idea is that if $(x_0, y_0) \in \Lambda_D^r$ then $\alpha_D(x_0, y_0) \in \Lambda_D^r$ where α_D is a unit in \mathcal{O}_D . Therefore enough to show that the sum in RHS of [\(3.7\)](#page-8-0) is 0. For $D = 1$, number of units in \mathcal{O}_D , $u_D = 4$ which are $\{1, -1, i, -i\}$. We have $1^j + (-1)^j + i^j + (-i)^j = 0$. For *D* = 3, number of units in \mathcal{O}_D , $u_D = 6$ which are $\{\pm 1, \frac{\pm 1 \pm \sqrt{-3}}{2}\}$. A brute force calculation shows the result. For other *D*, the number of units in \mathcal{O}_D , $u_D = 2$ which are $\{1, -1\}$ For all *i* odd $(1)^j + (-1)^j = 0$ are $\{1, -1\}$. For all *j* odd, $(1)^{j} + (-1)^{j} = 0$

From here on we will only consider the theta function $\Theta\left(\Lambda_D, \frac{1}{u_D}R_{D,j}; z\right)$ so let's give its coefficients a shorthand.

$$
\Theta\left(\Lambda_D, \frac{1}{u_D} R_{D,j}; z\right) = \sum_{r=0}^{\infty} a(D, j, r) q^r.
$$
 (3.8)

Proposition [3.2](#page-7-1) together with Lemma 3.2 give us that if $j \equiv 0 \pmod{u_D}$, then the theta function $\Theta\left(\Lambda_D, \frac{1}{u_D}R_{D,j}; z\right) \in \mathcal{S}_{j+1}(\Gamma_0(N), \chi)$ is a Hecke eigenform. So we have the following lemma.

Lemma 3.4 *Suppose* $j \in u_D \mathbb{Z}^+$ *. Then the following is true:* (1) *If* gcd $(r_1, r_2) = 1$ *then*

$$
a(D, j, r_1r_2) = a(D, j, r_1)a(D, j, r_2).
$$

(2) *For p prime and* $\alpha > 0$ *, we have*

$$
a(D, j, p^{\alpha}) = a(D, j, p)a(D, j, p^{\alpha-1}) - \chi(p)p^{j}a(D, j, p^{\alpha-2}).
$$

(3) *For p prime and* $\alpha > 0$ *, we have*

$$
a(D, j, p^{\alpha}) = a(D, j, p)^{\alpha} \pmod{p}.
$$

Suppose *p* be a prime such that Λ_D^p be nonempty. Let $(x_p, y_p) \in \Lambda_D^p$ and $j \equiv 0$ (mod u_D). When $p = D$ then it ramifies in \mathcal{O}_D and there are exactly u_D points in Λ_D^p . From [\(3.7\)](#page-8-0) we have $a(D, j, p) = R_{D,j}(x_p, y_p)$. If $p \neq D$ then it's unramified and we get exactly $2u_D$ solutions. In this case $a(D, j, p) = 2R_{D,i}(x_p, y_p)$.

Lemma 3.5 *Suppose* $j \in u_D \mathbb{Z}^+$ *and* p *be an odd prime such that* Λ_D^p *is nonempty. Let* $(x_p, y_p) \in \Lambda_D^p$ *then* $R_{D,j}(x_p, y_p) \neq 0$ (mod *p*)*. In particular, a*(*D*, *j*, *p*) *is non-zero.*

Proof We will consider two cases, $D \equiv 1, 2 \pmod{4}$ and $D \equiv 3 \pmod{4}$. Proof is essentially same in both the cases.

If $D \equiv 1, 2 \pmod{4}$ then $p = x_p^2 + Dy_p^2$, in particular $x_p \not\equiv 0 \pmod{p}$. we consider the binomial expansion

$$
R_{D,j}(x_p, y_p) = \text{Re}(x_p + \sqrt{-D}y_p)^j
$$

= $\frac{1}{2} \sum_{n=0}^{j/2} {j \choose 2n} x_p^{j-2n} (-1)^n (Dy_p^2)^n$
= $\frac{1}{2} \sum_{n=0}^{j/2} {j \choose 2n} x_p^{j-2n} (-1)^n (p - x_p^2)^n$
= $\frac{1}{2} x_p^j \sum_{n=0}^{j/2} {j \choose 2n} = 2^{j-2} x_p^j \neq 0 \pmod{p}$

If *D* ≡ 1, 2 (mod 4) then $p = (x_p + y_p/2)^2 + Dy_p^2/4$, in particular $x_p + y_p/2 \neq 0$ (mod *p*). we consider the binomial expansion

j

$$
R_{D,j}(x_p, y_p) = \text{Re}\Big(x_p + y_p/2 + \sqrt{-D}y_p/2\Big)^j
$$

= $\frac{1}{2} \sum_{n=0}^{j/2} {j \choose 2n} (x_p + \frac{y_p}{2})^{j-2n} (-1)^n \left(\frac{Dy_p^2}{4}\right)^n$
= $\frac{1}{2} \sum_{n=0}^{j/2} {j \choose 2n} (x_p + \frac{y_p}{2})^{j-2n} (-1)^n \left(p - \left(x_p + \frac{y_p}{2}\right)^2\right)^n$
= $\frac{1}{2} \left(x_p + \frac{y_p}{2}\right)^j \sum_{n=0}^{j/2} {j \choose 2n} = 2^{j-2} \left(x_p + \frac{y_p}{2}\right)^j \neq 0 \pmod{p}$

Proposition 3.4 For prime 2, Λ_D^2 is nonempty only for $D = 1, 2, 7$. In this case $a(D, j, 2)$ *does not vanish for all* $j \in 2\mathbb{Z}^+$ *. Moreover, we have that a*(7, *j*, 2) $\equiv 1$ (mod 2)

Proof For $D = 1, 2, 2 | \Delta_{\mathcal{O}_D} (= -4D)$ so the ideal (2) is ramified in \mathcal{O}_D , in particular there are elements of norm 2. For $D \in \{3, 7, 11, 19, 43, 67, 163\}, 2 \nmid \Delta \mathcal{O}_D (= -D)$. So the ideal (2) is unramified in \mathcal{O}_D . Here we need to check whether 2 splits or not. We have the condition that 2 splits if and only if $-D \equiv 1 \pmod{8}$. Only $D = 7$ satisfies the condition.

A brute force calculation shows that $a(1, j, 2) = (1 + i)^j \neq 0$, $a(2, j, 2) =$ $i^{j} 2^{j+1} \neq 0$, and $a(7, j, 2) = 4\text{Re}\left(\frac{1+\sqrt{-7}}{2}\right)^{j} \neq 0$.

We prove that $a(7, j, 2) \equiv 1 \pmod{2}$ using induction on even *j*. First, note that $a(7, 2, 2) = -3 \equiv 1 \pmod{2}$. Now we assume that $a(7, j, 2) \equiv 1 \pmod{2}$, which implies that Re $\left(\frac{1+\sqrt{-7}}{2}\right)^j = (2k+1)/2$ for some *k*. The norm of $\left(\frac{1+\sqrt{-7}}{2}\right)^j$ is even,

² Springer

 \Box

so we get that $\text{Im}\left(\frac{1+\sqrt{-7}}{2}\right)^j = \sqrt{7}(2k'+1)/2$ for some *k'*. An easy calculation shows that $a(7, j + 2, 2) = -3\text{Re}\left(\frac{1+\sqrt{-7}}{2}\right)^j - \sqrt{7}\text{Im}\left(\frac{1+\sqrt{-7}}{2}\right)^j \equiv 1 \pmod{2}$. □

3.3 Proof of Theorem [1.2](#page-3-0)

Propositions [3.1,](#page-8-2) [3.2](#page-8-1) and [3.3](#page-8-3) together imply that $a(\Lambda_D, R_{D,i}, r)$ and $a(\Lambda_D, I_{D,i}, r)$ vanish for all $j \neq 0 \pmod{u_D}$, which implies that every nonempty shell Λ_D^r is an ellipsoidal *T*_D-design (remember that $T_D = \mathbb{Z}^+ \setminus u_D \mathbb{Z}^+$).

Now we prove the maximality of T_D . We show that $a(D, j, r) \neq 0$ (note that $a(D, j, r) = \frac{1}{u_D} a(\Lambda_D, R_{D,j}, r)$ for all $j \notin T_D$ and Λ_D^r nonempty. By Lemma [3.4,](#page-9-0) enough to take *r* to be a prime power. Suppose *p* be a prime and $\alpha \ge 1$ be such that $\Lambda_B^{p^a} \neq \phi$. There are two cases possible, either Λ_D^p is empty or it is not. First suppose Λ_D^{β} is nonempty. If *p* is 2 then $a(D, j, 2) \neq 0$ by Proposition [3.4.](#page-10-0) By part(2) of Lemma [3.4,](#page-9-0) we have that $a(D, j, 2^{\alpha}) = a(D, j, 2)^{\alpha} \neq 0$ for $D = 1, 2$ since $\chi(2) = 0$. When *D* = 7 then part(3) of Lemma [3.4,](#page-9-0) we have $a(7, j, 2^{\alpha}) \neq 0$. If *p* is an odd prime, then Lemma [3.5](#page-9-1) implies that $a(D, j, p) \neq 0$. Now using part(3) of Lemma [3.4](#page-9-0) again, we have $a(D, j, p^{\alpha}) \neq 0$. Suppose Λ_D^p is empty then $a(D, j, p) = 0$ and Lemma [3.3](#page-8-4) implies α is even. Now by part(2) of Lemma [3.5,](#page-9-1) we get $a(D, j, p^{\alpha}) = p^{j\alpha/2} \neq 0$ (note that this case includes 2 too). So we get that $a(D, j, p^{\alpha}) \neq 0$ whenever $\Lambda_D^{p^{\alpha}}$ is nonempty.

Acknowledgements I would like to thank Prof Ken Ono for suggesting me this problem and guiding through. I also thank Will Craig and Wei-Lun Tsai for reviewing my paper and giving useful comments. I thank Matthew McCarthy for helping me with Sage Math. Lastly, I would like to thank the reviewers for their useful comments.

References

- 1. Axler, S., Bourdon, P., Ramey, W.: Harmonic Function Theory, Graduate Texts in Mathematics, 137. Springer, New York (1992)
- 2. Bannai, E.: Spherical t-designs which are orbits of finite groups. J. Math. Soc. Jpn. **36**(2), 341–354 (1984)
- 3. Bannai, E., Okuda, T., Tagami, M.: Spherical designs of harmonic index t. J. Approx. Theory **195**, 1–18 (2015)
- 4. Chen, X., Frommer, A., Lang, B.: Computational existence proofs for spherical t-designs. Numer. Math. **117**(2), 289–305 (2011)
- 5. Delsarte, P., Goethals, J.M., Seidel, J.J.: Spherical codes and designs. Geom. Dedicata. **6**(3), 363–388 (1977)
- 6. Hayashi, A., Hashimoto, T., Horibe, M.: Reexamination of optimal quantum state estimation of pure states. Phys. Rev. A **73**, 3 (2005)
- 7. Iwaniec H.: *Topics in Classical Automorphic Forms*, Graduate Studies in Mathematics, 17. American Mathematical Society, Providence, RI, 1997. xii+259 pp
- 8. Miyake, T.: Modular forms, Translated from the 1976 Japanese original by Yoshitaka Maeda. Springer Monographs in Mathematics. Springer, Berlin (2006)
- 9. Miezaki, T.: On a generalization of spherical designs. Discrete Math. **313**(4), 375–380 (2013)

10. Seki, G.: On some nonrigid spherical t-designs. Mem. Fac. Sci. Kyushu Univ. Ser. A **46**(1), 169–178 (1992)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.