

Modular forms and ellipsoidal T-designs

Badri Vishal Pandey¹

Received: 23 March 2021 / Accepted: 8 March 2022 / Published online: 27 April 2022 © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract

In recent work, Miezaki introduced the notion of a *spherical T-design* in \mathbb{R}^2 , where *T* is a potentially infinite set. As an example, he offered the \mathbb{Z}^2 -lattice points with fixed integer norm (a.k.a. shells). These shells are *maximal* spherical *T*-designs, where $T = \mathbb{Z}^+ \setminus 4\mathbb{Z}^+$. We generalize the notion of a spherical *T*-design to special ellipses, and extend Miezaki's work to the norm form shells for rings of integers of imaginary quadratic fields with class number 1.

Keywords Modular forms \cdot Combinatorics \cdot Number theory \cdot Spherical t-designs \cdot Hecke eigenforms

Mathematics Subject Classification Primary 11F11 \cdot 11F27 \cdot 11E41; Secondary 05B30 \cdot 11F30

1 Introduction and statement of results

Spherical t-designs were introduced in 1977 by Delsarte, Goethals and Seidel [5], and they have played an important role in algebra, combinatorics, number theory and quantum mechanics (for background see [2–4, 6, 9, 10]). A spherical *t*-design is a nonempty finite set of points on the unit sphere with the property that the average value of any real polynomial of degree $\leq t$ over this set equals the average value over the sphere. Namely, if S^{n-1} denotes the unit sphere in \mathbb{R}^n centered at the origin, then a finite nonempty subset $X \subset S^{n-1}$ is a spherical *t*-design if

$$\frac{1}{|X|} \sum_{x \in X} P(x) = \frac{1}{\text{Vol}(S^{n-1})} \int_{S^{n-1}} P(x) d\sigma(x)$$
(1.1)

Badri Vishal Pandey bp3aq@virginia.edu

¹ Department of Mathematics, University of Virginia, Charlottesville, VA 22904, USA

for all polynomials P(x) of degree $\leq t$. The right-hand side of (1.1) is the usual surface integral over S^{n-1} . In general, a finite nonempty subset X of $S_{n-1}(r)$, the sphere of radius r centered at the origin, is a spherical t-design if $\frac{1}{r}X$ satisfies (1.1). Since a spherical t-design is also a spherical t'-design for all $t' \leq t$, we say that X has *strength* t if it is the maximum of all such numbers.

Delsarte, Goethals and Seidel developed a very simple criterion for determining spherical *t*-designs. This criterion involves *homogeneous harmonic* polynomials of bounded degree. A polynomial in *n* variables is *harmonic* if it is annihilated by the Laplacian operator $\Delta := \sum_{i=1}^{n} \frac{\partial^2}{\partial x_i^2}$, and they showed [5] that $X \subset S^{n-1}$ is a spherical *t*-design if

$$\sum_{x \in X} P(x) = 0 \tag{1.2}$$

for all homogeneous harmonic polynomials P(x) of nonzero degree $\leq t$. This criterion is a consequence of two results from harmonic analysis. The first result is the mean value property for harmonic functions [1,p. 5], which implies that the integral of a harmonic polynomial over a sphere centered at the origin vanishes, combined with the fact that homogeneous polynomials of fixed degree are spanned by certain harmonic polynomials [1,Theorem 5.7].

In view of this framework, it is natural to ask whether there are generalizations of spherical *t*-designs to other curves, surfaces and varieties. Here we consider certain *ellipsoids*¹ in dimension two. To be precise, for square-free $D \ge 1$ we define the norm *r* ellipses

$$C_D(r) := \begin{cases} \{(x, y) \in \mathbb{R}^2 : x^2 + Dy^2 = r\} & \text{if } D \equiv 1, 2 \pmod{4}, \\ \{(x, y) \in \mathbb{R}^2 : x^2 + xy + \frac{1+D}{4}y^2 = r\} & \text{if } D \equiv 3 \pmod{4}. \end{cases}$$
(1.3)

Remark These ellipses arise from certain imaginary quadratic orders.

For $D \equiv 1, 2 \pmod{4}$, we say that a finite nonempty subset $X \subset C_D(r)$ is an *ellipsoidal t-design* if

$$\frac{1}{|X|} \sum_{(x,y)\in X} P(x,y) = \frac{1}{2\pi\sqrt{D}} \int_{C_D(r)} \frac{P(x,y)}{\sqrt{x^2/D^2 + y^2}} d\sigma(x,y)$$
(1.4)

for all polynomials P(x, y) of degree $\leq t$ over \mathbb{R} . For $D \equiv 3 \pmod{4}$, instead we require

$$\frac{1}{|X|} \sum_{(x,y)\in X} P(x,y) = \frac{\sqrt{D}}{\pi} \int_{C_D(r)} \frac{P(x,y)}{\sqrt{20x^2 + (D^2 + 2D + 5)y^2 + (20 + 4D)xy}} d\sigma(x,y).$$
(1.5)

Here the right-hand sides are line integrals. As in the case of spherical *t*-designs, every ellipsoidal *t*-design is also an ellipsoidal t'-design for all $t' \le t$, and the maximum of

¹ We do not use the term *ellipse* to avoid possible confusion that might arise with the term *elliptical*.

all such t's is called the *strength* of X. These definitions coincide with the notion of a spherical t-design when D = 1.

In analogy to Delsarte, Goethals and Seidel, we have a natural criterion for confirming ellipsoidal t-designs. To this end, we consider the 2-dimensional real vector space

$$H_{D,j}^{\mathbb{R}}[x,y] := \begin{cases} \langle \operatorname{Re}(x+\sqrt{-D}y)^j, \operatorname{Im}(x+\sqrt{-D}y)^j \rangle & \text{if } D \equiv 1,2 \pmod{4}, \\ \langle \operatorname{Re}(x+\frac{1+\sqrt{-D}}{2}y)^j, \operatorname{Im}(x+\frac{1+\sqrt{-D}}{2}y)^j \rangle & \text{if } D \equiv 3 \pmod{4}. \end{cases}$$
(1.6)

In terms of these vector spaces of polynomials, we have the following ellipsoidal t-design criterion.

Theorem 1.1 A finite nonempty set $X \subset C_D(r)$ is an ellipsoidal t-design if

$$\sum_{x \in X} P(x, y) = 0$$

for all $P(x, y) \in H_D^{\mathbb{R}}[x, y]$ for all $0 < j \le t$.

Remark (1) Observe that if $X
ightharpoondown S^1$ is a spherical *t*-design, then $Y = \{(x, y/\sqrt{D}) | (x, y) \in X\}
ightharpoondown C_D$ (resp. $Y = \{(x + y/\sqrt{D}, 2y/\sqrt{D} | (x, y) \in X\}
ightharpoondown C_D$) is an ellipsoidal *t*-design for $D \equiv 1, 2 \pmod{4}$ (resp. $D \equiv 3 \pmod{4}$). Therefore, the existence of a spherical *t*-design implies the existence of a corresponding ellipsoidal *t*-design. In fact, there is a one-to-one correspondence between spherical *t*-designs and ellipsoidal *t*-designs. However, the proof of Theorem 1.1 is not a direct consequence because care is required for justifying the role of the vector spaces $H_{D,j}^{\mathbb{R}}[x, y]$.

(2) Since there is one-to-one correspondence between spherical and ellipsoidal t-designs, we get a lower bound [5,p. 2] on the size of ellipsoidal t-design X,

$$|X| \ge t + 1.$$

Recently, Miezaki in [9] introduced a generalization of the notion of spherical *t*-designs. Instead of restricting to polynomials of degree $\leq t$, he considered harmonic polynomials of degree $j \in T \subset \mathbb{N}$, where *T* is a potentially infinite set. The main theorem from [9] gives infinitely many spherical *T*-designs for $T := \mathbb{Z}^+ \setminus 4\mathbb{Z}^+$ in dimension two. Namely, he considered norm *r* shells, integer points on $x^2 + y^2 = r$ for fixed $r \in \mathbb{Z}^+$. He showed that these *r*-shells are spherical *T*-designs. Moreover, these sets have strength *T*, meaning that (1.2) fails if any multiple of 4 is added to *T*. His proof makes use of theta functions arising from complex multiplication by $\mathbb{Z}[i]$.

We generalize Miezaki's work to ellipsoidal *T*-designs. We call $X \subset C_D$ an *ellipsoidal T-design* if the condition in Theorem 1.1 is satisfied for all polynomials in $H_{D,j}^{\mathbb{R}}[x, y]$ with $j \in T$. We say *X* has strength *T* if it is maximal among such sets. For each square-free positive integer *D*, let \mathcal{O}_D be the ring of integers of

 $\mathbb{Q}(\sqrt{-D})$. In particular, this means that

$$\mathcal{O}_D = \begin{cases} \mathbb{Z}[\sqrt{-D}] & \text{if } D \equiv 1, 2 \pmod{4}, \\ \mathbb{Z}[\frac{1+\sqrt{-D}}{2}] & \text{if } D \equiv 3 \pmod{4}. \end{cases}$$
(1.7)

We consider $D \in \{1, 2, 3, 7, 11, 19, 43, 67, 163\}$, the square-free positive integers for which \mathcal{O}_D has class number 1. To make this precise, we define the *norm* r *shells* in $C_D(r)$ by

$$\Lambda_D^r := \mathcal{O}_D \cap C_D(r). \tag{1.8}$$

Generalizing Miezaki's work for D = 1, we obtain the following theorem.

Theorem 1.2 If $D \in \{1, 2, 3, 7, 11, 19, 43, 67, 163\}$, then every non-empty shell Λ_D^r is an ellipsoidal T_D design with strength T_D , where

$$T_D := \begin{cases} \mathbb{Z}^+ \setminus 4\mathbb{Z}^+ & \text{if } D = 1, \\ \mathbb{Z}^+ \setminus 6\mathbb{Z}^+ & \text{if } D = 3, \\ \mathbb{Z}^+ \setminus 2\mathbb{Z}^+ & \text{otherwise.} \end{cases}$$

Remark The method used here seems to be well-poised only for the dimension 2 cases. It would be interesting to obtain higher dimensional analogues.

Example We consider D = 3, and r = 691. Then we have

$$\Lambda_3^{691} = \{ (11, 19), (-11, -19), (19, 11), (-19, -11), \\ (11, -30), (-11, 30), (30, -19), (-30, 19), \\ (30, -11), (-30, 11), (19, -30), (-19, 30) \}.$$

We consider the polynomial $P(x, y) = 2x^2 + 3462xy + 1729y^2 \in H_{3,2}^{\mathbb{R}}[x, y]$, and we find that $\sum_{(x,y)\in\Lambda_3^{691}} P(x, y) = 0$ which shows that Λ_3^{691} is an elliptical 2-design and $2 \in T_3$. On the other hand, Theorem 1.2 implies that Λ_3^{691} is not an ellipsoidal 6-design. To see this we choose $Q(x, y) = 2x^2 + 6x^5y - 15x^4y^2 - 40x^3y^3 - 15x^2y^4 + 6xy^5 + 2y^6 \in H_{3,6}^{\mathbb{R}}(x, y)$, and we find that $\sum_{(x,y)\in\Lambda_3^{691}} Q(x, y) = -4818834696 \neq 0$.

In Sect. 2 we prove Theorem 1.1, criterion for confirming that a set is an ellipsoidal t-design, and in Section 3 we recall the theory of theta functions arising from complex multiplication, and we prove Theorem 1.2.

2 Criterion for ellipsoidal t-design

In this section we prove Theorem 1.1, criterion for confirming ellipsoidal *t*-designs. Throughout this section we assume that $D \ge 1$ is square-free and $j \ge 1$.

To prove that Theorem 1.1 is indeed a criterion for confirming ellipsoidal *t*-designs, we first need to show that the spaces $H_{D,k}^{\mathbb{R}}[x, y]$, for $0 < k \leq j$, generate all the

polynomials of degree $\leq j$ when restricted to $C_D(r)$. It suffices to show this for $P_i^{\mathbb{R}}[x, y]$, the set of homogeneous polynomials of degree j.

Lemma 2.1 If $D \ge 1$ is square-free and $j \ge 1$, then the following are true: (1) If $D \equiv 3 \mod 4$, then we have

$$P_j^{\mathbb{R}}[x, y] = \bigoplus_{k=0}^{\lfloor j/2 \rfloor} (x^2 + Dy^2)^k H_{D, j-2k}^{\mathbb{R}}[x, y].$$

(2) If $D \equiv 3 \mod 4$, then we have

$$P_{j}^{\mathbb{R}}[x, y] = \bigoplus_{k=0}^{\lfloor j/2 \rfloor} \left(x^{2} + xy + \frac{1+D}{4} y^{2} \right)^{k} H_{D, j-2k}^{\mathbb{R}}[x, y].$$

Proof The lemma is well known for homogeneous harmonic polynomials (for example, see [1,Theorem 5.7]). Namely, if $H_k^{\mathbb{R}}[x, y]$ is the set of homogeneous harmonic polynomials of degree k then

$$P_{j}^{\mathbb{R}}(x, y) = \bigoplus_{k=0}^{\lfloor j/2 \rfloor} (x^{2} + y^{2})^{k} H_{j-2k}^{\mathbb{R}}[x, y].$$

We extend it to general *D*. It is well known that $H_j^{\mathbb{R}}[x, y] = \langle \operatorname{Re}(x+iy)^j, \operatorname{Im}(x+iy)^j \rangle$, and so if we do the change of variable for $D \equiv 1, 2 \mod 4$ (resp. $D \equiv 3 \mod 4$), $x' = x, y' = \sqrt{D}y$ (resp. $x' = x + y/2, y' = 2y/\sqrt{D}$), then $H_{j-2}^{\mathbb{R}}(x', y') = \langle \operatorname{Re}(x'+iy')^j, \operatorname{Im}(x'+iy')^j \rangle$ gives

$$P_j^{\mathbb{R}}[x', y'] = \bigoplus_{k=0}^{\lfloor j/2 \rfloor} (x'^2 + y'^2)^k H_{j-2k}^{\mathbb{R}}[x', y'].$$

Therefore, if $D \equiv 1, 2 \mod 4$, then we have

$$P_j^{\mathbb{R}}(x, y) = \bigoplus_{k=0}^{\lfloor j/2 \rfloor} (x^2 + Dy^2)^k H_{D, j-2k}^{\mathbb{R}}[x, y].$$

If $D \equiv 3 \mod 4$, then we have

$$P_j^{\mathbb{R}}(x, y) = \bigoplus_{k=0}^{\lfloor j/2 \rfloor} \left(x^2 + xy + \frac{1+D}{4} y^2 \right)^k H_{D, j-2k}^{\mathbb{R}}[x, y].$$

We now prove Theorem 1.1.

Proof of Theorem 1.1 Lemma 2.1 shows that the set of polynomials when restricted to C_D are generated by the spaces $H_{D,j}^{\mathbb{R}}[x, y]$ since $x^2 + Dy^2 = r$ (resp., $x^2 + xy + \frac{1+D}{4}y^2 = r$) on $C_D(r)$. Therefore, it suffices to show that if $P(x, y) \in H_{D,j}^{\mathbb{R}}[x, y]$, then the following are true:

(1) If $D \equiv 1, 2 \mod 4$, then we have

$$\int_{C_D(r)} \frac{P(x, y)}{\sqrt{x^2/D^2 + y^2}} \mathrm{d}\sigma(x, y) = 0$$

(2) If $D \equiv 3 \mod 4$, then we have

$$\int_{C_D(r)} \frac{P(x, y)}{\sqrt{20x^2 + (D^2 + 2D + 5)y^2 + (20 + 4D)xy}} d\sigma(x, y) = 0$$

As $H_{D,j}^{\mathbb{R}}[x, y]$ is a vector space, it is enough to show these claims for basis vectors. Since $X \subset C_D(r)$ is an ellipsoidal *t*-design if and only if $\frac{1}{r} \subset C_D(1)$ is an ellipsoidal *t*-design, it's enough to consider r = 1. For $D \equiv 1, 2 \pmod{4}$, $H_{D,j}^{\mathbb{R}}[x, y] = \langle \operatorname{Re}(x + \sqrt{-D}y)^j$, $\operatorname{Im}(x + \sqrt{-D}y)^j \rangle$. By the parametrization of $C_D(1) : x^2 + Dy^2 = 1$ as $\gamma := \{(\cos \theta, \sin \theta / \sqrt{D}) | 0 \le \theta \le 2\pi\}$, we have

$$\int_{C_D(1)} \frac{\operatorname{Re}(x + \sqrt{-D}y)^j}{\sqrt{x^2/D^2 + y^2}} d\sigma(x, y)$$

= $\int_0^{2\pi} \frac{\operatorname{Re}(\cos\theta + \sqrt{-D}(\sin\theta/\sqrt{D}))^j}{\sqrt{\cos\theta^2/D^2 + \sin\theta^2/D}} \sqrt{\sin\theta^2 + \cos\theta^2/D} d\theta$
= $\sqrt{D} \int_0^{2\pi} \operatorname{Re}(\cos\theta + i\sin\theta)^j d\theta$
= $\sqrt{D} \int_{S^1} \operatorname{Re}(x + iy)^j dz = 0.$

Since $\operatorname{Re}(x + iy)^j$ is harmonic, the last integral over S^1 is 0.

A similar argument shows that

$$\int_{C_D(1)} \frac{\mathrm{Im}(x + \sqrt{-D}y)^j}{\sqrt{x^2/D^2 + y^2}} \mathrm{d}\sigma(x, y) = 0.$$

If $D \equiv 3 \pmod{4}$, $H_{D,j}^{\mathbb{R}}[x, y] = \langle \operatorname{Re}(x + \frac{1+\sqrt{-D}}{2}y)^j, \operatorname{Im}(x + \frac{1+\sqrt{-D}}{2}y)^j \rangle$. By the parametrization of $C_D(1)$: $x^2 + xy + \frac{1+D}{4}y^2 = 1$ as $\gamma := \{(\cos \theta - y)^j \in (0, 1) \}$. $\sin \theta / \sqrt{D}, 2 \sin \theta / \sqrt{D}) : 0 \le \theta \le 2\pi$ }, we have

$$\begin{split} &\int_{C_D(1)} \frac{\operatorname{Re}(x+(1+\sqrt{-D})y/2)^j}{\sqrt{20x^2+(D^2+2D+5)y^2+(20+4D)xy}} \mathrm{d}\sigma(x,y) \\ &= \int_0^{2\pi} \frac{\operatorname{Re}(\cos\theta - \sin\theta/\sqrt{D} + (1+\sqrt{-D}\sin\theta/\sqrt{D})^j}{\sqrt{4D\sin\theta^2+20\cos\theta^2+8\sqrt{D}\sin\theta\cos\theta}} \\ &\times \sqrt{\sin\theta^2+5\cos\theta^2/D+2\sin\theta\cos\theta/\sqrt{D}} \mathrm{d}\theta \\ &= \frac{1}{2\sqrt{D}} \int_0^{2\pi} \operatorname{Re}(\cos\theta + i\sin\theta)^j \mathrm{d}\theta = \frac{1}{2\sqrt{D}} \int_{S^1} \operatorname{Re}(x+iy)^j \mathrm{d}z = 0. \end{split}$$

A similar argument shows that

$$\int_{C_D(1)} \frac{P(x)}{\sqrt{20x^2 + (D^2 + 2D + 5)y^2 + (20 + 4D)xy}} d\sigma(x, y) = 0.$$

3 Ellipsoidal T-designs

Here we prove Theorem 1.2, the construction of ellipsoidal *T*-designs arising from the ring of integers of imaginary quadratic fields with class number 1. We use the theory of theta functions with complex multiplication. Throughout, we shall assume that $D \in \{1, 2, 3, 7, 11, 19, 43, 67, 163\}$.

3.1 Theta functions

Given an *n*-dimensional lattice Λ and a polynomial P(x) of degree *j* in *n* variables, the theta function of P(x) over the lattice Λ is defined by the Fourier series (note $q := e^{2\pi i z}$)

$$\Theta(\Lambda, P; z) := \sum_{x \in \Lambda} P(x)q^{N(x)} = \Theta(\Lambda, P; z) = \sum_{n=0}^{\infty} a(\Lambda, P, n)q^n, \qquad (3.1)$$

where N(x) is the standard norm in \mathbb{R}^n . The theta functions for $\Lambda_D = \mathcal{O}_D$ play an important role in the study of ellipsoidal *T*-designs. Namely, if $\Theta(\Lambda_D, P; z) = \sum_{r=0}^{\infty} a(\Lambda_D, P, r)q^r$, then

$$a(\Lambda_D, P, r) = \sum_{(x,y)\in\Lambda_D^r} P(x, y).$$
(3.2)

Deringer

The theta function $\Theta(\Lambda_D, P; z) \in \mathcal{M}_k(\Gamma_0(4D), \chi)$, the space of holomorphic modular forms with weight k = j + 1 and nebentypus $\chi(A) = (\frac{-D}{d})$, where $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ [7, Theorem 10.8]. Moreover, $\Theta(\Lambda_D, P; z)$ is a cusp form when j > 0.

To ease the study of these theta function, it is convenient to introduce the following the polynomials for each $j \ge 1$:

$$R_{D,j}(x, y) := \begin{cases} \operatorname{Re}(x + \sqrt{-D}y)^j & \text{if } D \equiv 1, 2 \pmod{4}, \\ \operatorname{Re}(x + \frac{1 + \sqrt{-D}}{2}y)^j & \text{if } D \equiv 3 \pmod{4}, \end{cases}$$
(3.3)

and

$$I_{D,j}(x, y) := \begin{cases} \operatorname{Im}(x + \sqrt{-D}y)^j & \text{if } D \equiv 1, 2 \pmod{4}, \\ \operatorname{Im}(x + \frac{1 + \sqrt{-D}}{2}y)^j & \text{if } D \equiv 3 \pmod{4}. \end{cases}$$
(3.4)

By definition, we have that $H_{D,j}^{\mathbb{R}}[x, y] = \langle R_{D,j}(x, y), I_{D,j}(x, y) \rangle$. In particular, $\Theta(\Lambda_D, R_{D,j}; z)$ and $\Theta(\Lambda_D, I_{D,j}; z)$ are cusp forms. Theorem 1.1 together with the discussion above gives the following lemma which transforms the problem of determining ellipsoidal *T*-designs into the vanishing of certain coefficients of special theta functions.

Lemma 3.1 The norm r shell $\Lambda_D^r = \Lambda_D \cap C_D(r)$ is an ellipsoidal T-design if and only if $a(\Lambda_D, R_{D,j}, r) = 0$ and $a(\Lambda_D, I_{D,j}, r) = 0$ for all $j \in T$.

We require some standard facts from the theory of newforms. Since \mathcal{O}_D has class number 1, each *Hecke character* mod \mathcal{O}_D is defined by its values on principal ideals. Let $(\alpha) \subset \mathcal{O}_D$ be a principal ideal. Let u_D be the number of units in \mathcal{O}_D , namely

$$u_D := \begin{cases} 4 & \text{if } D = 1, \\ 6 & \text{if } D = 3, \\ 2 & \text{otherwise.} \end{cases}$$
(3.5)

For each positive $j_D \equiv 0 \pmod{u_D}$, define Hecke characters mod \mathcal{O}_D by:

$$\zeta_{j_D}((\alpha)) = \left(\frac{\alpha}{|\alpha|}\right)^{j_D}$$

Then by [8,Theorem 4.8.2], we have the following well known lemma about the modular form

$$f_{j_D}(\zeta_{j_D}; z) := \begin{cases} \Theta(\Lambda_D, (x + \sqrt{-D}y)^j; z) & \text{if } D \equiv 1, 2 \pmod{4}, \\ \Theta\left(\Lambda_D, \left(x + \frac{1 + \sqrt{-D}}{2}y\right)^j; z\right) & \text{if } D \equiv 3 \pmod{4} \end{cases}$$

Lemma 3.2 Assuming the notations above, we have

$$f_{j_D}(\zeta_{j_D}; z) = \sum_{(\alpha) \subset \mathcal{O}_D} \zeta_{j_D}((\alpha)) N(\alpha)^{j/2} q^{N(\alpha)} \in \mathcal{S}_{k_D}(\Gamma_0(N), \chi),$$

🖄 Springer

the space of cusp forms of weight $k_D = j_D + 1$ with nebentypus $\chi \pmod{N}$. Here $N := |\Delta_{\mathcal{O}_D}|$, the absolute value of the discriminant of \mathcal{O}_D . Moreover, $f_{j_D}(\zeta_{j_D}; z)$ is a newform.

3.2 Other propositions and lemmas

Recall that $\Lambda_D^r = C_D(r) \cap \mathcal{O}_D$. Using well known facts about the positive definite binary quadratic forms corresponding to class number 1 norm forms, we have the following lemma.

Lemma 3.3 Suppose r is a positive integer. Then Λ_D^r is nonempty if and only if $ord_p(r)$ is even for every prime $p \nmid r$ for which Λ_D^p is nonempty.

Rewriting (3.2), we have

$$a(\Lambda_D, P, r) = \sum_{(x,y)\in\Lambda_D^r} P(x, y).$$
(3.6)

Lemma 3.1 implies that Λ_D^r is an ellipsoidal *T*-design if and only if $a(\Lambda_D, R_{D,j}, r)$ and $a(\Lambda_D, I_{D,j}, r)$ vanish for all $j \in T$. Since Λ_D^r is antipodal (*i.e.* $-\Lambda_D^r = \Lambda_D^r$ for all r), $a(\Lambda_D, R_{D,j}, r)$ and $a(\Lambda_D, I_{D,j}, r)$ are 0 for all $j \in \mathbb{Z}^+ \setminus 2\mathbb{Z}^+$. Therefore, we have that following proposition.

Proposition 3.1 Suppose $r \in \mathbb{Z}^+$ such that Λ_D^r is nonempty. Then Λ_D^r is an ellipsoidal $\mathbb{Z}^+ \setminus 2\mathbb{Z}^+$ -design.

Our objective is to find maximal set T_D for which Λ_D^r is ellipsoidal *T*-design. By proposition above we have that $\mathbb{Z}^+ \setminus 2\mathbb{Z}^+ \subset T_D$. So we only look for all even *j* which can be in T_D .

Proposition 3.2 Suppose $j \equiv 0 \pmod{2}$, and $r \in \mathbb{Z}^+$. Then the following are true: (1) We have that $a(\Lambda_D, I_{D,j}, r) = 0$.

(2) We have that
$$a(\Lambda_D, R_{D,j}, r) = \begin{cases} \sum_{(x_0, y_0) \in \Lambda_D^r} (x + \sqrt{-D}y)^j & \text{if } D \equiv 1, 2 \pmod{4}, \\ \sum_{(x_0, y_0) \in \Lambda_D^r} \left(x + \frac{1 + \sqrt{-D}}{2} y \right)^j & \text{if } D \equiv 3 \pmod{4} \end{cases}$$

Proof Part (2) is an obvious consequence of part (1). So it is enough to prove part(1). The idea is to show that points in Λ_D^r occur in pairs on which value of $I_{D,j}$ cancel. If $D \equiv 1, 2 \pmod{4}$, then $I_{D,j} = \text{Im}(x + \sqrt{-D}y)^j$. In this case $(a, b), (a, -b) \in \Lambda_D^r$ such that $I_{D,j}(a, b) + I_{D,j}(a, -b) = 0$. This is true because each term of $I_{D,j}(x, y)$ has odd power in both the variables x, y. If $D \equiv 3 \pmod{4}$, then $I_{D,j} = \text{Im}(x + \frac{1}{2}y) + \frac{\sqrt{-D}}{2}y)^j$. In this case $(a, b), (a+b, -b) \in \Lambda_D^j$ such that $I_{D,j}(a, b) + I_{D,j}(a+b, -b) = 0$. This is because each term of $I_{D,j}(x, y)$ has odd power in x + y/2, y. \Box

We notice that if $(x_0, y_0) \in \mathcal{O}_D$, then we have

$$\sum_{\alpha_D \in \mathcal{O}_D: |\alpha_D|=1} R_{D,j}(\alpha_D(x_0, y_0)) = R_{D,j}(x_0, y_0) \sum_{\alpha_D \in \mathcal{O}_D: |\alpha_D|=1} \alpha_D^j.$$
(3.7)

🖉 Springer

Proposition 3.3 If $r \ge 1$, $1 \le j \ne 0 \pmod{u_D}$, and Λ_D^r nonempty, then $a(\Lambda_D^r, R_{D,j}, r) = 0$

Proof The idea is that if $(x_0, y_0) \in \Lambda_D^r$ then $\alpha_D(x_0, y_0) \in \Lambda_D^r$ where α_D is a unit in \mathcal{O}_D . Therefore enough to show that the sum in RHS of (3.7) is 0. For D = 1, number of units in \mathcal{O}_D , $u_D = 4$ which are $\{1, -1, i, -i\}$. We have $1^j + (-1)^j + i^j + (-i)^j = 0$. For D = 3, number of units in \mathcal{O}_D , $u_D = 6$ which are $\{\pm 1, \frac{\pm 1 \pm \sqrt{-3}}{2}\}$. A brute force calculation shows the result. For other D, the number of units in \mathcal{O}_D , $u_D = 2$ which are $\{1, -1\}$. For all j odd, $(1)^j + (-1)^j = 0$

From here on we will only consider the theta function $\Theta\left(\Lambda_D, \frac{1}{u_D}R_{D,j}; z\right)$ so let's give its coefficients a shorthand.

$$\Theta\left(\Lambda_D, \frac{1}{u_D} R_{D,j}; z\right) = \sum_{r=0}^{\infty} a(D, j, r) q^r.$$
(3.8)

Proposition 3.2 together with Lemma 3.2 give us that if $j \equiv 0 \pmod{u_D}$, then the theta function $\Theta\left(\Lambda_D, \frac{1}{u_D}R_{D,j}; z\right) \in S_{j+1}(\Gamma_0(N), \chi)$ is a Hecke eigenform. So we have the following lemma.

Lemma 3.4 Suppose $j \in u_D \mathbb{Z}^+$. Then the following is true: (1) If gcd $(r_1, r_2) = 1$ then

$$a(D, j, r_1r_2) = a(D, j, r_1)a(D, j, r_2).$$

(2) For p prime and $\alpha > 0$, we have

$$a(D, j, p^{\alpha}) = a(D, j, p)a(D, j, p^{\alpha-1}) - \chi(p)p^{j}a(D, j, p^{\alpha-2})$$

(3) For p prime and $\alpha > 0$, we have

$$a(D, j, p^{\alpha}) = a(D, j, p)^{\alpha} \pmod{p}$$

Suppose p be a prime such that Λ_D^p be nonempty. Let $(x_p, y_p) \in \Lambda_D^p$ and $j \equiv 0$ (mod u_D). When p = D then it ramifies in \mathcal{O}_D and there are exactly u_D points in Λ_D^p . From (3.7) we have $a(D, j, p) = R_{D,j}(x_p, y_p)$. If $p \neq D$ then it's unramified and we get exactly $2u_D$ solutions. In this case $a(D, j, p) = 2R_{D,j}(x_p, y_p)$.

Lemma 3.5 Suppose $j \in u_D \mathbb{Z}^+$ and p be an odd prime such that Λ_D^p is nonempty. Let $(x_p, y_p) \in \Lambda_D^p$ then $R_{D,j}(x_p, y_p) \neq 0 \pmod{p}$. In particular, a(D, j, p) is non-zero.

Proof We will consider two cases, $D \equiv 1, 2 \pmod{4}$ and $D \equiv 3 \pmod{4}$. Proof is essentially same in both the cases.

If $D \equiv 1, 2 \pmod{4}$ then $p = x_p^2 + Dy_p^2$, in particular $x_p \not\equiv 0 \pmod{p}$. we consider the binomial expansion

$$R_{D,j}(x_p, y_p) = \operatorname{Re}(x_p + \sqrt{-Dy_p})^j$$

= $\frac{1}{2} \sum_{n=0}^{j/2} {j \choose 2n} x_p^{j-2n} (-1)^n (Dy_p^2)^n$
= $\frac{1}{2} \sum_{n=0}^{j/2} {j \choose 2n} x_p^{j-2n} (-1)^n (p - x_p^2)^n$
= $\frac{1}{2} x_p^j \sum_{n=0}^{j/2} {j \choose 2n} \equiv 2^{j-2} x_p^j \neq 0 \pmod{p}$

If $D \equiv 1, 2 \pmod{4}$ then $p = (x_p + y_p/2)^2 + Dy_p^2/4$, in particular $x_p + y_p/2 \neq 0 \pmod{p}$. we consider the binomial expansion

$$R_{D,j}(x_p, y_p) = \operatorname{Re}\left(x_p + y_p/2 + \sqrt{-D}y_p/2\right)^j$$

= $\frac{1}{2} \sum_{n=0}^{j/2} {j \choose 2n} \left(x_p + \frac{y_p}{2}\right)^{j-2n} (-1)^n \left(\frac{Dy_p^2}{4}\right)^n$
= $\frac{1}{2} \sum_{n=0}^{j/2} {j \choose 2n} \left(x_p + \frac{y_p}{2}\right)^{j-2n} (-1)^n \left(p - \left(x_p + \frac{y_p}{2}\right)^2\right)^n$
= $\frac{1}{2} \left(x_p + \frac{y_p}{2}\right)^j \sum_{n=0}^{j/2} {j \choose 2n} \equiv 2^{j-2} \left(x_p + \frac{y_p}{2}\right)^j \neq 0 \pmod{p}$

Proposition 3.4 For prime 2, Λ_D^2 is nonempty only for D = 1, 2, 7. In this case a(D, j, 2) does not vanish for all $j \in 2\mathbb{Z}^+$. Moreover, we have that $a(7, j, 2) \equiv 1 \pmod{2}$

Proof For $D = 1, 2, 2|\Delta_{\mathcal{O}_D}(=-4D)$ so the ideal (2) is ramified in \mathcal{O}_D , in particular there are elements of norm 2. For $D \in \{3, 7, 11, 19, 43, 67, 163\}, 2 \nmid \Delta_{\mathcal{O}_D}(=-D)$. So the ideal (2) is unramified in \mathcal{O}_D . Here we need to check whether 2 splits or not. We have the condition that 2 splits if and only if $-D \equiv 1 \pmod{8}$. Only D = 7 satisfies the condition.

A brute force calculation shows that $a(1, j, 2) = (1 + i)^j \neq 0, a(2, j, 2) = i^j 2^{j+1} \neq 0$, and $a(7, j, 2) = 4\text{Re}\left(\frac{1+\sqrt{-7}}{2}\right)^j \neq 0$.

We prove that $a(7, j, 2) \equiv 1 \pmod{2}$ using induction on even j. First, note that $a(7, 2, 2) = -3 \equiv 1 \pmod{2}$. Now we assume that $a(7, j, 2) \equiv 1 \pmod{2}$, which implies that $\operatorname{Re}\left(\frac{1+\sqrt{-7}}{2}\right)^j = (2k+1)/2$ for some k. The norm of $\left(\frac{1+\sqrt{-7}}{2}\right)^j$ is even,

🖉 Springer

so we get that
$$\operatorname{Im}\left(\frac{1+\sqrt{-7}}{2}\right)^j = \sqrt{7}(2k'+1)/2$$
 for some k'. An easy calculation shows that $a(7, j+2, 2) = -3\operatorname{Re}\left(\frac{1+\sqrt{-7}}{2}\right)^j - \sqrt{7}\operatorname{Im}\left(\frac{1+\sqrt{-7}}{2}\right)^j \equiv 1 \pmod{2}$. \Box

3.3 Proof of Theorem 1.2

Propositions 3.1, 3.2 and 3.3 together imply that $a(\Lambda_D, R_{D,j}, r)$ and $a(\Lambda_D, I_{D,j}, r)$ vanish for all $j \neq 0 \pmod{u_D}$, which implies that every nonempty shell Λ_D^r is an ellipsoidal T_D -design (remember that $T_D = \mathbb{Z}^+ \setminus u_D \mathbb{Z}^+$).

Now we prove the maximality of T_D . We show that $a(D, j, r) \neq 0$ (note that $a(D, j, r) = \frac{1}{u_D}a(\Lambda_D, R_{D,j}, r)$) for all $j \notin T_D$ and Λ_D^r nonempty. By Lemma 3.4, enough to take r to be a prime power. Suppose p be a prime and $\alpha \geq 1$ be such that $\Lambda_D^{p^{\alpha}} \neq \phi$. There are two cases possible, either Λ_D^p is empty or it is not. First suppose Λ_D^p is nonempty. If p is 2 then $a(D, j, 2) \neq 0$ by Proposition 3.4. By part(2) of Lemma 3.4, we have that $a(D, j, 2^{\alpha}) = a(D, j, 2)^{\alpha} \neq 0$ for D = 1, 2 since $\chi(2) = 0$. When D = 7 then part(3) of Lemma 3.4, we have $a(7, j, 2^{\alpha}) \neq 0$. If p is an odd prime, then Lemma 3.5 implies that $a(D, j, p) \neq 0$. Now using part(3) of Lemma 3.4 again, we have $a(D, j, p^{\alpha}) \neq 0$. Suppose Λ_D^p is empty then a(D, j, p) = 0 and Lemma 3.3 implies α is even. Now by part(2) of Lemma 3.5, we get $a(D, j, p^{\alpha}) = p^{j\alpha/2} \neq 0$ (note that this case includes 2 too). So we get that $a(D, j, p^{\alpha}) \neq 0$ whenever $\Lambda_D^{p^{\alpha}}$ is nonempty.

Acknowledgements I would like to thank Prof Ken Ono for suggesting me this problem and guiding through. I also thank Will Craig and Wei-Lun Tsai for reviewing my paper and giving useful comments. I thank Matthew McCarthy for helping me with Sage Math. Lastly, I would like to thank the reviewers for their useful comments.

References

- Axler, S., Bourdon, P., Ramey, W.: Harmonic Function Theory, Graduate Texts in Mathematics, 137. Springer, New York (1992)
- Bannai, E.: Spherical t-designs which are orbits of finite groups. J. Math. Soc. Jpn. 36(2), 341–354 (1984)
- Bannai, E., Okuda, T., Tagami, M.: Spherical designs of harmonic index t. J. Approx. Theory 195, 1–18 (2015)
- Chen, X., Frommer, A., Lang, B.: Computational existence proofs for spherical t-designs. Numer. Math. 117(2), 289–305 (2011)
- Delsarte, P., Goethals, J.M., Seidel, J.J.: Spherical codes and designs. Geom. Dedicata. 6(3), 363–388 (1977)
- Hayashi, A., Hashimoto, T., Horibe, M.: Reexamination of optimal quantum state estimation of pure states. Phys. Rev. A 73, 3 (2005)
- Iwaniec H.: Topics in Classical Automorphic Forms, Graduate Studies in Mathematics, 17. American Mathematical Society, Providence, RI, 1997. xii+259 pp
- Miyake, T.: Modular forms, Translated from the 1976 Japanese original by Yoshitaka Maeda. Springer Monographs in Mathematics. Springer, Berlin (2006)
- 9. Miezaki, T.: On a generalization of spherical designs. Discrete Math. 313(4), 375-380 (2013)

 Seki, G.: On some nonrigid spherical t-designs. Mem. Fac. Sci. Kyushu Univ. Ser. A 46(1), 169–178 (1992)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.