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Abstract
In recent work, Miezaki introduced the notion of a spherical T -design in R

2, where T
is a potentially infinite set. As an example, he offered the Z

2-lattice points with fixed
integer norm (a.k.a. shells). These shells are maximal spherical T -designs, where
T = Z

+ \ 4Z
+. We generalize the notion of a spherical T -design to special ellipses,

and extend Miezaki’s work to the norm form shells for rings of integers of imaginary
quadratic fields with class number 1.

Keywords Modular forms · Combinatorics · Number theory · Spherical t-designs ·
Hecke eigenforms

Mathematics Subject Classification Primary 11F11 · 11F27 · 11E41; Secondary
05B30 · 11F30

1 Introduction and statement of results

Spherical t-designs were introduced in 1977 by Delsarte, Goethals and Seidel [5],
and they have played an important role in algebra, combinatorics, number theory and
quantum mechanics (for background see [2–4, 6, 9, 10]). A spherical t-design is a
nonempty finite set of points on the unit sphere with the property that the average
value of any real polynomial of degree ≤ t over this set equals the average value over
the sphere. Namely, if Sn−1 denotes the unit sphere in R

n centered at the origin, then
a finite nonempty subset X ⊂ Sn−1 is a spherical t-design if

1

|X |
∑

x∈X
P(x) = 1

Vol(Sn−1)

∫

Sn−1
P(x)dσ(x) (1.1)
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for all polynomials P(x) of degree ≤ t . The right-hand side of (1.1) is the usual
surface integral over Sn−1. In general, a finite nonempty subset X of Sn−1(r), the
sphere of radius r centered at the origin, is a spherical t-design if 1

r X satisfies (1.1).
Since a spherical t-design is also a spherical t ′-design for all t ′ ≤ t , we say that X has
strength t if it is the maximum of all such numbers.

Delsarte, Goethals and Seidel developed a very simple criterion for determining
spherical t-designs. This criterion involves homogeneous harmonic polynomials of
bounded degree. A polynomial in n variables is harmonic if it is annihilated by the
Laplacian operator � := ∑n

i=1 ∂2/∂x2i , and they showed [5] that X ⊂ Sn−1 is a
spherical t-design if ∑

x∈X
P(x) = 0 (1.2)

for all homogeneous harmonic polynomials P(x) of nonzero degree≤ t . This criterion
is a consequence of two results from harmonic analysis. The first result is the mean
value property for harmonic functions [1,p. 5], which implies that the integral of a
harmonic polynomial over a sphere centered at the origin vanishes, combined with the
fact that homogeneous polynomials of fixed degree are spanned by certain harmonic
polynomials [1,Theorem 5.7].

In view of this framework, it is natural to ask whether there are generalizations of
spherical t-designs to other curves, surfaces and varieties. Here we consider certain
elli psoids1 in dimension two. To be precise, for square-free D ≥ 1 we define the
norm r ellipses

CD(r) :=
{

{(x, y) ∈ R
2 : x2 + Dy2 = r} if D ≡ 1, 2 (mod 4),

{(x, y) ∈ R
2 : x2 + xy + 1+D

4 y2 = r} if D ≡ 3 (mod 4).
(1.3)

Remark These ellipses arise from certain imaginary quadratic orders.

For D ≡ 1, 2 (mod 4), we say that a finite nonempty subset X ⊂ CD(r) is an
elli psoidal t-design if

1

|X |
∑

(x,y)∈X
P(x, y) = 1

2π
√
D

∫

CD(r)

P(x, y)√
x2/D2 + y2

dσ(x, y) (1.4)

for all polynomials P(x, y) of degree ≤ t over R. For D ≡ 3 (mod 4), instead we
require

1

|X |
∑

(x,y)∈X
P(x, y) =

√
D

π

∫

CD(r)

P(x, y)√
20x2 + (D2 + 2D + 5)y2 + (20 + 4D)xy

dσ(x, y). (1.5)

Here the right-hand sides are line integrals. As in the case of spherical t-designs, every
ellipsoidal t-design is also an ellipsoidal t ′-design for all t ′ ≤ t , and the maximum of

1 We do not use the term elli pse to avoid possible confusion that might arise with the term elli ptical.
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Modular forms and ellipsoidal T -designs 1247

all such t’s is called the strength of X .These definitions coincide with the notion of
a spherical t-design when D = 1.

In analogy to Delsarte, Goethals and Seidel, we have a natural criterion for con-
firming ellipsoidal t-designs. To this end, we consider the 2-dimensional real vector
space

HR

D, j [x, y] :=
{

〈Re(x + √−Dy) j , Im(x + √−Dy) j 〉 if D ≡ 1, 2 (mod 4),

〈Re(x + 1+√−D
2 y) j , Im(x + 1+√−D

2 y) j 〉 if D ≡ 3 (mod 4).
(1.6)

In terms of these vector spaces of polynomials, we have the following ellipsoidal
t-design criterion.

Theorem 1.1 A finite nonempty set X ⊂ CD(r) is an ellipsoidal t-design if

∑

x∈X
P(x, y) = 0

for all P(x, y) ∈ HR

D, j [x, y] for all 0 < j ≤ t .

Remark (1)Observe that if X ⊂ S1 is a spherical t-design, thenY = {(x, y/√D)|(x, y) ∈
X} ⊂ CD (resp. Y = {(x + y/

√
D, 2y/

√
D|(x, y) ∈ X} ⊂ CD) is an ellipsoidal t-

design for D ≡ 1, 2 (mod 4) (resp. D ≡ 3 (mod 4)). Therefore, the existence of
a spherical t-design implies the existence of a corresponding ellipsoidal t-design. In
fact, there is a one-to-one correspondence between spherical t-designs and ellipsoidal
t-designs. However, the proof of Theorem 1.1 is not a direct consequence because
care is required for justifying the role of the vector spaces HR

D, j [x, y].
(2) Since there is one-to-one correspondence between spherical and ellipsoidal

t-designs, we get a lower bound [5,p. 2] on the size of ellipsoidal t-design X ,

|X | ≥ t + 1.

Recently, Miezaki in [9] introduced a generalization of the notion of spherical t-
designs. Instead of restricting to polynomials of degree ≤ t , he considered harmonic
polynomials of degree j ∈ T ⊂ N, where T is a potentially infinite set. The main
theorem from [9] gives infinitely many spherical T -designs for T := Z

+ \ 4Z
+ in

dimension two. Namely, he considered norm r shells, integer points on x2 + y2 = r
for fixed r ∈ Z

+. He showed that these r -shells are spherical T -designs. Moreover,
these sets have strength T , meaning that (1.2) fails if any multiple of 4 is added to T .
His proof makes use of theta functions arising from complex multiplication by Z[i].

We generalize Miezaki’s work to ellipsoidal T -designs. We call X ⊂ CD an
elli psoidal T -design if the condition in Theorem 1.1 is satisfied for all polyno-
mials in HR

D, j [x, y] with j ∈ T . We say X has strength T if it is maximal among
such sets. For each square-free positive integer D, let OD be the ring of integers of
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Q(
√−D). In particular, this means that

OD =
{

Z[√−D] if D ≡ 1, 2 (mod 4),

Z[ 1+
√−D
2 ] if D ≡ 3 (mod 4).

(1.7)

We consider D ∈ {1, 2, 3, 7, 11, 19, 43, 67, 163}, the square-free positive integers for
which OD has class number 1. To make this precise, we define the norm r shells in
CD(r) by

�r
D := OD ∩ CD(r). (1.8)

Generalizing Miezaki’s work for D = 1, we obtain the following theorem.

Theorem 1.2 If D ∈ {1, 2, 3, 7, 11, 19, 43, 67, 163}, then every non-empty shell �r
D

is an ellipsoidal TD design with strength TD, where

TD :=

⎧
⎪⎨

⎪⎩

Z
+ \ 4Z

+ if D = 1,

Z
+ \ 6Z

+ if D = 3,

Z
+ \ 2Z

+ otherwise.

Remark Themethod used here seems to bewell-poised only for the dimension 2 cases.
It would be interesting to obtain higher dimensional analogues.

Example We consider D = 3, and r = 691. Then we have

�691
3 = {(11, 19), (−11,−19), (19, 11), (−19,−11),

(11,−30), (−11, 30), (30,−19), (−30, 19),

(30,−11), (−30, 11), (19,−30), (−19, 30)}.

We consider the polynomial P(x, y) = 2x2 +3462xy+1729y2 ∈ HR

3,2[x, y], and
we find that

∑
(x,y)∈�691

3
P(x, y) = 0 which shows that �691

3 is an elliptical 2-design

and 2 ∈ T3. On the other hand, Theorem 1.2 implies that �691
3 is not an ellipsoidal

6-design.To see this we choose Q(x, y) = 2x2+6x5y−15x4y2−40x3y3−15x2y4+
6xy5+2y6 ∈ HR

3,6(x, y), andwefind that
∑

(x,y)∈�691
3

Q(x, y) = −4818834696 �= 0.

In Sect. 2 we prove Theorem 1.1, criterion for confirming that a set is an ellipsoidal
t-design, and in Section 3 we recall the theory of theta functions arising from complex
multiplication, and we prove Theorem 1.2.

2 Criterion for ellipsoidal t-design

In this section we prove Theorem 1.1, criterion for confirming ellipsoidal t-designs.
Throughout this section we assume that D ≥ 1 is square-free and j ≥ 1.

To prove that Theorem 1.1 is indeed a criterion for confirming ellipsoidal t-designs,
we first need to show that the spaces HR

D,k[x, y], for 0 < k ≤ j , generate all the
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polynomials of degree ≤ j when restricted to CD(r). It suffices to show this for
PR

j [x, y], the set of homogeneous polynomials of degree j .

Lemma 2.1 If D ≥ 1 is square-free and j ≥ 1, then the following are true:
(1) If D ≡ 3 mod 4, then we have

PR

j [x, y] =

 j/2�⊕

k=0

(x2 + Dy2)k HR

D, j−2k[x, y].

(2) If D ≡ 3 mod 4, then we have

PR

j [x, y] =

 j/2�⊕

k=0

(
x2 + xy + 1 + D

4
y2

)k
HR

D, j−2k[x, y].

Proof The lemma is well known for homogeneous harmonic polynomials (for exam-
ple, see [1,Theorem 5.7]). Namely, if HR

k [x, y] is the set of homogeneous harmonic
polynomials of degree k then

PR

j (x, y) =

 j/2�⊕

k=0

(x2 + y2)k HR

j−2k[x, y].

We extend it to general D. It is well known that HR

j [x, y] = 〈Re(x + iy) j , Im(x +
iy) j 〉, and so if we do the change of variable for D ≡ 1, 2 mod 4 (resp. D ≡ 3
mod 4), x ′ = x ,y′ = √

Dy (resp. x ′ = x + y/2,y′ = 2y/
√
D), then HR

j−2(x
′, y′) =

〈Re(x ′ + iy′) j , Im(x ′ + iy′) j 〉 gives

PR

j [x ′, y′] =

 j/2�⊕

k=0

(x ′2 + y′2)k HR

j−2k[x ′, y′].

Therefore, if D ≡ 1, 2 mod 4, then we have

PR

j (x, y) =

 j/2�⊕

k=0

(x2 + Dy2)k HR

D, j−2k[x, y].

If D ≡ 3 mod 4, then we have

PR

j (x, y) =

 j/2�⊕

k=0

(
x2 + xy + 1 + D

4
y2

)k
HR

D, j−2k[x, y].

��
We now prove Theorem 1.1.
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1250 B. V. Pandey

Proof of Theorem 1.1 Lemma 2.1 shows that the set of polynomials when restricted to
CD are generated by the spaces HR

D, j [x, y] since x2 + Dy2 = r (resp., x2 + xy +
1+D
4 y2 = r ) on CD(r). Therefore, it suffices to show that if P(x, y) ∈ HR

D, j [x, y],
then the following are true:

(1) If D ≡ 1, 2 mod 4, then we have

∫

CD(r)

P(x, y)√
x2/D2 + y2

dσ(x, y) = 0.

(2) If D ≡ 3 mod 4, then we have

∫

CD(r)

P(x, y)√
20x2 + (D2 + 2D + 5)y2 + (20 + 4D)xy

dσ(x, y) = 0.

As HR

D, j [x, y] is a vector space, it is enough to show these claims for basis vectors.

Since X ⊂ CD(r) is an ellipsoidal t-design if and only if 1
r ⊂ CD(1) is an ellipsoidal

t-design, it’s enough to consider r = 1. For D ≡ 1, 2 (mod 4), HR

D, j [x, y] = 〈Re(x+√−Dy) j , Im(x + √−Dy) j 〉. By the parametrization of CD(1) : x2 + Dy2 = 1 as
γ := {(cos θ, sin θ/

√
D)|0 ≤ θ ≤ 2π}, we have

∫

CD(1)

Re(x + √−Dy) j√
x2/D2 + y2

dσ(x, y)

=
∫ 2π

0

Re(cos θ + √−D(sin θ/
√
D)) j√

cos θ2/D2 + sin θ2/D

√
sin θ2 + cos θ2/Ddθ

= √
D

∫ 2π

0
Re(cos θ + i sin θ) jdθ

= √
D

∫

S1
Re(x + iy) jdz = 0.

Since Re(x + iy) j is harmonic, the last integral over S1 is 0.
A similar argument shows that

∫

CD(1)

Im(x + √−Dy) j√
x2/D2 + y2

dσ(x, y) = 0.

If D ≡ 3 (mod 4), HR

D, j [x, y] = 〈Re(x + 1+√−D
2 y) j , Im(x + 1+√−D

2 y) j 〉. By
the parametrization of CD(1) : x2 + xy + 1+D

4 y2 = 1 as γ := {(cos θ −
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sin θ/
√
D, 2 sin θ/

√
D) : 0 ≤ θ ≤ 2π}, we have

∫

CD(1)

Re(x + (1 + √−D)y/2) j√
20x2 + (D2 + 2D + 5)y2 + (20 + 4D)xy

dσ(x, y)

=
∫ 2π

0

Re(cos θ − sin θ/
√
D + (1 + √−D sin θ/

√
D) j√

4D sin θ2 + 20 cos θ2 + 8
√
D sin θ cos θ

×
√
sin θ2 + 5 cos θ2/D + 2 sin θ cos θ/

√
Ddθ

= 1

2
√
D

∫ 2π

0
Re(cos θ + i sin θ) jdθ = 1

2
√
D

∫

S1
Re(x + iy) jdz = 0.

A similar argument shows that

∫

CD(1)

P(x)√
20x2 + (D2 + 2D + 5)y2 + (20 + 4D)xy

dσ(x, y) = 0.

��

3 Ellipsoidal T-designs

Here we prove Theorem 1.2, the construction of ellipsoidal T -designs arising from
the ring of integers of imaginary quadratic fields with class number 1. We use the
theory of theta functions with complex multiplication. Throughout, we shall assume
that D ∈ {1, 2, 3, 7, 11, 19, 43, 67, 163}.

3.1 Theta functions

Given an n-dimensional lattice � and a polynomial P(x) of degree j in n variables,
the theta function of P(x) over the lattice � is defined by the Fourier series (note
q := e2π i z)

	(�, P; z) :=
∑

x∈�

P(x)qN (x) = 	(�, P; z) =
∞∑

n=0

a(�, P, n)qn, (3.1)

where N (x) is the standard norm in R
n . The theta functions for �D = OD play

an important role in the study of ellipsoidal T -designs. Namely, if 	(�D, P; z) =∑∞
r=0 a(�D, P, r)qr , then

a(�D, P, r) =
∑

(x,y)∈�r
D

P(x, y). (3.2)
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1252 B. V. Pandey

The theta function	(�D, P; z) ∈ Mk(
0(4D), χ), the space of holomorphic modu-

lar forms with weight k = j +1 and nebentypus χ(A) = (−D
d ), where A =

(a b
c d

)

[7,Theorem 10.8]. Moreover, 	(�D, P; z) is a cusp form when j > 0.
To ease the study of these theta function, it is convenient to introduce the following

the polynomials for each j ≥ 1:

RD, j (x, y) :=
{
Re(x + √−Dy) j if D ≡ 1, 2 (mod 4),

Re(x + 1+√−D
2 y) j if D ≡ 3 (mod 4),

(3.3)

and

ID, j (x, y) :=
{
Im(x + √−Dy) j if D ≡ 1, 2 (mod 4),

Im(x + 1+√−D
2 y) j if D ≡ 3 (mod 4).

(3.4)

By definition, we have that HR

D, j [x, y] = 〈RD, j (x, y), ID, j (x, y)〉. In particular,
	(�D, RD, j ; z) and 	(�D, ID, j ; z) are cusp forms. Theorem 1.1 together with the
discussion above gives the following lemma which transforms the problem of deter-
mining ellipsoidal T -designs into the vanishing of certain coefficients of special theta
functions.

Lemma 3.1 The norm r shell �r
D = �D ∩ CD(r) is an ellipsoidal T -design if and

only if a(�D, RD, j , r) = 0 and a(�D, ID, j , r) = 0 for all j ∈ T .

We require some standard facts from the theory of newforms. Since OD has class
number 1, each Hecke character mod OD is defined by its values on principal ideals.
Let (α) ⊂ OD be a principal ideal. Let uD be the number of units in OD , namely

uD :=

⎧
⎪⎨

⎪⎩

4 if D = 1,

6 if D = 3,

2 otherwise.

(3.5)

For each positive jD ≡ 0 (mod uD), define Hecke characters mod OD by:

ζ jD ((α)) =
( α

|α|
) jD

Then by [8,Theorem 4.8.2], we have the following well known lemma about the
modular form

f jD (ζ jD ; z) :=
⎧
⎨

⎩
	(�D, (x + √−Dy) j ; z) if D ≡ 1, 2 (mod 4),

	
(
�D,

(
x + 1+√−D

2 y
) j ; z

)
if D ≡ 3 (mod 4)

Lemma 3.2 Assuming the notations above, we have

f jD (ζ jD ; z) =
∑

(α)⊂OD

ζ jD ((α))N (α) j/2qN (α) ∈ SkD (
0(N ), χ),
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Modular forms and ellipsoidal T -designs 1253

the space of cusp forms of weight kD = jD + 1 with nebentypus χ (mod N ). Here
N := |�OD |, the absolute value of the discriminant of OD. Moreover, f jD (ζ jD ; z) is
a newform.

3.2 Other propositions and lemmas

Recall that �r
D = CD(r) ∩ OD . Using well known facts about the positive definite

binary quadratic forms corresponding to class number 1 norm forms, we have the
following lemma.

Lemma 3.3 Suppose r is a positive integer. Then�r
D is nonempty if and only if ordp(r)

is even for every prime p � r for which �
p
D is nonempty.

Rewriting (3.2), we have

a(�D, P, r) =
∑

(x,y)∈�r
D

P(x, y). (3.6)

Lemma 3.1 implies that �r
D is an ellipsoidal T -design if and only if a(�D, RD, j , r)

and a(�D, ID, j , r) vanish for all j ∈ T . Since �r
D is antipodal (i .e. −�r

D = �r
D for

all r ), a(�D, RD, j , r) and a(�D, ID, j , r) are 0 for all j ∈ Z
+ \ 2Z

+. Therefore, we
have that following proposition.

Proposition 3.1 Suppose r ∈ Z
+ such that�r

D is nonempty. Then�r
D is an ellipsoidal

Z
+ \ 2Z

+-design.

Our objective is to find maximal set TD for which �r
D is ellipsoidal T -design. By

proposition above we have that Z+ \2Z
+ ⊂ TD . So we only look for all even j which

can be in TD .

Proposition 3.2 Suppose j ≡ 0 (mod 2), and r ∈ Z
+. Then the following are true:

(1)We have that a(�D, ID, j , r) = 0.

(2)Wehave that a(�D, RD, j , r) =
⎧
⎨

⎩

∑
(x0,y0)∈�r

D
(x + √−Dy) j if D ≡ 1, 2 (mod 4),

∑
(x0,y0)∈�r

D

(
x + 1+√−D

2 y
) j

if D ≡ 3 (mod 4)

Proof Part (2) is an obvious consequence of part (1). So it is enough to prove part(1).
The idea is to show that points in �r

D occur in pairs on which value of ID, j cancel. If
D ≡ 1, 2 (mod 4), then ID, j = Im(x + √−Dy) j . In this case (a, b), (a,−b) ∈ �r

D
such that ID, j (a, b) + ID, j (a,−b) = 0. This is true because each term of ID, j (x, y)
has odd power in both the variables x, y. If D ≡ 3 (mod 4), then ID, j = Im((x +
1
2 y)+

√−D
2 y) j . In this case (a, b), (a+b,−b) ∈ �

j
D such that ID, j (a, b)+ ID, j (a+

b,−b) = 0. This is because each term of ID, j (x, y) has odd power in x + y/2, y. ��
We notice that if (x0, y0) ∈ OD, then we have

∑

αD∈OD :|αD |=1

RD, j (αD(x0, y0)) = RD, j (x0, y0)
∑

αD∈OD :|αD |=1

α
j
D. (3.7)
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Proposition 3.3 If r ≥ 1, 1 ≤ j �≡ 0 (mod uD), and �r
D nonempty, then

a(�r
D, RD, j , r) = 0

Proof The idea is that if (x0, y0) ∈ �r
D then αD(x0, y0) ∈ �r

D where αD is a unit in
OD . Therefore enough to show that the sum in RHS of (3.7) is 0. For D = 1, number of
units inOD, uD = 4 which are {1,−1, i,−i}. We have 1 j + (−1) j + i j + (−i) j = 0.

For D = 3, number of units in OD, uD = 6 which are {±1, ±1±√−3
2 }. A brute force

calculation shows the result. For other D, the number of units in OD, uD = 2 which
are {1,−1}. For all j odd, (1) j + (−1) j = 0 ��

From here on we will only consider the theta function 	
(
�D, 1

uD
RD, j ; z

)
so let’s

give its coefficients a shorthand.

	
(
�D,

1

uD
RD, j ; z

)
=

∞∑

r=0

a(D, j, r)qr . (3.8)

Proposition 3.2 together with Lemma 3.2 give us that if j ≡ 0 (mod uD), then the

theta function 	
(
�D, 1

uD
RD, j ; z

)
∈ S j+1(
0(N ), χ) is a Hecke eigenform. So we

have the following lemma.

Lemma 3.4 Suppose j ∈ uDZ
+. Then the following is true:

(1) If gcd (r1, r2) = 1 then

a(D, j, r1r2) = a(D, j, r1)a(D, j, r2).

(2) For p prime and α > 0, we have

a(D, j, pα) = a(D, j, p)a(D, j, pα−1) − χ(p)p ja(D, j, pα−2).

(3) For p prime and α > 0, we have

a(D, j, pα) = a(D, j, p)α (mod p).

Suppose p be a prime such that �
p
D be nonempty. Let (xp, yp) ∈ �

p
D and j ≡ 0

(mod uD). When p = D then it ramifies in OD and there are exactly uD points in
�

p
D . From (3.7) we have a(D, j, p) = RD, j (xp, yp). If p �= D then it’s unramified

and we get exactly 2uD solutions. In this case a(D, j, p) = 2RD, j (xp, yp).

Lemma 3.5 Suppose j ∈ uDZ
+ and p be an odd prime such that �

p
D is nonempty.

Let (xp, yp) ∈ �
p
D then RD, j (xp, yp) �≡ 0 (mod p). In particular, a(D, j, p) is

non-zero.

Proof We will consider two cases, D ≡ 1, 2 (mod 4) and D ≡ 3 (mod 4). Proof is
essentially same in both the cases.
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If D ≡ 1, 2 (mod 4) then p = x2p + Dy2p, in particular xp �≡ 0 (mod p). we
consider the binomial expansion

RD, j (xp, yp) = Re(xp + √−Dyp)
j

= 1

2

j/2∑

n=0

(
j

2n

)
x j−2n
p (−1)n(Dy2p)

n

= 1

2

j/2∑

n=0

(
j

2n

)
x j−2n
p (−1)n(p − x2p)

n

≡ 1

2
x j
p

j/2∑

n=0

(
j

2n

)
≡ 2 j−2x j

p �≡ 0 (mod p)

If D ≡ 1, 2 (mod 4) then p = (xp + yp/2)2 + Dy2p/4, in particular xp + yp/2 �≡ 0
(mod p). we consider the binomial expansion

RD, j (xp, yp) = Re
(
xp + yp/2 + √−Dyp/2

) j

= 1

2

j/2∑

n=0

(
j

2n

)(
xp + yp

2

) j−2n
(−1)n

(Dy2p
4

)n

= 1

2

j/2∑

n=0

(
j

2n

)(
xp + yp

2

) j−2n
(−1)n

(
p −

(
xp + yp

2

)2)n

≡ 1

2

(
xp + yp

2

) j
j/2∑

n=0

(
j

2n

)
≡ 2 j−2

(
xp + yp

2

) j �≡ 0 (mod p)

��

Proposition 3.4 For prime 2, �2
D is nonempty only for D = 1, 2, 7. In this case

a(D, j, 2) does not vanish for all j ∈ 2Z
+. Moreover, we have that a(7, j, 2) ≡ 1

(mod 2)

Proof For D = 1, 2, 2|�OD (= −4D) so the ideal (2) is ramified inOD , in particular
there are elements of norm 2. For D ∈ {3, 7, 11, 19, 43, 67, 163}, 2 � �OD (= −D).
So the ideal (2) is unramified in OD . Here we need to check whether 2 splits or not.
We have the condition that 2 splits if and only if −D ≡ 1 (mod 8). Only D = 7
satisfies the condition.

A brute force calculation shows that a(1, j, 2) = (1 + i) j �= 0, a(2, j, 2) =
i j2 j+1 �= 0, and a(7, j, 2) = 4Re

(
1+√−7

2

) j �= 0.

We prove that a(7, j, 2) ≡ 1 (mod 2) using induction on even j . First, note that
a(7, 2, 2) = −3 ≡ 1 (mod 2). Now we assume that a(7, j, 2) ≡ 1 (mod 2), which

implies that Re
(
1+√−7

2

) j = (2k + 1)/2 for some k. The norm of
(
1+√−7

2

) j
is even,

123



1256 B. V. Pandey

so we get that Im
(
1+√−7

2

) j = √
7(2k′ +1)/2 for some k′. An easy calculation shows

that a(7, j + 2, 2) = −3Re
(
1+√−7

2

) j − √
7Im

(
1+√−7

2

) j ≡ 1 (mod 2). ��

3.3 Proof of Theorem 1.2

Propositions 3.1, 3.2 and 3.3 together imply that a(�D, RD, j , r) and a(�D, ID, j , r)
vanish for all j �≡ 0 (mod uD), which implies that every nonempty shell �r

D is an
ellipsoidal TD-design (remember that TD = Z

+ \ uDZ
+).

Now we prove the maximality of TD . We show that a(D, j, r) �= 0 (note that
a(D, j, r) = 1

uD
a(�D, RD, j , r)) for all j /∈ TD and �r

D nonempty. By Lemma 3.4,
enough to take r to be a prime power. Suppose p be a prime and α ≥ 1 be such that
�

pa

D �= φ. There are two cases possible, either �
p
D is empty or it is not. First suppose

�
p
D is nonempty. If p is 2 then a(D, j, 2) �= 0 by Proposition 3.4. By part(2) of Lemma

3.4, we have that a(D, j, 2α) = a(D, j, 2)α �= 0 for D = 1, 2 since χ(2) = 0. When
D = 7 then part(3) of Lemma 3.4, we have a(7, j, 2α) �= 0. If p is an odd prime, then
Lemma 3.5 implies that a(D, j, p) �= 0. Now using part(3) of Lemma 3.4 again, we
have a(D, j, pα) �= 0. Suppose �

p
D is empty then a(D, j, p) = 0 and Lemma 3.3

implies α is even. Now by part(2) of Lemma 3.5, we get a(D, j, pα) = p jα/2 �= 0
(note that this case includes 2 too). So we get that a(D, j, pα) �= 0 whenever �

pα

D is
nonempty.
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