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Abstract
The q-Pólya urn is a q-analog of the Pólya urn and is a model of ball extraction from
an urn with balls of two colors, A and B. Balls of color B have priority to be picked
over those of color A. We prove that, in an infinite sequence of extractions, almost
surely, the number of balls of color A that are picked has a finite limit and we identify
its distribution. Then we prove functional limit theorems for the number of balls of
color A extracted. The limit is either a pure birth process or a diffusion, depending on
the initial composition of the urn. Finally, we discuss basic results for the q-Pólya urn
with more than two colors.
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1 Introduction and results

The Pólya urn This is the model where in an urn that has initially a finite number
of white and black balls we draw, successively and uniformly at random, a ball from
it and then we return the ball back together with k balls of the same color as the one
drawn. The number k ∈ N

+ is fixed.
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70 D. Cheliotis, D. Kouloumpou

Standard references for the theory and the applications of Pólya urn and related
models are [14,17].

The q-Pólya urn This is a q-analog of the Pólya urn (see [10,15] for more on
q-analogs) introduced in [16] and studied further in [4] (see also [5]).

A q-analog of a mathematical object A is another object A(q) so that when q → 1,
A(q) “tends” to A. Take q ∈ (0,∞)\{1}. The q-analog of any x ∈ C is defined as

[x]q := qx − 1

q − 1
. (1)

Note that limq→1[x]q = x .
Now consider an urn that contains a finite number of white and black balls. We

perform a sequence of additions of balls to the urn according to the following rule. If at
a given time the urn contains A1 white and A2 black balls (A1, A2 ∈ N, A1+ A2 > 0),
then we add k white balls with probability

Pq(white) = [A1]q
[A1 + A2]q . (2)

Otherwise, we add k black balls, and this has probability

Pq(black) = 1 − Pq(white) = q A1
[A2]q

[A1 + A2]q . (3)

This stochastic process we call q-Pólya urn. To understand how it works, it helps to
realize the probabilities Pq(white), Pq(black) through the following experiment.

If q ∈ (0, 1), then we put the balls in a line with the A1 white coming first and the
A2 black following. To pick a ball, we go through the line, starting from the beginning
and picking each ball with probability 1−q independently of what happened with the
previous balls. If we finish the line without picking a ball, we start from the beginning.
Once we pick a ball, we return it to its position together with k balls of the same color.
Given these rules, the probability of picking a white ball is

(1 − q A1)

∞∑

j=0

(q A1+A2) j = 1 − q A1

1 − q A1+A2
= [A1]q

[A1 + A2]q , (4)

which is (2), because before picking a white ball, we will go through the entire list a
random number of times, say j , without picking any ball and then, going through the
white balls, we pick one (probability 1 − q A1 ).

If q > 1, we place in the line first the black balls and we go through the list
picking each ball with probability 1 − q−1. According to the above computation, the
probability of picking a black ball is
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Limit behavior of the q-Pólya urn 71

[A2]q−1

[A1 + A2]q−1
= q A1

[A2]q
[A1 + A2]q ,

which is (3).
We extend the notion of drawing a ball from a q-Pólya urn to the case where

exactly one of A1, A2 is infinity. Then the probability to pick a white (resp. black)
ball is determined again by (2) (resp. (3)), where this is understood as the limit of the
right hand side as A1 or A2 goes to ∞. For example, assuming that A1 = ∞ and
A2 ∈ N, we have Pq(white) = 1 if q < 1 and Pq(white) = q−A2 if q > 1. Again
these probabilities are realized through the experiment described above. Thus, we can
run the process even if we start with an infinite number of balls from one color and
finite from the other.

Consider now a q-Pólya urn having A1(0), A2(0) white and black balls, respec-
tively, and start an infinite sequence of drawings. For n ∈ N

+, denote by A1(n), A2(n)

the numbers of white and black balls, respectively, after n drawings.
We want to study two aspects of the asymptotic behavior of the sequence {A1(n)}n∈N.

(1) The first concerns the limit, in any sense, of A1(n) properly normalized. In the
Pólya urn, if we keep the same notation, the following convergence in distribution

is a well-known fact: A1(n)
A1(n)+A2(n)

d→ Beta (A1(0)/k, A2(0)/k) as n → ∞. For
the q–Pólya urn, things are less exciting. If q > 1, after some point, we will be
drawing only black balls, and consequently A1(n) becomes eventually (a random)
constant A1(∞). We identify the distribution of A1(∞). By the above discussion,
this answers the case q ∈ (0, 1) too. Then, it is A2(n) that becomes eventually
constant.

(2) The second concerns the entire path {A1(n)}n∈N. Is it possible, by applying appro-
priate, natural transformations, to get convergence to a stochastic process? That
is, an analogous result to Donsker’s theorem for simple symmetric random walk
in Z. For the Pólya urn, this question has been investigated in the works [3,7] .

The results concerning these two points are exhibited in the following two subsec-
tions.

1.1 Basic results for the q-Pólya urn

We recall some notation from q-calculus (see [5,15]). For q ∈ (0,∞)\{1}, x ∈ C, k ∈
N

+, we define

[x]q := qx − 1

q − 1
the q-number of x, (5)

[k]q ! := [k]q [k − 1]q · · · [1]q the q-factorial, (6)

[x]k,q := [x]q [x − 1]q · · · [x − k + 1]q the q-factorial of order k, (7)
[
x

k

]

q
:= [x]k,q

[k]q ! the q-binomial coefficient, (8)
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72 D. Cheliotis, D. Kouloumpou

(x; q)∞ :=
∞∏

i=0

(1 − xqi ) when q ∈ [0, 1) the q-Pochhammer symbol. (9)

We extend these definitions in the case k = 0 by letting [0]q ! = 1, [x]0,q = 1.
Now consider a q-Pólya urn that has initially A1 white and A2 black balls, where

A1 ∈ N ∪ {∞} and A2 ∈ N. Call H1(n) the number of drawings that give white ball
in the first n drawings. Its distribution is specified by the following.

Fact 1 Let Â1 := A1/k and Â2 := A2/k.

(i) If A1 ∈ N, then the probability mass function of H1(n) is

P (H1(n) = x) = qk(n−x)( Â1+x)

[− Â1
x

]
q−k

[− Â2
n−x

]
q−k

[− Â1− Â2
n

]
q−k

(10)

= q−A2x

[ Â1+x−1
x

]
q−k

[ Â2+n−x−1
n−x

]
q−k

[ Â1+ Â2+n−1
n

]
q−k

(11)

= q−kx( Â2+n−x)

[− Â1
x

]
qk

[− Â2
n−x

]
qk

[− Â1− Â2
n

]
qk

(12)

for all x ∈ {0, 1, . . . , n}.
(ii) If A1 = ∞ and q > 1, then the probability mass function of H1(n) is

P (H1(n) = x) =
[
n

x

]

q−k
q−A2x

n−x∏

j=1

(1 − q−A2(q−k) j−1) (13)

for all x ∈ {0, 1, . . . , n}. This is the probability mass function of the q-binomial
distribution of the second kind with parameters n, q−A2 , q−k (see Theorem 3.2
in [5]). If A1 = ∞ and q ∈ (0, 1), then P(H1(n) = n) = 1 obviously.

Relation (10) is (3.2) in [4], where it is proved through recursion. In Sect. 2 we give
an alternative proof.

According to the experiment described in Sect. 1, the balls that are placed first in
the line have an advantage to be picked (the white if q ∈ (0, 1), the black if q > 1). In
fact, this leads to the extinction of drawings from the balls of the other color; there is
a point after which the number of balls in the urn of that color stays fixed to a random
number. In the next theorem, we identify the distribution of this number. We treat the
case q > 1.

Theorem 1 (Extinction of the second color) Assume that q > 1, A1 ∈ N∪{∞}, A2 ∈
N. With probability one, as n → ∞, {H1(n)}n≥1 converges to a random variable
H1(∞) with values in N and probability mass function
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Limit behavior of the q-Pólya urn 73

(i)

f (x) =
[ A1

k + x − 1

x

]

q−k
q−A2x (q−A2; q−k)∞

(q−A1−A2; q−k)∞
(14)

for all x ∈ N in the case A1 ∈ N and
(ii)

f (x) =
(

q−A2

1 − q−k

)x
1

[x]q−k ! (q
−A2; q−k)∞ (15)

for all x ∈ N in the case A1 = ∞.

When A1 ∈ N, the random variable H1(∞) has the negative q-binomial distribution
of the second kind with parameters A1/k, q−A2 , q−k . We recall here that for ν ∈
(0,∞), θ ∈ (0, 1), and q ∈ (0, 1), the function f : R → [0,∞) with

f (x) =
[
ν + x − 1

x

]

q
θ x (θ; q)∞

(θqν; q)∞
(16)

for x ∈ N and f (x) = 0 for x ∈ R\N defines the probability mass function of
a distribution with support N ( f sums to 1 due to the q-binomial theorem, relation
(1.3.2) in [10]). We call this distribution negative q-binomial of the second kind with
parameters ν, θ, q (see §3.1 of [5]). When ν ∈ N

+, formula (16) simplifies to

f (x) =
[
ν + x − 1

x

]

q
θ x

ν∏

j=1

(1 − θq j−1). (17)

When A1 = ∞, H1(∞) has the Euler distribution with parameters q−A2/(1 −
q−k), q−k (see §3.3 in [5] again).

1.2 Functional scaling limits

Consider a q-Pólya urn whose initial composition depends on m ∈ N
+. That is, it

has A(m)
1 (0), A(m)

2 (0) white and black balls, respectively. Start an infinite sequence of

drawings and for n ∈ N
+, denote by A(m)

1 (n), A(m)
2 (n) the numbers of white and black

balls, respectively, after n drawings.
To see a new process arising out of the path of {A(m)

1 (n)}n≥0, we start with an initial

number of balls that tends to infinity as m → ∞. We assume that A(m)
2 (0) grows

linearly with m. Regarding A(m)
1 (0), we study three regimes:

(a) A(m)
1 (0) stays fixed with m.

(b) A(m)
1 (0) grows to infinity but sublinearly with m.

(c) A(m)
1 (0) grows linearly with m.
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74 D. Cheliotis, D. Kouloumpou

The regime where A(m)
1 (0) grows superlinearly with m follows from regime b) by

changing the roles of the two colors. We remark on this after Theorem 3.
The other parameter that we have to tune is q. If q is kept fixed, then:

(i) if q > 1, then nothing interesting happens because the assumption
limm→∞ A(m)

2 (0) = ∞ implies that the process {A(m)
1 (n)}n≥0 converges (as

m → ∞) to the one that never increases (we always pick a black ball) and
(ii) if q < 1, then in the scenario limm→∞ A(m)

1 (0) = ∞ the situation is analogous to

(i) while in the scenario that A(m)
1 (0) stays fixed withm the process {A(m)

1 (n)}n≥0
converges (as m → ∞) to the q-Polya urn with A2 = ∞.

Interesting limits appear once we take q = qm to depend on m and approach 1 as
m → ∞. We study the case that qm > 1 and the distance of qm from 1 is Θ(1/m)

and remark on the case that the distance is o(1/m).
In the regimes (a) and (b), the scarcity of white balls has as a result that the time

between two consecutive drawings of awhite ball is large.We expect then that speeding
up time by an appropriate factor we will see a birth process. And indeed this is the
case as our first two theorems show.

All processes appearing in this work with index set [0,∞) and values in some
Euclidean space Rd are elements of DRd [0,∞), the space of functions f : [0,∞) →
R
d that are right continuous and have limits from the left at each point of [0,∞). This

space is endowed with the Skorokhod topology (defined in §5 of Chapter 3 of [9]), and
convergence in distribution of processes with values on that space is defined through
that topology.

We remind the reader that the negative binomial distribution with parameters ν ∈
(0,∞) and p ∈ (0, 1) is the distribution with support in N and probability mass
function

f (x) =
(

ν + x − 1

x

)
pν(1 − p)x (18)

for all x ∈ N. When ν ∈ N
+, this is the distribution of the number of failures until we

obtain the ν-th success in a sequence of independent trials, each having probability of
success p. For a random variable X with this distribution, we write X ∼ N B(ν, p).

In all results of this subsectionwe assume that the parameter of the urn is qm = c1/m

with c > 1.

Theorem 2 Fix w0 ∈ N
+ and b > 0. If A(m)

1 (0) = w0 for all m ∈ N
+ and

limm→∞ A(m)
2 (0)/m = b, then, as m → ∞, the process (k−1{A(m)

1 ([mt]) −
A(m)
1 (0)})t≥0 converges in distribution to an inhomogeneous in time pure birth process

Z with Z(0) = 0 and such that for all 0 ≤ t1 < t2, j ∈ N, the random variable

Z(t2) − Z(t1)|Z(t1) = j has distribution N B
(w0

k
+ j,

1 − c−b−kt1

1 − c−b−kt1

)
.
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Limit behavior of the q-Pólya urn 75

In particular, Z has rates

λt, j = w0 + jk

cb+kt − 1
log c (19)

for all (t, j) ∈ [0,∞) × N.

Theorem 3 Assume that A(m)
1 (0) = gm and limm→∞ A(m)

2 (0)/m = b, where b ∈
(0,∞) and gm ∈ N

+, gm → ∞, gm = o(m) as m → ∞. Then, as m → ∞, the
process

(k−1{A(m)
1 ([tm/gm]) − A(m)

1 (0)})t≥0

converges in distribution to the Poisson process on [0,∞) with rate

log c

cb − 1
. (20)

We return to the discussion at the beginning of the subsection. The regime where
limm→∞ A(m)

2 (0)/m = b > 0 and A(m)
1 (0)/m → ∞ is covered by the previous

theorem. We need to change the roles of the colors and remark that the role of m as a
scaling parameter is played now by am := A(m)

1 (0). The result that we obtain is that
in the q-Pólya urn with qm := c1/am and c > 1, the process

1

k

(
A(m)
2 ([tam/(bm)]) − A(m)

2 (0)
)

t≥0

converges in distribution, as m → ∞, to the Poisson process on [0,∞) with rate
(log c)/(c − 1).

Theorem 4 Assume that A(m)
1 (0), A(m)

2 (0) are such that limm→∞ A(m)
1 (0)/m = a,

limm→∞ A(m)
2 (0)/m = b, where a, b ∈ [0,∞) are not both zero. Then, as m → +∞,

the process
(
A(m)
1 ([mt])/m

)

t≥0
converges in distribution to the unique solution of the

differential equation

X0 = a, (21)

dXt = k
1 − cXt

1 − ca+b+kt
dt, (22)

which is

Xt := a − 1

log c
log

(
cb − 1 + c−kt (1 − c−a)

cb − c−a

)
(23)

for all t ≥ 0.
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Next, we determine the fluctuations of the process (A(m)
1 ([mt])/m)t≥0 around its

m → ∞ limit, X . Let

C (m)
t = √

m

(
A(m)
1 ([mt])

m
− Xt

)
(24)

for all m ∈ N
+ and t ≥ 0.

Theorem 5 Let a, b ∈ [0,∞), not both zero, θ1, θ2 ∈ R, and assume that A(m)
1 (0) :=

[am+ θ1
√
m], A(m)

2 (0) = [bm+ θ2
√
m] for all large m ∈ N. Then, as m → +∞, the

process (C (m)
t )t≥0 converges in distribution to the unique solution of the stochastic

differential equation

Y0 = θ1,

dYt = k log c

ca+b+kt − 1

{
(ca+b − 1)Yt − cb(ca − 1)(θ1 + θ2)

cb − 1 + c−kt (1 − c−a)

}
dt

+ k
√

(ca − 1)(cb − 1)
c(a+kt)/2

ca+b+kt − ca+kt + ca − 1
dWt ,

(25)

which is

Yt = ca+b+kt − 1

ca+b+kt − ca+kt + ca − 1

(
θ1 − (θ1 + θ2)

ca+b(ca − 1)

ca+b − 1

ckt − 1

ca+b+kt − 1

+ k
√

(ca − 1)(cb − 1)
∫ t

0

c(a+kt)/2

ca+b+kt − 1
dWs

) (26)

for all t ≥ 0. W is a standard Brownian motion

Remark If we assume that q = q(m) := cεm/m where c > 1 and εm → 0+ as
m → ∞, then q = 1 + o(m−1). With computations analogous to those of the results
of the previous subsection, it is easy to see that the limits of the processes considered
in all theorems of this subsection coincide with those in the case of the plain Pólya
urn (i.e., when q = 1), which are described in the work [7]. Of course, in (24), the
role of Xt will be played by the limit one gets from the analogous to Theorem 4.

1.3 q-Pólya urn withmany colors

In this paragraph, we give a q-analog for the Pólya urn with more than two colors. The
way to do the generalization is inspired by the experiment we used in order to explain
relation (2).

Let l ∈ N, l ≥ 2, and q ∈ (0, 1). Assume that we have an urn containing Ai balls
of color i for each i ∈ {1, 2, . . . , l}. To draw a ball from the urn, we do the following.
We order the balls in a line, first those of color 1, then those of color 2, and so on.
Then we visit the balls, one after the other, in the order that they have been placed,
and we select each with probability 1 − q independently of what happened with the
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Limit behavior of the q-Pólya urn 77

previous balls. If we go through all balls without picking any, we repeat the same
procedure starting from the beginning of the line. Once a ball is selected, the drawing
is completed. We return the ball to its position together with another k of the same
color. For each i = 0, 1, . . . , l, let si = ∑

1≤ j≤i A j . Notice that sl is the total number
of balls in the urn. Then, working as for (4), we see that

P(color i is drawn) = qsi−1
1 − q Ai

1 − qsl
= qsi−1 − qsi

1 − qsl
= qsi−1

[Ai ]q
[sl ]q . (27)

Call pi the number in the last display for all i = 1, 2, . . . , l. Note that when q → 1,
pi converges to Ai/sl , which is the probability for the usual Pólya urn with l colors.
It is clear that for any given q ∈ (0,∞)\{1}, the numbers p1, p2, . . . , pl are non-
negative and add to 1 (the second fraction in (27) shows this). We define then for this
q the q-Pólya urn with colors 1, 2, . . . , l to be the sequential procedure in which, at
each step, we add k balls of a color picked randomly among {1, 2, . . . , l} so that the
probability that this color is i is pi .

When q > 1, these probabilities come out of the experiment described above but
in which we place the balls in reverse order (that is, first those of color l, then those of
color l − 1, and so on) and we go through the list selecting each ball with probability
1 − q−1. It is then easy to see that the probability to pick a ball of color i is pi .

Theorem 6 Assume that q ∈ (0, 1) and that we start with A1, A2, . . . , Al balls from
colors 1, 2, . . . , l respectively, where A1, A2, . . . , Al ∈ N are not all zero. Call Hi (n)

the number of times in the first n drawings that we picked color i . The probability
mass function for the vector (H2(n), H3(n), . . . , Hl(n)) is

P (H2(n) = x2, . . . , Hl(n) = xl) = q
∑l

i=2 xi
∑i−1

j=1(A j+kx j)

∏l
i=1

[− Ai
k

xi

]
q−k

[− A1+A2 ...+Al
k
n

]
q−k

(28)

=
[

n

x1, x2, . . . , xl

]

q−k

q
∑l

i=2 xi
∑i−1

j=1(A j+kx j) ∏l
i=1

[
− Ai

k

]

xi ,q−k
[
− A1+A2+...+Al

k

]

n,q−k

(29)

for all x2, . . . , xl ∈ {0, 1, 2, . . . , n} with x2 + · + xl ≤ n, where x1 := n − ∑l
i=2 xi

and
[ n
x1,x2,...,xl

]
q−k := [n]q−k !

[x1]q−k !·...·[xl ]q−k ! is the q-multinomial coefficient.

This theorem has also been derived in [6] (Theorem 3.1 of that work) with a different
proof than ours, based on a recursion relation.

It follows from Theorem 1 that when q ∈ (0, 1), after some random time, we will
be picking only balls of color 1. So that the number of times, say Hi , that we pick color
i , where i = 2, 3, . . . , l, is finite. The next theorem identifies the joint distribution of
H2, H3, . . . , Hl .

Theorem 7 Under the assumptions of Theorem 6, with probability one, as n → +∞,

the vector (H2(n), H3(n), . . . , Hl(n)) converges to a randomvector (H2(∞), H3(∞),
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78 D. Cheliotis, D. Kouloumpou

. . . , Hl(∞)) with values in Nl−1 and probability mass function

f (x2, x3, . . . , xl) = q
∑l

i=2 xi
∑i−1

j=1 A j

l∏

i=2

[
xi + Ai

k − 1

xi

]

qk

(q A1; qk)∞
(q A1+···+Al ; qk)∞ (30)

for all x2, . . . , xl ∈ N.

Note that the random variables H2(∞), . . . , Hl(∞) are independent although
(H2(n), H3(n), . . . , Hl(n)) are dependent.

Next, we look for a scaling limit for the path of the process. For each m ∈ N
+, we

consider a q-Pólya urn with initial composition (A(m)
1 (0), A(m)

2 (0), . . . , A(m)
l (0)) and

qm that will be specified below. Let A(m)
i ( j) be the number of balls of color i in this

urn after j drawings.

Theorem 8 Assume that c ∈ (0, 1), qm = c1/m for all m ∈ N
+, and

1

m

(
A(m)
1 (0), A(m)

2 (0), . . . , A(m)
l (0)

)
m→∞→ (a1, a2, . . . , al) ,

where a1, . . . , al ∈ [0,∞) are not all zero. Set σ0 = 0 and σi := ∑
j≤i a j for all

i = 1, 2, . . . , l. Then the process 1
m

(
A(m)
1 ([mt]), A(m)

2 ([mt]), . . . , A(m)
l ([mt])

)

t≥0
converges in distribution, as m → +∞, to (Xt,1, Xt,2, . . . , Xt,l)t≥0 with

Xt,i = ai + 1

log c
log

(1 − cσl+kt ) − cσi−1(1 − ckt )

(1 − cσl+kt ) − cσi (1 − ckt )
(31)

for all i = 1, 2, . . . , l.

Theorem 9 Assume that c ∈ (0, 1), qm = cεm/m for allm ∈ N
+ with limm→∞ εm = 0,

and

1

m

(
A(m)
0,1 , A(m)

0,2 , . . . , A(m)
0,l

)
m→∞→ (a1, a2, . . . , al) ,

where a1, . . . , al ∈ [0,∞) are not all zero. Then the process 1
m

(
A(m)

[mt],1, A
(m)
[mt],2,…,

A(m)
[mt],l

)
t≥0 converges in distribution, as m → +∞, to (Xt )t≥0 with

Xt =
(
1 + kt

a1 + · · · + al

)
(a1, a2, . . . , al) (32)

for all t ≥ 0.

Remark Discussing this preprint with Prof. Ch. Charalambides, wewere informed that
he considered this q-Pólya urn with many colors in a work that was then in progress
and now has appeared [6]. That work studies other aspects of the urn, and the only
common result with the present work is Theorem 6.
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Orientation. In Sect. 2, we prove Fact 1 and Theorem 1, which are basic results for
the q-Pólya urn. Section 3 (Sect. 4) contains the proofs of the theorems that give
convergence to a jump process (to a continuous process). Finally, Sect. 5 contains
the proofs for the results that refer to the q-Pólya urn with arbitrary, finite number of
colors.

2 Prevalence of a single color

In this section, we prove the claims of Sect. 1.1. Before doing so, we mention three
properties of the q-binomial coefficient. For all q ∈ (0,∞)\{1}, x ∈ C, n, k ∈ Nwith
k ≤ n it holds

[−x]q = −q−x [x]q , (33)
[−x

k

]

q
= (−1)kq−k(k+2x−1)/2

[
x + k − 1

k

]

q
, (34)

[
x

k

]

q−1
= q−k(x−k)

[
x

k

]

q
, (35)

∑

1≤i1<i2<···<ik≤n

qi1+i2+···+ik = q(k+1
2 )

[
n

k

]

q
. (36)

The first is trivial, the second follows from the first, the third is easily shown, while
the last is Theorem 6.1 in [15].

Proof of Fact 1 (i) The probability to get black balls exactly at the drawings i1 < i2 <

· · · < in−x is

g(i1, i2, . . . , in−x ) =
∏x−1

j=0[A1 + jk]q ∏n−x−1
j=0 [A2 + jk]q

∏n−1
j=0[A1 + A2 + jk]q

q
∑n−x

ν=1 {A1+(iν−ν)k}.

(37)

To see this, note that, due to (2) and (3), the required probability would be equal to
the above fraction if in (3) the term q A1 were absent. This term appears whenever we
draw a black ball. Now, when we draw the ν-th black ball, there are A1 + (iν − ν)k
white balls in the urn, and this explains the exponent of q in (37).

Since [x + jk]q = 1−qx+ jk

1−q = [− x
k − j]q−k [−k]q for all x, j ∈ R, the fraction in

(37) equals

[− Â1]x,q−k [− Â2]n−x,q−k

[− Â1 − Â2]n,q−k

. (38)
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Then

∑

1≤i1<i2<···<in−x≤n

q
∑n−x

ν=1 A1+(iν−ν)k (39)

= q(n−x)A1−k(n−x)(n−x+1)/2
∑

1≤i1<i2<···<in−x≤n

(qk)i1+i2+···+in−x (40)

= q(n−x)A1−k(n−x)(n−x+1)/2qk(
n−x+1

2 )
[
n

x

]

qk
(41)

= q(n−x)A1qkx(n−x)
[
n

x

]

q−k
= qk(n−x)( Â1+x)

[
n

x

]

q−k
. (42)

The second equality follows from (36) and the equality
[n
x

]
qk = [ n

n−x

]
qk
. The third,

from (35). Thus, employing (8) too, we obtain that the sum∑
1≤i1<i2<···<in−x≤n g(i1, i2, . . . , in−x ) equals the right hand side of (10). Then (11)

and (12) follow by using (34) and (35) respectively.
(ii) In this scenario, we take A1 → ∞ in (11).Wewill explain shortlywhy this gives

the probability we want. Since q−k ∈ (0, 1), we have limt→∞[t]q−k = (1 − q−k)−1

and thus, for each ν ∈ N, it holds

lim
t→∞

[
t + ν − 1

ν

]

q−k
= 1

[ν]q−k !
1

(1 − q−k)ν
. (43)

Applying this twice in (11) (there Â1 = A1/k → ∞), we get as limit

q−A2x
[
Â2 + n − x − 1

n − x

]

q−k

[n]q−k !(1 − q−k)n−x

[x]q−k !
(44)

=
[
n

x

]

q−k
q−A2x (1 − q−k)n−x [ Â2 + n − x − 1]n−x,q−k , (45)

which equals the right hand side of (13).
Now, to justify that passage to the limit A1 → ∞ in (11) gives the required result,we

argue as follows. For clarity, denote the probability Pq(white) when there are w white
and b black balls in the urn by Pw,b

q (white). And when there are A1 white and A2 black
balls in the urn in the beginning of the procedure, denote the probability of the event
H1(n) = x by PA1,A2(H1(n) = x). It is clear that the probability PA1,A2(H1(n) = x)
is a continuous function (in fact, a polynomial) of the quantities

PA1+ki,A2+k j
q (white) : i = 0, 1, . . . , x − 1, j = 0, 1, . . . , n − x − 1,

for all values of A1 ∈ N ∪ {∞}, A2 ∈ N. In P∞,A1(H1(n) = x), each such quantity,
P∞,m
q (white), equals limA1→∞ PA1,m(white).

Thus P∞,A2(H1(n) = x) = limA1→∞ PA1,A2(H1(n) = x). 
�

123



Limit behavior of the q-Pólya urn 81

Before proving Theorem 1, we give a simple argument that shows that eventually
we will be picking only black balls. That is, the number H1(∞) := limn→∞ H1(n) of
white balls drawn in an infinite sequence of drawings is finite. It is enough to show it
in the case that A1 = ∞ and A2 = 1 since, by the experiment that realizes the q-Pólya
urn, we have (using the notation from the proof of Fact 1 (ii))

PA1,A2(H1(∞) = ∞) ≤ P∞,1(H1(∞) = ∞).

For each n ∈ N
+, call En the event that at the n-th drawing we pick a white ball, Bn

the number of black balls present in the urn after that drawing (also, B0 := 1), and
write q̂ := 1/q. Then P(En) = E(P(En|Bn−1)) = E(q̂ Bn−1). We will show that this
decays exponentially with n. Indeed, since at every drawing there is probability at least
1− q̂ to pick a black ball, we can construct in a common probability space the random
variables (Bn)n≥1 and (Yi )i≥1 so that the Yi are i.i.d. with Y1 ∼ Bernoulli(1− q̂) and
Bn ≥ 1 + k(Y1 + · · · + Yn) for all n ∈ N

+. Consequently,

P(En) ≤ E(q̂1+k(Y1+···+Xn−1)) = q̂{E(q̂kY1)}n−1.

This implies that
∑∞

n=1 P(En) < ∞, and the first Borel–Cantelli lemma gives that
P∞,1(H1(∞) = ∞) = 0.

Proof of Theorem 1 Since {H1(n)}n≥1 is increasing, it converges to a random variable
H1(∞)with values inN∪{∞}. In particular, it converges to this variable in distribution.
Our aim is to take the limit as n → ∞ in (11) and in (13) in order to determine the
distribution of H1. Note that for a ∈ R and θ ∈ [0, 1) it is immediate that (recall (9)
for the notation)

lim
n→∞

[
a + n

n

]

θ

= (θa+1; θ)∞
(θ; θ)∞

. (46)

(i) Taking n → ∞ in (11) and using (46), we get the required expression, (14), for
f . Then relation (2.2) in [4] (or (8.1) in [15]) shows that

∑
x∈N f (x) = 1, so that

it is a probability mass function of a random variable H1 with values in N.
(ii) This follows after taking limit in (13) and using (46) and limn→∞(1 −

q−k)n[n]q−k ! = (q−k; q−k)∞. 
�

3 Jump process limits. Proof of Theorems 2, 3

In the case of Theorem 2, we let gm := 1 for allm ∈ N
+, and for both theorems we let

v := vm := m/gm . Our interest is in the sequence of the processes (Z (m))m≥1 with

Z (m)(t) = 1

k

{
A(m)
1 ([vt]) − A(m)

1 (0)
}

(47)

for all t ≥ 0.
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82 D. Cheliotis, D. Kouloumpou

To show convergence in distribution, according to Theorem 7.8 of Chapter 3 of [9],
it is enough to show that the sequence (Z (m))m≥1 is tight and its finite dimensional
distributions converge. The description of the limiting process is obtained on the way.

An easy argument shows that tightness follows from the convergence of the finite
dimensional distributions because each Z (m) has non decreasing paths. It thus remains
to establish the convergence of the finite dimensional distributions.
Notation For sequences (an)n∈N, (bn)n∈N with values in R, we will say that they are
asymptotically equivalent, and will write an ∼ bn as n → ∞, if limn→∞ an/bn = 1.
We use the same expressions for functions f , g defined in a neighborhood of ∞ and
satisfy limx→∞ f (x)/g(x) = 1.

3.1 Convergence of finite dimensional distributions

By definition, Z (m)(0) = 0 = Z(0) for all m ∈ N
+.

Since for each m ≥ 1 the process Z (m) is Markov taking values in N and non
decreasing in time, it is enough to show that the conditional probability

P(Z (m)(t2) = k2|Z (m)(t1) = k1) (48)

converges as m → ∞ for each 0 ≤ t1 < t2 and non-negative integers k1 ≤ k2.
Define

n := [vt2] − [vt1], (49)

x := k2 − k1, (50)

σ := A(m)
1 (0) + kk1

k
, (51)

τ := k[vt1] − kk1 + A(m)
2 (0)

k
, (52)

r := q−k
m = c−k/m . (53)

Then, the probability in (48), with the help of (11), is computed as

r τ x
[
σ + x − 1

x

]

r

[
τ+n−x−1

n−x

]
r[

σ+τ+n−1
n

]
r

= r τ x
[
σ + x − 1

x

]

r

(
n∏

i=n−x+1

(1 − r i )

)
1

∏n−1
i=n−x (1 − r τ+i )

[τ + n − 1]n,r

[σ + τ + n − 1]n,r
.

(54)

The last ratio is

n−1∏

i=0

1 − r τ+i

1 − rσ+τ+i
=

n−1∏

i=0

(
1 − (1 − rσ )r τ r i

1 − rσ+τ+i

)
. (55)
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Denote by 1− am,i the i-th term of the product. The logarithm of the product equals

− (1 − rσ )r τ
n−1∑

i=0

r i

1 − rσ+τ+i
+ o(1) (56)

as m → ∞. To justify this, note that 1 − rσ ∼ 1
m (A(m)

0 + kk1) log c and r τ+i/(1 −
rσ+τ+i ) ≤ 1/(1 − c−b) for all i ∈ N. Thus, for all large m, |am,i | < 1/2 for all
i = 0, 1, . . . , n−1, and the error in approximating the logarithm of 1−am,i by−am,i

is at most |am,i |2 (by Taylor’s expansion, we have | log(1 − y) + y| ≤ |y|2 for all y
with |y| ≤ 1/2). The sum of all errors is at most nmax0≤i<n |am,i |2, which goes to
zero as m → ∞ because 1 − rσ ∼ C/n for some appropriate constant C > 0.

We will compute the limit of (54) as m → ∞ under the assumptions of Theo-
rems 2, 3.

Proof (The computation for Theorem 2) As m → ∞, the first term of the product

in (54) converges to c−x(b+kt1). The q-binomial coefficient converges to
(k−1w0+k2−1

k2−k1

)
.

The third term converges to (1 − c−k(t2−t1))x , while the denominator of the fourth
term converges to (1− ρ2)

x , where we set ρi := c−b−kti for i = 1, 2. The expression
preceding o(1) in (56) is asymptotically equivalent to

− k

m
σ(log c)ρ1

n−1∑

i=0

c−ki/m

1 − rσ+τ c−ki/m
(57)

= −ρ1kσ(log c)
1

m

n−1∑

i=0

c−ki/m

1 − ρ1c−ki/m
+ o(1) (58)

= −ρ1kσ log c
∫ t2−t1

0

1

cky − ρ1
dy + o(1) = σ log

1 − ρ1

1 − ρ2
+ o(1). (59)

The first equality is true because limm→∞ rσ+τ = ρ1 and the function x �→
c−ki/m/(1 − xc−ki/m) has derivative bounded uniformly in i,m when x is confined
to a compact subset of [0, 1). Thus, the limit of (54), as m → ∞, is

(
σ + x − 1

x

) (
ρ1 − ρ2

1 − ρ2

)x (
1 − ρ1

1 − ρ2

)σ

, (60)

which means that, asm → ∞, the distribution of {Z (m)(t2)− Z (m)(t1)}|Z (m)(t1) = k1
converges to the negative binomial distribution with parameters σ, (1− ρ1)/(1− ρ2).


�
Proof (The computation for Theorem 3) Now the term r τ x converges to c−xb, while

[
σ + x − 1

x

]

r

( n∏

i=n−x+1

(1 − r i )
)

=
∏x−1

i=0 (1 − rσ+i )∏x
i=1(1 − r i )

( n∏

i=n−x+1

(1 − r i )
)

(61)
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∼
∏x−1

i=0 (σ + i)∏x
i=1 i

((t2 − t1)k log c)x

gxm
∼ 1

x ! ((t2 − t1) log c)
x . (62)

The denominator of the fourth term in (54) converges to (1 − c−b)x . The expression
in (56) is asymptotically equivalent to

− r τ (1 − rσ )

n−1∑

i=0

r i

1 − rσ+τ+i
∼ −c−b gm

m
log c

n

1 − c−b

∼ − log c

cb − 1
(t2 − t1). (63)

In the first ∼, we used the fact that the terms of the sum, as m → ∞, converge
uniformly in i to (1 − c−b)−1. Thus, the limit of (54), as m → ∞, is

1

x !
(

log c

cb − 1
(t2 − t1)

)x

e
− log c

cb−1
(t2−t1)

, (64)

which means that, asm → ∞, the distribution of {Z (m)(t2)− Z (m)(t1)}|Z (m)(t1) = k1
converges to the Poisson distribution with parameter t2−t1

cb−1
log c. 
�

3.2 Conclusion

It is clear from the form of the finite dimensional distributions that in both Theorems 2,
3 the limiting process Z is a pure birth process that does not explode in finite time. Its
rate at the point (t, j) ∈ [0,∞) × N is

λt, j = lim
h→0+

1

h
P(Z(t + h) = j + 1|Z(t) = j)

and is found as stated in the statement of each theorem.

4 Deterministic and diffusion limits. Proof of Theorems 4, 5

These theorems are proved with the use of Theorem 7.1 in Chapter 8 of [8], which
is concerned with convergence of time-homogeneous Markov chains to diffusions.
The chains whose convergence is of interest to us are time inhomogeneous, but we
reduce their study to the time-homogeneous setting by considering for each such chain
{Zn}n∈N the time-homogeneous chain {(Zn, n)}n∈N. The following consequence of
the aforementioned theorem suffices for our purposes.

Corollary 1 Assume that for each m ∈ N
+, (Z (m)

n )n∈N is a Markov chain in R. For
each m ∈ N

+ and n ∈ N, let ΔZ (m)
n := Z (m)

n+1 − Z (m)
n and

μ(m)(x, n) := mE(ΔZ (m)
n 1|ΔZ (m)

n |≤1
|Z (m)

n = x), (65)
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a(m)(x, n) := mE((ΔZ (m)
n )21|ΔZ (m)

n |≤1
|Z (m)

n = x) (66)

for all x ∈ R with P(Z (m)
n = x) > 0. Also, for R > 0 and for the same m, n as above,

let A(m, n, R) := {(x, n) : |x | ≤ R, n/m ≤ R,P(Z (m)
n = x) > 0}.

Assume that there are continuous functions μ, a : R × [0,∞) → R and x0 ∈ R

so that:
For every R, ε > 0, it holds

(i) sup(x,n)∈A(m,n,R) |μ(m)(x, n) − μ(x, n/m)| → 0 as m → ∞.
(ii) sup(x,n)∈A(m,n,R) |a(m)(x, n) − a(x, n/m)| → 0 as m → ∞.

(iii) sup(x,n)∈A(m,n,R) mP(|ΔZ (m)
n | ≥ ε|Z (m)

n = x) → 0 as m → ∞.

And also

(iv) Z (m)
0 → x0 as m → ∞ with probability 1.

(v) For each x ∈ R, the stochastic differential equation

dZt = μ(Zt , t) dt + √
a(Zt , t) dBt ,

Z0 = x,
(67)

where B is a one dimensional Brownian motion, has a weak solution which is
unique in distribution.

Then, asm → ∞, the process (Z (m)
[mt])t≥0 converges in distribution to theweak solution

of (67) with x = x0.

Proof For eachm ∈ N
+, we consider the process Y (m)

n := (Z (m)
n , n/m), n ∈ N, which

is a time-homogeneous Markov chain with values in R
2, and we apply Theorem 7.1

in Chapter 8 of [8] Conditions (i), (ii), (iii) of that theorem follow from our conditions
(ii), (i), (iii), respectively, while condition (A) there translates to the requirement that
the martingale problem for the functions μ and

√
a is well posed, and this follows

from condition (v). 
�
The tool we will use in checking that condition (v) of the corollary is satisfied

is the well known existence and uniqueness theorem for strong solutions of SDEs
which requires that for all T > 0, the coefficients μ(x, t),

√
a(x, t) are Lipschitz in x

uniformly for t ∈ [0, T ] and supt∈[0,T ]{|μ(0, t)| + a(0, t)} < ∞ (e.g., Theorem 2.9
of Chapter 5 or [8]). The same conditions imply uniqueness in distribution.

4.1 Proof of Theorem 4

We will apply Corollary 1. For each m ∈ N
+, consider the Markov chain Z (m)

n =
A(m)
1 (n)

m , n ∈ N. Fromanygiven state x of Z (m)
n , the chainmoves to either of x+km−1, x

with corresponding probabilities p(x, n,m), 1 − p(x, n,m), where

p(x, n,m) := 1 − qmx
m

1 − q
A(m)
1 (0)+A(m)

2 (0)+kn
m

.
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In particular, for any ε > 0, is holds |ΔZ (m)
n | < 1 ∧ ε for m large enough. Thus,

condition (i i i) of the corollary is satisfied trivially. Also, for largem, with the notation
of the corollary, we have

μ(m)(x, n) = kp(x, n,m), (68)

a(m)(x, n) = k

m
p(x, n,m). (69)

And it is easy to see that conditions (i), (i i) are satisfied by the functions a, μ with
a(x, t) = 0 and μ(x, t) = kp(x, t) where

p(x, t) := 1 − cx

1 − ca+b+kt
. (70)

Now, for each x ∈ R, the equation

dZt = kp(Zt , t) dt,

Z0 = x
(71)

has a unique solution. Thus, Corollary 1 applies. In fact, (71) is a separable ordinary
differential equation and its unique solution is the one given in the statement of the
theorem.

4.2 Proof of Theorem 5

For each m ∈ N
+, consider the Markov chain

Z (m)
n = √

m
( A(m)

1 (n)

m
− Xn/m

)
, n ∈ N.

From any given state x of Z (m)
n , the chain moves to either of

x + km−1/2 + √
m(Xn/m − X(n+1)/m), (72)

x + √
m(Xn/m − X(n+1)/m) (73)

with corresponding probabilities p(x, n,m), 1 − p(x, n,m), where

p(x, n,m) = [A(m)
1 (n)]qm

[A(m)
1 (0) + A(m)

2 (0) + kn]qm
(74)

and

A(m)
1 (n) = mXn/m + x

√
m, (75)

A(m)
2 (n) = A(m)

1 (0) + A(m)
2 (0) + kn − A(m)

1 (n). (76)
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For convenience, let ΔXn/m = X(n+1)/m − Xn/m . We compute

E
[
ΔZ (m)

n |Z (m)
n = x

]
= k√

m
p(x, n,m) − √

mΔXn/m, (77)

E
[
(ΔZ (m)

n )2|Z (m)
n = x

]
=

(
k2

m
− 2kΔXn/m

)
p(x, n,m) + m(ΔXn/m)2. (78)

The asymptotics of these expectations are as follows.
Claim Fix R > 0. For n such that τ := n/m ≤ R and as m → ∞, we have

(a) E
[
ΔZ (m)

n |Z (m)
n = x

]

= 1

m

k log c

ca+b+kτ − 1

(
cXτ x − (cXτ − 1)ca+b+kτ

ca+b+kτ − 1
(θ1 + θ2)

)
+ O

(
1

m3/2

)

(79)

(b) E
[
(ΔZ (m)

n )2|Z (m)
n = x

]
= 1

m
k2g(τ ){1 − g(τ )} + O

(
1

m3/2

)
(80)

where g(t) := cXt −1
ca+b+kt−1

for all t ≥ 0.

Proof of the claim We examine the asymptotics of p(x, n,m) and ΔXn/m . As τ ≤ R
and m → ∞, we have

p(x, n,m) (81)

= c
Xτ + 1√

mx − 1

c
A(m)
1 (0)+A(m)

2 (0)
m +kτ − 1

= c
Xτ + 1√

mx − 1

c
a+b+kτ+ θ1+θ2√

m
+O( 1

m ) − 1
(82)

= g(τ ) + log c

ca+b+kτ − 1

(
cXτ x − (cXτ − 1)ca+b+kτ

ca+b+kτ − 1
(θ1 + θ2)

)
1√
m

+ O
( 1

m

)
.

The third equality follows from a Taylor’s development. Also

ΔXn/m = X ′
n/m

1

m
+ O(m−2) = kg(τ )

1

m
+ O(m−2). (83)

For X ′ we used the differential equation, (22), that X satisfies instead of the explicit
expression for it. Substituting these expressions in (77), (78), we get the claim. 
�

Relation (23) implies that cXτ = (ca+b − 1)/{cb − 1 + c−kτ (1 − c−a)}, and this
gives that the parenthesis following 1

m in equation (a) of the claim above equals

(ca+b − 1)x − cb(ca − 1)(θ1 + θ2)

cb − 1 + c−kτ (1 − c−a)
(84)
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and also that

g(τ ){1 − g(τ )} = (ca − 1)(cb − 1)ca+kτ

(ca+b+kτ − ca+kτ + ca − 1)2
. (85)

Thus, the claim implies that conditions (i), (ii) of Corollary 1 are satisfied by the
functions

μ(x, t) = k log c

ca+b+kt − 1

{
(ca+b − 1)x − cb(ca − 1)(θ1 + θ2)

cb − 1 + c−kt (1 − c−a)

}
, (86)

a(x, t) = k2(ca − 1)(cb − 1)
ca+kt

(ca+b+kt − ca+kt + ca − 1)2
. (87)

As in the proof of Theorem 4, condition (i i i) of the corollary holds trivially, while
limm→∞ Z (m)

0 = θ1 (condition (iv)). Finally, for each x ∈ R and for the choice of
μ, a above, Eq. (67) has a strong solution and uniqueness in distribution holds. Thus,
the process (Z (m)

[mt])t≥0 converges, as m → ∞, to the unique solution of the stochastic
differential equation (25).

The same is true for the process (C (m)
t )t≥0 because supt≥0 |Z (m)

[mt] −C (m)
t | ≤ k/

√
m

for all m ∈ N
+ (we use the fact that 0 < X ′

t ≤ k for all t ≥ 0). To solve (25), we
remark that a solution of an equation of the form

dYt = (α(t)Yt + β(t)) dt + γ (t) dWt (88)

with α, β, γ : [0,∞) → R continuous functions is given by

Yt = e
∫ t
0 α(s) ds

(
Y0 +

∫ t

0
β(s)e− ∫ s

0 α(r) dr ds +
∫ t

0
γ (s)e− ∫ s

0 α(r) dr dWs

)
. (89)

[To discover the formula, we apply Itó’s rule to Yt exp{−
∫ t
0 α(s) ds} and use (88).]

Applying this formula for the values of α, β, γ dictated by (25) we arrive at (26).

5 Proofs for the q-Pólya urn withmany colors

Proof of Theorem 6 First, the equality of the expressions in (28), (29) follows from the
definition of the q-multinomial coefficient.

We will prove (28) by induction on l. When l = 2, (28) holds because of (10). In
that relation, we have x1 = x, x2 = n− x . Assuming that (28) holds for l ≥ 2 we will
prove the case l + 1. The probability

P((H2(n) = x2, . . . , Hl+1(n) = xl+1)

123



Limit behavior of the q-Pólya urn 89

equals

P (H3(n) = x3, . . . , Hl+1(n) = xl+1)P(H2(n) = x2 | H3(n) (90)

= x3, . . . , Hl+1(n) = xl+1)

= q
∑l+1

i=3 xi
∑i−1

j=1(w j+kx j)

[− w1+w2
k

x1+x2

]
q−k

∏l+1
i=3

[− wi
k

xi

]
q−k

[− w1+...wl+1
k
n

]
q−k

× qx2(w1+kx1)

[− w1
k

x1

]
q−k

[− w2
k

x2

]
q−k

[− w1+w2
k

x1+x2

]
q−k

= q
∑l+1

i=2 xi
∑i−1

j=1(w j+kx j)

∏l+1
i=1

[− wi
k

xi

]
q−k

[− w1+...wl+1
k
n

]
q−k

.

This finishes the induction provided that we can justify these two equalities. The
second is obvious, so we turn to the first. The first probability in (90) is specified by
the inductive hypothesis. That is, given the description of the experiment, in computing
this probability it is as if we merge colors 1 and 2 into one color which is placed in the
line before the remaining l − 1 colors. This color has initially a1 + a2 balls and we
require that in the first n drawings we choose it x1 + x2 times. The second probability
in (90) is specified by the l = 2 case of (28), which we know. More specifically, since
the number of drawings from colors 3, 4, . . . , l + 1 is given, it is as if we have an
urn with just two colors 1, 2 that have initially w1 and w2 balls, respectively. We do
x1 + x2 drawings with the usual rules for a q-Pólya urn, placing in a line all balls of
color 1 before all balls of color 2, and we want to pick x1 times color 1 and x2 times
color 2. 
�

Proof of Theorem 7 The components of (H2(n), H3(n), . . . , Hl(n)) are increasing in
n, and from Theorem 1 we have that each of them has finite limit (we treat all colors
2, . . . , l as one color). Thus the convergence of the vector with probability one to a
random vector with values in N

l−1 follows. In particular, we also have convergence
in distribution, and it remains to compute the distribution of the limit. Let x1 :=
n − (x2 + · · · + xl). Then the probability in (28) equals

P (H2(n) = x2, . . . , Hl(n) = xl) = q−∑
1≤i< j≤l w j xi

∏l
i=1

[wi
k +xi−1

xi

]
q−k

[∑l
i=1 wi
k +n−1

n

]
q−k

(91)

= q
∑

1≤ j<i≤l xiw j

∏l
i=1

[wi
k +xi−1

xi

]
qk

[n+
∑l

i=1 wi
k −1
n

]
qk

(92)
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= q
∑l

i=2

(
xi

∑i−1
j=1 w j

) {
l∏

i=2

[wi
k + xi − 1

xi

]

qk

} [x1+ w1
k −1
x1

]
qk

[n+
∑l

i=1 wi
k −1
n

]
qk

. (93)

In the first equality, we used (34) while in the second we used (35). When we take
n → ∞ in (93), the only terms involving n are those of the last fraction, and (46)
determines their limit. Thus, the limit of (93) is found to be the function f (x2, . . . , xl)
in the statement of the theorem. 
�
Proof of Theorem 8 For each m ∈ N

+, we consider the discrete time-homogeneous
Markov chain

Z (m)
n :=

(
n

m
,
A(m)
2 (n)

m
,
A(m)
3 (n)

m
, . . . ,

A(m)
l (n)

m

)
, n ∈ N.

From any given state (t, x) := (t, x2, x3, . . . , xl) that Z (m) finds itself it moves to one
of

(
t + 1

m
, x2, . . . , xi + 1

m
, . . . , xl

)
, i = 2, . . . , l,

(
t + 1

m
, x2, . . . , xi , . . . , xl

)

with corresponding probabilities

pi (x2, . . . , xl , t,m) = qmsi−1(t)
[mxi ]q

[msl(t)]q , i = 2, . . . , l, (94)

p1(x2, . . . , xl , t,m) = [mx1(t)]q
[msl(t)]q , (95)

where

si (t) = x1(t) +
∑

1< j≤i

x j (96)

for i ∈ {1, 2, . . . , l} and

x1(t) : = m−1
l∑

j=1

A(m)
j (0) + kt −

∑

2≤ j≤l

xi . (97)

These follow from (27) once we count the number of balls of each color present at
the state (t, x). To do this, we note that Z (m)

n = (t, x) implies that n = mt drawings
have taken place so far, the total number of balls is A(m)

0,1 + · · · + A(m)
0,l + kmt , and the

number of balls of color i , for 2 ≤ i ≤ l, is mxi . Thus, the number of balls of color 1
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is A(m)
1 (0) + · · · + A(m)

l (0) + kmt − m
∑

2≤ j≤l xi = mx1(t). The required relations
follow.

Let x1 := limm→∞ x1(t) = σl + kt − ∑
2≤ j≤l xi and si := limm→∞ si (t) =∑

1≤ j≤i xi for all i ∈ {1, 2, . . . , l}. Then, since q = c1/m , for fixed (t, x2, . . . , xl) ∈
[0,∞)l with (x2, . . . , xl) �= 0, we have

lim
m→∞ pi (x2, . . . , xl , t,m) = csi−1

[xi ]c
[sl ]c (98)

for all i = 2, . . . , l. We also note the following.

Z (m)
n+1,1 − Z (m)

n,1 = 1

m
, (99)

E
[
Z (m)
n+1,i − Z (m)

n,i |Z (m)
n = (t, x2, . . . , xl)

]
= k

m
pi (x2, . . . , xl , t,m), (100)

E
[
(Z (m)

n+1,i − Z (m)
n,i )2|Z (m)

n = (t, x2, . . . , xl)
]

= k2

m2 pi (x2, . . . , xl , t,m), (101)

E
[
(Z (m)

n+1,i − Z (m)
n,i )(Z (m)

n+1, j − Z (m)
n, j )|Z (m)

n = (t, x2, . . . , xl)
]

= 0 (102)

for i, j = 2, 3, . . . , l with i �= j .
Therefore, with similar arguments as in the proof of Theorem 4, as m →

+∞, (Z (m)
[mt])t≥0 converges in distribution to Y , the solution of the ordinary differ-

ential equation

dYt = b(Yt ) dt,

Y0 = (0, a2, . . . , al),
(103)

where b(t, x2, . . . , xl) = (
1, b(2)(t, x), b(3)(t, x), . . . , b(l)(t, x)

)
with

b(i)(t, x) = kcsi−1
[xi ]c
[sl ]c

for i = 2, 3, . . . , l. Note that sl = σl + kt does not depend on x .
Since A(m)

1 ([mt])+ A(m)
2 ([mt])+· · ·+ A(m)

l ([mt]) = kmt + A(m)
1 (0)+ A(m)

2 (0)+
· · · + A(m)

l (0), we get that the process (A(m)
[mt],1/m, A(m)

[mt],2/m + · · · + A(m)
[mt],l/m)t≥0

converges in distribution to a process (Xt,1, Xt,2, . . . , Xt,l)t≥0 so that Xt,1 + · · · +
Xt,l = a1 + a2 + · · · + al + kt , while the Xt,i , i = 2, . . . , l, satisfy the system

X ′
t,i = kcσl+kt−∑l

j=i Xt,i
1 − cXt,i

1 − cσl+kt
for all t > 0, (104)

X0,i = ai , (105)
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with i = 2, 3, . . . , l. Letting Zr ,i = c
X log r

k log c ,i for all r ∈ (0, 1] and i ∈ {1, 2, . . . , l},
we have for the Zr ,i , i ∈ {2, 3, . . . , l} the system

Z ′
r ,i

1 − Zr ,i
= σl

1 − σlr

1∏
i< j≤l Zr , j

, (106)

Z1,i = cai . (107)

In the case i = l, the empty product equals 1. It is now easy to prove by induction
(starting from i = l and going down to i = 2) that

Zr ,i = cσl−σi−1(1 − cσl r) − cσl (1 − r)

cσl−σi (1 − cσl r) − cσl (1 − r)
(108)

for all r ∈ (0, 1]. Since Zr ,1Zr ,2 · · · Zr ,l = cσl r , we can check that (108) holds for
i = 1 too. The fraction in (108) equals

cai
(1 − cσl r) − cσi−1(1 − r)

(1 − cσl r) − cσi (1 − r)
. (109)

Recalling that Xt,i = (log c)−1 log Zckt , we get (31) for all i ∈ {1, 2, . . . , l} . 
�
Proof of Theorem 9 This is proved in the same way as Theorem 8. We keep the same
notation as there. The only difference now is that limm→∞ pi (t, x2, ..., xl ,m) = xi/sl .
As a consequence, the system of ordinary differential equations for the limit process
Yt := (t, Xt,2, . . . , Xt,l) is (103) but with

b(i)(t, x) = kxi
sl

.

Recall that sl = σl + kt . Thus, for i = 2, 3, . . . , l, the process Xt,i satisfies X ′
t,i =

kXt,i/(σl + kt), X0,i = ai , which give immediately the last l − 1 coordinates of (32).
The formula for the first coordinate follows from Xt,1 + Xt,2 + · · · + Xt,l = kt + σl .
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