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Abstract
Let k ≥ 2 and N be positive integers and let χ be a Dirichlet character modulo N .
Let f (z) be a modular form in Mk(�0(N ), χ). Then we have a unique decomposition
f (z) = E f (z)+ S f (z), where E f (z) ∈ Ek(�0(N ), χ) and S f (z) ∈ Sk(�0(N ), χ). In
this paper, we give an explicit formula for E f (z) in terms of Eisenstein series whose
coefficients are sum of divisors function. Then we apply our result to certain families
of eta quotients and to representations of positive integers by 2k–ary positive definite
quadratic forms in order to give an alternative version of Siegel’s formula for the
weighted average number of representations of an integer by quadratic forms in the
same genus. Our formula for the latter is in terms of sum of divisors function and does
not involve computation of local densities.

Keywords Dedekind eta function · Theta functions · Eisenstein series · Modular
forms · Cusp forms · Fourier coefficients

Mathematics Subject Classification 11F11 · 11F20 · 11F27 · 11E20 · 11E25 · 11F30

1 Introduction and notation

Let N, N0, Z, Q, C, and H denote the sets of positive integers, non-negative integers,
integers, rational numbers, complex numbers, and upper half-plane of complex num-
bers, respectively. Throughout the paper, z denotes a complex number in H, p always
denotes a prime number, all divisors considered are positive divisors, q stands for
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e2π i z , and χd(n) denotes the Kronecker symbol
(d
n

)
K
, where we use the subscript K

to avoid confusion with fractions. Let N ∈ N and χ be a Dirichlet character modulo
N . The space of modular forms of weight k for �0(N ) with character χ is denoted
by Mk(�0(N ), χ); and Ek(�0(N ), χ), Sk(�0(N ), χ) denote its Eisenstein and cusp
form subspaces, respectively. Then we have

Mk(�0(N ), χ) = Ek(�0(N ), χ) ⊕ Sk(�0(N ), χ).

That is, given f (z) ∈ Mk(�0(N ), χ), we can write

f (z) = E f (z) + S f (z), (1)

where E f (z) ∈ Ek(�0(N ), χ) and S f (z) ∈ Sk(�0(N ), χ) are uniquely determined
by f . Let ε, ψ be primitive Dirichlet characters such that εψ = χ (i.e., ε(n)ψ(n) =
χ(n) for all n ∈ Z coprime to N ) with conductors say L and M , respectively, and
suppose LM | N . Let d be a positive divisor of N/LM and 2 ≤ k ∈ N be such that
χ(−1) = (−1)k . Let ω be the primitive Dirichlet character corresponding to εψ and
Mω be its conductor. We define the Eisenstein series associated with ε and ψ by

Ek(ε, ψ; dz) :=ε(0) +
(Mω

M

)k
(
W (ψ)

W (ω)

) (−2k

Bk,ω

) ∏
p|lcm(L,M)

pk

pk − ω(p)

×
∞∑
n=1

σk−1(ε, ψ; n)e2π indz, (2)

where ω is the complex conjugate of ω,

σk−1(ε, ψ; n) :=
∑
1≤d|n

ε(n/d)ψ(d)dk−1

is the generalized sum of divisors function associated with ε and ψ ,

W (ψ) :=
M−1∑
a=0

ψ(a)e2π ia/M

is the Gauss sum of ψ , and Bk,ω is the k-th generalized Bernoulli number associated
with ω defined by

∞∑
k=0

Bk,ω

k! tk =
Mω∑
a=1

ω(a)teat

eMωt − 1
,
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see [13, end of pg. 94]. By [5, Corollary 8.5.5] (alternatively [13, Theorem 4.7.1,
(7.1.13) and Lemma 7.2.19]), we have

Ek(ε, ψ; dz) ∈ Mk(�0(N ), χ) if (k, ε, ψ) �= (2, χ1, χ1),

and

E2(χ1, χ1; z) − NE2(χ1, χ1; Nz) ∈ M2(�0(N ), χ1).

Remark 1 Let L(εψ, k) be the Dirichlet L-function defined by

L(εψ, k) :=
∑
n≥1

ε(n)ψ(n)

nk
.

The Eisenstein series we define in (2) is equal to Ek(Mdz; ε, ψ)/(2L(εψ, k)) in
the notation of Theorem 7.1.3 and Theorem 7.2.12 of [13], and it is also equal to
Gk(ψ, ε)(dz)/L(εψ, k) in the notation of Corollary 8.5.5 and Definition 8.5.10 of [5].
Further treatment to obtain the form in (2) is done by using the formula for L(εψ, k)
given in Theorems 3.3.4 and (3.3.14) of [13].We have normalized the Eisenstein series
this way to simplify the constant terms given in (27) and (28). This in return simplifies
the notation in Sects. 4 and 5.

Letting D(N , C) to denote the group of Dirichlet characters modulo N , we define

E(k, N , χ) := {(ε, ψ) ∈ D(L, C) × D(M, C) : ε, ψ primitive,

εψ = χ and LM | N }.

The set

{Ek(ε, ψ; dz) : (ε, ψ) ∈ E(k, N , χ), d | N/LM}

constitutes a basis for Ek(�0(N ), χ) whenever k ≥ 2 and (k, χ) �= (2, χ1); the set

{E2(χ1, χ1; z) − dE2(χ1, χ1; dz) : 1 < d | N }
∪ {E2(Mdz; ε, ψ) : (ε, ψ) ∈ E(2, N , χ1), (ε, ψ) �= (χ1, χ1), d | N/LM}

constitutes a basis for E2(�0(N ), χ1), see [5, Theorems 8.5.17 and 8.5.22], or [22,
Proposition 5]. Then we have

E f (z) =
∑

(ε,ψ)∈E(k,N ,χ)

∑
d|N/LM

a f (ε, ψ, d)Ek(ε, ψ; dz), (3)

for some a f (ε, ψ, d) ∈ C. When S f (z) = 0, it is easy to determine a f (ε, ψ, d)

by comparing the first few Fourier coefficients of f (z) expanded at i∞ and the first
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few Fourier coefficients of the right-hand side of (3) expanded at i∞. However, if
S f (z) �= 0 and an explicit basis for Sk(�0(N ), χ) is not known then this method fails.
In this paper we solve this problem, in other words we obtain a f (ε, ψ, d) explicitly
(in terms of a finite sum) for all f ∈ Mk(�0(N ), χ), where k ≥ 2, see Theorem 1. Our
treatment is general and its special cases agree with the previously known formulas.
Additionally, we give a new treatment of Siegel’s formula for representation numbers
of quadratic forms, see Theorem 2.

Let a ∈ Z and c ∈ N0 be coprime. For an f (z) ∈ Mk(�0(N ), χ), we denote the
constant term of f (z) in the Fourier expansion of f (z) at the cusp a/c by

[0]a/c f = lim
z→i∞(cz + d)−k f

(
az + b

cz + d

)
,

where b, d ∈ Z such that

[
a b
c d

]
∈ SL2(Z). The value of [0]a/c f does not depend

on the choice of b, d. We denote the nth Fourier coefficient of f (z) in the expansion
at the cusp i∞ by [n] f . Letting φ(n) denote the Euler totient function, we define
an average associated with ψ for the constant terms of Fourier series expansions of
modular forms at cusps as follows:

[0]c,ψ f := 1

φ(c)

c∑
a=1,

gcd(a,c)=1

ψ(a)[0]a/c f . (4)

We note that working with this average of constant terms at cusps is a new idea which
helps studying modular form spaces with non-trivial character, see Sect. 5 for details.

Letting vp(n) to denote the highest power of p dividing n and μ(n) be the Möbius
function we are ready to state the main theorem.

Theorem 1 (Main Theorem) Let f (z) ∈ Mk(�0(N ), χ), where N , k ∈ N, k ≥ 2, χ is
a Dirichlet character modulo N that satisfies χ(−1) = (−1)k . Let E f (z) be defined
by (1). Then

E f (z) =
∑

(ε,ψ)∈E(k,N ,χ)

∑
d|N/LM

a f (ε, ψ, d)Ek(ε, ψ; dz),

where

a f (ε, ψ, d) =
∏
p|N

pk

pk − ε(p)ψ(p)

×
∑

c∈CN (ε,ψ)

Rk,ε,ψ (d, c/M)Sk,N/LM,ε,ψ (d, c/M)[0]c,ψ f ,

with

CN (ε, ψ) := {c1M : c1 | N/LM}, (5)
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Rk,ε,ψ (d, c) := ε

( −d

gcd(d, c)

)
ψ

(
c

gcd(d, c)

)(
gcd(d, c)

c

)k

, (6)

and

Sk,N ,ε,ψ (d, c) := μ

(
dc

gcd(d, c)2

) ∏
p|gcd(d,c),

0<vp(d)=vp(c)<vp(N )

(
pk + ε(p)ψ(p)

pk

)
. (7)

Remark 2 Let c | N . By Lemma 6, if a/c and a′/c are equivalent cusps of �0(N ) and
(ε, ψ) ∈ E(k, N , χ) with M | c, then ψ(a)[0]a/c f = ψ(a′)[0]a′/c f . Therefore, in
the applications of Theorem 1 computing ψ(a)[0]a/c f at a set of inequivalent cusps
will be sufficient, see [5, Corollary 6.3.23] for a description of such a set.

Theorem 1 agrees with and extends the previously known formulas. For example,
if we let k ∈ N even, N squarefree, χ = χ1 in Theorem 1, we obtain [3, Theorem 1.1]
and if we let k ∈ N odd N ∈ {3, 7, 11, 23}, χ = χ−N in Theorem 1, we obtain [6,
(11.20)]. Theorem 1 additionally extends the latter to hold for all primes N that are
congruent to 3 modulo 4.

Before we apply Theorem 1 to representation numbers of quadratic forms, we give
a snapshot of interesting applications. Since f (z) − E f (z) is a cusp form, one can
use our main theorem to produce cusp forms. At the end of Sect. 3 we use this idea
combined with theModularity Theorem ( [9, Theorem 8.8.1]) and consider the elliptic
curve E27A : y2 + y = x3 − 7. Then we use arithmetic properties of Eisenstein series
to obtain

#E27A(Fp) ≡ 0 (mod 9) if p ≡ 1 (mod 3),

#E27A(Fp) = p + 1 if p ≡ 2 (mod 3),

where

E27A(Fp) := {∞} ∪ {(x, y) ∈ Fp × Fp : y2 + y = x3 − 7},

with Fp denoting the finite field of p elements, see Corollary 3.
The Fourier coefficients of special functions (expanded at i∞) have been of huge

interest. A very well studied special function is the Dedekind eta function which is
defined by

η(z) := eπ i z/12
∏
n≥1

(1 − e2π inz) = q1/24
∏
n≥1

(1 − qn).

Quotients of Dedekind eta functions are often referred to as eta quotients. Nathan Fine
in his book [10] has given several formulas for Fourier coefficients of eta quotients
(expanded at i∞). In his work when the weight of the eta quotient is an integer, the
formulas are linear combinations of Eisenstein series defined above. For instance he
shows that
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1228 Z. S. Aygin

F(z) := η(2z)η(3z)η(8z)η(12z)

η(z)η(24z)
= 1 +

∑
n≥1

σ0(χ1, χ−24; n)qn,

see [10, (32.5)], and acknowledges this equation as being very beautiful. We consider
the (2k + 1)th power of F(z), that is we consider

F2k+1(z) = η2k+1(2z)η2k+1(3z)η2k+1(8z)η2k+1(12z)

η2k+1(z)η2k+1(24z)
.

Using our main theorem (Theorem 1), we obtain the following analogous formula for
F2k+1(z) when k > 0:

EF2k+1(z) = 1 − 2k + 1

B2k+1,χ−24

∑
n≥1

(
σ2k(χ1, χ−24; n) + (−24)kσ2k(χ−24, χ1; n)

)
qn,

see Corollary 2. Using Theorem 1 one can obtain formulas in this fashion for all
holomorphic eta quotients of integral weight k ≥ 2.

Let F(x1, . . . , x2k) be a positive definite quadratic form with integer coefficients
and B(F) be the matrix associated with F whose entries are given by

B(F)i, j =
(

∂2F
∂xi∂x j

)
.

Then the generating function of the number of representations of a positive integer by
the quadratic form F is

θF (z) =
∑

x∈Z2k

e2π i zF(x) =
∑

x∈Z2k

e2π i zx B(F)xT /2.

In [19], Siegel gave a formula for the weighted average for representation numbers
of positive definite quadratic forms in the same genus. Siegel’s formula is in terms of
local densities (for other treatments of Siegel’s formula see [23] and [15, Chapter 3]).
In the realm of modular forms, Siegel’s formula corresponds to the Eisenstein part
of θF (z), see [1,17], [18, Remark on p. 110] and [19]. For clarity we note that if F1
and F2 are in the same genus then EθF1

(z) = EθF2
(z). Below we use Theorem 1 to

give an explicit formula for EθF (z), where F is a 2k–ary positive definite quadratic
form with integer coefficients. In Sect. 2, we give several applications of our formula
including a comparison of our output for the form

∑2k
j=1 x

2
j with that of Arenas [1,

Proposition 1], which uses Siegel’s formula.
By [13, Corollary 4.9.5], we have

θF (z) ∈ Mk(�0(N ), χ), (8)
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where χ = ((−1)k det(B(F))/∗)K and N is the smallest positive integer such that
the matrix N B(F)−1 has even diagonal entries. By [21, (10.2)] we have

[0]a/cθF (z) =
(−i

c

)k 1√
det(B(F))

∑

x∈Z2k ,
x(mod c)

e2π i(F(x)a/c). (9)

Putting (2), (8), and (9) in Theorem 1, we obtain the following assertion concerning
the representation numbers of 2k–ary quadratic forms.

Theorem 2 Let F(x1, . . . , x2k) be a positive definite quadratic form with k ≥ 2; let
χ and N be as above and ω be as in (2). Then

[n]EθF (z) =
∑

(ε,ψ)∈E(k,N ,χ)

(Mω

M

)k
(
W (ψ)

W (ω)

) (−2k

Bk,ω

) ∏
p|lcm(L,M)

pk

pk − ω(p)

×
∑

d|N/LM

aθF (ε, ψ, d)σk−1(ε, ψ; n/d), (10)

where

aθF (ε, ψ, d) = (−i)k√
det(B(F))

∏
p|N

pk

pk − ε(p)ψ(p)

×
∑

c∈CN (ε,ψ)

Rk,ε,ψ (d, c/M)Sk,N/LM,ε,ψ (d, c/M)

ckφ(c)

×
c∑

a=1,
gcd(a,c)=1

ψ(a)
∑

x∈Z2k ,
x(mod c)

e2π i(F(x)a/c).

The organization of the rest of the paper is as follows. In Sect. 2, we apply Theorem
2 to the representation numbers of diagonal quadratic forms and certain non-diagonal
level 2 quadratic forms.A special case of the latter leads to an equation forRamanujan’s
τ -function. In Sect. 3, we apply our Main Theorem to certain families of eta quotients,
these applications give extensions of some well-known formulas to higher weight eta
quotients. In Sects. 4–6, we prove the main theorem.

2 Applications to representation numbers of certain quadratic forms

To apply (10) to specific quadratic forms we need to compute the quadratic Gauss
sum. If F is a diagonal form, say F = ∑2k

j=1 α j x2j , then we have
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1230 Z. S. Aygin

∑

x∈Z2k ,
x(mod c)

e2π iF(x)a/c =
2k∏
j=1

gcd(α j a, c)g

(
α j a

gcd(α j a, c)
,

c

gcd(α j a, c)

)
, (11)

where, if gcd(α, β) = 1,

g(α, β) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if β ≡ 2 (mod 4),(
α
β

)
K

√
β if β ≡ 1 (mod 4),

i
(

α
β

)
K

√
β if β ≡ 3 (mod 4),

(1 + i)
(

β
α

)
K

√
β if β ≡ 0 (mod 4) and α ≡ 1 (mod 4),

(1 − i)
(

β
α

)
K

√
β if β ≡ 0 (mod 4) and α ≡ 3 (mod 4),

see [4, Theorems 1.5.2 and 1.5.4]. Next we apply this result to the formF = ∑2k
j=1 x

2
j ,

that is, α j = 1 for all 1 ≤ j ≤ 2k. Then we have

∑

x∈Z2k ,
x(mod c)

e2π iF(x)/c =
2k∏
i=1

g (1, c) =

⎧⎪⎨
⎪⎩

1 if c = 1,

0 if c = 2,

(8i)k if c = 4.

Thus, by Theorem 2 when k is even we have

EθF (z) =1 − 2k

(2k − 1)Bk,χ1

∑
n≥1

(
(−i)kσ(χ1, χ1; n) − (i k + 1)σ (χ1, χ1; n/2)

+2kσ(χ1, χ1; n/4)
)
qn (12)

and when k is odd we have

EθF (z) = 1 − 2k

Bk,χ−4

∑
n≥1

(
σ(χ1, χ−4; n) + (2i)k−1σ(χ−4, χ1; n)

)
qn . (13)

Formulas (12) and (13) agree with Ramanujan’s statements [16, (131)–(134)], which
was first proven byMordell in [14]. In [1, Proposition 1] Arenas uses Siegel’s formula
to compute EθF (z) and obtains (12) and (13) in the same form. Now, we turn our
attention to another diagonal form. Let

F(a, b; p) =
a∑

i=1

x2i +
b∑

i=1

py2i .

In [7] Cooper, Kane, and Ye found formulas for the representation numbers of
F(k, k; p), where p = 3, 7, 11, or 23. Their result relies on the existence of a Haupt-
modul in the levels considered. Inspired by their results, in [2], we derived formulas
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for the representation numbers of F(2a, 2b; p) where a, b ∈ N0 and p is an odd
prime. These results are considered as analogs of the Ramanujan–Mordell formula
and specialized version of Theorem 2 agrees with these results. Below we give for-
mulas in all the remaining cases, that is, we find formulas for representation numbers
of F(a, b; p) where a, b ≡ 1 (mod 2) and p an odd prime.

Corollary 1 Let a, b ≥ 1 be odd integers such that a + b ≥ 4. Set k = (a + b)/2 and
p = χ−4(p)p. Then for any odd prime p, whenever (−1)k = χ−4(p) we have

EθF(a,b;p) (z) = 1

+
∞∑
n=1

2k
(
a1σk−1(χ1, χp; n) + a2σk−1(χ1, χp; n/2) + a32kσk−1(χ1, χp; n/4)

)

(2k − χp(2))Bk,χp

qn

+
∞∑
n=1

p(a−1)/22k
(
a4σk−1(χp, χ1; n) + a5σk−1(χp, χ1; n/2) + a62kσk−1(χp, χ1; n/4)

)

(2k − χp(2))Bk,χp

qn,

and whenever p ≡ (−1)k+1 (mod 4) we have

EθF(a,b;p) (z) = 1 −
∞∑
n=1

2k
(
b1σk−1(χ1, χ−4p; n) + b22kσk−1(χ−4, χp; n)

)

Bk,χ−4p

qn

−
∞∑
n=1

p(a−1)/22k
(
b3σk−1(χp, χ−4; n) + b42kσk−1(χ−4p, χ1; n)

)

Bk,χ−4p

qn,

where

a1 =
{

(−1)k/2 if p ≡ 1 (mod 4),

(−1)(k+a+2)/2 if p ≡ 3 (mod 4),

a2 =
{

(−1)k/2+1 − χp(2) if p ≡ 1 (mod 4),

(−1)(k+a)/2 − χp(2) if p ≡ 3 (mod 4),

a3 = 1,

a4 =
{

(−1)k/2 if p ≡ 1 (mod 4),

(−1)(k−1)/2 if p ≡ 3 (mod 4),

a5 =
{

(−1)k/2+1χp(2) − 1 if p ≡ 1 (mod 4),

(−1)(b+1)/2 + (−1)(k+1)/2χp(2) if p ≡ 3 (mod 4),

a6 =
{
1 if p ≡ 1 (mod 4),

(−1)(b−1)/2 if p ≡ 3 (mod 4),

b1 = 1,

b2 =
{

(−1)(k−1)/2/2 if p ≡ 1 (mod 4),

(−1)(k+a−1)/2/2 if p ≡ 3 (mod 4),
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1232 Z. S. Aygin

b3 =
{
1 if p ≡ 1 (mod 4),

(−1)(b+1)/2 if p ≡ 3 (mod 4),

b4 =
{

(−1)(k−1)/2/2 if p ≡ 1 (mod 4),

(−1)k/2/2 if p ≡ 3 (mod 4).

Using (11) and Theorem 2 one can obtain results similar to Corollary 1 for any
diagonal form. Next we consider the non-diagonal form

Fk =
k∑

m=1

∑
1≤i≤ j≤4,
(i, j) �=(1,2)

xi,mx j,m .

We obtain

N = 2, det(B(Fk)) = 22k and
∑

x∈Z2k ,
x(mod c)

e2π iFk (x)/c =
{
1 if c = 1,

(−8)k if c = 2.

Thus, θFk ∈ M2k(�0(2), χ1), hence by Theorem 2 we have

[n]EθFk
(z) = −4k

((−2)k + 1)B2k,χ1

(
σ2k−1(χ1, χ1; n) + (−2)kσ2k−1(χ1, χ1; n/2)

)
.

(14)

When k = 6 we compute the first few coefficients of the cusp part of θF6 :

θF6(z) − EθF6
(z) =263419

691
q + 263419

691
(26 − 24)q2 + 263419

691
252q3 + O(q4)

∈ S12(�0(2), χ1).

The Fourier coefficients of η24(z) are called Ramanujan’s τ -function and first few
terms are given as follows:

η24(z) =
∑
n≥1

τ(n)qn = q − 24q2 + 252q3 + O(q4). (15)

It is well known that η24(z) and η24(2z) ∈ S12(�0(2), χ1) and thus by Sturm’s Theo-
rem [5, Corollary 5.6.14] we obtain

θF6(z) − EθF6
(z) = 263419

691
(η24(z) + 26η24(2z)). (16)
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If we compare nth coefficient of both sides of (16) we get

[n]θF6(z) − 24327

691
(σ11(χ1, χ1; n) + 26σ11(χ1, χ1; n/2))

= 263419

691
(τ (n) + 26τ(n/2)).

Since

[n]θF6(z) ∈ N0 for all n ∈ N0 and 24327 ≡ −263419 (mod 691)

it is not hard to deduce the well-known congruence relation

τ(n) ≡ σ11(χ1, χ1; n) (mod 691).

3 Applications to eta quotients

In this section, we give further applications of Theorem 1. Recall that the Dedekind
eta function is defined by

η(z) = eπ i z/12
∏
n≥1

(1 − e2π inz).

Let k ∈ N. We define

fk(z) := η2k+1(2z)η2k+1(3z)η2k+1(8z)η2k+1(12z)

η2k+1(z)η2k+1(24z)
, (17)

gk(z) := η6k−5(3z)η6k−4(4z)

η2k−3(z)η2k−2(2z)η2k−4(6z)η2k(12z)
, (18)

hk(z) := η6k−4(9z)η3(27z)

η2k−1(3z)
. (19)

In Corollary 2 below, we obtain formulas concerning fk(z), gk(z), and hk(z). Sim-
ilar formulas can be obtained via Theorem 1 for all integer weight holomorphic eta
quotients.

Corollary 2 Let k ≥ 1 and let fk(z), gk(z), and hk(z) be defined by (17), (18), and
(19), respectively. Then we have

E fk (z) = 1 − 4k + 2

B2k+1,χ−24

∑
n≥1

(
σ2k(χ1, χ−24; n) + (−24)kσ2k(χ−24, χ1; n)

)
qn,

Egk (z) = 1 − 4k

B2k,χ12

∑
n≥1

σ2k−1(χ1, χ12; n)qn,
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and

Ehk (z) = −4k

B2k,χ1

∑
n≥1

⎛
⎝∑

d|9
adσ2k−1(χ1, χ1; n/d) + b1σ2k−1(χ−3, χ−3; n)

⎞
⎠ qn,

(20)

where

a1 = (−1)k − cos ((k + 4)π/3)

33k+1(32k − 1)
,

a3 = (−1)k+1 + (32k + 1) cos ((k + 4)π/3)

33k+1(32k − 1)
,

a9 = − cos ((k + 4)π/3)

3k+1(32k − 1)
,

b1 =
√
3 sin ((k + 4)π/3)

33k+1(32k − 1)
.

Proof We use [5, Proposition 5.9.2] to determine

fk(z) ∈ M2k+1(�0(24), χ−24),

gk(z) ∈ M2k(�0(12), χ12),

hk(z) ∈ M2k(�0(27), χ1).

We evaluate the constant terms of fk(z), gk(z), hk(z) at the relevant cusps using [12,
Proposition 2.1]. We do this with the help of some SAGE functions we have written;
the code is provided in the Appendix A. From these we compute

[0]1/1 fk = − i2k+1
√
6

3k+123k+2 ,

[0]a/c fk = 0, for a/c = 1/2, 1/3, 1/4, 1/6, 1/8, 1/12,

[0]1/24 fk = 1,

see Appendix A for details. We determine the set of tuples of characters as

E(2k + 1, 24, χ−24) = {(χ1, χ−24), (χ−3, χ8), (χ8, χ−3), (χ−24, χ1)}.

Thus, we have

E fk (z) =
∑

(ε,ψ)∈E(2k+1,24,χ−24)

a fk (ε, ψ, 1)E2k+1(ε, ψ; z).
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Now, we compute

a fk (χ1, χ−24, 1) =
⎛
⎝∏

p|24

pk

pk − χ1(p)χ−24(p)

⎞
⎠

× Rk,χ1,χ−24(1, 1)Sk,1,χ1,χ−24(1, 1)[0]24,χ−24 fk
= Rk,χ1,χ−24(1, 1)Sk,1,χ1,χ−24(1, 1)[0]24,χ−24 fk
= [0]24,χ−24 fk . (21)

Additionally, we have

[0]24,χ−24 fk = 1

φ(24)

24∑
a=1,

gcd(a,24)=1

χ−24(a)[0]a/24 fk = χ−24(1)[0]1/24 fk = 1. (22)

Combining (21) and (22) we have a fk (χ1, χ−24, 1) = 1.
The rest of the coefficients are obtained similarly. ��

Now, we turn our attention to special cases of these formulas. The dimension of
S2(�0(12), χ12) is 0, so we obtain an exact formula for g1, i.e., we have g1(z) =
Eg1(z). When k = 1, (20) specializes to

Eh1(z) =
∑
n≥1

(
1

18
σ1(χ1, χ1; n) − 2

9
σ1(χ1, χ1; n/3)

+1

6
σ1(χ1, χ1; n/9) + 1

18
σ1(χ−3, χ−3; n)

)
qn .

Clearly h1(z) − Eh1(z) is a cusp form, and if we normalize h1(z) − Eh1(z) so that
the coefficient of q is 1, we obtain the newformN27(z) in S2(�0(27), χ1), that is, we
have

N27(z) = −9
η2(9z)η3(27z)

η(3z)
+

∑
n≥1

(
1

2
σ1(χ1, χ1; n) − 2σ1(χ1, χ1; n/3)

+3

2
σ1(χ1, χ1; n/9) + 1

2
σ1(χ−3, χ−3; n)

)
qn .

By [8, Table 1] this newform is associated to the elliptic curve

E27A : y2 + y = x3 − 7.

Recall that in Sect. 1 we defined

E27A(Fp) = {∞} ∪ {(x, y) ∈ Fp × Fp : y2 + y = x3 − 7},
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where Fp is the finite field of p elements. Then by the Modularity Theorem, see [9,
Theorem 8.8.1], we have

#E27A(Fp) = (p + 1) − [p]N27(z) for all p �= 3.

Thus, for all p �= 3 we have

#E27A(Fp) = 9[p]η
2(9z)η3(27z)

η(3z)
+ (p + 1)

(
1 − χ−3(p)

2

)
.

Since [p]η
2(9z)η3(27z)

η(3z)
∈ Z for all p ∈ N and [p]η

2(9z)η3(27z)

η(3z)
= 0 when p ≡ 2

(mod 3), we obtain the following statement.

Corollary 3 We have

#E27A(Fp) ≡ 0 (mod 9) if p ≡ 1 (mod 3),

#E27A(Fp) = p + 1 if p ≡ 2 (mod 3).

4 Orthogonal relations

In this section,weprove someorthogonal relations involving the functionsRk,ε,ψ (d, c)
and Sk,N ,ε,ψ (d, c) defined in (6) and (7), respectively. These orthogonal relations
concern the constant terms of the Eisenstein series and give the means to determine
a f (ε, ψ, d) of Theorem 1. Throughout the section we assume k, N ∈ N and ε, ψ are
primitive Dirichlet characters with conductors L, M , respectively, such that LM | N .

Lemma 1 Let p | N be a prime and let t | N/pv , where v = vp(N ). Then, for
0 ≤ i ≤ v, we have

Sk,N ,ε,ψ (t · pi , d) = Sk,pv,ε,ψ (pi , pvp(d))Sk,N/pv,ε,ψ (t, d/pvp(d)).

Proof Since t | N/pv we have gcd(t, p) = 1. Using the multiplicative properties of
the Möbius function we obtain

Sk,N ,ε,ψ (t · pi , d)

= μ

(
t · pi · d

gcd(t · pi , d)2

) ∏

p2|gcd(t ·pi ,d),

0<vp2 (t ·pi )=vp2 (d)<vp2 (N )

(
pk2 + ε(p2)ψ(p2)

pk2

)

= μ

(
pi · pvp(d)

gcd(pi , pvp(d))2

) ∏

p2|gcd(pi ,pvp (d)),

0<vp2 (pi )=vp2 (pvp (d))<vp2 (N )

(
pk2 + ε(p2)ψ(p2)

pk2

)
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× μ

(
t · d/pvp(d)

gcd(t, d/pvp(d))2

) ∏

p2|gcd(t,d/pvp (d)),

0<vp2 (t)=vp2 (d/pvp (d))<vp2 (N/pvp (d))

(
pk2 + ε(p2)ψ(p2)

pk2

)

= Sk,pv,ε,ψ (pi , pvp(d))Sk,N/pv,ε,ψ (t, d/pvp(d)).

��
Lemma 2 If gcd(t, pi ) = 1, then we have

Rk,ε,ψ (c, t · pi ) = ε(−1)Rk,ε,ψ (pvp(c), pi )Rk,ε,ψ (c/pvp(c), t),

Rk,ε,ψ (t · pi , d) = ε(−1)Rk,ε,ψ (pi , pvp(d))Rk,ε,ψ (t, d/pvp(d)).

Proof By elementary manipulations we obtain

Rk,ε,ψ (c, t · pi ) = ε

( −c

gcd(c, t · pi )
)

ψ

(
t · pi

gcd(c, t · pi )
)(

gcd(c, t · pi )
t · pi

)k

= ε

( −c/pvc

gcd(c/pvc , t)

)
ψ

(
t

gcd(c/pvp(c), t)

) (
gcd(c/pvp(c), t)

t

)k

× ε

(
pvp(c)

gcd(pvp(c), pi )

)
ψ

(
pi

gcd(pvp(c), pi )

) (
gcd(pvc , pi )

pi

)k

= ε(−1)Rk,ε,ψ (pvp(c), pi )Rk,ε,ψ (c/pvp(c), t).

Proof of the second equation is similar. ��
Theorem 3 If c, d | N, then

∑
t |N

Sk,N ,ε,ψ (c, t)Rk,ε,ψ (c, t)Rk,ε,ψ (t, d) =

⎧
⎪⎨
⎪⎩

0 if c �= d,
∏
p|N

pk − ε(p)ψ(p)

pk
if c = d.

Proof Let p | N be prime and vp(N ) = v. We use Lemmas 1 and 2 to obtain

∑
t |N

Sk,N ,ε,ψ (c, t)Rk,ε,ψ (c, t)Rk,ε,ψ (t, d)

=
∑

0≤i≤v

∑
t |N/pv

Sk,N ,ε,ψ (c, t · pi )Rk,ε,ψ (c, t · pi )Rk,ε,ψ (t · pi , d)

=
∑

0≤i≤v

∑
t |N/pv

Sk,pv,ε,ψ (pvp(c), pi )Sk,N/pv,ε,ψ (c/pvp(c), t)

× ε(−1)Rk,ε,ψ (pvp(c), pi )Rk,ε,ψ (c/pvp(c), t)

× ε(−1)Rk,ε,ψ (pi , pvp(d))Rk,ε,ψ (t, d/pvp(d))
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=
∑

0≤i≤v

Sk,pv,ε,ψ (pvp(c), pi )Rk,ε,ψ (pvp(c), pi )Rk,ε,ψ (pi , pvp(d))

×
∑

t |N/pv

Sk,N/pv,ε,ψ (c/pvp(c), t)Rk,ε,ψ (c/pvp(c), t)Rk,ε,ψ (t, c/pvp(d)).

Using this recursively we obtain

∑
t |N

Sk,N ,ε,ψ (c, t)Rk,ε,ψ (c, t)Rk,ε,ψ (t, d)

=
∏
p|N

∑
0≤i≤vp

Sk,pv,ε,ψ (pvp(c), pi )Rk,ε,ψ (pvp(c), pi )Rk,ε,ψ (pi , pvp(d)). (23)

Now, we prove for all p | N we have

∑
0≤i≤v

Sk,pv,ε,ψ (pvp(c), pi )Rk,ε,ψ (pvp(c), pi )Rk,ε,ψ (pi , pvp(d))

=
⎧⎨
⎩
0 if vp(c) �= vp(d),

pk − ε(p)ψ(p)

pk
if vp(c) = vp(d).

(24)

We first note that

Sk,pv,ε,ψ (pvp(c), pi ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if |vp(c) − i | > 1,
pk + ε(p)ψ(p)

pk
if i = vp(c) and v > vp(c) > 0,

1 if i = vp(c) and vp(c) = v,

1 if i = vp(c) and vp(c) = 0,

−1 if i = vp(c) − 1 and vp(c) > 0,

−1 if i = vp(c) + 1 and vp(c) < v,

(25)

and

Rk,ε,ψ (pi , p j ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ε(−1) if i = j,

ε(−1)ψ(p j−i )

(
1

p j−i

)k

if i < j,

ε(−pi− j ) if i > j .

(26)

The cases

(Case 1) 0 < vp(c) < vp(d) ≤ v,
(Case 2) 0 = vp(c) < vp(d) ≤ v,
(Case 3) v > vp(c) > vp(d) ≥ 0,
(Case 4) v = vp(c) > vp(d) ≥ 0,
(Case 5) 0 < vp(c) = vp(d) < v,
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(Case 6) 0 = vp(c) = vp(d),
(Case 7) v = vp(c) = vp(d),

need to be handled separately, which is done below.
Case 1 If 0 < vp(c) < vp(d) ≤ v, then by employing (25) for all i such that

|vp(c) − i | > 1 we have

Sk,pv,ε,ψ (pvp(c), pi )Rk,ε,ψ (pvp(c), pi )Rk,ε,ψ (pi , pvp(d)) = 0.

Therefore, we have

∑
0≤i≤v

Sk,pv,ε,ψ (pvp(c), pi )Rk,ε,ψ (pvp(c), pi )Rk,ε,ψ (pi , pvp(d))

= Sk,pv,ε,ψ (pvp(c), pvp(c)−1)Rk,ε,ψ (pvp(c), pvp(c)−1)Rk,ε,ψ (pvp(c)−1, pvp(d))

+ Sk,pv,ε,ψ (pvp(c), pvp(c))Rk,ε,ψ (pvp(c), pvp(c))Rk,ε,ψ (pvp(c), pvp(d))

+ Sk,pv,ε,ψ (pvp(c), pvp(c)+1)Rk,ε,ψ (pvp(c), pvp(c)+1)Rk,ε,ψ (pvp(c)+1, pvp(d)),

which, by (25) and (26), equals to

= −1 · ε(−p) · ε(−1)ψ(pvp(d)−vp(c)+1)

(
1

pvp(d)−vp(c)+1

)k

+ pk + ε(p)ψ(p)

pk
· ε(−1) · ε(−1)ψ(pvp(d)−vp(c))

(
1

pvp(d)−vp(c)

)k

+ (−1) · ε(−1)ψ(p)

(
1

p

)k

· ε(−1)ψ(pvp(d)−vp(c)−1)

(
1

pvp(d)−vp(c)−1

)k

.

By usingmultiplicative properties of Dirichlet characters we conclude that this expres-
sion is equal to 0.

Case 2 If 0 = vp(c) < vp(d) ≤ v, then by employing (25) and (26) we have

∑
0≤i≤v

Sk,pv,ε,ψ (pvp(c), pi )Rk,ε,ψ (pvp(c), pi )Rk,ε,ψ (pi , pvp(d))

= Sk,pv,ε,ψ (1, 1)Rk,ε,ψ (1, 1)Rk,ε,ψ (1, pvp(d))

+ Sk,pv,ε,ψ (1, p)Rk,ε,ψ (1, p)Rk,ε,ψ (p, pvp(d))

= ψ(pvp(d))

(
1

pvp(d)

)k

− ψ(pvp(d))

(
1

pvp(d)

)k

,

which equals to 0.
Case 3 If v > vp(c) > vp(d) ≥ 0, then by employing (25) and (26) we have

∑
0≤i≤v

Sk,pv,ε,ψ (pvp(c), pi )Rk,ε,ψ (pvp(c), pi )Rk,ε,ψ (pi , pvp(d))
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= Sk,pv,ε,ψ (pvp(c), pvp(c)−1)Rk,ε,ψ (pvp(c), pvp(c)−1)Rk,ε,ψ (pvp(c)−1, pvp(d))

+ Sk,pv,ε,ψ (pvp(c), pvp(c))Rk,ε,ψ (pvp(c), pvp(c))Rk,ε,ψ (pvp(c), pvp(d))

+ Sk,pv,ε,ψ (pvp(c), pvp(c)+1)Rk,ε,ψ (pvp(c), pvp(c)+1)Rk,ε,ψ (pvp(c)+1, pvp(d))

= −ε(−p)ε(−pvp(c)−1−vp(d)) + pk + ε(p)ψ(p)

pk
· ε(−1) · ε(−pvp(c)−vp(d))

− ε(−1)ψ(p)
1

pk
· ε(−pvp(c)+1−vp(d)).

By usingmultiplicative properties of Dirichlet characters we conclude that this expres-
sion is equal to 0.

Case 4 If v = vp(c) > vp(d) ≥ 0, then by employing (25) and (26) we have

∑
0≤i≤v

Sk,pv,ε,ψ (pvp(c), pi )Rk,ε,ψ (pvp(c), pi )Rk,ε,ψ (pi , pvp(d))

= Sk,pv,ε,ψ (pvp(c), pvp(c)−1)Rk,ε,ψ (pvp(c), pvp(c)−1)Rk,ε,ψ (pvp(c)−1, pvp(d))

+ Sk,pv,ε,ψ (pvp(c), pvp(c))Rk,ε,ψ (pvp(c), pvp(c))Rk,ε,ψ (pvp(c), pvp(d))

= −ε(pvp(c)−vp(d)) + ε(pvp(c)−vp(d))

= 0.

Case 5 If 0 < vp(c) = vp(d) < v, then by employing (25), (26) and multiplicative
properties of Dirichlet characters we have

∑
0≤i≤v

Sk,pv,ε,ψ (pvp(c), pi )Rk,ε,ψ (pvp(c), pi )Rk,ε,ψ (pi , pvp(d))

= Sk,pv,ε,ψ (pvp(c), pvp(c)−1)Rk,ε,ψ (pvp(c), pvp(c)−1)Rk,ε,ψ (pvp(c)−1, pvp(c))

+ Sk,pv,ε,ψ (pvp(c), pvp(c))Rk,ε,ψ (pvp(c), pvp(c))Rk,ε,ψ (pvp(c), pvp(c))

+ Sk,pv,ε,ψ (pvp(c), pvp(c)+1)Rk,ε,ψ (pvp(c), pvp(c)+1)Rk,ε,ψ (pvp(c)+1, pvp(c))

= −ε(−p) · ε(−1)ψ(p)
1

pk
+ pk + ε(p)ψ(p)

pk
· ε(−1) · ε(−1)

− ε(−1)ψ(p)
1

pk
· ε(−p)

= pk − ε(p)ψ(p)

pk
.

Case 6 If 0 = vp(c) = vp(d), then by employing (25), (26) and multiplicative
properties of Dirichlet characters we have

∑
0≤i≤v

Sk,pv,ε,ψ (pvp(c), pi )Rk,ε,ψ (pvp(c), pi )Rk,ε,ψ (pi , pvp(d))

= Sk,pv,ε,ψ (1, 1)Rk,ε,ψ (1, 1)Rk,ε,ψ (1, 1)
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+ Sk,pv,ε,ψ (1, p)Rk,ε,ψ (1, p)Rk,ε,ψ (p, 1)

= 1 · ε(−1) · ε(−1) − ε(−1)ψ(p)
1

pk
· ε(−p)

= pk − ε(p)ψ(p)

pk
.

Case 7 If v = vp(c) = vp(d), then by employing (25), (26) and multiplicative
properties of Dirichlet characters we have

∑
0≤i≤v

Sk,pv,ε,ψ (pvp(c), pi )Rk,ε,ψ (pvp(c), pi )Rk,ε,ψ (pi , pvp(d))

= Sk,pv,ε,ψ (pv, pv−1)Rk,ε,ψ (pv, pv−1)Rk,ε,ψ (pv−1, pv)

+ Sk,pv,ε,ψ (pv, pv)Rk,ε,ψ (pv, pv)Rk,ε,ψ (pv, pv)

= −1 · ε(−p) · ε(−1)ψ(p)
1

pk
+ 1 · ε(−1) · ε(−1)

= pk − ε(p)ψ(p)

pk
.

This yields (24). Finally, if c �= d, then there exists a prime p | N such that vp(c) �=
vp(d). Hence by (24) the product in (23) is 0. If c = d then for all prime divisors
p of N we have vp(c) = vp(d). Therefore, by (23) and (24) we have the desired
result. ��

5 Constant terms of expansions of Eisenstein series at the cusps

Recall that Ek(ε, ψ; dz) is defined by (2) and we have

Ek(ε, ψ; dz) ∈ Ek(�0(N ), χ) when (k, ε, ψ) �= (2, χ1, χ1),

and

Ld(z) := E2(χ1, χ1; z) − dE2(χ1, χ1; dz) ∈ E2(�0(N ), χ1).

The constant terms of Eisenstein series in the expansion at the cusp a/c with
gcd(a, c) = 1 are given by

[0]a/cEk(ε, ψ; dz) = ψ(a)Rk,ε,ψ (c, Md) when (k, ε, ψ) �= (2, χ1, χ1) and (27)

[0]a/cLd(z) = R2,χ1,χ1(c, 1) − dR2,χ1,χ1(c, d), (28)

where Rk,ε,ψ (c, t) is defined by (6). For (27) see [3, (6.2)], [5, Proposition 8.5.6 and
Ex. 8.7 (i) on pg. 308]. The formula (28) is proved later in this section.

The structure of the terms [0]a/cEk(ε, ψ; dz) is complicated and difficult to work
with. We observe that taking the average [0]c,ψ Ek(ε, ψ; dz) gives constant terms a
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very nice structure which is easier to work with (see (38)). Throughout the section we
assume k, N ∈ N, ε and ψ are primitive Dirichlet characters with conductors L and
M , respectively, such that LM | N and (k, ε, ψ) �= (2, χ1, χ1).

Lemma 3 Let c | N and LMd | N. If M � c, or M | c and L � N/c, then

[0]a/cEk(ε, ψ; dz) = 0.

Proof First, assumingM � c, we see thatM � gcd(Md, c). Thus, gcd
(

Md
gcd(Md,c) , M

)
|

M , which implies ψ
(

Md
gcd(Md,c)

)
= 0 (since the conductor of ψ is M). Therefore, the

result follows from (27).
Second, we assume M | c and L � N/c. Setting c1 = c/M , we have c1 | N/M .

Since L � N/c, we have c1 � N/LM . Since (N/M)
L ∈ Z, (N/M)

c1
∈ Z and (N/M)/c1

L /∈ Z,
we have gcd(c1, L) �= 1. Additionally, there exists a prime p dividing c1 such that

vp(c1) > vp(N ) − vp(M) − vp(L). (29)

Since c1 | N/M , for all p | c1 we have

vp(c1) ≤ vp(N ) − vp(M). (30)

By (29) and (30) we have

vp(N ) − vp(M) > vp(N ) − vp(M) − vp(L).

Therefore,

vp(L) > 0. (31)

Since d | N/LM , we have

vp(N ) − vp(M) − vp(L) ≥ vp(d) ≥ 0. (32)

Inequalities (29) and (32) together imply vp(c1) > vp(d). Employing (31) we have

p | gcd
(

pvp(c1)

gcd(pvp(c1), pvp(d))
, pvp(L)

)
.

That is,

p | gcd
(

c1
gcd(c1, d)

, L

)
.

This implies ε

(
c

gcd(Md, c)

)
= 0 (since the conductor of ε is L). Therefore, the

result follows from (27). ��
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Next we need the orthogonality of characters. The following lemma is a result of
standard Schur orthogonality relations for the characters on the unit group (Z/cZ)×
(see [5, Proposition 3.4.2]).

Lemma 4 Let c ∈ N, and let ψ1, ψ2 be two primitive Dirichlet characters with con-
ductors M1 and M2, respectively. If both M1 and M2 divide c, then we have

c∑
a=1,

gcd(a,c)=1

ψ1(a)ψ2(a) =
{
0 if ψ1 �= ψ2,

φ(c) if ψ1 = ψ2.

Before we prove the main result of this section we prove (28).

Lemma 5 If gcd(a, c) = 1, then we have

[0]a/cLd(z) = R2,χ1,χ1(c, 1) − dR2,χ1,χ1(c, d).

Proof Since gcd(a, c) = 1, there exist β, γ ∈ Z such that A =
[
a β

c γ

]
∈ SL2(Z).

Then by [12, (1.21)] we have

E2(χ1, χ1; A(z)) = (cz + γ )2E2(χ1, χ1; z) − 6ic

π
(cz + γ ), (33)

where A(z) is the usual linear fractional transformation. Let e = ad
gcd(c,ad)

and g =
c

gcd(c,ad)
. Since gcd(e, g) = 1 there exist f , h such that

[
e f
g h

]
∈ SL2(Z). Hence we

have

E2(χ1, χ1; d A(z); )

= E2

(
χ1, χ1;

[
e f
g h

] [
ahd − c f βhd − γ f
−agd + ce −βgd + γ e

]
(z)

)

= E2

(
χ1, χ1;

[
ad

gcd(c,ad)
f

c
gcd(c,ad)

h

] [
ahd − c f βhd − γ f

0 d
gcd(c,ad)

]
(z)

)

=
(
gcd(c, d)

d

)2

(cz + γ )2E2

(
χ1, χ1;

[
ahd − c f βhd − γ f

0 d
gcd(c,ad)

]
(z)

)

− 6ic

πd
(cz + γ ),

where in the last line we used (33). Thus, we obtain

[0]a/cLd(z) = [0]a/c(E2(χ1, χ1; z) − dE2(χ1, χ1; dz)) = d − gcd(c, d)2

d
= R2,χ1,χ1(c, 1) − dR2,χ1,χ1(c, d).

��
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Theorem 4 If c | N and (ε1, ψ1), (ε2, ψ2) ∈ {(ε, ψ) ∈ E(k, N , χ) : M | c}, then we
have

[0]c,ψ2Ek(ε1, ψ1; dz) =
{

[0]1/cEk(ε2, ψ2; dz) if ψ1 = ψ2,

0 otherwise.

If c | N and (ε2, ψ2) ∈ {(ε, ψ) ∈ E(2, N , χ1) : M | c}, then we have

[0]c,ψ2Ld(z) =
{

[0]1/cLd(z) if ψ2 = χ1,

0 otherwise.

Proof If (k, ε, ψ) �= (2, χ1, χ1) by (27) we have

[0]c,ψ2E(ε1, ψ1; dz) = 1

φ(c)

c∑
a=1,

gcd(a,c)=1

ψ2(a)ψ1(a)Rk,ε1,ψ1(c, M1d)

= [0]1/cEk(ε1, ψ1; dz) 1

φ(c)

c∑
a=1,

gcd(a,c)=1

ψ2(a)ψ1(a).

Therefore, by Lemma 4 we obtain the first part of the statement. Proof of the second
part is similar. ��

6 Proof of themain theorem

Recall that Ek(ε, ψ; dz) is defined by (2) and the set

{Ek(ε, ψ; dz) : (ε, ψ) ∈ E(k, N , χ), d | N/LM} (34)

constitutes a basis for Ek(�0(N ), χ) whenever (k, χ) �= (2, χ1) and the set

{E2(χ1, χ1; z) − dE2(χ1, χ1; dz) : 1 < d | N }
∪ {E2(ε, ψ; dz) : (ε, ψ) ∈ E(2, N , χ1), (ε, ψ) �= (χ1, χ1), d | N/LM} (35)

constitutes a basis for E2(�0(N ), χ1), see [5, Theorems 8.5.17 and 8.5.22], or [22,
Proposition 5].

Now, we prove the main theorem whenever (k, χ) �= (2, χ1). Let f (z) ∈
Mk(�0(N ), χ) where N , k ∈ N, k ≥ 2 and (k, χ) �= (2, χ1). By (34) we have

E f (z) =
∑

(ε,ψ)∈E(k,N ,χ)

∑
d|N/LM

a f (ε, ψ, d)Ek(ε, ψ; dz), (36)

123



Projections of modular forms on Eisenstein… 1245

for some a f (ε, ψ, d) ∈ C. Our strategy for the proof is, using the interplay between
the constant terms of Eisenstein series, to create sets of linear equations (see (38)) and
to solve those sets of linear equations for a f (ε, ψ, d) using Theorem 3.

By (1) we have f (z) = E f (z)+S f (z), where E f (z) ∈ Ek(�0(N ), χ) and S f (z) ∈
Sk(�0(N ), χ) are unique. Since by definition S f (z) vanishes at all cusps, we have
[0]a/c f (z) = [0]a/cE f (z). Therefore, by (36) for each c | N and a ∈ Z such that
gcd(a, c) = 1, we obtain

[0]a/c f (z) =
∑

(ε,ψ)∈E(k,N ,χ)

∑
d|N/LM

a f (ε, ψ, d)[0]a/cEk(ε, ψ; dz).

Let (ε2, ψ2) ∈ E(k, N , χ), and let the conductors of ε2 and ψ2 be L2 and M2, respec-
tively. Note that for each ψ2 there is a unique ε2 such that (ε2, ψ2) ∈ E(k, N , χ). If
we average the constant terms with ψ2 using (4), then for all c | N we obtain

[0]c,ψ2 f (z) =
∑

(ε,ψ)∈E(k,N ,χ)

∑
d|N/LM

a f (ε, ψ, d)[0]c,ψ2Ek(ε, ψ; dz).

Our goal here is to isolate a set of linear equations from which we can determine
a f (ε2, ψ2, d) for all d | N/L2M2. By Lemma 3 we have [0]c,ψ2Ek(ε2, ψ2; dz) = 0,
if c | N is such that M2 | c, or M2 � c and L2 | N/c. Therefore, from now on we
restrict c to be in CN (ε2, ψ2), see (5) for definition. By applying Lemma 3 one more
time we have [0]c,ψ2Ek(ε, ψ; dz) = 0 if M � c. Therefore, for all c ∈ CN (ε2, ψ2) we
have

[0]c,ψ2 f (z) =
∑

(ε,ψ)∈E(k,N ,χ),
M|c

∑
d|N/LM

a f (ε, ψ, d)[0]c,ψ2Ek(ε, ψ; dz). (37)

Recall that for each ψ2 there is a unique (ε2, ψ2) ∈ E(k, N , χ). Additionally, for all
c ∈ CN (ε2, ψ2) we have (ε2, ψ2) ∈ {(ε, ψ) ∈ E(k, N , χ) : M | c}. Therefore, for all
c ∈ CN (ε2, ψ2) we have

[0]c,ψ2 f (z) =
∑

(ε,ψ)∈E(k,N ,χ),
(ε,ψ) �=(ε2,ψ2)

M|c

∑
d|N/LM

a f (ε, ψ, d)[0]c,ψ2Ek(ε, ψ; dz)

+
∑

d|N/L2M2

a f (ε2, ψ2, d)[0]c,ψ2Ek(ε2, ψ2; dz).

From this, using Theorem 4, we obtain

[0]c,ψ2 f (z) =
∑

d|N/L2M2

a f (ε2, ψ2, d)[0]1/cEk(ε2, ψ2; dz).
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Since M2 | c we have

[0]1/cEk(ε2, ψ2; dz) = Rk,ε2,ψ2(c, M2d) = Rk,ε2,ψ2(c/M2, d).

Hence for all c ∈ CN (ε2, ψ2) we have

[0]c,ψ2 f (z) =
∑

d|N/L2M2

a f (ε2, ψ2, d)Rk,ε2,ψ2(c/M2, d). (38)

Below we solve the equations coming from (38) for a f (ε2, ψ2, d) using Theorem 3.
For d2 | N/L2M2 we consider the sum

∑
c∈CN (ε2,ψ2)

Rk,ε2,ψ2(d2, c/M2)Sk,N/L2M2,ε2,ψ2(d2, c/M2)[0]c,ψ2 f (z), (39)

which, by (38), equals to

=
∑

c∈CN (ε2,ψ2)

Rk,ε2,ψ2(d2, c/M2)Sk,N/L2M2,ε2,ψ2(d2, c/M2)

×
∑

d|N/L2M2

a f (ε2, ψ2, d)Rk,ε2,ψ2(c/M2, d). (40)

Rearranging the terms of (40) we obtain

∑
c∈CN (ε2,ψ2)

Rk,ε2,ψ2(d2, c/M2)Sk,N/L2M2,ε2,ψ2(d2, c/M2)[0]c,ψ2 f (z)

=
∑

d|N/L2M2

a f (ε2, ψ2, d)

×
∑

c∈CN (ε2,ψ2)

Rk,ε2,ψ2(d2, c/M2)Sk,N/L2M2,ε2,ψ2(d2, c/M2)Rk,ε2,ψ2(c/M2, d).

(41)

Recall that CN (ε2, ψ2) is defined by (5) and is a set equivalent to the set

{c : M2 | c, c/M2 | N/L2M2},

i.e., c/M2 runs through all the divisors of N/L2M2 as c runs through all the elements
of CN (ε2, ψ2). In Theorem 3 we use this and we replace N by N/L2M2, t by c/M2,
c by d2 and d by d to obtain

∑
c∈CN (ε2,ψ2)

Rk,ε2,ψ2(d2, c/M2)Sk,N/L2M2,ε2,ψ2(d2, c/M2)Rk,ε2,ψ2(c/M2, d)
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=

⎧
⎪⎨
⎪⎩

∏
p|N/L2M2

pk − ε2(p)ψ2(p)

pk
if d = d2,

0 if d �= d2.

(42)

Therefore, from (41) and (42) we obtain

∑
c∈CN (ε2,ψ2)

Rk,ε2,ψ2(d2, c/M2)Sk,N/L2M2,ε2,ψ2(d2, c/M2)[0]c,ψ2 f (z)

= a f (ε2, ψ2, d2)
∏

p|N/L2M2

pk − ε2(p)ψ2(p)

pk
.

Since p | L2M2 implies ε2(p)ψ2(p) = 0 we have

a f (ε2, ψ2, d2) =
∏
p|N

pk

pk − ε2(p)ψ2(p)

×
∑

c∈CN (ε2,ψ2)

Rk,ε2,ψ2(d2, c/M2)Sk,N/L2M2,ε2,ψ2(d2, c/M2)[0]c,ψ2 f .

This completes the proof of Theorem 1 when (k, χ) �= (2, χ1).
Now, if (k, χ) = (2, χ1), then a basis of E2(�0(N ), χ1) is given by (35). Using

Lemma 5, Theorem 4, and arguments similar to the first part of this proof we obtain

E f (z)=
∑

1<d|N
c f (χ1, χ1, d)Ld(z)+

∑
(ε,ψ)∈E(2,N ,χ),
(ε,ψ) �=(χ1,χ1)

∑
d|N/LM

a f (ε, ψ, d)E2(ε, ψ; dz),

where a f (ε, ψ, d) is as above (with k = 2) and

c f (χ1, χ1, d) = − 1

d

∏
p|N

p2

p2 − 1

∑
c|N

R2,χ1,χ1(d, c)S2,N ,χ1,χ1(d, c)[0]c,χ1 f

= − 1

d
a f (χ1, χ1, d).

On the other hand, we have

∑
1<d|N

c f (χ1, χ1, d)Ld(z) =
∑

1<d|N
c f (χ1, χ1, d)(E2(χ1, χ1; z) − dE2(χ1, χ1; dz))

=
∑

1<d|N
c f (χ1, χ1, d)E2(χ1, χ1; z)

+
∑

1<d|N
a f (χ1, χ1, d)E2(χ1, χ1; dz)
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=
∑
d|N

a f (χ1, χ1, d)E2(χ1, χ1; dz),

since

a f (χ1, χ1, 1)
∏
p|N

p2 − 1

p2
=

∑
c|N

R2,χ1,χ1(1, c)S2,N ,χ1,χ1(1, c)[0]c,χ1 f

=
∑
c|N

μ(c)

c2
∑

1<d|N
c f (χ1, χ1, d)

d − gcd(d, c)2

d

=
∑

1<d|N
c f (χ1, χ1, d)

∑
c|N

μ(c)

c2
d − gcd(d, c)2

d

=
∏
p|N

p2 − 1

p2
∑

1<d|N
c f (χ1, χ1, d),

i.e.,
∑

1<d|N c f (χ1, χ1, d) = a f (χ1, χ1, 1). This completes the proof of the Main
Theorem.

At last we prove a lemma which is useful in reducing the number of constant term
computations in the applications of Theorem 1.

Lemma 6 Let f (z) ∈ Mk(�0(N ), χ) and c | N. Let a/c and a′/c be equivalent cusps
of �0(N ). If (ε, ψ) ∈ E(k, N , χ) with M | c, then we have

ψ(a)[0]a/c f = ψ(a′)[0]a′/c f .

Proof Ifa/c anda′/c are equivalent cusps of�0(N ), then there exists amatrix

[
α β

γ δ

]
∈

�0(N ) such that [
α β

γ δ

] [
a b
c d

]
=

[
a′ b′
c d ′

]
. (43)

Then using transformation properties of modular forms we have

ψ(a′)[0]a′/c f = ψ(a′) lim
z→i∞(cz + d ′)−k f

(
a′z + b′

cz + d ′

)

= ψ(a′) lim
z→i∞(cz + d ′)−kχ(δ)

(
γ
az + b

cz + d
+ δ

)k

f

(
az + b

cz + d

)

= ψ(a′)χ(δ) lim
z→i∞(cz + d)−k f

(
az + b

cz + d

)

= ψ(a′)χ(δ)[0]a/c f .

We have M | c and by (43) we have a′ = αa + βc, thus ψ(a′) = ψ(α)ψ(a). Since
M | c, c | N , and N | γ , we have M | γ , therefore, we have 1 = ψ(1) = ψ(αδ −γβ)
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which implies ψ(α) = ψ(δ). Putting these together, we obtain

ψ(a′)χ(δ) = ψ(a)ψ(δ)χ(δ).

Since gcd(δ, N ) = 1 we have ψ(δ)χ(δ) = ε(δ). Now, we prove ε(δ) = 1 which
finishes the proof. Recall that LM | N , therefore, c | M implies L | N/c, i.e.,
L | γ /c. From (43) we have δ = 1 − aγ /c, thus, since gcd(a, c) = 1 and L | γ /c,
we have ε(δ) = ε(1 − aγ /c) = ε(1) = 1. ��
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Appendix A The SAGE functions for computing the constant terms of
eta quotients at a given cusp

Let rd ∈ Z, not all zeros, N ∈ N and define

f (z) =
∏
d|N

ηrd (dz).

Assuming f (z) to be a modular form the following SAGE functions (written using
version 9.1 of the software [20]) help computing [0]a/c f , the constant term of f (z)
at the cusp a/c.

def v_eta1(a ,b,c ,d) :
i f c%2==1:

return kronecker_symbol(d, abs(c))
i f c%2==0:

return kronecker_symbol(c , abs(d))

def v_eta2(a ,b,c ,d) :
i f c%2==1:

return 1
i f c%2==0:

return (−1)^(1/4∗(sgn(c)−1)∗(sgn(d)−1))

def v_eta3(a ,b,c ,d) :
i f c%2==1:

return (1/24 ∗ ((a+d) ∗ c−b ∗ d ∗ (c^2−1)−3 ∗ c))
i f c%2==0:

return (1/24 ∗ ((a+d) ∗ c−b ∗ d ∗ (c^2−1)+3 ∗ d−3−3 ∗ c ∗ d))

def L_constr(m,d, c ) : #Proposition 2.1 of [12]
x1= m ∗ d/gcd(c ,m)

123



1250 Z. S. Aygin

u1=−c/gcd(c ,m)
y1=0
v1=0
for i1 in range(−abs(x1∗u1) ,abs(x1∗u1) ) :

i f gcd( i1 ,x1)==1 and
(1+i1∗u1)%x1==0 and
((1+i1∗u1) /x1)%2==1:

y1=i1
v1=(1+i1∗u1) /x1
return [x1,y1,u1,v1]
break

def A_find(d, c ) : #finds a suitable matrix
for b in range(abs(d∗c ) ) :

i f gcd(b,d)==1 and
(1+b∗c)%d==0:

a=(1+b∗c ) /d
return [a ,b,c ,d]
break

def f_c_of_eta(m,d, c ) : #Constant term of the Dedekind eta function at −d/c
A = A_find(d, c)
L = L_constr(m,d, c)
a = A[0]
b = A[1]
c = A[2]
d = A[3]
x = L[0]
y = L[1]
u = L[2]
v = L[3]
vv = −m ∗b ∗v −y ∗a
OP1 = v_eta1(x,y,u,v)
OP2 = v_eta2(x,y,u,v)
OP3 = v_eta3(x,y,u,v)
OP4 = (1/24 /m ∗vv∗gcd(c ,m))
OP5 = (gcd(c ,m)/m)^(1/2)
return [OP1,OP2,OP3,OP4,OP5]

def first_coeff_of_eta_q(N, etaq ,a , c ) : #Computes the constant term of
#the eta quotient [r_1 , . . . , r_d , . . . , r_N] at cusp a/c

d=−a
divs=divisors (N)
L=len(etaq)
i f sum(1/24/divs[ i2]∗(gcd(c , divs[ i2]))^2∗etaq[ i2 ] for i2 in range(L))>0:

return 0 #does the vanishing order analysis
else :

VV1=prod(( f_c_of_eta(divs[ i1 ] ,d, c)[0])^(etaq[ i1 ]) for i1 in range(L))
VV2=prod(( f_c_of_eta(divs[ i1 ] ,d, c)[1])^(etaq[ i1 ]) for i1 in range(L))
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SS1=sum(( f_c_of_eta(divs[ i1 ] ,d, c)[2])∗(etaq[ i1 ]) for i1 in range(L))
SS2=sum(( f_c_of_eta(divs[ i1 ] ,d, c)[3])∗(etaq[ i1 ]) for i1 in range(L))
VV3=prod(( f_c_of_eta(divs[ i1 ] ,d, c)[4])^(etaq[ i1 ]) for i1 in range(L))
VV4=e^(2∗pi∗I∗(SS1+SS2))
kk=sum( r for r in etaq)/2
return (−1)^kk∗VV1∗VV2∗VV3∗VV4

By Lemma 6 it will be sufficient to compute the constant terms of the eta quotient
fk(z) defined by (17) at a set of inequivalent cusps of �0(24), which is done below
with the help of this code. The set

{1/1, 1/2, 1/3, 1/4, 1/6, 1/8, 1/12, 1/24}

gives a complete set of inequivalent cusps of �0(24), see [5, Corollary 6.3.23]. Note
that if k is fixed then the code can handle the vanishing order analysis. For instance
the output for the code

k=3
print ( first_coeff_of_eta_q(24,[−2∗k−1,2∗k+1,2∗k+1,0,0,2∗k+1,2∗k+1,−2∗k−1],1,2))

will be 0. However, here we are working with a general k, and therefore, the order
analysis has to be done manually. When k ≥ 1, the vanishing order of fk(z) is greater
than 0 at cusps {1/2, 1/3, 1/4, 1/6, 1/8, 1/12}. Thus, we have

[0]1/2 fk = 0, [0]1/3 fk = 0, [0]1/4 fk = 0, [0]1/6 fk = 0, [0]1/8 fk = 0, [0]1/12 fk = 0.

To compute [0]1/1 fk and [0]1/24 fk , we run the following code:

k=var( ’k’)
assume(k, ’ integer ’)
eta=[−2∗k−1,2∗k+1,2∗k+1,0,0,2∗k+1,2∗k+1,−2∗k−1]
print ( first_coeff_of_eta_q(24,eta ,1 ,1). simplify ())
print ( first_coeff_of_eta_q(24,eta ,1 ,24). simplify ())

The output will be

−I∗6^(k + 1/2)∗3^(−2∗k − 1)∗2^(−4∗k − 2)∗(−1)^k
1

Simplifying these we obtain

[0]1/1 fk = − i2k+1
√
6

3k+123k+2 , [0]1/24 fk = 1.

Putting everything together, for all k ≥ 1 we have

[0]1/1 fk = − i2k+1
√
6

3k+123k+2 , [0]1/2 fk = 0, [0]1/3 fk = 0, [0]1/4 fk = 0,

[0]1/6 fk = 0, [0]1/8 fk = 0, [0]1/12 fk = 0, [0]1/24 fk = 1.
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