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Abstract

Let f3 denote the characteristic function of cube-full numbers, and let (n, g) be the
greatest common divisor of positive integers n and g. For any positive real numbers
x and y, we shall consider several asymptotic formulas for sums of sums of modified

k
cube-full numbers, which is 3, (32, <. Lgjin.q) dfs (@/d)) withk = 1,2.
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1 Introduction

For any integer (> 2), we call n an r-full integer if p|n = p"|n and call n an r-free
integer if p|n = p” 1 n, where the letter p denotes a prime number. If r = 2 orr = 3,
we use the terms square-full or cube-full. Let G (r) denote the set of r-full numbers,
then we set

(1 if neGw,
fr(m) = {0 it n¢Ger).

Let s = o + it be the complex variable, and let ¢ (s) be the Riemann zeta-function.
Denote the Dirichlet series F; (s) defined by F (s) := ZOO L Following (7.3) in

n=1 ns
Kritzel [7], the representation of F; (s) is more complicated for k > 3, and it is known

that
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280 1. Kiuchi

2r—1

N GO
Fr(s) = L[ f@r o) n® (L.1)

holds. Here, c2,13(n) denotes a certain arithmetical function whose associated Dirich-
let series ko, 43(s) := Y 2 ”’;# which is absolutely convergent for Re s > —2r1+3 .

We define a sum over the r-full numbers by

sOm =3 df; (%), (1.2)

d|(n.q)

where (n, g) denotes the greatest common divisor of integers n and ¢. For any large
positive real numbers x and y, we set the double sums

k
SOy =y (Z s;”(n)) k=1,2). (1.3)

n=y \g=x

For r = 2, Kiuchi [6] considered the asymptotic formula for the double sum (1.3)
concerning square-full numbers, and used the theory of exponent pairs to derive the
precise asymptotic formula

@) _ @B - 1#E©) 2 1 1 x_3
SV (x,y) = 2(6) Xy 22(12) +0<x2y+xy3+y , (1.4)

where x and y are large real numbers such that x < y <« x3. When k = 2, Kiuchi
[6] also showed that

{OISE) 2

570 y) = £2(6)

ylogx+0(x y+x ) (1.5)

holds, where x and y are large real numbers such that y > 1(')" < Moreover, he used
analytic properties of the Riemann zeta-function to obtain the asymptotic formula

3
S(2)( y) = —4(2)426)(3) 2 log + cox?y
c(2)2%(3) @ @3 c®\ »
— |2y —-2+4+5 9 — 18
2(6) <V e T c(6>)x

L 1
2 =
0 <x2y <L5x114 4+ L0y3 412 (%) 412 (;—2)2» . (1.6)

Where co is a computable constant, and x and y are la.rge real numbers such that
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we used the method of proofs of Chan and Kumchev [2] (see also Kiuchi, Minamide
and Tanigawa [5], Kiihn and Robles [8], Robles [10], Robles and Roy [11]).
Forr = 3, itisderived from (1.1) that the Dirichlet series for the generating function

f3(n) is

oo

S ) _ EBDEEIGKG)
PO S T T

(1.7)

n=1

for Re s > % where « (s) is the Dirichlet series generated by a certain arithmetical
function co(n) (see (7.3) in Kritzel [7]), thatis « (s) := Y., <% which is absolutely

n=1 ps
convergent for Re s > %. Moreover, the asymptotic formula for the sum of f3(n) is

also known, and one can see that

()6, @e(E)eE
gﬁ(”): {(%) x3 + Q) x4
L EEs)els) (%)i g; <Gty aw (18)

holds with the error term A(x) = O (x% log* x) for any large positive real number
x (see section 7.1.3 in Kritzel [7]). In 1988, Balasubramanian et al. [1] showed that
Ax) = Q (x%\/@) holds, and the improvement on the estimate of A(x) has
been studied by many authors. Under the Riemann hypothesis, Wu [14] obtained that
Ax)=0 (x 890%"’8) holds for any ¢ > 0. Using (1.7), the Dirichlet series generated
by the coefficients s, (n) is expressed by

(3

Z Sg_(m) £(35)5(4s)5(55)k (s)

=01-5(n) (85) (1.9)

q=1

forRe s > %, where o1_s(n) =Y din d'=5 is the generalized divisor function.
Now, we shall consider several asymptotic formulas of (1.3) concerning cube-
full numbers. Our theorems are proved by the same way as in [6], and we shall

deduce several interesting formulas for the double sum S,E3) (x, ¥). We use the theory

of exponent pairs and elementary methods to deal with S 1(3) (x,y). Thenthecasek =1
implies the following theorem, namely

Theorem 1 Let x and y be large real numbers such that x <K y < x3. Then we have

3) _ 5B @HEG)«k () £(0)¢(®)¢10)k(2) ,
S, y) = Xy — X
¢(8) 4¢(16)
1 1 x3
+0<x3y+xy3+7). (1.10)
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It follows from (1.10) that

1 ZZS(B)(") _ OBk £6)¢(®)F(10)k(2) x
xy a ¢@®) 4¢(16) y

2 2 x?
+O0(\x3+y i+

n=yq=x

Wit

holds. This is described by saying that the average order of sff) (n) is w

under ¢ and n satisfying the condition ¢ < n < q%

Remark 1.1 It would be an interesting problem to investigate the asymptotic behaviour

of S1(3) (x, y) under the condition y <« x. However, this would require a different
method.

For k = 2, there are two quite different methods to deal with this function S§3) (x, y).
We utilize an elementary lattice point counting argument to obtain the formula (1.11)
below, and use the generating Dirichlet series and the properties of the Riemann zeta-
function to prove (1.12) below, which we state as

Theorem 2 Let x and y be large real numbers such that y >

2
X
Togx" Then we have

IR SEI OISO
£(2)5%(8)

Similarly, as in Theorem 1, we use (1.11) to get

I o) EOCOCERD o (o
5,; 2| = G e (x +7)'

SV (x, y)

2
1
( )xzylogx—i—O(xzy +x4). (1.11)

q=x

This is described by saying that the average order of sf)(n) is

£ @) G (1)
V1
VOO N

2
under ¢g and n satisfying the condition n > 15@' We utilize the generating Dirichlet

series and the properties of the Riemann zeta-function to prove (1.12) below, which
we state as

Theorem 3 Let x and y be large real numbers such that x 10g® x < y <« lo;‘z‘x' Then

we have

2 2 2 2 3
§9 (. yy = EREDEORD (1 x )xzy oy

ROIZ0) o8y e
5 1
+0 <x2yL2 <L3x—% LYy T4 L (f)z n (12)2)> . (1.12)
y X
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where 1 is a computable constant, which is defined by (5.9) below, and the constant
c1 is given by

£'(3) ¢4 (5 7@® @ k)
=2y —2+49 12 15 —24 — 3 :
A=A TR T T Tt TR

Remark 1.2 Tt would be an interesting problem to investigate the asymptotic behaviour
of SS) (x, y) under the condition y < x log® x. However, this would require a different
method.

2 Some lemmas

To prove our theorems, we first prepare several lemmas. Let ¥ (x) = x — [x] — %
denote the first periodic Bernoulli function. In the proof of Theorem 1, we need an
upper bound of the sum

> (2).

nel

An efficient way to estimate these 1/-sums is to apply the theory of exponent pairs:
An exponent pair (k, A) is a pair of numbers 0 < k < % < A < 1 such that

ZeZHif(n) < AKN)L

nel

holds, where I C (N,2N]and A < |f'(u)| < A foru € I.For the precise definition
and its properties, the reader should consult Graham and Kolesnik [3] and Ivi¢ [4].
Now applying Lemma 4.3 in [3] with f(n) = %, we have

Lemma 2.1 Let (k, 1) be an exponent pair. If I is a subinterval in (N, 2N], we have

K A=k N2
20 () < VI
n y

nel

In particular, if we take the exponent pair (k, \) = (%, %), we get

Zw(%) < y5+N72. .1)

nel

The proofs of Theorem 3 need the following lemmas, namely
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0 ay

Lemma 2.2 Suppose that the Dirichlet series o(s) 1= Y~ =
forRe s > o,. If op > max(0, 0,) and x > 0, T > 0, then

absolutely converges

, 1 oo+iT xS
Z an = 5— a(s)—ds + R,
27i Joo—it s

n<x

where

. x (4x)%0 N |ay |
R E min ( 1, ,
< ] ( T|x—n|>+ T Y;nao

X
7 <n<2x

n#x

and )’ "indicates that the last term is to be halved if x is an integer.

Proof This is Perron’s famous formula (see Theorem 5.2 and Corollary 5.3 in Mont-
gomery and Vaughan [9]). O

Lemma 2.3 Let G(s1, s2; y) be a sum function defined by

G(s1.52:)) = Y 015, ()01 g, (1) 2.2)

and L = logy. Then we have

4 of 11
Gls1.52:9) = D Rjs1, 529 + 0 (¥LO (72 + — 23)
j=1

forRes; >1/2and |Ims;| < T (j =1, 2), where

$(s1)¢(s2)¢(s1 + 52 — 1)
¢(s1+52)

25, §2 = 51)(1 — 51+ 52)¢(s2)
(2—=s1)¢@2 =51+ 52)

25,2 = 52)8(1 + 51 — $2)¢(s1)
2 =952+ s1—52)

3s—5, § B — 851 = 52)8(2 — 52)8(2 — 1)

(B —s1—52)0(4 — 51— 52)

Ri(s1,s2: )=y

Ry(s1,82; ) =y

R3(s1,82: ) =y

Ra(s1,52; ) =y

where Z/ indicates that the last term is to be halved if y is an integer.

Proof The proof of this lemma follows from (4.12) in Chan and Kumchev [2]. O
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Lemma 2.4 Fort > tg > O uniformly in o, we have

t?“ ) ogt (0o < 1),

(o +in={1" "ozt (3=0=1),
logt 1<o<?2)),
1 (0 >2)

Proof The proof of this lemma follows from Theorem II.3.8 in Tenenbaum [12], and
Ivié¢ [4]. Also see Titchmarsh [13]. O

3 Proof of Theorem 1

We use (1.2) and (1.3) and change the order of summation to obtain

SfS)(x, y) = Z Zsf)(n)

n<yq=<x
1
=y Y A0 =3 Y dfsto— Y dfstov (%)
dk<x dk<x dk<x
=: S (x,y) = S (x, y) — S (x. ). 3.1)

We consider the first term on the right of (3.1). We use (1.7) to get

2

+o (x—i) . (3.2)

3 [E) _ EBEDEG (D)
k ¢®)

k<x

We obtain from (1.7) and the above

k
Qe = L0 Lo [y3 fw

k<x k k<x
¢ HEG)k() 1
=ty o to <x3y) . (3.3)

Similarly, we have

1 2
Sy =3 Y ) (% +0 (%))
k<x

_ LO®E0KE) ,

42(16) + 0 (x). 3.4)
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To estimate S 3(x,y), we use the theory of exponent pairs. Let N; = N;; =
(%) 27/ Then we have

S0 y) = Zfa(k)Zdw( )

k<x
< Zfs(k)ZN] sup v (3]
k<x del

where the sup is over all subintervals / in (N;, 2N]. From (2.1) of Lemma 2.1 and
(3.2), we have

N’;
S < . k) Z {N,y% + —}

k<x j=0

3
< Z f3]§ ) xyl/ +Z f3k(3k) x?

k<x k<x y

3 x
< xy/ +7 (3.5)

Substituting (3.3), (3.4) and (3.5) into (3.1), we get the assertion of Theorem 1.

4 Proof of Theorem 2

From (1.2) and (1.3), we have

sV =3 > dnm

n=y \ dk<x
din

= ) difsk) Y dafstka) )

diki<x dokr<x n=<y
dy|n,dx|n

did; f3(k1) f3(ko) [ ]
dléxdzgﬂf [ d2]

=y > Y @i.d)fsk) frka) + O (E), @.1)

dik1<x drky<x

where [d, d>] denotes the least common multiple of d; and d>. We use (1.7) to get
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- Z Z did, f3(ky) f3(k2)

diky<x dyky<x

2 Z f3(k1) 2 Z f%(kz) 4

ki<x ko <x

To evaluate the main term of (4.1), we use

¢ G)k(1) 1/3
3 A = N IR (x ) , 4.2)

mk<x

which follows from (l 7) and (3.2). Using the Gauss identity Zd‘n ¢(d) = n, (4.2)

and ), ¢¢§(21) §(2) logx + O(1), we have
Do) dd) k) k) =) ¢ D Y fik) f3k)
diki <x daka<x d<x dl ki <x dloko<x
2
=Y @ | Y. s®
d<x mk<x/d
SEISCISEN OIS Z¢>(ol) 43\ @)
— XN
£2(8) = i
C (3)2H 25K (1) 2 2
Y0 1 gx+0<x )
Hence, we have
3 R HEGEM) 24
s (x, y) = 506 xylogx+0<xy+x).
This completes the proof of Theorem 2. O

5 Proof of Theorem 3

In this section, we assume that 1 < y < xM for some constant M. Without loss of
generality we can assume that x, y € Z + % We apply Lemma 2.2 with (1.9), then

a+iT
Zs(3)(n) —/ o1—s(n )§(3s)§(zlit)g§)(5s)/<(s) x—d + Ei(x,n) (5.1)

g=<x
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288 1. Kiuchi

witho = 1+ loé — and T being a real parameter at our disposal, where Ej (x, n) is the

error term given by

X sf)(n)
Ei(x,m) < - 2;
q:

<<x (n)
—oo\n
q 7"

2
log x

by using (1.9). Leta; = 1+@anda2 =1+
1,2) we have

. Applying (5.1) witha = o (j =

5 2 1 ar+iT ar+iT
S sOm) = —— | Feusndsads + B, (52)
(2mi) a1—iT Ja

g=x —iT
where

F(s1,52,n) = 015, (n)o1_5,(n)
y C(Bs1)¢ (4s1)C(551)¢ (Bs2) ¢ (452)¢ (5s2)k (51K (s2) x51752

£ (8s1)¢(8s2) 5152
and
E>(x,n)
B 1 et £(3s1)¢(4s1)¢ (551K (s1) X1
= Ei(x,n) (2—m fal_iT O1—s; (1) Z8s1) ;dﬂ
1 et C(352)¢ (452)¢ (552)K (52) X2
i - 01—, (1) £(852) Edn + Eq(x, n)) .

It follows that

2
X
Ex(x,n) < ?Uo(n)zlog T.

Summing (5.2) over n and using the estimate Znsy o0(n)? <« ylog®y, we get

3) 1 a1 +iT ar+iT
S5 (x,y) = G(sy, $2;
2 (%) Qri)? Jo,—iT /aziT (51, 52: 7)

« $(351)¢(4s1)8(551)k (51)¢(352)8 (452)¢ (S52)K (52)
£(8s1)¢(8s2)
xzyL4>

xS1+S2

T o dsi 4 0 ( (53)

$152

where G(s1, 52; ¥) := Y, ., Ol—s, (N)01_5,(n) and L = log(Txy).

n<y
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Now we shall evaluate the integrals in appearing in (5.3). Substituting (2.3) into
(5.3), we have

4
SV, ) =) S y) + 0 (x yL® (; + yl/z)) : (5.4)

J=1

where

(3) a1 +iT ar+iT
Sy, y) = / R;(s1,52;y)
(27”) a1—iT Jar—iT

$(351)¢(4s1)¢ (551K (51)¢ (352) ¢ (452) ¢ (552)K (52)
£(8s1)¢(8s2)

xsl+sz
dS2 dsl.

X
$152

Note that we substitute 7 = x into the error term on the right-hand side of (5.4) to get

< x2yL8 ()Fl n y*1/2). (5.5)

5.1 Evaluation of 523)1 x,y)

Leta; =1+ andar =1+ kéx- From the definition of Rj(s1, 52, y), we get

1
logx

S5 y) = ot / T ¢ (51)2(s2)¢ (51 + 52 = 1)

(27”) ar—iT Jay—iT C(s1 + 52)
C(3s1)E (4s1)E (551K (51)8(352) ¢ (452)¢ (552)K (s2) x°17F52
X ds)ds;.
¢(8s1)¢(8s2) 5182

Let I'(«, B, T) denote the contour consisting of the line segments [« —i T, 8 —iT],
[B—iT,B+iT]and[B+iT,a+iT]. In (5.6), we move the integration with respect
to sp to I'(an, % + 101 - T). We denote the integrals over the horizontal line segments
by Ji,1 and Ji 3, and the integral over the vertical line segment by Jj 2, respectively.

Then using the estimate f lT [¢(ap +it)|dt < T and Lemma 2.4, we have

Ji, J13
L (7 it
<P |§(051+11)|dt
T Jor 1411l
a
Ol [C(or +iT)s (a1 + 00 — 1 +i(t1 + 1)) x> don
2+10gx
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290 1. Kiuchi

1

3 T :
< xyL / £ +lf1)|dtl ﬁaz T%(lfcrz)xaz doy
2

T J_r 14| +ons
2,74
XYL ~1/3
< (TP 17)

For the integral along the vertical line we have

3
Jip L yx2L
(3+ ks +in) cl@r + ks — S +i + 1)

T T [§(ar +it)¢
X/ / dty dty
_rJ_r I+ 16D+ 122D

< yx%Lz/ 1 718G+ g 0
—2T

L
¢ (5 " logx +”‘>MT i+ —ap

Hence we use the estimate

2T

/T e HinP . ME
7 (A + 1D + |t — ul) 1+ |ul

(see p.161 in [5]) and the Cauchy—Schwarz inequality to get

Lo, || p
N2 T hogx T T

< yx2T3LS, (5.7)

2T

Jip K yx%ﬁ/
_or

It remains to evaluate the residues of the poles of the integrand when we move the
line of integration to I' (a2, % + @, T). There exists a simple pole at s = 2 — 51
with residue

C(s1)¢(2 = s1)8(Bs1)8(4s1)(551)5 (6 — 351)¢ (8 — 4s1)¢ (10 — Ss1)c (s1)K (2 — 51) 2
$(2)¢(8s1)5(16 — 8s1)s51(2 — 51)

=: Hy(s1)x?,
and also a simple pole at so = 1 with residue

§BEHEG)) £ (s1)¢ (3s1)¢ (4s1)¢ (5s1)k (51) e (s
4t ¢(8s1)¢(s1+ D)s1

The contributions to Sf; (x, y) from these residues are

2 a1 +iT a1 +iT
X X
=2 Hy(s1)dst + Hy(s1)x™ dsy
270 Joy—iT 270 Joy—iT

=11 + I, say.
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For 11, moving the line of integration to I"(«q, %, T), we have

K2y 3+ioco , [ 5 x2yL?
I =— Hy(s1)ds1 + O (x~y Hy (- +it ||dh |+ O | —5—
2 %—ioo T 4 T

2 2
2 x“yL
=r]xy~|—0< 11 )’

TT

where the constant 7 is given by

1 %-H'oo
ni=-—— Hy(s1)ds1, (5.8

o 2mwi %71'00
which is an absolutely convergent integral given by

1
7

2w
/3“"0 £()8Q2 = $)IB5)L(E5)(35)8(6 — 35)L (8 — 45)C(10 = S8)k ()k 2 —5) |
S_ico £(2)5(85)5(16 — 8s5)s(2 — 5) '

(5.9)

< ;((2?) foro > 1 (see (8.4.1),

Now, we use the inequalities £ (s)] < ¢ (o) and )ﬁ
(8.7.1) in [13]) to obtain

(@8O0 En (3« (F)
7L ()¢ (12)¢(20)

X/“’ s G+

O G EDE A+

n] <

dt.

Here, the integral on the right-hand side of the above is a computable constant, and
that is, strictly speaking, enough for the purpose of this paper.

For I, we move the line of integration to I' (¢, % + @, T). The integrals over
the horizontal lines are

3 pa 3vL3
oL / Ti0-0 0140y 2L (x2+717)
T Jio T

logx

<

and the integral over the vertical line is

T 1 H 2

5 + it 3

< xyL3/ Mx%dll < xiyL5
- 1+|n]
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by using the estimate || IT |;“(% +i1)|?dt <« Tlog T and integration by parts. Further-
more, when moving the path of integration there is a double pole at s; = 1. Hence,
using Cauchy’s theorem, we have

c B3)2@)E2(5)k>(1) Pylogx & 232 @5k (1)
(2% (8) (2% (8)

X<2y_l+x(1)+34(3)+45 (4)+5§(5)_8§(8)_;(2)>x2

(1) q&)) 4C)) 46)) ¢® <@

Xy 0y 3 s
o0 (x2+T3) + O3 yLY),

T

where y is the Euler constant. Combining these results we have

N2 2B
(3)( y) = c%( )i((z));z((g))l( ( )xzylogx+nx2y
£2(3) 2 (H)E2(5)k>(1) K1y LG L@
2y — 1 3 4
T 00® YT T T @

£ 5® L@ s -1
5 -8 — o L 3). 5.10
e ) ;<2)> o (detal). 610

Here, we substituted 7 = x into the error term of Sz 1 (x, y).

5.2 Estimation ofS(3) 26y

Explicitly we have

5O (x. y) = @t /“M (B =51 —$)EQ2 = 5)LQ2 — )

(2m)2 ai—iT Jas—it T4 =51 —52)(3 — 51 — 52)5152
£ (351)¢(451)¢(551)K (51)¢ (352) ¢ (452) 8 (S52)K (52) <X)S'+s2
X - dsy dsy
¢(8s1)¢(8s2) y

For this purpose, we move the line of integral with respect to s, to contour I' (a2, B8, T),
where 8 = % —a) = % Toox g — - We denote the integrals over the horizontal line segments
by J4,1 and Jy 3, and the integral over the vertical line segment by J4 2, respectively.
There are no poles when we deform the path of integral over s». The contribution from

the horizontal lines are
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293
T, Jaz < 2(x>méx/T )g(l_@_m)‘m
4,1, J43 Xy - 1
y -7 1+ |n]
/\c( R~ i+ D)CQ-a =i oy
— o).
“ (+In+TDT (y)

The inner integral is estimated as

L3 X | Tl X %
— 3 —
STA+m+7) (y) - (y) ’

where we have used the assumption y < xM . Hence, we have

2,73

1 .
Jordas <20 1+T§(X>é /T (e i) dr
B ESS T v) ) axapa+im+n
<<x2yL4 T :
T2 y '

For the integral on the vertical line we find that

A+ + oA+ 0D + 2D

s
3 L ‘C 5+ Toex ltz)‘
< y3 <{> / | ng dtr du
y 27 1+ |ul

-1 I+ 12D+ [u — 1))

1ot eG it 40 - g e+ gk —in)| oy
Jia L y° / / o8t e (f) dty dn
T J—

1
X 2
< x%y <;) L3

Hence, we take T = x to get

1

S, y) < x2y <y)2 L3 (5.11)

5.3 Estimation of 5(3) x,y)

It is given explicitly by
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S, y) =

o1 HT /”2” £Q2 = 52)¢(1+ 51— $2)¢(s1)

(27”) a)—iT Jar—iT (2451 —52)2—52)

L £BsDEASNE G5k (51 Bs2)E (452)¢ (582)k (52) X°1 42y
£(8s1)¢(8s2) 5152

dS2 dSl.

We move the path of integration with respect to s to F(az, , T). We denote the
integrals over the horizontal line segments by J3 | and J3 3, and the integral over the
vertical line segment by J3 >, respectively. Note that there exist no poles with this
deformation. The contribution from the horizontal lines are

y 2xL (T (¢ +it)]
J31, h3 KL /
3,1 3,3 o 1+|ll|

3

o
X /2 62 —0y —iT);(1+a; —or+i(t) —T))| <§) doy dty
o

<

y2xL? fT [¢(ay +in)]
T2 -T 1+ ||

3
B T s L=1top) (X ”
X T3 (14| —TJ)3 2 = dojp dty
a y

1
2
< yx2L3 <T2 v 773 G) ) .

On the other hand, the contribution from the vertical lines is

T .

[¢(oy +it1)]

J30 K yzx/ -
7 14|y

T15(y = i) (G + gy il — )| (x3
x/ £ 7RG ]0gx2 i (J_C>2dt2dt1
r (1 + I22) y

3
M EAE
Lyx|{—) L.
y

Hence, we take T = x into the above to obtain

1

SG)(x ’
y) < x2yL 5) (5.12)

5.4 Evaluation of Sf')z x,y)
The explicit form of Sf% (x, y) is given by
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S(3)(x y) = y? /a‘+iT /“2+iT Q2 —s51)¢(1 — 51+ 52)¢(s52)
Qi) Joy—it Jay—iT (2 —s1+52)2—s1)
CBs1)¢(4s1)C(551)k (1) (352) ¢ (452)¢ (S5s2)K (52) X512y 751
X dsy ds;.
¢ (851)¢(8s2) 5152
(5.13)

This time we firstly move the line of the integration over s; to F(ocl, T) The

estimates over the horizontal lines and the vertical line are the same as that of S2 3 (x, y),
but there is a simple pole at s; = s; inside this contour. The residue of the integrand
of (5.13) at this pole is

C(2—sz)§(Sz)§ (352)¢%(452) 22 (552)K (52) 22y
£(2)52(852)(2 — 52)57

Hence, we have

s
(x.y) = 2mi

x2y (2T (2 = 55) ¢ (52) 22 (352) 2 (482) 2 (5522 (s2) [ y \1-2
Py 2 2 (7) ds;
ar—iT $(2)2=(8s2)(2 — 52)85 X

( {x-w(;yD

by taking 7 = x. We move the line of integration to NG 5+ logx , T). By the same
method as before, the integrals over the horizontal lines are estimated as

X2y (4 (Y \ e yyr) o xiyL? LY \D
< (1(&) ™ et (B)) « S (147 (R))

and the vertical lines are estimated as

< x2y (xy—z)2 L2,

Furthermore, there is a contribution from the pole so = 1 of order 2, hence Sg (x,y)
has the form
223 H Gk x2 232 @AG)KA(1)
x“ylog — + 5
£(2)¢%(8) y £(2)¢=(8)
< ¢'(3) ¢'(4) ¢'(5) ¢'(8) K’(1)>
x |6 —142

5(3)( y) =

8 10 — 16
3 P T T 0w ()

1 1
2 =
+0 <x2y (L5x§ N (%) + 12 (%)2» (5.14)

by taking 7 = x.
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5.5 Asymptotic formula of (1.12)

Now, we substitute (5.5), (5.10), (5.11), (5.12) and (5.14) into (5.4) to obtain the
assertion of Theorem 3. m]
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