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Abstract
Recently Gordon and McIntosh introduced the third order mock theta function ξ(q)

defined by

ξ(q) = 1 + 2
∞∑

n=1

q6n
2−6n+1

(q; q6)n(q5; q6)n .

Our goal in this paper is to study arithmetic properties of the coefficients of this
function. We present a number of such properties, including several infinite families
of Ramanujan-like congruences.
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1 Introduction

In his last letter to Hardy in 1920, Ramanujan introduced the notion of a mock theta
function. He listed 17 such functions having orders 3, 5, and 7. Since then, other mock
theta functions have been found. Gordon and McIntosh [8], for example, introduced
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many additional such functions, including the following of order 3:

ξ(q) = 1 + 2
∞∑

n=1

q6n
2−6n+1

(q; q6)n(q5; q6)n , (1)

where we use the standard q-series notation:

(a; q)0 = 1,

(a; q)n = (1 − a)(1 − aq) · · · (1 − aqn−1) ∀n ≥ 1,

(a; q)∞ = lim
n→∞(a; q)n, |q| < 1.

Arithmetic properties of the coefficients of mock theta functions have received
a great deal of attention. For instance, Zhang and Shi [15] recently proved seven
congruences satisfied by the coefficients of the mock theta function β(q) introduced
by McIntosh. In a recent paper, Brietzke et al. [5] found a number of arithmetic
properties satisfied by the coefficients of the mock theta function V0(q), introduced
by Gordon and McIntosh [7]. Andrews et al. [2] prove a number of congruences for
the partition functions pω(n) and pν(n), introduced in [1], associated with the third
order mock theta functions ω(q) and ν(q), where ω(q) is defined below and

ν(q) =
∞∑

n=0

qn(n+1)

(−q; q2)n+1
.

In a subsequent paper, Wang [14] presented some additional congruences for both
pω(n) and pν(n).

This paper is devoted to exploring arithmetic properties of the coefficients pξ (n)

defined by

∞∑

n=0

pξ (n)qn = ξ(q). (2)

It is clear from (1) that pξ (n) is even for all n ≥ 1. In Sects. 4 and 5, we present other
arithmetic properties of pξ (n), including some infinite families of congruences.

2 Preliminaries

McIntosh [12, Theorem 3] proved a number of mock theta conjectures, including

ω(q) = g3(q, q2) and (3)

ξ(q) = q2g3(q
3, q6) + (q2; q2)4∞

(q; q)2∞(q6; q6)∞ , (4)
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Congruences for the coefficients of the Gordon and McIntosh mock 817

where

g3(a, q) =
∞∑

n=0

(−q; q)nqn(n+1)/2

(a; q)n+1(a−1q; q)n+1

and ω(q) is the third order mock theta functions given by

ω(q) =
∞∑

n=0

q2n(n+1)

(q; q2)2n+1

.

It follows from (1), (3), and (4) that

ξ(q) = q2ω(q3) + (q2; q2)4∞
(q; q)2∞(q6; q6)∞ . (5)

Throughout the remainder of this paper, we define

fk := (qk; qk)∞
in order to shorten the notation. Combining (5) and (2), we have

∞∑

n=0

pξ (n)qn = q2ω(q3) + f 42
f 21 f6

. (6)

We recall Ramanujan’s theta functions

f (a, b) :=
∞∑

n=−∞
a

n(n+1)
2 b

n(n−1)
2 for |ab| < 1,

φ(q) := f (q, q) =
∞∑

n=−∞
qn

2 = f 52
f 21 f 24

, and (7)

ψ(q) := f (q, q3) =
∞∑

n=0

qn(n+1)/2 = f 22
f1

. (8)

The function φ(q) satisfies many identities, including (see [3, (22.4)])

φ(−q) = f 21
f2

. (9)

In some of the proofs, we employ the classical Jacobi’s identity (see [4, Theorem
1.3.9])

f 31 =
∞∑

n=0

(−1)n(2n + 1)qn(n+1)/2. (10)
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We note the following identities which will be used below.

Lemma 1 The following 2-dissection identities hold:

1

f 21
= f 58

f 52 f 216
+ 2q

f 24 f 216
f 52 f8

, (11)

f 21 = f2 f 58
f 24 f 216

− 2q
f2 f 216
f8

, (12)

1

f 41
= f 144

f 142 f 48
+ 4q

f 24 f 48
f 102

, (13)

f3
f1

= f4 f6 f16 f 224
f 22 f8 f12 f48

+ q
f6 f 28 f48
f 22 f16 f24

, (14)

f 23
f 21

= f 44 f6 f 212
f 52 f8 f24

+ 2q
f4 f 26 f8 f24
f 42 f12

, (15)

f 31
f3

= f 34
f12

− 3q
f 22 f 312
f4 f 26

(16)

f3
f 31

= f 64 f 36
f 92 f 212

+ 3q
f 24 f6 f 212

f 72
, (17)

1

f1 f3
= f 28 f 512

f 22 f4 f 46 f 224
+ q

f 54 f 224
f 42 f 26 f 28 f12

(18)

Proof By Entry 25 (i), (ii), (v), and (vi) in [3, p. 40], we have

φ(q) = φ(q4) + 2qψ(q8), (19)

φ(q)2 = φ(q2)2 + 4qψ(q4)2. (20)

Using (7) and (8) we can rewrite (19) in the form

f 52
f 21 f 24

= f 58
f 24 f 216

+ 2q
f 216
f8

,

from which we obtain (11) after multiplying both sides by
f 24
f 52
. Identity (12) can be

easily deduced from (11) using the procedure described in Section 30.10 of [9].
By (7) and (8) we can rewrite (20) in the form

f 102
f 41 f 44

= f 104
f 42 f 48

+ 4q
f 48
f 24

,

from which we obtain (13).
Identities (14), (15), and (18) are equations (30.10.3), (30.9.9), and (30.12.3) of [9],

respectively. Finally, for proofs of (16) and (17) see [13, Lemma 4]. ��
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The next lemma exhibits the 3-dissections of ψ(q) and 1/φ(−q).

Lemma 2 We have

ψ(q) = f6 f 29
f3 f18

+ q
f 218
f9

, (21)

1

φ(−q)
= f 46 f 69

f 83 f 318
+ 2q

f 36 f 39
f 73

+ 4q2
f 26 f 318
f 63

. (22)

Proof Identity (21) is Eq. (14.3.3) of [9]. A proof of (22) can be seen in [10]. ��

3 Dissections for p�(n)

This section is devoted to proving the 2-, 3-, and 4-dissections of (2). We begin with
the 2-dissection.

Theorem 1 We have

2
∞∑

n=0

pξ (2n + 1)qn+1 = f 66 f12
f 43 f 224

− f (q12) + 4q
f 22 f 28
f1 f3 f4

, and (23)

∞∑

n=0

pξ (2n)qn = q
f 86 f 224
f 43 f 512

− q4ω(−q6) + f 54
f1 f3 f 28

. (24)

Proof We start with equation (4) of [2]:

f (q8) + 2qω(q) + 2q3ω(−q4) = F(q),

where f (q) is the mock theta function

f (q) =
∞∑

n=0

qn
2

(−q; q)2n

and

F(q) = φ(q)φ(q2)2

f 24
= f2 f 64

f 21 f 48
.

Thus,

f (q24) + 2q3ω(q3) + 2q9ω(−q12) = F(q3).

123
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Using (5), it follows that

2
∞∑

n=0

pξ (n)qn+1 = F(q3) − f (q24) − 2q9ω(−q12) + 2q
f 42
f 21 f6

. (25)

By (11), we have

F(q3) = f 612 f24
f 46 f 248

+ 2q3
f 812 f

2
48

f 46 f 524
,

which along with (11) allows us to rewrite (25) as

2
∞∑

n=0

pξ (n)qn+1 = f 612 f24
f 46 f 248

+ 2q3
f 812 f

2
48

f 46 f 524
− f (q24) − 2q9ω(−q12)

+ 2q
f 58

f2 f6 f 216
+ 4q2

f 24 f 216
f2 f6 f8

.

Thus,

2
∞∑

n=0

pξ (2n + 1)q2n+2 = f 612 f24
f 46 f 248

− f (q24) + 4q2
f 24 f 216
f2 f6 f8

, and (26)

∞∑

n=0

pξ (2n)q2n+1 = q3
f 812 f

2
48

f 46 f 524
− q9ω(−q12) + q

f 58
f2 f6 f 216

. (27)

Dividing (27) by q and replacing q2 by q in the resulting identity and in (26), we
obtain (23) and (24). ��

The next theorem exhibits the 3-dissection of (2).

Theorem 2 We have

∞∑

n=0

pξ (3n)qn = f2 f 43
f 21 f 26

, (28)

∞∑

n=0

pξ (3n + 1)qn = 2
f3 f6
f1

, and (29)

∞∑

n=0

pξ (3n + 2)qn = ω(q) + f 46
f2 f 23

. (30)

Proof In view of (8), we rewrite (6) as

∞∑

n=0

pξ (n)qn = q2ω(q3) + ψ(q)2

f6
.
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Using (21), we obtain

∞∑

n=0

pξ (n)qn = q2ω(q3) + f6 f 49
f 23 f 218

+ 2q
f9 f18
f3

+ q2
f 418
f6 f 29

. (31)

Extracting the terms of the form q3n+r on both sides of (31), for r ∈ {0, 1, 2}, dividing
both sides of the resulting identity by qr and then replacing q3 by q, we obtain the
desired results. ��

We close this section with the 4-dissection of (2).

Theorem 3 We have

∞∑

n=0

pξ (4n)qn = 4q2
f 612
f 23 f 36

− q2ω(−q3) + f 42 f 56
f 21 f 43 f 212

, (32)

∞∑

n=0

pξ (4n + 1)qn = 2q
f 36 f 212
f 43

+ 2
f 44 f 56

f 22 f 43 f 212
, (33)

∞∑

n=0

pξ (4n + 2)qn = f 96
f 63 f 212

+ f 102 f 212
f 41 f 23 f 44 f6

, and (34)

2
∞∑

n=0

pξ (4n + 3)qn+1 = f 156
f 83 f 612

− f (q6) + 4q
f 42 f 212
f 21 f 23 f6

. (35)

Proof In order to prove (32), we use (13) and (18) to obtain the even part of (24),
which is given by

∞∑

n=0

pξ (4n)q2n = 4q4
f 624

f 26 f 312
− q4ω(−q6) + f 44 f 512

f 22 f 46 f 224
.

Replacing q2 by q we obtain (32).
Using (13) and (18) we can extract the odd part of (23):

2
∞∑

n=0

pξ (4n + 1)q2n+1 = 4q3
f 312 f

2
24

f 46
+ 4q

f 48 f 512
f 24 f 46 f 224

.

After simplifications we arrive at (33).
Next, extracting the odd part of (24) with the help of (13) and (18) yields

∞∑

n=0

pξ (4n + 2)q2n+1 = q
f 912

f 66 f 224
+ q

f 104 f 224
f 42 f 26 f 48 f12

,
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which, after simplifications, gives us (34).
In order to obtain (35), we use (13) and (18) in (23) to extract its even part:

2
∞∑

n=0

pξ (4n + 3)q2n+2 = f 1512
f 86 f 624

− f (q12) + 4q2
f 44 f 224

f 22 f 26 f12
.

Replacing q2 by q in this identity, we obtain (35). ��

4 Arithmetic properties of p�(n)

Our first observation provides a characterization of pξ (3n) (mod 4).

Theorem 4 For all n ≥ 0, we have

pξ (3n) ≡

⎧
⎪⎨

⎪⎩

1 (mod 4) if n = 0,

2 (mod 4) if n is a square,

0 (mod 4) otherwise.

Proof By (28), using (9) and the fact that f 4k ≡ f 22k (mod 4) for all k ≥ 1, it follows
that

∞∑

n=0

pξ (3n)qn = f2 f 43
f 21 f 26

≡ f2
f 21

= f 21 f2
f 41

≡ f 21
f2

= φ(−q) (mod 4).

By (7), we obtain

∞∑

n=0

pξ (3n)qn ≡
∞∑

n=−∞
(−1)nqn

2 ≡ 1 + 2
∞∑

n=1

qn
2

(mod 4),

which completes the proof. ��
Theorem 4 yields an infinite family of Ramanujan-like congruences modulo 4.

Corollary 1 For all primes p ≥ 3 and all n ≥ 0, we have

pξ (3(pn + r)) ≡ 0 (mod 4),

if r is a quadratic nonresidue modulo p.

Proof If pn + r = k2, then r ≡ k2 (mod p), which contradicts the fact that r is a
quadratic nonresidue modulo p. ��
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Since gcd(3, p) = 1, among the p− 1 residues modulo p, we have p−1
2 residues r

for which r is a quadratic nonresiduemodulo p. Thus, for instance, the above corollary
yields the following congruences:

pξ (9n + 6) ≡ 0 (mod 4),

pξ (15n + k) ≡ 0 (mod 4), for k ∈ {6, 9},
pξ (21n + k) ≡ 0 (mod 4), for k ∈ {9, 15, 18},
pξ (33n + k) ≡ 0 (mod 4), for k ∈ {6, 18, 21, 24, 30}.

Theorem 5 For all n ≥ 0, we have

pξ (3n + 1) ≡
{
2 (mod 4) if 3n + 1 is a square,

0 (mod 4) otherwise.

Proof From Theorem 2,

∞∑

n=0

pξ (3n + 1)qn = 2
f3 f6
f1

. (36)

So we only need to consider the parity of

f3 f6
f1

.

Note that

f3 f6
f1

≡ f 33
f1

=
∞∑

n=0

a3(n)qn (mod 2),

where a3(n) is the number of 3-core partitions of n (see [11, Theorem 1]). Thanks to
[6, Theorem 7], we know that

a3(n) ≡
{
1 (mod 2) if 3n + 1 is a square,

0 (mod 2) otherwise.

This completes the proof. ��
Theorem 5 yields an infinite family of congruences modulo 4.

Corollary 2 For all primes p > 3 and all n ≥ 0, we have

pξ (3(pn + r) + 1) ≡ 0 (mod 4),

if 3r + 1 is a quadratic nonresidue modulo p.
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824 R. da Silva , J. A. Sellers

Proof If 3(pn + r) + 1 = k2, then 3r + 1 ≡ k2 (mod p), which would be a contra-
diction with 3r + 1 being a quadratic nonresidue modulo p. ��

For example, the following congruences hold for all n ≥ 0:

pξ (15n + k) ≡ 0 (mod 4) for k ∈ {7, 13},
pξ (21n + k) ≡ 0 (mod 4) for k ∈ {10, 13, 19},
pξ (33n + k) ≡ 0 (mod 4) for k ∈ {7, 10, 13, 19, 28}.

We next turn our attention to the arithmetic progression 4n+2 to yield an additional
infinite family of congruences.

Theorem 6 For all n ≥ 0, we have

pξ (4n + 2) ≡
{
2 (mod 4) if n = 6k(3k ± 1),

0 (mod 4) otherwise.

Proof From (34), we obtain

∞∑

n=0

pξ (4n + 2)qn ≡ f 76
f 23 f 212

+ f 212
f 23 f6

≡ 2
f 36
f 23

≡ 2 f 26 ≡ 2 f12 (mod 4). (37)

Using Euler’s identity (see [9, Eq. (1.6.1)])

f1 =
∞∑

n=−∞
(−1)nqn(3n−1)/2, (38)

we obtain

∞∑

n=0

pξ (4n + 2)qn ≡ 2
∞∑

n=−∞
(−1)nq6n(3n−1) (mod 4),

which concludes the proof. ��
Theorem 6 yields an infinite family of congruences modulo 4.

Corollary 3 Let p > 3 be a prime and r an integer such that 2r + 1 is a quadratic
nonresidue modulo p. Then, for all n ≥ 0,

pξ (4(pn + r) + 2) ≡ 0 (mod 4).

Proof If pn+r = 6k(3k±1), then r ≡ 18k2±6k (mod p). Thus, 2r+1 ≡ (6k±1)2

(mod p), which contradicts the fact that 2r + 1 is a quadratic nonresidue modulo p.
��
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Thanks to Corollary 3, the following example congruences hold for all n ≥ 0:

pξ (20n + j) ≡ 0 (mod 4) for j ∈ {6, 14},
pξ (28n + j) ≡ 0 (mod 4) for j ∈ {6, 10, 26},
pξ (44n + j) ≡ 0 (mod 4) for j ∈ {14, 26, 34, 38, 42},
pξ (52n + j) ≡ 0 (mod 4) for j ∈ {10, 14, 22, 30, 38, 42}.

We now provide a mod 8 characterization for pξ (3n).

Theorem 7 For all n ≥ 0, we have

pξ (3n) ≡

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 (mod 8) if n = 0,

6(−1)k (mod 8) if n = k2,

4 (mod 8) if n = 2k2, n = 3k2, or n = 6k2,

0 (mod 8) otherwise.

Proof By (28), using (7) and (9), we have

∞∑

n=0

pξ (3n)qn = f 61 f2 f 43
f 81 f 26

≡
(

f 21
f2

)3 (
f 23
f6

)2

≡ φ(−q)3φ(−q3)2

≡
( ∞∑

n=−∞
(−1)nqn

2

)3 ( ∞∑

n=−∞
(−1)nq3n

2

)2

≡
(
1 + 2

∞∑

n=1

(−1)nqn
2

)3 (
1 + 2

∞∑

n=1

(−1)nq3n
2

)2

(mod 8),

which yields

∞∑

n=0

pξ (3n)qn ≡ 1 + 6
∞∑

n=1

(−1)nqn
2 + 4

( ∞∑

n=1

(−1)nqn
2

)2

+ 4
∞∑

n=1

(−1)nq3n
2 + 4

( ∞∑

n=1

(−1)nq3n
2

)2

(mod 8).

Since

( ∞∑

n=1

(−1)nqn
2

)2

≡
∞∑

n=1

q2n
2

(mod 2),
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826 R. da Silva , J. A. Sellers

we have

( ∞∑

n=1

(−1)nq3n
2

)2

≡
∞∑

n=1

q6n
2

(mod 2).

Therefore

∞∑

n=0

pξ (3n)qn ≡ 1 + 6
∞∑

n=1

(−1)nqn
2 + 4

∞∑

n=1

q2n
2

+ 4
∞∑

n=1

(−1)nq3n
2 + 4

∞∑

n=1

q6n
2

(mod 8),

which completes the proof. ��
As with the prior results, Theorem 7 provides an effective way to yield an infinite

family of congruences modulo 8.

Corollary 4 Let p be a prime such that p ≡ ±1 (mod 24). Then

pξ (3(pn + r)) ≡ 0 (mod 8),

if r is a quadratic nonresidue modulo p.

Proof Since p ≡ ±1 (mod 8) and p ≡ ±1 (mod 12), it follows that 2 and 3 are
quadratic residuesmodulo p. Thus, r , 2r , 3r , and 6r are quadratic nonresiduesmodulo
p. Indeed, according to the properties of Legendre’s symbol, for j ∈ {1, 2, 3, 6}, we
have

(
jr

p

)
=

(
j

p

) (
r

p

)
=

(
r

p

)
= −1.

It follows that we cannot have 3(pn + r) = jk2, for some k ∈ N and j ∈ {1, 2, 3, 6}.
In fact, 3(pn + r) = jk2 would imply 3(pn + r) ≡ 3r ≡ jk2 (mod p). However,
for j = 1, 2, 3, 6, this would imply that 3r , 6r , r , or 2r , respectively, is a quadratic
residue modulo p, which would be a contradiction since 2, 3, and 6 are quadratic
residues modulo p. The result follows from Theorem 7. ��

As an example, we note that, for p = 23 and all n ≥ 0, we have

pξ (69n + k) ≡ 0 (mod 8) for k ∈ {15, 21, 30, 33, 42, 45, 51, 57, 60, 63, 66}.

Theorem 8 For all n ≥ 0, we have

pξ (12n + 4) ≡ pξ (3n + 1) (mod 8).
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Proof Initially we use (14) to extract the odd part on both sides of (29). The resulting
identity is

∞∑

n=0

pξ (6n + 4)qn = 2
f 23 f 24 f24
f 21 f8 f12

. (39)

Using (15) in (39), we obtain

∞∑

n=0

pξ (12n + 4)qn = 2
f 62 f3 f6

f 51 f 24
= 2

f 31 f 62 f3 f6
f 81 f 24

≡ 2
f3 f6
f1

(mod 8).

The result follows using (29). ��
Nowwe present complete characterizations of pξ (48n+4) and pξ (12n+1)modulo

8.

Theorem 9 For all n ≥ 0, we have

pξ (48n + 4) ≡ pξ (12n + 1) ≡
{
2(−1)k (mod 8) if n = k(3k ± 1),

0 (mod 8) otherwise.

Proof The first congruence follows directly from Theorem 8. Replacing (14) in (29),
we obtain

∞∑

n=0

pξ (3n + 1)qn = 2
f4 f 26 f16 f 224
f 22 f8 f12 f48

+ 2q
f 26 f 28 f48
f 22 f16 f24

.

Extracting the terms of the form q2n , we have

∞∑

n=0

pξ (6n + 1)q2n = 2
f4 f 26 f16 f 224
f 22 f8 f12 f48

,

which, after replacing q2 by q, yields

∞∑

n=0

pξ (6n + 1)qn = 2
f2 f 23 f8 f 212
f 21 f4 f6 f24

. (40)

Now we use (15) to obtain

∞∑

n=0

pξ (12n + 1)qn = 2
f 32 f 46
f 41 f 212

≡ 2 f2 ≡ 2
∞∑

n=−∞
(−1)nqn(3n−1) (mod 8) (by (38)),
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828 R. da Silva , J. A. Sellers

which completes the proof. ��
Theorem 9 also provides an effective way to yield an infinite family of congruences

modulo 8.

Corollary 5 For all primes p > 3 and all n ≥ 0, we have

pξ (48(pn + r) + 4) ≡ pξ (12(pn + r) + 1) ≡ 0 (mod 8)

if 12r + 1 is a quadratic nonresidue modulo p.

Proof Let p > 3 be a prime and 12r+1 a quadratic nonresidue modulo p. If pn+r =
k(3k±1), then r ≡ 3k2±k (mod p),which implies that 12r+1 ≡ (6k±1)2 (mod p),
a contradiction. The result follows from Theorem 9. ��

5 Additional congruences

In this section, we prove several additional Ramanujan-like congruences that are not
included in the results of the previous section.

Theorem 10 For all n ≥ 0, we have

pξ (24n + 19) ≡ 0 (mod 3), (41)

pξ (27n + 18) ≡ 0 (mod 3), and (42)

pξ (72n + 51) ≡ 0 (mod 3). (43)

Proof Using (15) we can now 2-dissect (40) to obtain

∞∑

n=0

pξ (6n + 1)qn = 2
f 34 f 412
f 42 f 224

+ 4q
f6 f 28 f12

f 32
,

from which we have

∞∑

n=0

pξ (12n + 7)q2n+1 = 4q
f6 f 28 f12

f 32
.

Now, dividing both sides of the above expression by q and replacing q2 by q, we
obtain

∞∑

n=0

pξ (12n + 7)qn = 4
f3 f 24 f6
f 31

. (44)
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Using (17) we rewrite (44) as

∞∑

n=0

pξ (12n + 7)qn = 4
f 84 f 46
f 92 f 212

+ 12q
f 44 f 26 f 212

f 72
.

Taking the odd parts on both sides of the last equation, we are left with

∞∑

n=0

pξ (24n + 19)qn = 12
f 42 f 23 f 26

f 71
,

which proves (41).
In order to prove (42), we use (22) to extract the terms of the form q3n of (28). The

resulting identity is

∞∑

n=0

pξ (9n)q3n = f 26 f 69
f 43 f 318

,

which, after replacing q3 by q and using (8), yields

∞∑

n=0

pξ (9n)qn = f 22 f 63
f 41 f 36

≡ f 22 f 53
f1 f 36

= ψ(q)
f 53
f 36

(mod 3).

By (8), we have

∞∑

n=0

pξ (9n)qn ≡ f 53
f 36

∞∑

n=0

qn(n+1)/2 (mod 3).

Since n(n + 1)/2 
≡ 2 (mod 3) for all n ≥ 0, all terms of the form q3n+2 in the last
expression have coefficients congruent to 0 (mod 3), which proves (42).

We now prove (43). Replacing (22) in (28) and extracting the terms of the form
q3n+2, we obtain

∞∑

n=0

pξ (9n + 6)q3n+2 = 4q2
f 318
f 23

. (45)

Dividing both sides of (45) by q2 and replacing q3 by q, we have

∞∑

n=0

pξ (9n + 6)qn = 4
f 36
f 21

. (46)
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Now we use (11) to extract the odd part of (46) and obtain

∞∑

n=0

pξ (18n + 15)qn = 8
f 22 f 33 f 28
f 51 f4

.

Since f 31 ≡ f3 (mod 3), we have

∞∑

n=0

pξ (18n + 15)qn ≡ 2
f 22 f 23 f 28
f 21 f4

(mod 3).

Using (15) we obtain

∞∑

n=0

pξ (36n + 15)qn ≡ 2
f 32 f3 f4 f 26
f 31 f12

(mod 3).

Since the odd part of (17) is divisible by 3, then the coefficients of the terms of the
form q2n+1 in

∑∞
n=0 pξ (36n + 15)qn are congruent to 0 modulo 3. This completes

the proof of (43). ��
We now prove a pair of unexpected congruences modulo 5 satisfied by pξ (n).

Theorem 11 For all n ≥ 0, we have

pξ (45n + 33) ≡ 0 (mod 5), (47)

pξ (45n + 42) ≡ 0 (mod 5). (48)

Proof By (46), we have

∞∑

n=0

pξ (9n + 6)qn = 4
f 36
f 21

= 4
f 31 f 36
f 51

≡ 4
f 31 f 36
f5

(mod 5).

Thanks to Jacobi’s identity (10) we know

f 31 f 36 =
∞∑

j,k=0

(−1) j+k(2 j + 1)(2k + 1)q3 j( j+1)+k(k+1)/2.

Note that, for all integers j and k, 3 j( j + 1) and k(k + 1)/2 are congruent to either
0, 1 or 3 modulo 5. The only way to obtain 3 j( j + 1) + k(k + 1)/2 = 5n + 3 is the
following:

– 3 j( j + 1) ≡ 0 (mod 5) and k(k + 1)/2 ≡ 3 (mod 5), or
– 3 j( j + 1) ≡ 3 (mod 5) and k(k + 1)/2 ≡ 0 (mod 5).
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Thus, j ≡ 2 (mod 5) or k ≡ 2 (mod 5) in all possible cases, and this means

(2 j + 1)(2k + 1) ≡ 0 (mod 5).

Therefore, for all n ≥ 0, pξ (45n + 33) = pξ (9(5n + 3) + 6) ≡ 0 (mod 5), which is
(47).

In order to complete the proof of (48), we want to see when

3 j( j + 1) + k(k + 1)/2 = 5n + 4.

Four possible cases arise:

– k ≡ 1 (mod 5) and j ≡ 2 (mod 5),
– k ≡ 3 (mod 5) and j ≡ 2 (mod 5),
– j ≡ 1 (mod 5) and k ≡ 2 (mod 5), or
– j ≡ 3 (mod 5) and k ≡ 2 (mod 5).

In all four cases above, either j ≡ 2 (mod 5) or k ≡ 2 (mod 5). So

(2 j + 1)(2k + 1) ≡ 0 (mod 5)

in all these cases. Therefore,

pξ (45n + 42) = pξ (9(5n + 4) + 6) ≡ 0 (mod 5),

which completes the proof of (48). ��
Next, we prove three congruences modulo 8 which are not covered by the above

results.

Theorem 12 For all n ≥ 0, we have

pξ (16n + 14) ≡ 0 (mod 8), (49)

pξ (24n + 13) ≡ 0 (mod 8), (50)

pξ (24n + 22) ≡ 0 (mod 8). (51)

Proof Initially we prove (49). From (34) and (7) we have

∞∑

n=0

pξ (4n + 2)qn ≡ f 23 f 56
f 212

+ f 212
f 23 f6

φ(q)2 (mod 8).

Now we can use (11), (12), and (20) to extract the terms involving q2n+1 from both
sides of the previous congruence:

∞∑

n=0

pξ (8n + 6)q2n+1 ≡ −2q3
f 66 f 248
f 212 f24

+ 2q3
f 104 f 412 f

2
48

f 42 f 66 f 48 f24
+ 4q

f 48 f 212 f
5
24

f 24 f 66 f 248
(mod 8).
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After dividing both sides by q and then replacing q2 by q, we are left with

∞∑

n=0

pξ (8n + 6)qn ≡ −2q
f 63 f 224
f 26 f12

+ 2q
f 102 f 46 f 224
f 41 f 63 f 44 f12

+ 4
f 44 f 26 f 512
f 22 f 63 f 224

≡ −2q
f 63 f 224
f 26 f12

+ 2q
f 63 f 46 f 224
f 123 f12

+ 4
f 44 f 512
f 22 f6 f 224

≡ 4
f 34 f12
f6

(mod 8),

whose odd part is congruent to 0 modulo 8, which implies (49).
In order to prove (50), we use (15) to obtain the even part of identity (40), which is

∞∑

n=0

pξ (12n + 1)qn = 2
f 32 f 46
f 41 f 212

.

Now, employing (13), we obtain the odd part of the last identity, which is

∞∑

n=0

pξ (24n + 13)qn = 8
f 22 f 43 f 44
f 71 f 26

,

which implies (50).
Now we prove (51). We employ (15) in (39) to obtain

∞∑

n=0

pξ (12n + 10)qn = 4
f 32 f 23 f 212
f 41 f 26

. (52)

By (12) and (13), we rewrite (52) in the form

∞∑

n=0

pξ (12n + 10)qn = 4
f 32 f 212
f 26

(
f 144

f 142 f 48
+ 4q

f 24 f 48
f 102

)(
f6 f 524
f 212 f

2
48

− 2q3
f6 f 248
f24

)
,

from which we obtain

∞∑

n=0

pξ (24n + 22)q2n+1 = 4
f 32 f 212
f 26

(
−2q3

f 144 f6 f 248
f 142 f 48 f24

+ 4q
f 24 f6 f 48 f 524
f 102 f 212 f

2
48

)
.

Dividing both sides by q and replacing q2 by q, we are left with

∞∑

n=0

pξ (24n + 22)qn = −8q
f 142 f 26 f 224
f 111 f3 f 44 f12

+ 16
f 22 f 44 f 512
f 71 f3 f 224

,

which implies (51). ��
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We close this section by proving a congruence modulo 9.

Theorem 13 For all n ≥ 0, we have

pξ (96n + 76) ≡ 0 (mod 9). (53)

Proof We use (21) to extract the terms of the form q3n+1 from (32). The resulting
identity is

∞∑

n=0

pξ (12n + 4)q3n+1 = 2q
f 66 f9 f18

f 53 f 212
,

which, after dividing by q and replacing q3 by q, yields

∞∑

n=0

pξ (12n + 4)qn = 2
f 62 f3 f6

f 51 f 24
= 2

f 62 f6
f 24

f3
f1

1

f 41
.

Using (13) and (14), we extract the even part on both sides of the above identity to
obtain

∞∑

n=0

pξ (24n + 4)qn = 2
f 132 f 23 f8 f 212
f 101 f 54 f6 f24

+ 8q
f 23 f 64 f24
f 61 f8 f12

≡ 2
f 132 f8 f 212
f 54 f6 f24

1

f1 f3
+ 8q

f 64 f24
f8 f12

f 31
f3

(mod 9).

Now we employ (18) and (16) to extract the odd part on both sides of the last congru-
ence:

∞∑

n=0

pξ (48n + 28)qn ≡ 2
f 91 f6 f12
f 33 f4

+ 8
f 92 f12
f4 f 26

≡ f6 f12
f4

(mod 9),

which implies (53). ��

6 Concluding remarks

Computational evidence indicates that pξ (n) satisfies many other congruences. The
interested reader may wish to consider the following two conjectures.

Conjecture 1

∞∑

n=0

pξ (8n + 3)qn ≡ 2
∞∑

n=0

q3n(n+1)/2 (mod 3)
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Conjecture 2

∞∑

n=0

pξ (32n + 12)qn ≡ 6
∞∑

n=0

q3n(n+1)/2 (mod 9)

Clearly, once proven, Conjectures 1 and 2 would immediately lead to infinite fami-
lies of Ramanujan-like congruences. Morever, Conjecture 2 would immediately imply
Theorem 13 since 96n+76 = 32(3n+2)+12 while the right-hand side of Conjecture
2 is clearly a function of q3. The same argument would imply that, for all n ≥ 0,

pξ (96n + 44) ≡ 0 (mod 9).

since 96n + 44 = 32(3n + 1) + 12.
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