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Abstract
Recently Gordon and Mclntosh introduced the third order mock theta function £(g)
defined by

6n2—6n+1

o
q
§(g)=1+2 —
; (@3 4%)n (g% ¢
Our goal in this paper is to study arithmetic properties of the coefficients of this
function. We present a number of such properties, including several infinite families
of Ramanujan-like congruences.
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1 Introduction

In his last letter to Hardy in 1920, Ramanujan introduced the notion of a mock theta
function. He listed 17 such functions having orders 3, 5, and 7. Since then, other mock
theta functions have been found. Gordon and McIntosh [8], for example, introduced
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many additional such functions, including the following of order 3:

6n2—6n+1

N q
@) =1 +ZZ (7: 4% (g% q%)n’ W

n=1

where we use the standard g-series notation:

(a;q)o =1,
@qn=0-a)1—-aqg) --(1—ag"™") Vn=>1,

(@; @)oo = lim (a; q)n, |gql < 1.
n—oo

Arithmetic properties of the coefficients of mock theta functions have received
a great deal of attention. For instance, Zhang and Shi [15] recently proved seven
congruences satisfied by the coefficients of the mock theta function B(g) introduced
by Mclntosh. In a recent paper, Brietzke et al. [S] found a number of arithmetic
properties satisfied by the coefficients of the mock theta function Vj(g), introduced
by Gordon and McIntosh [7]. Andrews et al. [2] prove a number of congruences for
the partition functions p,,(n) and p,(n), introduced in [1], associated with the third
order mock theta functions w(q) and v(gq), where w(q) is defined below and

et qn(n+l)
V@) =)Q

n=0 (_f]» q )n+l

In a subsequent paper, Wang [14] presented some additional congruences for both

Po(n) and py(n).
This paper is devoted to exploring arithmetic properties of the coefficients pg (n)
defined by

oo
> pen)g" =&(q). ©)
n=0
Itis clear from (1) that pg (n) is even for alln > 1. In Sects. 4 and 5, we present other
arithmetic properties of pg (n), including some infinite families of congruences.
2 Preliminaries

Mclntosh [12, Theorem 3] proved a number of mock theta conjectures, including

w(q) = g3(q,¢*) and 3)
@% g%

, 4
(@: D% (q% 4% o0 @

£@) = ¢*¢3(¢%, 4% +
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Congruences for the coefficients of the Gordon and McIntosh mock 817

where

n(n+1)/2

ea(a.q) = Z (—=q; 9)nq

= (@ Onr1@'q: @y

and w(q) is the third order mock theta functions given by

o q2n(n+1)
w(g) = g -
neo (43471

It follows from (1), (3), and (4) that

(4% %)%
5@) =q*0@) + . )
(¢ %45 ¢%)o0
Throughout the remainder of this paper, we define
fo =" qMoo
in order to shorten the notation. Combining (5) and (2), we have
00 f4
Y- pema" = o) + 5 ©)
n=0 1J6
We recall Ramanujan’s theta functions
ad nn+1)  nn—1)
fla,b) = Z a 2 b z forlab| <1,
n=—o0
o0 5 f25
$(@)=flg.9)= Y q" =3, and (7
o Titfi
V(@) = fla.q) =) q""P =2 ®)
n=0 fl
The function ¢ (gq) satisfies many identities, including (see [3, (22.4)])
i
d(—q) = —. 9)
1 P

In some of the proofs, we employ the classical Jacobi’s identity (see [4, Theorem
1.3.9])

£ =) (=D"@n+ 1g"" T2, (10)
n=0
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We note the following identities which will be used below.

Lemma 1 The following 2-dissection identities hold:

1 5 2q~ﬁff?%
B TRk

PO N 3 i

f1 =f42f12(,_2q I ,

14 2 4

R A
ﬁ__ﬂﬁﬁwﬁ fo 13 fas
fi 13 fe f12.fas +qf22f16f24’
73 fifefh 42 Jaf§ fs foa
ft 5 fafu e
S
Ao ! fafg

o Ff L fifefD
RoER T
L R 13 F5y
fifs - s T U

Proof By Entry 25 (i), (ii), (v), and (vi) in [3, p. 40], we have

o (@) = d(q™) +2qv (g,
(@) = ¢(gH* +4qv (g

Using (7) and (8) we can rewrite (19) in the form

5R

fRfE T fi

from which we obtain (11) after multiplying both sides by

+ 2¢g

2
Jie

3’

17

7

(1)

12)

(13)

(14)

5)

(16)

7)

(18)

(19)
(20)

. Identity (12) can be

easily deduced from (11) using the procedure described in Seétion 30.10 of [9].
By (7) and (8) we can rewrite (20) in the form

LY fi
AT i TS
i fa Sy 4

from which we obtain (13).

Identities (14), (15), and (18) are equations (30.10.3), (30.9.9), and (30.12.3) of [9],

respectively. Finally, for proofs of (16) and (17) see [13, Lemma 4].
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Congruences for the coefficients of the Gordon and McIntosh mock 819

The next lemma exhibits the 3-dissections of ¥/ (g) and 1/¢(—q).

Lemma2 We have

fofs I
= +qg==2, 21
v(q) B fis q 7 (21)
1 1613 Rrs 2 Jo iy
= +2 + 4 . (22)
oo iy g T
Proof Identity (21) is Eq. (14.3.3) of [9]. A proof of (22) can be seen in [10]. O

3 Dissections for p¢(n)

This section is devoted to proving the 2-, 3-, and 4-dissections of (2). We begin with
the 2-dissection.

Theorem 1 We have

> S 1 513
2§ 2n+ gt = 2902 rg'?) + 492208 and 23
L pe(2n + g £ flg) +4q fafe an (23)
. W Tea 4 3
E (2n)q" = - (—=q”) + . (24)
n=0pS i qf34f152 et fifsf

Proof We start with equation (4) of [2]:
1@ +2q0(q) +2¢°w(—q*) = F(q),

where f(g) is the mock theta function

00 n2
N q
f@) = ;0 Ca R
and

oo fff
F(q) = = :
1 72 721

Thus,

@™ +2¢°0@®) +2¢°w(—q'?) = F(¢%).
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Using (5), it follows that

22pg<n)q"+‘ =F(@) = f@™) —2¢°0(—q") +2¢—5— /7 (25)
n=0 fife
By (11), we have
f162f24 %f182f428
F(q®) = H20 4 943712748
fo 13 13 134
which along with (11) allows us to rewrite (25) as
2 ips (mg"*! = Iofu 2613M — f@*) —29°w(—¢")
=0 13 fis 18 3y
f8 2 f4 f16
+2 +4q
f2f6f16 frfefs
Thus,
— 15 foa fift
2 2 + 1 2n+2 — 12 _ 24 + 2 4 ]6 d 26
§p5<n )q e F@*) +ag’ ok an (26)
- n f2f48 9 12 f85
pe2m)g*" ! =g Po(-gP) +q——. @D
,IX:(:) ¢ f5 f24 f2f6f126

Dividing (27) by ¢ and replacing ¢ by ¢ in the resulting identity and in (26), we
obtain (23) and (24). O

The next theorem exhibits the 3-dissection of (2).

Theorem 2 We have

S w_ Pf}
peBn)q" = ——=, (28)
,,2:;) 115
Z pe(Bn + 1)g" ZM, and (29)
n=0 f
Z pe(Bn +2)q" = s : (30)
n=0 f2f3
Proof In view of (8), we rewrite (6) as
Zps(n)q =q’0(q) + —— AC)
fe

n=0
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Congruences for the coefficients of the Gordon and McIntosh mock 821

Using (21), we obtain

) 4 4
3 penq” = qrolg) + 2529 12 BT | 2 iy

. 31D
prs f3 1 /3 fofs

Extracting the terms of the form q3”+’ on both sides of (31), forr € {0, 1, 2}, dividing
both sides of the resulting identity by ¢’ and then replacing ¢> by ¢, we obtain the
desired results. O

We close this section with the 4-dissection of (2).

Theorem 3 We have

Zps(4n)61 : f: ‘jié —*o(—¢*) + % (32)
nX:(:)pg(4n+1)6]n=2 fﬁj{?%sz;@ﬁ, (33)
gps (4n+2)q" = f;ifz + f{ji;; §2f6, and (34)

22;@ (4n +3)g"! = fjfu — f@® +4 f%%% (35)

Proof In order to prove (32), we use (13) and (18) to obtain the even part of (24),
which is given by

- 2 4 f264 4 6 fff152
> pe(dmg™ =4q" - — glo(—¢") +
n=0 I6 Iiz 31813

Replacing ¢ by g we obtain (32).
Using (13) and (18) we can extract the odd part of (23):

. f /5. R
20 A

After simplifications we arrive at (33).
Next, extracting the odd part of (24) with the help of (13) and (18) yields

- P floz2
(n +2)g¥t! = g212 4 574 124
,;Op TG = e 2 Ty
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822 R.daSilva, J. A. Sellers

which, after simplifications, gives us (34).
In order to obtain (35), we use (13) and (18) in (23) to extract its even part:

ZZPs(4n +3)g> 2 = —fllzs — f(q") + 44> f“ fai
n=0 fs 13, Brifin
Replacing q2 by ¢ in this identity, we obtain (35). O

4 Arithmetic properties of p¢(n)
Our first observation provides a characterization of pg (3n) (mod 4).

Theorem 4 For all n > 0, we have

I (mod4) ifn=0,
pe(3n) =12 (mod 4) ifn isa square,
0 (mod 4) otherwise.

Proof By (28), using (9) and the fact that f;' = £ (mod 4) for all k > 1, it follows
that

n fo34 fz f12f2 f]
) pe(Bn)q PR RT AT =¢(—q) (mod 4)

By (7), we obtain
o o ) 0 )
Do pGmg" = Y (=1)'g" =1+2) 4" (mod4),
n=0 n=-—00 n=1
which completes the proof. O
Theorem 4 yields an infinite family of Ramanujan-like congruences modulo 4.

Corollary 1 For all primes p > 3 and all n > 0, we have
peB(pn+r)) =0 (mod 4),

if r is a quadratic nonresidue modulo p.

Proof If pn 4+ r = k?, then r = k* (mod p), which contradicts the fact that  is a
quadratic nonresidue modulo p. O
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Congruences for the coefficients of the Gordon and McIntosh mock 823

Since ged(3, p) = 1, among the p — 1 residues modulo p, we have ”T_l residues r
for which r is a quadratic nonresidue modulo p. Thus, for instance, the above corollary
yields the following congruences:

peOn+6)=0 (mod4),
pe(15n +k) =0 (mod 4), fork € {6, 9},
pe2ln+k)=0 (mod 4), fork € {9, 15, 18},
pe(33n+k) =0 (mod 4), fork € {6, 18,21, 24, 30}.

Theorem 5 Foralln > 0, we have

2 (mod 4) if3n+ 1isasquare,

3n+1)=
Pe( ) 0 (mod 4) otherwise.

Proof From Theorem 2,

> peGn4 g = PELILY (36)
n=0 fl

So we only need to consider the parity of

ifo
i’
Note that
3 00
% = % = Zag(n)q” (mod 2),

n=0

where a3(n) is the number of 3-core partitions of n (see [11, Theorem 1]). Thanks to
[6, Theorem 7], we know that

1 (mod 2) if3n + 1isa square,

a3(n) = 0 (mod 2) otherwise.

This completes the proof. O
Theorem 5 yields an infinite family of congruences modulo 4.

Corollary 2 For all primes p > 3 and all n > 0, we have
peB(pn+r)+1)=0 (mod 4),

if 3r + 1 is a quadratic nonresidue modulo p.

@ Springer



824 R.daSilva, J. A. Sellers

Proof 1f 3(pn +r) + 1 = k%, then 3r + 1 = k2 (mod p), which would be a contra-
diction with 37 + 1 being a quadratic nonresidue modulo p. O

For example, the following congruences hold for all n > 0:

pe(15n +k) =0 (mod 4) for k € {7, 13},
peln+k) =0 (mod 4) for k € {10, 13, 19},
pe(33n+k)=0 (mod 4) fork € {7, 10, 13, 19, 28}.

We next turn our attention to the arithmetic progression 4n +2 to yield an additional
infinite family of congruences.

Theorem 6 For all n > 0, we have

2 (mod 4) ifn =6k(3k £ 1),

4dn+2) =
pel "=10 (mod 4) otherwise.

Proof From (34), we obtain

fl22 f63 2
=22 =2f=2 d 4). 37
f32f6 f3 f6 f12 (mo ) (37)

_l.

i i
De 4n+2)q" =
= 10

Using Euler’s identity (see [9, Eq. (1.6.1)])

o
fi= Y (=1)g"enhe, (38)
n=-—00

we obtain

o0 o0

Y o pen+2)g"=2 Y (=1)"¢"C" Y (mod 4),

n=0 n=—o0
which concludes the proof. O

Theorem 6 yields an infinite family of congruences modulo 4.

Corollary 3 Let p > 3 be a prime and r an integer such that 2r + 1 is a quadratic
nonresidue modulo p. Then, for alln > 0,

pe@(pn+r)+2)=0 (mod 4).
Proof If pn+r = 6k(3k+1), thenr = 18k*+£6k (mod p).Thus,2r+1 = (6k+1)?

(mod p), which contradicts the fact that 27 + 1 is a quadratic nonresidue modulo p.
O
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Thanks to Corollary 3, the following example congruences hold for all n > 0:

pe(20n + j) =0 (mod 4) for j € {6, 14},

pe(28n + j) =0 (mod 4) for j € {6, 10, 26},

pe(@4n + j) =0 (mod 4) for j € {14, 26, 34, 38, 42},
pe(52n+ j) =0 (mod 4) for j € {10, 14, 22, 30, 38, 42}.

We now provide a mod 8 characterization for pg (3n).

Theorem 7 For all n > 0, we have

1 (mod 8) ifn =0,
6(—D* (mod 8) ifn = k2,

pe(Bn) = . 2 2 2
4 (mod 8) ifn = 2k“,n = 3k*, orn = 6k,
0 (mod 8) otherwise.

Proof By (28), using (7) and (9), we have

S et = 128 (1 (£ 2E¢<—q>3¢<—q3>2
s g f2 6

e 3 00 2
( 3 (—1)"61”2) ( 3 (—1)"q3”2>

n=—0o0 n=—0oo

(1 + 22(—1)”4”2> (1 + 22(—1)'%13”2) (mod 8),
n=1

n=l1

which yields

o0 o o 2
> peGnig" =146 (—1)"g" +4 (Z(—l)"q’*)
n=1 n=1

n=0
> 2 > 2 :
+4) (=D)"g™" +4<Z(—1)”q3”) (mod 8).
n=1 n=1

Since

o 2 o
(Z(—l)”q'*) =3¢ (mod2),

n=1 n=1
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826 R.daSilva, J. A. Sellers

we have
[ee) , 2 00 .
(Z(—l)"qh ) = qu (mod 2).
n=1 n=1
Therefore
00 00 X ~ ]
Zpg(Sn)q" =1 —|—6Z(_1)nqn +4Zq2n
n=0 n=1 n=1
o) , 00 .
+4) (=D"g" +4) " (mod ),
n=1 n=1

which completes the proof. g

As with the prior results, Theorem 7 provides an effective way to yield an infinite
family of congruences modulo 8.

Corollary 4 Let p be a prime such that p = +1 (mod 24). Then
pe@B(pn+r)) =0 (mod ),

if r is a quadratic nonresidue modulo p.

Proof Since p = 1 (mod 8) and p = £1 (mod 12), it follows that 2 and 3 are
quadratic residues modulo p. Thus, r, 2r, 3r, and 6r are quadratic nonresidues modulo
p. Indeed, according to the properties of Legendre’s symbol, for j € {1, 2, 3, 6}, we

have
(5)-G)G)-6)-—
p p p p
It follows that we cannot have 3(pn +r) = jk?, forsome k € Nand j € {1, 2, 3, 6}.
In fact, 3(pn + r) = jk* would imply 3(pn +r) = 3r = jk% (mod p). However,
for j = 1,2, 3, 6, this would imply that 3r, 6r, r, or 2r, respectively, is a quadratic

residue modulo p, which would be a contradiction since 2, 3, and 6 are quadratic
residues modulo p. The result follows from Theorem 7. O

As an example, we note that, for p = 23 and all n > 0, we have
pe(69n + k) =0 (mod 8) for k € {15, 21, 30, 33, 42, 45, 51, 57, 60, 63, 66}.
Theorem 8 For all n > 0, we have

pe(12n+4) = p:Bn+1) (mod 8).
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Proof Initially we use (14) to extract the odd part on both sides of (29). The resulting
identity is

o 2 22
3 pe(6n +4)g" = 2%. (39)
n=0 fl f8f12
Using (15) in (39), we obtain
0 6 3 16
> pe(12n +4)g" = 2f25f3f(’ _o /i f§ f;f(’ =253 (nod ).
n=0 fl f4 f1 f4 fl
The result follows using (29). O

Now we present complete characterizations of pg (48n+-4) and pg (12n+1) modulo
8.

Theorem 9 Foralln > 0, we have

2(—DF  (mod 8) ifn =k(Bk+1),
48 4) = 12 )=
pe(@8n +4) = pel2n+1) 0 (mod 8) otherwise.

Proof The first congruence follows directly from Theorem 8. Replacing (14) in (29),
we obtain

S S Jifd el o fofsfa
3n+1 =2 +2 .
,g)pS( e f3 fs fiz fas qf22f16f24

Extracting the terms of the form ¢, we have

o0
S peen + g = 2040 163
n=0 f22f8f12f4g
which, after replacing q? by g, yields
) ) ,
S pelon + g" = 22087 w0
n=0 S{ fafef2a

Now we use (15) to obtain

00 34
Zpg(12n+ Dg" = 2fifg
n=0 f1f12

=2f=2 ) (=1)"¢"®""D (mod 8) (by (38)),

n=—oo
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828 R.daSilva, J. A. Sellers

which completes the proof. O

Theorem 9 also provides an effective way to yield an infinite family of congruences
modulo 8.

Corollary 5 For all primes p > 3 and all n > 0, we have
pe@8(pn+r)+4)=ps(12(pn+r)+1)=0 (mod 8)

if 12r 4+ 1 is a quadratic nonresidue modulo p.

Proof Let p > 3 be aprime and 12r + 1 a quadratic nonresidue modulo p.If pn+r =
k(3k=+1),thenr = 3k>+k (mod p),whichimpliesthat 12r+1 = (6k+1)? (mod p),
a contradiction. The result follows from Theorem 9. O

5 Additional congruences

In this section, we prove several additional Ramanujan-like congruences that are not
included in the results of the previous section.

Theorem 10 For all n > 0, we have

pe(24n +19) =0 (mod 3), (41)
peQTn+18) =0 (mod 3), and (42)
pe(72n+51)=0 (mod 3). (43)

Proof Using (15) we can now 2-dissect (40) to obtain

00 3 4 2

" f fefs f12
D pe6n+1)g" =274 ag Bl
=0 13 13 /5

from which we have

o0 2
Jofg J12
> pe(12n 4 T)g* ! = 4g—=5=

n=0 f2

Now, dividing both sides of the above expression by ¢ and replacing g2 by ¢, we
obtain

- 2
ZP;(IZn +7Ng" = 4f3f4 fe_

(44)
n=0 f 13
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Using (17) we rewrite (44) as

> 8 r4 4 £2 £2
Zpg(12n+7)q”=4f‘;f62 +12qf4f67f12'
n=0 VERiT) S

Taking the odd parts on both sides of the last equation, we are left with

o0
> pe(24n +19)g" = 12
n=0

BER
"l

which proves (41).
In order to prove (42), we use (22) to extract the terms of the form q3” of (28). The
resulting identity is

- n TeSS
> peOnygt = =02
n=0 f34f1‘8

which, after replacing ¢> by ¢ and using (8), yields

- W B _BR i
On)q" = = =vY(g)— (mod 3).
2 PO = s = I SV (me
By (8), we have
— n _ f_35 — n(n+1)/2
Y pOmg" =33 g (mod 3).
n=0 f6 n=0

Since n(n + 1)/2 # 2 (mod 3) for all n > 0, all terms of the form ¢>"*2 in the last
expression have coefficients congruent to 0 (mod 3), which proves (42).
We now prove (43). Replacing (22) in (28) and extracting the terms of the form

¢>"*2, we obtain
> peOn+6)g7 T = 4q7 8. (45)
n=0 f3
Dividing both sides of (45) by ¢? and replacing ¢> by ¢, we have
> peOn+6)g" = 4f—62. (46)
n=0 1
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830 R.daSilva, J. A. Sellers

Now we use (11) to extract the odd part of (46) and obtain

00 2 £3 £2
> pe(18n+15)g" = 5/ J;3 fs
n=0 f] f4
Since £ = f3 (mod 3), we have
Zpg(lSn +15)¢" = 2f2 f3 fs (mod 3).
Using (15) we obtain
o0 3 2
> pe(36n + 15)g" = 2% (mod 3).
n=0 f[ f12

Since the odd part of (17) is divisible by 3, then the coefficients of the terms of the
form ¢?"*1in 3"°° ) ps(36n + 15)¢" are congruent to 0 modulo 3. This completes
the proof of (43). O

We now prove a pair of unexpected congruences modulo 5 satisfied by pg ().

Theorem 11 For all n > 0, we have

pe(@5n+33)=0 (mod 5), A7)
pe(45n +42) =0 (mod 5). (48)
Proof By (46), we have
fo _ JJiI6 _ JJi S8
On+6)q" =4=% = =4—"% (mod 5).
r;) e ! fl f1 s

Thanks to Jacobi’s identity (10) we know

o0
f13f(§ — Z (_1)]+k(2j + 1)(2k 4 l)q3j(j+1)+k(k+1)/2.
J k=0

Note that, for all integers j and k, 3j(j 4+ 1) and k(k + 1)/2 are congruent to either
0, 1 or 3 modulo 5. The only way to obtain 3j(j + 1) + k(k + 1)/2 = 5n + 3 is the
following:

- 3j(j+1)=0 (mod 5) and k(k + 1)/2 =3 (mod 5), or
- 3j(j+1)=3 (mod 5) and k(k + 1)/2 = 0 (mod 5).
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Congruences for the coefficients of the Gordon and McIntosh mock 831

Thus, j =2 (mod 5) or k =2 (mod 5) in all possible cases, and this means
2j+1)R2k+1)=0 (mod 5).
Therefore, for all n > 0, ps(45n + 33) = p:(9(5n + 3) +6) = 0 (mod 5), which is

47).
In order to complete the proof of (48), we want to see when

3j(j+ 1)+ k(k+1)/2 =5n+4.

Four possible cases arise:

— k=1 (mod 5) and j =2 (mod 5),
— k=3 (mod 5) and j =2 (mod 5),
— j=1 (mod 5)and k =2 (mod 5), or
— j=3 (mod 5) and k =2 (mod 5).

In all four cases above, either j =2 (mod 5) or k =2 (mod 5). So
2j+1)2k+1)=0 (mod5)
in all these cases. Therefore,
pe(45n +42) = p:(9(5n +4) +6) =0 (mod 5),

which completes the proof of (48). O

Next, we prove three congruences modulo 8 which are not covered by the above
results.

Theorem 12 For all n > 0, we have

pe(16n+14) =0 (mod 8), (49)
pe(24n4+13) =0 (mod 8), (50)
pe(24n+22) =0 (mod 8). (51)

Proof Initially we prove (49). From (34) and (7) we have

Zps(4n+2)q Life | I

“3=¢(q)* (mod 8).
o It f3f

Now we can use (11), (12), and (20) to extract the terms involving ¢>**! from both
sides of the previous congruence:

10
Zpg(8n+6)q2n+l _2g 3 fo lis +243 1 Fs iy 4q 131515 (mod 8).

+
n=0 f12f24 fz f6f3 f24 f4f6f4g
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After dividing both sides by ¢ and then replacing ¢ by ¢, we are left with

SRS RS
e

BA s |, S
f312f12 f22f6f224

(mod 8),

0 6 2
Z pe@n +6)q" = —2¢q f32f24
0 fe f12

B35

féfi2

_ 4fff12
6

+2

+ 2¢q

whose odd part is congruent to 0 modulo 8, which implies (49).
In order to prove (50), we use (15) to obtain the even part of identity (40), which is

o 3 r4
> pe(2n 4 Dg" zzfifg .
n=0 f1f12

Now, employing (13), we obtain the odd part of the last identity, which is

o) -
3 pe4n + 13)g" = 8fZ]7€_3f47
n=0 fl f()
which implies (50).

Now we prove (51). We employ (15) in (39) to obtain
. 32 ¢2
> pe(12n +10)g" = 4%_ )
n=0 i fe

By (12) and (13), we rewrite (52) in the form

f23f122 414 f42f§ f6f254 3f6f428
+4 —2q7—=2 ],
<f2]4f84 T )\ T T

o0
> pe(12n 4 10)g" = 4725
n=0 f6

from which we obtain

oo
Z pe(24n 4+ 22)¢>" 1 =4

. +4
n=0 f6

\ﬁfé<_23ﬁﬁkﬁé

‘ fife s 5
KA fas '

497102 72
I fas

Dividing both sides by ¢ and replacing ¢ by ¢, we are left with

> \ LA, ERrdin)
(24n 4+ 22)¢" = —8 +16 ,
,;” S L Y Y PR o)

which implies (51). |
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We close this section by proving a congruence modulo 9.

Theorem 13 For all n > 0, we have
pe(96n +76) =0 (mod 9). (53)

Proof We use (21) to extract the terms of the form ¢>"*! from (32). The resulting
identity is

o 6

3 Jo fo /18
Pg(12n+4)q3n+1=261 65 —

o VEWAT

which, after dividing by ¢ and replacing ¢> by ¢, yields

= W o SSffe  ffefy 1
(12n + 4)g" =2 =200
,;pg T TS T AR

Using (13) and (14), we extract the even part on both sides of the above identity to
obtain

- W D TE10 foa

24n +4)g" =2 8
,;” ECI A DT =20 s s T S i

=9 213f8f122 1 +8qf46f24f_13

fifofu i fsfi2 f3

(mod 9).

Now we employ (18) and (16) to extract the odd part on both sides of the last congru-
ence:

ZP§(48n+28)q” zzfl Jo 12 _|_8f2f12 _ Jefn

= (mod 9),
~ ff a2

which implies (53). O

6 Concluding remarks

Computational evidence indicates that pg (n) satisfies many other congruences. The
interested reader may wish to consider the following two conjectures.

Conjecture 1

o0 oo
D pe@n+3)g" =2 "2 (mod 3)
n=0 n=0
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Conjecture 2

o o
D pe(B2n+12)g" =6 ¢ "V/2 (mod 9)
n=0 n=0

Clearly, once proven, Conjectures 1 and 2 would immediately lead to infinite fami-
lies of Ramanujan-like congruences. Morever, Conjecture 2 would immediately imply
Theorem 13 since 96n +76 = 32(3n+2) + 12 while the right-hand side of Conjecture
2 is clearly a function of ¢3. The same argument would imply that, for all n > 0,

pe(96n +44) =0 (mod 9).

since 96n + 44 = 323n + 1) + 12.

Acknowledgements The authors thank the anonymous referee for carefully reading the manuscript and
his/her helpful comments and suggestions.

References

1. Andrews, G.E., Dixit, A., Yee, A.J.: Partitions associated with the Ramanujan/Watson mock theta
functions w(g) and ¢ (g). Res. Number Theory 1, 1-19 (2015)
2. Andrews, G.E., Passary, D., Sellers, J.A., Yee, A.J.: Congruences related to the Ramanujan/Watson
mock theta functions w(g) and v(g). Ramanujan J. 43, 347-357 (2017)
3. Berndt, B.C.: Ramanujan’s Notebooks. Part III, Springer, New York (1991)
4. Berndt, B.C.: Number Theory in the Spirit of Ramanujan. American Mathematical Society, Providence
(2006)
5. Brietzke, E.H.M., da Silva, R., Sellers, J.A.: Congruences related to an eighth order mock theta function
of Gordon and MclIntosh. J. Math. Anal. Appl. 479, 62-89 (2019)
6. da Silva, R., Sellers, J.A.: Parity Considerations for the Mex-Related Partition Functions of Andrews
and Newman, J. Integer Seq. 23, Article 20.5.7 (2020)
7. Gordon, B., McIntosh, R.J.: Some eight order mock theta functions. J. Lond. Math. Soc. 62, 321-335
(2000)
8. Gordon, B., McIntosh, R.J.: Modular transformations of Ramanujan’s fifth and seventh order mock
theta functions. Ramanujan J. 7, 193-222 (2003)
9. Hirschhorn, M.D.: The Power of ¢, a Personal Journey. Developments in Mathematics, vol. 49.
Springer, Cham (2017)
10. Hirschhorn, M.D., Sellers, J.A.: Arithmetic relations for overpartitions. J. Combin. Math. Combin.
Comput. 53, 65-73 (2005)
11. Hirschhorn, M.D., Sellers, J.A.: Elementary proofs of various facts about 3-cores. Bull. Aust. Math.
Soc. 79, 507-512 (2009)
12. Mclntosh, R.J.: New mock theta conjectures Part I. Ramanujan J. 46, 593-604 (2018)
13. Naika, M.S.M., Gireesh, D.S.: Congruences for 3-regular partitions with designated summands. Inte-
gers 16, A25 (2016)
14. Wang, L.: New congruences for partitions related to mock theta functions. J. Number Theory 175,
51-65 (2017)
15. Zhang, W., Shi, J.: Congruences for the coefficients of the mock theta function (¢). Ramanujan J.
49, 257-267 (2019)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

@ Springer



	Congruences for the coefficients of the Gordon and McIntosh mock theta function ξ(q)
	Abstract
	1 Introduction
	2 Preliminaries
	3 Dissections for pξ(n)
	4 Arithmetic properties of pξ(n)
	5 Additional congruences
	6 Concluding remarks
	Acknowledgements
	References




