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Abstract
We compute the local twisted exterior square gamma factors for simple supercuspidal
representations, using which we prove a local converse theorem for simple supercus-
pidal representations.
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1 Introduction

A local conjecture of Jacquet for GLn (F), where F is a local non-Archimedean field,
asserts that the structure of an irreducible generic representation can be determined by
a family of twisted Rankin–Selberg gamma factors. This conjecture was completely
settled independently by Chai [4] and Jacquet–Liu [9], using different methods:

Theorem 1.1 (Chai [4], Jacquet–Liu [9]) Let π1 and π2 be irreducible generic
representations of GLn (F) sharing the same central character. Suppose for any
1 ≤ r ≤ ⌊ n2

⌋
and for any irreducible generic representation τ of GLr (F),

γ (s, π1 × τ, ψ) = γ (s, π2 × τ, ψ).

Then π1 ∼= π2.
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The bound
⌊ n
2

⌋
for r in the theorem can be shown to be sharp by constructing some

pairs of generic representations.However, the sharpness of
⌊ n
2

⌋
is not that obvious ifwe

replace “generic” by “unitarizable supercuspidal” in the theorem. In the tame case, it is
shown in [2] that

⌊ n
2

⌋
is indeed sharp for unitarizable supercuspidal representations of

GLn (F) when n is prime. For some certain families of supercuspidal representations,⌊ n
2

⌋
is no longer sharp and the GL1 (F) twisted Rankin–Selberg gamma factors might

be enough to determine the structures of representations within these families. Such
a family of supercuspidal representations can be a family of simple supercuspidal
representations, see [3, Proposition 2.2] and [1, Remark 3.18], and also be a family of
level zero supercuspidal representations for certain n, see [15, Section 4.6].

In this paper, we consider another kind of local converse theorems of Ramakrishnan
using twisted exterior power gamma factors from [16].

Conjecture 1.2 (Ramakrishnan) Let π1 and π2 be irreducible unitarizable supercusp-
idal representations of GLn (F) sharing the same central character. Suppose for any
character χ of F∗, we have

γ (s, π1 × χ,ψ) = γ (s, π2 × χ,ψ),

and

γ (s, π1,∧ j ⊗ χ,ψ) = γ (s, π2,∧ j ⊗ χ,ψ),

for any 2 ≤ j ≤ ⌊ n2
⌋
. Then π1 ∼= π2.

We note here that the condition on sharing the same central character is redundant,
since if γ (s, π1 × χ,ψ) = γ (s, π2 × χ,ψ) for all characters χ , this guarantees that
the representations have the same central character as in [10, Corollary 2.7]. We leave
it in the statement of the conjecture as a general requirement for a local converse
problem. In fact, in the formulation of the main result Theorem 1.3, we will need to
assume that the representations in consideration share the same central character.

When j = 2, the twisted exterior square gamma factors of irreducible supercuspi-
dal representations of GLn (F) exist due to the work of Jacquet–Shalika [8] together
with Matringe [14] and Cogdell-Matringe [5], or the work of Shahidi [18] using the
Langlands–Shahidi method. When j = 3, Ginzburg and Rallis [6] found an inte-
gral representation for the automorphic L-function L(s, π,∧3 ⊗ χ) attached to an
irreducible cuspidal automorphic representation π of GL6 (A) and a character χ of
GL1 (A) for some adelic ringA. In general, for j ≥ 3, we do not have an analytic def-
inition for γ (s, π,∧ j ⊗χ,ψ). Therefore, Theorem 1.2 only makes sense for n = 4, 5
and possibly 6 if one can prove local functional equations for the local integrals coming
from [6].

Since we have only twisted exterior square gamma factors in general, we want to
knowwhich families of supercuspidal representations of GLn (F) satisfy Theorem 1.2
when j = 2.We show in the paper that Theorem1.2 holds true for simple supercuspidal
representations up to a sign as we will explain in the next paragraph. This result is our
first step toward Theorem 1.2. We have already seen that GL1 (F) twists are enough
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Exterior square gamma factors for cuspidal representations… 1045

to distinguish simple supercuspidal representations, see [3, Proposition 2.2] and [1,
Remark 3.18]. Thus, Theorem 1.2 for simple supercuspidal representations has no
context if we still require GL1 (F) twists. Therefore, we will drop the assumption on
the GL1 (F) twists.

Let o be the ring of integers of F , and p = (�) is the maximal prime ideal in
o generated by a fixed uniformizer � . By [12], if we fix a tamely ramified central
character ω, i.e., ω is trivial on 1+ p, there are exactly n(q − 1) isomorphism classes
of irreducible simple supercuspidal representations of GLn (F), each of which corre-
sponds to a pair (t0, ζ ), where t0 ∈ f∗ is a non-zero element in the residue field f of
F and ζ is an n-th root of ω(t−1�), where t is a lift of t0 to o∗. The main theorem of
the paper is the following:

Theorem 1.3 Let π and π ′ be irreducible simple supercuspidal representations of
GLn (F) sharing the same central character ω, such that π and π ′ are associated
with the data (t0, ζ ) and (t ′0, ζ ′), respectively. Assume that
1. gcd (m − 1, q − 1) = 1 if n = 2m,
2. or gcd (m, q − 1) = 1 if n = 2m + 1.

Suppose for every unitary tamely ramified character μ of F∗, we have

γ (s, π,∧2 ⊗ μ,ψ) = γ (s, π ′,∧2 ⊗ μ,ψ).

Then t0 = t ′0 and ζ = ±ζ ′. Moreover, we have ζ = ζ ′ if n = 2m + 1 is odd.

In the case n = 2m, we can only show ζ and ζ ′ are equal up to a sign. That iswhatwe
mean by saying that Theorem 1.2 holds true for simple supercuspidal representations
up to a sign. Theorem 1.3, as far as we know, is the first result toward Theorem 1.2 of
Ramakrishnan.

In Sect. 2, we recall the definitions of the twisted exterior square gamma factors fol-
lowing [5,8,14]. We then recall some results on simple supercuspidal representations
in [12]. More importantly from [1, Section 3.3], we have explicit Whittaker functions
for such simple supercuspidal representations. Using these explicit Whittaker func-
tions, we compute in Sect. 3 the twisted exterior square gamma factors. Finally in
Sect. 4, we prove our main theorem, Theorem 1.3.

2 Preliminaries and notation

2.1 Notation

Let F be a non-archimedean local field. We denote by o its ring of integers, by p the
unique prime ideal of o, by f = o/p its residue field. Denote q = |f|.

Let ν : o → f be the quotient map. We continue denoting by ν the maps that ν

induces on various groups, for example om → fm , Mm (o) → Mm (f), GLm (o) →
GLm (f) etc.

Let � be a uniformizer (a generator of p). We denote by |·|, the absolute value on
F , normalized such that |� | = 1

q .
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1046 R. Ye, E. Zelingher

Let ψ : F → C
∗ be a non-trivial additive character with conductor p, i.e., ψ is

trivial on p, but not on o.

2.2 The twisted Jacquet–Shalika integral

In this section, we define twisted versions of the Jacquet–Shalika integrals and discuss
the functional equations that they satisfy. This will allow us to define the twisted
exterior square gamma factor γ

(
s, π,∧2 ⊗ μ,ψ

)
for a generic representation (π, Vπ )

of GLn (F) and a unitary character μ : F∗ → C
∗. We will need this for our local

converse theorem in Sect. 4.
Wedenote Nm the upper unipotent subgroup ofGLm (F), Am the diagonal subgroup

of GLm (F), Km = GLm (o),Bm the upper triangular matrix subspace of Mm (F), and
N−

m the lower triangular nilpotentmatrix subspaceofMm (F).WehaveBm\Mm (F) ∼=
N−

m .
For the following pairs of groups A ≤ B, we normalize the Haar measure on B

so that the compact open subgroup A has measure one: o ≤ F , o∗ ≤ F∗, Km =
GLm (o) ≤ GLm (F), N−

m (o) ≤ N−
m (F).

Recall the Iwasawa decomposition: GLm (F) = Nm AmKm . It follows from this
decomposition that for an integrable function f : Nm\GLm (F) → C, we have

∫

Nm\GLm (F)

f (g) d×g =
∫

Km

∫

Am

f (ak) δ−1
Bm

(a) d×ad×k,

where Bm ≤ GLm (F) is the Borel subgroup, and for a = diag (a1, . . . , am),

δ−1
Bm

(a) =∏1≤i< j≤m

∣∣
∣
a j
ai

∣∣
∣ is the Haar measure module character.

Let (π, Vπ ) be an irreducible generic representation of GLn (F) and denote its
Whittaker model with respect to ψ by W (π,ψ). Let μ : F∗ → C

∗ be a unitary
character. We now define the twisted Jacquet–Shalika integrals and their duals. These
initially should be thought as formal integrals. We discuss their convergence domains
later and explain how to interpret them for arbitrary s ∈ C.

We have a map W (π,ψ) → W (
π̃ , ψ−1

)
, denoted by W �→ W̃ , where π̃ is

the contragredient representation, and W̃ is given by W̃ (g) = W (wngι), where

wn =
(

1
. .

.

1

)
and gι = t g−1.

Denote by S (Fm) the space of Schwartz functions φ : Fm → C that is the space
of locally constant functions with compact support.

Suppose n = 2m. We define for s ∈ C, W ∈ W (π,ψ), φ ∈ S (Fm)

J (s,W , φ, μ,ψ) =
∫

Nm\GLm (F)

∫

Bm\Mm (F)

W

(
σ2m

(
Im X

Im

)(
g
g

))
ψ (−trX)

· |det g|s μ (det g) φ (εg) dXd×g,
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where ε = εm = (
0 . . . 0 1

) ∈ Fm , and σ2m is the column permutation matrix
corresponding to the permutation

(
1 2 . . . m | m + 1 m + 2 . . . 2m
1 3 . . . 2m − 1 | 2 4 . . . 2m

)
,

i.e.,

σ2m = (e1 e3 . . . e2m−1 e2 e4 . . . e2m
)
,

where ei is the i-th standard column vector, for 1 ≤ i ≤ 2m. In this case, we define
the dual Jacquet–Shalika as

J̃ (s,W , φ, μ,ψ) = J

(
1 − s, π̃

(
Im

Im

)
W̃ ,Fψφ,μ−1, ψ−1

)
,

where J on the right-hand side is the Jacquet–Shalika integral for π̃ , and

Fψφ (y) = q
m
2

∫

Fm
φ (x) ψ (〈x, y〉) dx

is the Fourier transform, normalized such that it is self-dual (here 〈·, ·〉 is the standard
bilinear form on Fm).

Suppose n = 2m + 1. We define for s ∈ C, W ∈ W (π,ψ), φ ∈ S (Fm)

J (s,W , φ, μ,ψ) =
∫

Nm\GLm (F)

∫

M1×m (F)

∫

Bm\Mm (F)

· W
⎛

⎝σ2m+1

⎛

⎝
Im X

Im
1

⎞

⎠

⎛

⎝
g
g
1

⎞

⎠

⎛

⎝
Im

Im
Z 1

⎞

⎠

⎞

⎠

· ψ (−trX) |det g|s−1 μ (det g) φ (Z) dXdZd×g,

where σ2m+1 is the column permutation matrix corresponding to the permutation

(
1 2 . . . m | m + 1 m + 2 . . . 2m | 2m + 1
1 3 . . . 2m − 1 | 2 4 . . . 2m | 2m + 1

)
,

i.e.,

σ2m+1 = (e1 e3 . . . e2m−1 e2 e4 . . . e2m e2m+1
)
.

In this case, we define the dual Jacquet–Shalika as follows:

J̃ (s,W , φ, μ,ψ) = J

⎛

⎝1 − s, π̃

⎛

⎝
Im

Im
1

⎞

⎠ W̃ ,Fψφ,μ−1, ψ−1

⎞

⎠ .

123
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In both cases, we denote J (s,W , φ, ψ) = J (s,W , φ, 1, ψ) and J̃ (s,W , φ, ψ) =
J̃ (s,W , φ, 1, ψ), where 1 denotes the trivial character F∗ → C

∗.
The definitions of the twisted Jacquet–Shalika integrals aremotivated from [5,8,14].

We now list properties of the twisted Jacquet–Shalika integrals, some of which are
only proven for the (untwisted) Jacquet–Shalika integrals in the literature.

From now and on suppose n = 2m or n = 2m + 1.

Theorem 2.1 ([8, Section 7, Proposition 1, Section 9, Proposition 3]) There exists
rπ,∧2 ∈ R, such that for every s ∈ C with Re (s) > rπ,∧2 , W ∈ W (π,ψ) and
φ ∈ S (Fm), the integral J (s,W , φ, μ,ψ) converges absolutely.

Similarly, there exists a half left plane Re (s) < rπ̃ ,∧2 (where rπ̃ ,∧2 = 1 − rπ,∧2 ),
in which the dual twisted Jacquet–Shalika integrals J̃ (s,W , φ, μ,ψ) converge abso-
lutely for every W , φ.

Theorem 2.2 ([11, Theorem 2.3], [5, Lemma 3.1]) For fixed W ∈ W (π,ψ), φ ∈
S (Fm). The map s �→ J (s,W , φ, μ,ψ) for s ∈ C with Re (s) > rπ,∧2 results in
an element of C

(
q−s
)
that is a rational function in the variable q−s and, therefore,

has a meromorphic continuation to the entire plane, which we continue to denote as
J (s,W , φ, μ,ψ). Similarly, we continue to denote the meromorphic continuation of
J̃ (s,W , φ, μ,ψ) by the same symbol. Furthermore, denote

Iπ,ψ,μ = spanC
{
J (s,W , φ, μ,ψ) | W ∈ W (π,ψ) , φ ∈ S (Fm)} ,

then there exists a unique element p (Z) ∈ C [Z ], such that p (0) = 1 and Iπ,ψ,μ =
1

p(q−s)
C
[
q−s, qs

]
. p (Z) does not depend on ψ , and we denote L

(
s, π,∧2 ⊗ μ

) =
1

p(q−s)
.

Proposition 2.3 ([19, Proposition 3.2])

1. For n = 2m,

J̃ (s,W , φ, μ,ψ) =
∫

Nm\GLm (F)

∫

Bm\Mm (F)

W

(
σ2m

(
Im X

Im

)(
g
g

))

· ψ (−trX) · |det g|s−1 μ (det g)Fψφ
(
ε1g

ι
)
dXd×g,

where ε1 = (1 0 . . . 0
)
.

2. For n = 2m + 1,

J̃ (s,W , φ, μ,ψ)

=
∫

Nm\GLm (F)

∫

M1×m (F)

∫

Bm\Mm (F)

· W
⎛

⎝
(

1
I2m

)
σ2m+1

⎛

⎝
Im X

Im
1

⎞

⎠

⎛

⎝
g
g
1

⎞

⎠

⎛

⎝
Im − t Z

Im
1

⎞

⎠

⎞

⎠

· ψ (−trX) |det g|s μ (det g)Fψφ (Z) dXdZd×g.
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Theorem 2.4 ([14, Theorem 4.1] [5, Theorem 3.1]) There exists a non-zero element
γ
(
s, π,∧2 ⊗ μ,ψ

) ∈ C
(
q−s
)
, such that for every W ∈ W (π,ψ), φ ∈ S (Fm), we

have

J̃ (s,W , φ, μ,ψ) = γ
(
s, π,∧2 ⊗ μ,ψ

)
J (s,W , φ, μ,ψ) .

Furthermore,

γ
(
s, π,∧2 ⊗ μ,ψ

)
= ε

(
s, π,∧2 ⊗ μ,ψ

) L
(
1 − s, π̃ ,∧2 ⊗ μ−1

)

L
(
s, π,∧2 ⊗ μ

) ,

where ε
(
s, π,∧2 ⊗ μ,ψ

) = c · q−ks , for k ∈ Z and c ∈ C
∗.

The proof of the functional equation is very similar to the proofs of the referred
theorems and requires only slight modifications.

As before, we denote L
(
s, π,∧2

) = L
(
s, π,∧2 ⊗ 1

)
, γ

(
s, π,∧2, ψ

) =
γ
(
s, π,∧2 ⊗ 1, ψ

)
, and ε

(
s, π,∧2, ψ

) = ε
(
s, π,∧2 ⊗ 1, ψ

)
.

Theorem 2.5 Suppose that (π, Vπ ) is an irreducible supercuspidal representation of
GLn (F)

1. If n = 2m + 1, then L
(
s, π,∧2 ⊗ μ

) = 1.
2. If n = 2m, then L

(
s, π,∧2 ⊗ μ

) = 1
p(q−s)

, where p (Z) ∈ C [Z ] is a polynomial,

such that p (0) = 1 and p (Z) | 1 − ωπ (�)μ (�)m Zm.

The proof of this statement is very similar to the proof of [11, Theorem 3.6]. Its
proof uses a slight modification of [11, Proposition 3.4] for the twisted Jacquet–
Shalika integral. See also [8, Section 8, Theorem 1], [8, Section 9, Theorem 2] for the
analogous global statements.

Lemma 2.6 Let n = 2m. Suppose that γ
(
s, π,∧2 ⊗ μ,ψ

) = c · q−ks p1(q−s)
p2(q−(1−s))

,

where c ∈ C
∗, k ∈ Z, p1, p2 ∈ C [Z ], such that p1 (0) = p2 (0) = 1 and p1 (Z)

and p2
(
q−1Z−1

)
do not have any mutual roots. Then L

(
s, π,∧2 ⊗ μ

) = 1
p1(q−s)

,

L
(
s, π̃ ,∧2 ⊗ μ−1

) = 1
p2(q−s)

, ε
(
s, π,∧2 ⊗ μ,ψ

) = c · q−ks .

Proof Write L
(
s, π,∧2 ⊗ μ

) = 1
pπ(q−s)

, L
(
s, π̃ ,∧2 ⊗ μ−1

) = 1
pπ̃ (q−s)

, and

ε
(
s, π,∧2, ψ

) = cπ · q−kπ ·s , where cπ ∈ C
∗, kπ ∈ Z and pπ , pπ̃ ∈ C [Z ] sat-

isfy pπ (0) = pπ̃ (0) = 1.
Then by Theorem 2.4, we have the equality

γ
(
s, π,∧2 ⊗ μ,ψ

)
= c · (q−s)k p1

(
q−s
)

p2
(
q−1

(
q−s
)−1
)

= cπ · (q−s)kπ
pπ

(
q−s
)

pπ̃

(
q−1

(
q−s
)−1
) ,
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1050 R. Ye, E. Zelingher

which implies that

cZk p1 (Z) pπ̃

(
q−1Z−1

)
= cπ Z

kπ pπ (Z) p2
(
q−1Z−1

)
,

as elements of the polynomial ring C
[
Z , Z−1

]
.

By Theorem 2.5, pπ (Z) | 1 − ωπ (�) μ (�)m Zm and pπ̃ (Z) | 1 −
ω−1

π (�)μ (�)−m Zm . Therefore, we get that pπ (Z) and pπ̃

(
q−1Z−1

)
have no

mutual roots. Note that they also do not have zero or infinity as a root. Therefore,
we conclude that every root of pπ (including multiplicity) is a root of p1, which
implies that p1 (Z) = h1 (Z) pπ (Z), where h1 ∈ C [Z ], with h1 (0) = 1. Similarly,
we get that p2 (Z) = h2 (Z) pπ̃ (Z), where h2 ∈ C [Z ], with h2 (0) = 1. Hence,
we get that cZkh1 (Z) = cπ Zkπ h2

(
q−1Z−1

)
. Since p1 (Z) and p2

(
q−1Z−1

)
do not

have any mutual roots, and since both do not have zero or infinity as a root, we get
that h1 (Z) , h2 (Z) are constants. Therefore, h1 = h2 = 1, and the result follows. ��

2.3 Simple supercuspidal representations

Let n be a positive integer.
Let ω : F∗ → C

∗ be a multiplicative character such that ω �1+p= 1.
Let I+

n = ν−1 (Nn (f)) be the pro-unipotent radical of the standard Iwahori sub-
group of GLn (F), where Nn (f) is the upper unipotent subgroup of GLn (f). Denote
Hn = F∗ I+

n .
Let t0 ∈ o∗/1 + p ∼= f∗. Let t ∈ o∗ be a lift of t0, i.e., ν (t) = t0. We define an

affine generic character χ : Hn → C
∗ by

χ (zk) = ω (z) ψ

(
n−1∑

i=1

ai + tan

)

,

where z ∈ F∗, and

k =

⎛

⎜⎜⎜
⎜
⎝

x1 a1 ∗ · · · ∗
∗ x2 a2 · · · ∗
...

. . .
. . .

...

∗ ∗ · · · xn−1 an−1
�an ∗ · · · ∗ xn

⎞

⎟⎟⎟
⎟
⎠

∈ I+
n .

Note that χ does not depend on the choice t , because the conductor of ψ is p.
Let ζ ∈ C be an nth root of ω

(
t−1�

)
.

Denote gn =
(

In−1

t−1�

)
, H ′

n = 〈gn〉 Hn . We define a character χζ : H ′
n → C

∗

by χζ

(
g j
nh
)

= ζ jχ (h), for j ∈ Z and h ∈ Hn .

Theorem 2.7 ([12, Section 4.3]) The representation σ
ζ
χ = indGLn(F)

H ′
n

(
χζ

)
is an irre-

ducible supercuspidal representation of GLn (F).
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A representation σ
ζ
χ such as in Theorem 2.7 is called a simple supercuspidal

representation. We say that π = σ
ζ
χ is a simple supercuspidal representation with

central character ω, associated with the data (t0, ζ ). Simple supercuspidal represen-
tations were first constructed by Gross and Reeder in [7] for groups that are simply
connected, almost simple and split over the non-Archimedean field F .

By the proof of [12, Corollary 5.3], there exist exactly n (q − 1) equivalence classes
of simple supercuspidal representations with a given central character, each of which
corresponds to a pair (t0, ζ ).

By [1, Section 3.3], we have that if W : GLn (F) → C is the function supported
on NnH ′

n (where Nn is the upper triangular unipotent subgroup of GLn (F)), defined
by

W
(
uh′) = ψ (u) χζ

(
h′) , u ∈ Nn, h

′ ∈ H ′
n, (2.1)

then W ∈ W
(
σ

ζ
χ , ψ

)
is a Whittaker function.

3 Computation of the twisted exterior square factors

In this section,we compute the twisted exterior square factors of a simple supercuspidal
representation. Throughout this section, let t0 ∈ o∗/1 + p ∼= f∗, t ∈ o∗,ω : F∗ → C

∗,
ζ ∈ C

∗ be as in Sect. 2.3. We denote π = σ
ζ
χ . Our goal is to compute the twisted

exterior square factors of π .

3.1 Preliminary lemmas

In order to compute the twisted exterior factors of π , we will use the function

π
(
σ−1
2m

)
W , where W is the Whittaker function from Sect. 2.3. Before beginning

our computation, we need some lemmas regarding the support of the integrand of the

twisted Jacquet–Shalika integral J
(
s, π

(
σ−1
2m

)
W , φ, μ,ψ

)
.

Denote for 1 ≤ l ≤ m, dl =
(

Im−l

t−1� Il

)
, wl =

(
Im−l

Il

)
, and denote by τl the

permutation defined by the columns of wl , i.e.,

wl = (eτl (1) . . . eτl (m)

)
.

Lemma 3.1 Suppose that g ∈ GLm (f), X = (
xi j
) ∈ N−

m (f) is a lower triangular
nilpotent matrix, such that

σ2m

(
Im X

Im

)(
g
g

)
σ−1
2m ∈ N2m (f)

(
I2m−2l

I2l

)
N2m (f) ,

for 1 ≤ l ≤ m. Then

1. g ∈ Nm (f) wl Nm (f).
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1052 R. Ye, E. Zelingher

2. If g ∈ wl Nm (f), then xi j = 0 for every j < i such that τ−1
l ( j) < τ−1

l (i), or

equivalently X ∈ N−
m (f) ∩

(
wlN+

m (f) w−1
l

)
, where N+

m (f) is the subgroup of

Mm (f) consisting of upper triangular nilpotent matrices.

Furthermore, for g ∈ wl Nm (f) and such X,

σ2m

(
Im X

Im

)(
g
g

)
σ−1
2m =

(
I2m−2l

I2l

)
v,

where v ∈ N2m (f) is an upper triangular unipotent matrix, having zeros right above
its diagonal.

Proof The lemma is proved in [19, Lemma 2.33] for the case that g = wdu, where w

is a permutation matrix, d is a diagonal matrix, and u ∈ Nm (f). Therefore, we need
only to show the first part for general g. By the Bruhat decomposition, we can write
g = u1wdu2, where u1, u2 ∈ Nm (f), w is a permutation matrix, and d is a diagonal
matrix. Denote g′ = wdu2. We have

σ2m

(
Im X

Im

)(
g
g

)
σ−1
2m = σ2m

(
u1

u1

)
σ−1
2m σ2m

(
Im u−1

1 Xu1
Im

)(
g′

g′
)

σ−1
2m .

We have that σ2m
( u1

u1

)
σ−1
2m ∈ N2m (f). Write u−1

1 Xu1 = L+U , where L ∈ N−
m (f)

is a lower triangular nilpotent matrix and U ∈ Bm (f) is an upper triangular matrix.
Then we have that

σ2m

(
Im u−1

1 Xu1
Im

)
= σ2m

(
Im U

Im

)
σ−1
2m σ2m

(
Im L

Im

)
.

Since σ2m

(
Im U

Im

)
σ−1
2m ∈ N2m (f), and since σ2m

( u1
u1

)
σ−1
2m ∈ N2m (f), we get that

σ2m

(
Im L

Im

)(
g′

g′
)

σ−1
2m ∈ N2m (f)

(
I2m−2l

I2l

)
N2m (f) .

Since g′ = wdu2, we get from [19, Lemma 2.33] that wd = wl , as required. ��
Lemma 3.2 ([19, Lemma 2.34])

1. Let d ∈ GLm (f)be a diagonalmatrix. Then |Nm (f) wldNm (f)| = q(m2)−(l2)−(m−l
2 )·

|Nm (f)|. Here (k2
) = k(k−1)

2 , for any non-negative integer k.
2. The set

N−
m (f) ∩

(
wlN+

m (f) w−1
l

)

=
{(
xi j
) ∈ N−

m (f) | xi j = 0, ∀ j < i s.t. w−1
l ( j) < w−1

l (i)
}
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is of cardinality q(m2)−(l2)−(m−l
2 ). Here,N+

m (f) is the subgroup of Mm (f) consisting
of upper triangular nilpotent matrices (i.e., upper triangular matrices with zeros
on their diagonal).

Remark 3.1 In [19, Lemma 2.34] the lemma is stated only for d a diagonal matrix of
a certain form, but its proof only uses the fact that d is a diagonal matrix.

Lemma 3.3 Suppose that a = diag (a1, . . . , am) is an invertible diagonal matrix, and
X ∈ N−

m (F) is a lower nilpotent matrix, such that

σ2m

(
Im X

Im

)(
a
a

)
= λ · u · gr2m · k, (3.1)

where λ ∈ F∗, u ∈ N2m, 1 ≤ r ≤ 2m, k ∈ K2m. Then

1. r = 2l is even, for some 1 ≤ l ≤ m.
2. |a1| = · · · = |am−l | = |λ|.
3. |am−l+1| = · · · = |am | = |λ| · |� |.
4. d−1

l Xdl ∈ N−
m (o).

Proof (1) Taking the absolute value of the determinant of both sides of Eq. (3.1), we
get |det a|2 = |λ|2m · |det g2m |r , and since |det g2m | = ∣∣−t−1�

∣∣ = q−1, we must
have that r is even. Thus, r = 2l, for some 1 ≤ l ≤ m. Then

g2l2m =
(

I2m−2l

t−1� I2l

)
=
(
I2m−2l

t−1� I2l

)(
I2m−2l

I2l

)
.

(2 & 3) Denote Z = a−1Xa, uZ = σ2m

(
Im Z

Im

)
σ−1
2m . Denote

b = σ2m

(
a
a

)
σ−1
2m = diag (a1, a1, . . . , am, am) .

Then buZσ2m = λug2l2mk.
Let uZ = nZ tZ kZ be an Iwasawa decomposition (nZ ∈ N2m , tZ ∈ A2m ,

kZ ∈ K2m). Then we have λ−1btZ =
(
bn−1

Z b−1u
)
g2l2m

(
kσ−1

2m k−1
Z

)
. Denote

u′ = bn−1
Z b−1u ∈ N2m . Then we get

( I2m−2l (
t−1�

)−1
I2l

)
u′−1λ−1btZ ∈ K2m .

Writing tZ = diag (t1, . . . , t2m), we get that |λ|−1 |ai | |t2i | = 1 and
|λ|−1 |ai | |t2i−1|
= 1, for every 1 ≤ i ≤ m − l, and that |λ|−1 |ai | |t2i | = |� | and
|λ|−1 |ai | |t2i−1| = |� |, for every m − l + 1 ≤ i ≤ m. By [8, Section
5, Proposition 4], |ti | ≥ 1 for odd i and |ti | ≤ 1 for even i . Thus, we
get that |ti | = 1 for every i . Hence, |a1| = · · · = |am−l | = |λ| and
|am−l+1| = · · · = |am | = |λ| · |� |.
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(4) By [8, Section 5, Proposition 5], there existsα > 0, such that if Z = (zi j
)
, then

max1≤i, j≤m
∣∣zi j
∣∣α ≤ ∏1≤i≤2m

i odd
|ti |. This implies that Z = a−1Xa ∈ Mm (o)

since |ti | = 1. We have a = λ ·dl ·k′, where k′ ∈ GLm (o)∩ Am = (o∗)m , and
this implies d−1

l Xdl ∈ Mm (o), and therefore, inN−
m (F)∩Mm (o) = N−

m (o).
��

Lemma 3.4 Let g = ak, where a = diag (a1, . . . , am) is an invertible matrix, k ∈
GLm (o), d×g = δ−1

Bm
(a) d×k

∏m
i=1 d

×ai , and X ∈ N−
m (F) be a lower triangular

nilpotent matrix. If

σ2m

(
Im X

Im

)(
g
g

)
σ−1
2m ∈ N2mH

′
2m,

then there exists 1 ≤ l ≤ m, such that σ2m

(
Im X

Im

) ( g
g
)
σ−1
2m ∈ F∗N2mg2l2m I

+
2m.

Moreover, if σ2m
(

Im X
Im

) ( g
g
)
σ−1
2m ∈ λN2mg2l2m I

+
2m for 1 ≤ l ≤ m and λ ∈ F∗, then

1. a = λdldiag (u1, . . . , um), where u1, . . . , um ∈ o∗, δ−1
Bm

(a) = δ−1
Bm

(dl) =
q−l(m−l).

2. Let k′′ = diag (u1, . . . , um) k. Then ν
(
k′′) ∈ Nm (f) wl Nm (f), d×k = d×k′′.

3. If ν
(
k′′) ∈ wl Nm (f), then X = dl Zd

−1
l and dX = δ−1

Bm
(dl) dZ, where Z ∈

N−
m (o) satisfies ν (Z) ∈ N−

m (f) ∩
(
wlN+

m (f) w−1
l

)
. Moreover, in this case,

σ2m

(
Im X

Im

)(
g
g

)
σ−1
2m = λg2l2mv,

where v ∈ GL2m (o) satisfies ν (v) ∈ N2m (f), ν (v) has zeros right above its
diagonal, and v has zero at its bottom-left corner.

Proof 1. Suppose that

σ2m

(
Im X

Im

)(
a
a

)(
k
k

)
σ−1
2m = λugr2mk

′, (3.2)

where λ ∈ F∗, u ∈ N2m (F), r ∈ Z, k′ ∈ I+
2m . Since g2m2m = t−1� I2m , we may

assume (by modifying λ) that 1 ≤ r ≤ 2m. By theorem 3.3, we have that r = 2l,
X = dl Zd

−1
l , where Z ∈ N−

m (o), and a = λdl · diag (u1, . . . , um), for some
u1, . . . , um ∈ o∗.

2. Let k′′ = diag (u1, . . . , um) · k and d ′
l =

(
I2m−2l

t−1� I2l

)
. Using these notations

and part 1, we have that

σ2m

(
Im X

Im

)(
g
g

)
σ−1
2m = λσ2m

(
dl

dl

)(
Im Z

Im

)(
k′′

k′′
)

σ−1
2m . (3.3)
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Since d ′
l = σ2m

(
dl

dl

)
σ−1
2m , we get from Eq. (3.3)

σ2m

(
Im X

Im

)(
g
g

)
σ−1
2m = λd ′

lσ2m

(
Im Z

Im

)(
k′′

k′′
)

σ−1
2m . (3.4)

Recall that r = 2l. Writing g2l2m = d ′
l

(
I2m−2l

I2l

)
, we get by combining Eqs. (3.2)

and (3.4) that

σ2m

(
Im Z

Im

)(
k′′

k′′
)

σ−1
2m = d ′−1

l ug2l2mk
′

=
(
d ′−1
l ud ′

l

)( I2m−2l
I2l

)
k′, (3.5)

which implies that d ′−1
l ud ′

l ∈ N2m (o), as
(

I2m−2l
I2l

)
, k′ ∈ K2m , and the left-

hand side of Eq. (3.5) is in K2m . Since d
′−1
l ud ′

l ∈ N2m (o) ⊆ I+
2m and k′ ∈ I+

2m ,
we get from Eq. (3.5) that

ν

(
σ2m

(
Im Z

Im

)(
k′′

k′′
)

σ−1
2m

)
∈ N2m (f)

(
I2m−2l

I2l

)
N2m (f) .

Since Z ∈ N−
m (o), ν (Z) ∈ N−

m (f), and by applying Theorem 3.1, we have that
ν
(
k′′) ∈ Nm (f) wl Nm (f).

3. Assume that ν
(
k′′) ∈ wl Nm (f), then by Theorem 3.1, we have ν (Z) ∈ N−

m (f) ∩(
wlN+

m (f) w−1
l

)
, and

ν

(
σ2m

(
Im Z

Im

)(
k′′

k′′
)

σ−1
2m

)
=
(

I2m−2l
I2l

)
v′,

where v′ ∈ N2m (f) is an upper triangular matrix, having zeros right above its
diagonal. Therefore,

σ2m

(
Im Z

Im

)(
k′′

k′′
)

σ−1
2m =

(
I2m−2l

I2l

)
v, (3.6)

where v ∈ GL2m (o) satisfies ν (v) = v′. Combining Eq. (3.6), Eq. (3.4), and the

fact that g2l2m = d ′
l

(
I2m−2l

I2l

)
, we get

σ2m

(
Im X

Im

)(
g
g

)
σ−1
2m = λd ′

l

(
I2m−2l

I2l

)
v = λg2l2mv.

Finally, suppose that l < m. Note that a non-zero scalarmultiple of the last row of v

appears as the 2m−2l row of σ2m
(

Im X
Im

) ( g
g
)
σ−1
2m . The (2m − 2l, 1) coordinate
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of σ2m

(
Im X

Im

) ( g
g
)
σ−1
2m is the (2m − l, 1) coordinate of

(
Im X

Im

) ( g
g
)
, and this

is zero, as 2m − l > m. If l = m, then g2m2m = t−1� I2m , and therefore, the last

row of v is a scalar multiple of the last row of σ2m

(
Im X

Im

) ( g
g
)
σ−1
2m , which has

zero as its first coordinate.
��

3.2 The even case

In this section,we compute the twisted exterior square factors for the even casen = 2m.

Theorem 3.5 Let π be a simple supercuspidal representation of GL2m (F) with cen-
tral character ω, associated with the data (t0, ζ ). Let μ : F∗ → C

∗ be a unitary
tamely ramified character, i.e., μ �1+p= 1. Denote ξ = ζ 2 · μ

(
(−1)m−1 t−1�

)
.

Let (ω · μm)ξ : F∗ → C
∗ be the character defined by (ω · μm)ξ

(
� j u

) =
ξ jω (u) μ (u)m, for j ∈ Z, u ∈ o∗. Then

γ
(
s, π,∧2 ⊗ μ,ψ

)
=
(

ξq
−
(
s− 1

2

))m−1

γ
(
s,
(
ω · μm)

ξ
, ψ
)

.

Explicitly,

1. If (ω · μm) �o∗ �= 1, then

γ
(
s, π,∧2 ⊗ μ,ψ

)
=
(

ξq
−
(
s− 1

2

))m−1 1√
q

∑

λ∈f∗
ψ (λ)ω

(
λ−1
)

μ
(
λ−m).

In this case, L
(
s, π,∧2 ⊗ μ

) = 1, ε
(
s, π,∧2 ⊗ μ,ψ

) = γ
(
s, π,∧2 ⊗ μ,ψ

)
.

2. If (ω · μm) �o∗= 1, then

γ
(
s, π,∧2 ⊗ μ,ψ

)
=
(

ξq
−
(
s− 1

2

))m−2 1 − ξq−s

1 − ξ−1q−(1−s)
.

In this case, L
(
s, π,∧2 ⊗ μ

) = 1
1−ξq−s ,

ε
(
s, π,∧2 ⊗ μ,ψ

)
= ξm−2q

−(m−2)
(
s− 1

2

)

.

Proof We will compute the twisted exterior square gamma factor by computing the

twisted Jacquet–Shalika integrals J
(
s, π

(
σ−1
2m

)
W , φ, μ,ψ

)
and

J̃
(
s, π

(
σ−1
2m

)
W , φ, μ,ψ

)
, where W is the Whittaker function introduced in Sect.

2.3, and φ : Fm → C is the function defined by

φ (x) =
{

ψ (−ν (x1)) x = (x1, . . . , xm) ∈ om,

0 otherwise.
(3.7)
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Then

Fψφ (x) =
{
q

m
2 δε1 (ν (x)) x ∈ om,

0 otherwise,

where δε1 (x) is the indicator function of ε1 = (1, 0, . . . , 0) ∈ fm .

By the Iwasawa decomposition, we have that J
(
s, π

(
σ−1
2m

)
W , φ, μ,ψ

)
is given

by

J =
∫

W

(
σ2m

(
Im X

Im

)(
ak

ak

)
σ−1
2m

)
|det a|s μ (det (ak))

· φ (εak) ψ (−trX) δ−1
Bm

(a) dXd×ad×k,
(3.8)

where W is the Whittaker function defined in Sect. 2.3, given by Eq. (2.1), X is
integrated over Bm\Mm (F), k is integrated over Km = GLm (o), and a is integrated
over the diagonal subgroup Am of GLm (F).

Denote byWm the group of m ×m permutation matrices. By the Bruhat decompo-
sition for GLm (f), we have the disjoint union

GLm (f) =
⊔

w∈Wm
d0∈Am (f)

Nm (f) wd0Nm (f).

We decompose each of the double cosets of the disjoint union into a disjoint union of
left cosets: given w ∈ Wm , d0 ∈ Am (f), we can write

Nm (f) wd0Nm (f) =
⊔

u0∈Cwd0

u0wd0Nm (f),

where Cwd0 ⊆ Nm (f) is a subset of Nm (f) such that the map

Cwd0 → {u0wd0Nm (f) | u0 ∈ Nm (f)} ,

u0 �→ u0wd0Nm (f)

is a bijection. We may assume without loss of generality that Im ∈ Cwd0 . We have that∣∣Cwd0

∣∣ = |Nm (f)wd0Nm (f)|
|Nm(f)| .

We obtain the following decomposition:

GLm (f) =
⊔

w∈Wm
d0∈Am (f)

⊔

u0∈Cwd0

u0wd0Nm (f).
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Since ν−1 (GLm (f)) = GLm (o), we can lift the above decomposition to

GLm (o) =
⊔

w∈Wm
d∈Dm

⊔

u∈Cwd

uwdν−1 (Nm (f)),

where Dm ⊆ Am ∩ GLm (o) = (o∗)m is a set of representatives for the inverse image
ν−1 (Am (f)) (i.e., Dm ⊆ ν−1 (Am (f)) and ν �Dm : Dm → Am (f) is a bijection), and
for d ∈ Dm with ν (d) = d0, Cwd ⊆ Nm (o) is a set of representatives for the inverse
image ν−1

(
Cwd0

)
(i.e., Cwd ⊆ ν−1

(
Cwd0

)
and ν �Cwd : Cwd → Cwd0 is a bijection).

Without loss of generality, we may assume that the identity matrix belongs to Dm and
also belongs to Cwd , for every w ∈ Wm and d ∈ Dm .

Using this decomposition for Km in Eq. (3.8), we decompose the integral J into a
sum of integrals

J =
∑

w∈Wm
d∈Dm

∑

u∈Cwd

Jwd,u,

where

Jwd,u =
∫

W

(
σ2m

(
Im X

Im

)(
auwdk

auwdk

)
σ−1
2m

)
|det a|s μ (det (auwdk))

· φ (εauwdk) ψ (−trX) δ−1
Bm

(a) dXd×ad×k,

where X is integrated over Bm\Mm (F), k is integrated over I+
m = ν−1 (Nm (f)),

and a is integrated over Am . Writing au = aua−1 · a, we have that aua−1 ∈ Nm ,
and since the Jacquet–Shalika integrand is invariant under Nm\GLm (F), we have
Jwd,Im = Jwd,u for any u ∈ Cwd . Denote Jwd = Jwd,Im , then we have

J =
∑

w∈Wm
d∈Dm

|Cwd | Jwd =
∑

w∈Wm
d∈Dm

|Nm (f) wν (d) Nm (f)|
|Nm (f)| Jwd .

Using the isomorphism Bm\Mm (F) ∼= N−
m , we can write

Jwd =
∫

W

(
σ2m

(
Im X

Im

)(
awdk

awdk

)
σ−1
2m

)
|det a|s μ (det (awdk))

· φ (εawdk) δ−1
Bm

(a) dXd×ad×k,
(3.9)

where the integration is the same as in Jwd,u , except that this time X is integrated on
N−

m .
By Theorem 3.4, Jwd = 0 unless w = wl for some 1 ≤ l ≤ m. In this case by

Theorem 3.4, we have that the integrand of Jwl d is supported on dl ·F∗ · Am (o), where
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Am (o) = Am ∩GLm (o) ∼= (o∗)m . We translate a by dl and write down the expression
for the Haar measure for the subgroup F∗ · Am (o):

a = dlλdiag (u1, . . . , um) , where λ ∈ F∗, u1, . . . , um ∈ o∗,

d×a = d×λ

m∏

i=1

d×ui ,

δ−1
Bm

(a) = δ−1
Bm

(dl) = q−l(m−l).

(3.10)

Denote

k′′ = diag (u1, . . . , um) wldk. (3.11)

By Theorem 3.4, k′′ satisfies ν
(
k′′) ∈ Nm (f) wl Nm (f). Since ν (k) ∈ Nm (f), then by

the Bruhat decomposition of ν
(
k′′), we must have

ν (diag (u1, . . . , um)) wlν (d) = wl .

Therefore, we have

diag (u1, . . . , um) = diag
(
u′
1, . . . , u

′
m

)
wld

−1w−1
l , (3.12)

where u′
1, . . . , u

′
m ∈ 1 + p and

∏m
i=1 d

×ui = ∏m
i=1 d

×u′
i . Denote g = awldk. By

Eq. (3.10) and Eq. (3.12), we have

g = awldk = λdldiag
(
u′
1, . . . , u

′
m

)
wl k. (3.13)

By Eqs. (3.11) and (3.12), we have k′′ = diag
(
u′
1, . . . , u

′
m

)
wl k, and therefore,

ν
(
k′′) ∈ wl Nm (f). Hence, by part 3 of Theorem 3.4,

X = dl Zd
−1
l , where Z ∈ ν−1

(
N−

m (f) ∩
(
wlN+

m (f) w−1
l

))
,

dX = δ−1
Bm

(dl) dZ = q−l(m−l)dZ .
(3.14)

Moreover, we have that

σ2m

(
Im X

Im

)(
g
g

)
σ−1
2m = λg2l2mv, (3.15)

where v ∈ GL2m (o) satisfies ν (v) ∈ N2m (f), ν (v) has zeros right above its diagonal,
and v has zero at its bottom-left corner. Therefore, by Eqs. (2.1) and (3.15), in this
domain

W

(
σ2m

(
Im X

Im

)(
g
g

)
σ−1
2m

)
= ζ 2lω (λ) . (3.16)
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We have by Eq. (3.13)

det (awldk) = λm
(
t−1�

)l
(

m∏

i=1

u′
i

)

(−1)l(m−l) det k, (3.17)

and

|det a|s = |λ|ms q−ls . (3.18)

Since det k ∈ 1+ p,
∏m

i=1 u
′
i ∈ 1+ p, and since μ is a tamely ramified character, and

since (−1)l
2 = (−1)l , we get by Eq. (3.17)

μ (det (awldk)) = μ (λ)m μ
(
(−1)m−1 t−1�

)l
. (3.19)

We have by Eq. (3.13) that εawldk = u′
mλt−1�εl k. Since u′

m ∈ 1 + p ⊆ o∗,
x ∈ Fm satisfies x ∈ om if and only if u′

mx ∈ om . In the case x ∈ om , we have
x ≡ u′

mx (mod p), which implies that if x = (x1, . . . , xm), then x1 ≡ u′
mx1 (mod p).

Since ψ has conductor p, ψ
(
u′
mx1
) = ψ (x1). Therefore, by the definition of φ in Eq.

(3.7), φ
(
u′
mx
) = φ (x) for every x ∈ Fm . It follows that

φ (εawldk) = φ
(
u′
mλt−1�εl k

)
= φ

(
λt−1�εl k

)
. (3.20)

Substituting in Eq. (3.9) the equalities Eqs. (3.10), (3.12), (3.14), (3.16), (3.18),
(3.19), and (3.20), we get

Jwl d =
∫ (

ζ 2lω (λ)
) (

|λ|ms q−ls
)(

μ (λ)m μ
(
(−1)m−1 t−1�

)l)

· φ
(
λt−1�εl k

)
q−l(m−l)

(
q−l(m−l)dZ

)(

d×λ

m∏

i=1

d×u′
i

)

d×k,
(3.21)

where the integral is integrated over λ ∈ F∗, u′
1, . . . , u

′
m ∈ 1 + p, Z ∈

ν−1
(
N−

m (f) ∩
(
wlN+

m (f) w−1
l

))
, k ∈ I+

m .

Denote ξ = ζ 2μ
(
(−1)m−1 t−1�

)
. We can now evaluate the integration over

Z ,u′
1, . . . , u

′
m in Eq. (3.21) and get

Jwl d = q−2l(m−l)q−ls ·
∣
∣∣N−

m (f) ∩
(
wlN+

m (f) w−1
l

)∣∣∣
∣∣N−

m (f)
∣∣

1

|f∗|m ξ l

·
∫

I+
m

∫

F∗
ω (λ)μ (λ)m |λ|ms φ

(
λt−1�εl k

)
d×λd×k.

(3.22)
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Notice that Eq. (3.22) implies that Jwl d does not depend on d ∈ Dm , and we have
Jwl = Jwl d for every d ∈ Dm . Denote

Jl =
∑

d∈Dm

∣∣Cwl d
∣∣ Jwl d =

∑

d∈Dm

|Nm (f) wlν (d) Nm (f)|
|Nm (f)| Jwl . (3.23)

By Theorem 3.2,

|Nm (f) wlν (d) Nm (f)|
|Nm (f)| =

∣∣
∣N−

m (f) ∩
(
wlN+

m (f) w−1
l

)∣∣
∣

= q(m2)−(l2)−(m−l
2 ). (3.24)

We also have |Dm | = |Am (f)| = |f∗|m . Therefore, by substituting into Eq. (3.23) the
equalities Eqs. (3.22) and (3.24), we have

Jl = q−(m2)q−lsξ l ·
∫

I+
m

∫

F∗
ω (λ)μ (λ)m |λ|ms φ

(
λt−1�εl k

)
d×λd×k, (3.25)

where the expression q−(m2) arises from the identity −2l (m − l) + 2
(m
2

) − 2
(l
2

) −
2
(m−l

2

)− (m2
) = −(m2

)
.

Since k ∈ I+
m , we have that εl k ∈ om has 1 as its l coordinate modulo p. Therefore,

if λt−1�εl k ∈ om , we must have
∣∣λt−1�

∣∣ ≤ 1, i.e., λ = (
t−1�

) j · u0, for some
u0 ∈ o∗ and j ≥ −1. For a fixed k ∈ I+

m , we decompose

∫

F∗
ω (λ)μ (λ)m |λ|ms φ

(
λt−1�εl k

)
d×λ

=
∞∑

j=−1

ω
(
t−1�

) j
μ
(
t−1�

) jm
q− jms

·
∫

o∗
ω (u0) μ (u0)

m φ

(
u0
(
t−1�

) j+1
εl k

)
d×u0.

(3.26)

Since ξm = ζ 2mμ
(
(−1)m(m−1))μ

(
t−1�

)m
, m (m − 1) is even, and ζ 2m =

ω
(
t−1�

)
, we have ξm = ω

(
t−1�

)
μ
(
t−1�

)m
. Therefore, we get from Eq. (3.26)

that
∫

F∗
ω (λ)μ (λ)m |λ|ms φ

(
λt−1�εl k

)
d×λ

=
∞∑

j=−1

(
ξq−s) jm ·

∫

o∗
ω (u0) μ (u0)

m φ

(
u0
(
t−1�

) j+1
εl k

)
d×u0.

(3.27)

If l ≥ 2, then εl k has 0 as its first coordinate modulo p, so for every j ≥ −1, the first

coordinate of u0
(
t−1�

) j+1
εl k is 0 modulo p. Thus, φ

(
u0
(
t−1�

) j+1
εl k
)

= 1. We
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also have that

∫

o∗
ω (u0) μ (u0)

md×u0 =
{
1 (ω · μm) �o∗= 1,

0 otherwise.

Therefore, from Eqs. (3.25) and (3.27), we get for l ≥ 2 that,

Jl =
{

q−(m2 )

[GLm (f):Nm (f)]

(
ξq−s

)−m (
ξq−s

)l 1
1−ξmq−ms (ω · μm) �o∗= 1,

0 otherwise.

If l = 1 and j ≥ 0, we have that
(
t−1�

) j+1
εlu0k ≡ 0 (mod p), and therefore, we

have again φ
(
u0
(
t−1�

) j+1
εl k
)

= 1 and

∫

o∗
ω (u0) μ (u0)

md×u0 =
{
1 (ω · μm) �o∗= 1,

0 otherwise.

If l = 1 and j = −1, we have that ε1k has 1 as its first coordinate modulo p, and

therefore, φ
(
u0
(
t−1�

) j+1
εl k
)

= ψ (−ν (u0)), and we have

∫

o∗
ω (u0) μ (u0)

m ψ (−u0) d
×u0 = 1

|f∗|
∑

λ∈f∗
ω (λ)μ (λ)m ψ (−λ).

To summarize, we get

J1

=

⎧
⎪⎨

⎪⎩

q−(m2)

[GLm (f):Nm (f)]

(
ξq−s)−m

( (
ξq−s )m+1

1−ξmq−ms − ξq−s

q−1

) (
ω · μm) �o∗= 1,

q−(m2)

[GLm (f):Nm (f)]

(
ξq−s)−m (

ξq−s) 1
|f∗|

∑
λ∈f∗ ω (λ) μ (λ)m ψ (−λ) otherwise.

Summing all the Jl up, we get

J =
m∑

l=1

Jl

=

⎧
⎪⎨

⎪⎩

q−(m2)

[GLm (f):Nm (f)]

(
ξq−s)−(m−2) · q · 1−ξ−1q−(1−s)

(1−ξq−s)(q−1)

(
ω · μm) �o∗= 1,

q−(m2)

[GLm (f):Nm (f)]

(
ξq−s)−(m−1) 1

|f∗|
∑

λ∈f∗ ω (λ) μ (λ)m ψ (−λ) otherwise
. (3.28)

We now move to compute J̃ = J̃
(
s, π (σ2m)−1 W , φ, μ,ψ

)
. Following the same

steps as before for the expression in Theorem 2.3, we have

J̃ =
m∑

l=1

J̃l ,
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where

J̃l = q−(m2)q−l(s−1)ξ l ·
∫

I+
m

∫

F∗
ω (λ)μ (λ)m |λ|m(s−1) Fψφ

(
λ−1ε1d

−1
l wl k

ι
)

× d×λd×k.

Recall that

Fψφ (x) =
{
q

m
2 δε1 (ν (x)) x ∈ om,

0 otherwise.

We have that

λ−1ε1d
−1
l wl k

ι =
{

λ−1εl+1kι, 1 ≤ l ≤ m − 1,

λ−1
(
t−1�

)−1
ε1kι, l = m.

If 1 ≤ l ≤ m − 1, we have that λ−1ε1d
−1
l wl kι is a scalar multiple of εl+1kι ∈ om

and the l + 1 coordinate of εl+1kι is 1 modulo p, and therefore, λ−1ε1d
−1
l wl kι cannot

be in the support of Fψφ for any scalar λ. If l = m, λ−1ε1d−1
m wl kι is a scalar

multiple of ε1kι ∈ om , which satisfies ν (ε1kι) ≡ ε1 (mod p). Therefore, in order
for λ−1ε1d

−1
l wl kι to be in om and to be ε1 modulo p, we must have l = m, and

λ−1
(
t−1�

)−1 ∈ 1 + p. Hence, we have J̃l = 0 for 1 ≤ l ≤ m − 1, and for l = m,

we have that λ is integrated on
(
t−1�

)−1
(1 + p) and that

J̃m = q−(m2)q−m(s−1)ξm ·
∫

I+
m

∫

1+p
ω
(
t−1�

)−1
μ
(
t−1�

)−m ∣∣∣
(
t−1�

)∣∣∣
−m(s−1)

× q
m
2 d×λd×k

= 1

|f∗|
q−(m2)

[GLm (f) : Nm (f)]
· q m

2 .

Therefore,

J̃ = J̃m = 1

|f∗|
q−(m2)

[GLm (f) : Nm (f)]
· q m

2 . (3.29)

Recalling the fact that when (ω · μm) �o∗ �= 1, the Gauss sum

G
(
ω · μm, ψ

) =
∑

λ∈f∗
ω (λ)μ (λ)m ψ (−λ)
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has absolute value
√
q , we have that

G
(
ω · μm, ψ

)−1 = G (ω · μm, ψ)

q
= 1

q

∑

λ∈f∗
ω
(
λ−1
)

μ
(
λ−m)ψ (λ). (3.30)

By Eqs. (3.28), (3.29), and (3.30), we get

γ
(
s, π,∧2 ⊗ μ,ψ

)
= J̃

J

=

⎧
⎪⎪⎨

⎪⎪⎩

(
ξq

−
(
s− 1

2

))m−2

· 1−ξq−s

1−ξ−1q−(1−s) (ω · μm) �o∗= 1,
(

ξq
−
(
s− 1

2

))m−1
1√
q

∑
λ∈f∗ ω

(
λ−1
)
μ
(
λ−m

)
ψ (λ) otherwise.

The formula γ
(
s, π,∧2 ⊗ μ,ψ

) =
(

ξq
−
(
s− 1

2

))m−1

γ
(
s, (ω · μm)ξ , ψ

)
now fol-

lows from a standard computation of the local factors of Tate’s functional equation,
see for instance [17, Section 7.1] or [13, Proposition 3.8].

The claim about the other twisted exterior square factors now follows fromTheorem
2.6 and the fact that 1 − ξ Z and 1 − ξ−1q−1Z−1 do not have mutual roots. ��

Remark 3.6 For the choice of test data
(
π
(
σ−1
2m

)
W , φ

)
as in the proof, we have that

J
(
s, π

(
σ−1
2m

)
W , φ, μ,ψ

)
is non-zero if and only ifμ is tamely ramified: otherwise,

on the right-hand side of Eq. (3.19), we will have a product
∏m

i=1 μ
(
u′
i

)
, and since

we integrate u′
i over 1+ p, we have that the integral vanishes unless the restriction of

μ to 1 + p is trivial.

3.3 The odd case

In this section, we compute the twisted exterior square factors for the odd case n =
2m + 1.

Theorem 3.7 Let π be a simple supercuspidal representation of GL2m+1 (F) with
central character ω, associated with the data (t0, ζ ). Let μ : F∗ → C

∗ be a unitary
tamely ramified character, i.e., μ �1+p= 1. Then

γ
(
s, π,∧2 ⊗ μ,ψ

)
=
(

μ
(
t−1�

)
ζ 2q

−
(
s− 1

2

))m

.

Furthermore, in this case, L
(
s, π,∧2 ⊗ μ

) = 1, ε
(
s, π,∧2 ⊗ μ,ψ

) =
γ
(
s, π,∧2 ⊗ μ,ψ

)
.
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Proof Wecompute J
(
s, π

(
σ−1
2m+1

)
W , φ, μ,ψ

)
and J̃

(
s, π

(
σ−1
2m+1

)
W , φ, μ,ψ

)
,

where again W is the Whittaker function introduced in Sect. 2.3, but this time

φ (x) =
{

δ0 (ν (x)) x ∈ om,

0 otherwise,
Fψφ (x) =

{
q−m

2 x ∈ om,

0 otherwise,

where δ0 is the indicator function of 0 ∈ fm .

By the Iwasawa decomposition, J
(
s, π

(
σ−1
2m+1

)
W , φ, μ,ψ

)
is given by

J =
∫

W

⎛

⎝σ2m+1

⎛

⎝
Im X

Im
1

⎞

⎠

⎛

⎝
ak

ak
1

⎞

⎠

⎛

⎝
Im

Im
Z 1

⎞

⎠ σ−1
2m+1

⎞

⎠φ (Z)

· |det a|s−1 μ (det (ak)) δ−1
Bm

(a) dXd×ad×kdZ ,

(3.31)

where X is integrated on N−
m , a is integrated on the diagonal matrix subgroup Am ,

k is integrated on Km = GLm (o), and Z is integrated on M1×m (F). In order for Z
to be in the support of φ, we must have Z ∈ M1×m (o), such that ν (Z) = 0, i.e.,
Z ∈ M1×m (p). For such fixed Z , we have that

ν

⎛

⎝σ2m+1

⎛

⎝
Im

Im
Z 1

⎞

⎠ σ−1
2m+1

⎞

⎠ = I2m+1,

and therefore,

σ2m+1

⎛

⎝
Im

Im
Z 1

⎞

⎠ σ−1
2m+1 ∈ I+

2m+1.

Hence, in order for X , a, k to contribute to the integral, we must have

σ2m+1

⎛

⎝
Im X

Im
1

⎞

⎠

⎛

⎝
ak

ak
1

⎞

⎠ σ−1
2m+1 = λu′gl2m+1k

′,

where λ ∈ F∗, u′ ∈ N2m+1, l ∈ Z, k′ ∈ I+
2m+1. Since g

2m+1
2m+1 = t−1� I2m+1, we may

assume (by modifying λ) that 1 ≤ l ≤ 2m + 1. Notice that

λgl2m+1k
′ = u′−1σ2m+1

⎛

⎝
Im X

Im
1

⎞

⎠

⎛

⎝
ak

ak
1

⎞

⎠ σ−1
2m+1, (3.32)

and the right-hand side of Eq. (3.32) has ε2m+1 = (0, . . . , 0, 1) as its last row. On
the other hand, the last row of λgl2m+1k

′ is λt−1�εl k′, where εl is the l-th standard
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row vector. Since εl k′ is the l-th row of k′, we have that ν
(
εl k′) is the l-th row of

an upper triangular unipotent matrix, and therefore, the equality λt−1�εl k′ = ε2m+1
can’t hold unless l = 2m + 1. Thus, we have l = 2m + 1, and that the last row of k′ is
a scalar multiple of ε2m+1. Since k′ ∈ GL2m+1 (o), we may assume (by modifying λ

by a unit) that the last row of k′ is ε2m+1. We write k′ = (
k′′ v

1

)
, where k′′ ∈ I+

2m and
v is a column vector in M2m×1 (o). Writing k′ = (

I2m v
1

) (
k′′

1

)
, we may assume (by

modifying u′) that k′ = (
k′′

1

)
, which implies that u′ = (

u′′
1

)
for u′′ ∈ N2m . Thus,

we get that λt−1� = 1, and that

σ2m

(
Im X

Im

)(
ak

ak

)
σ−1
2m = λu′′g2m2mk′′ ∈ λN2mg

2m
2m I+

2m . (3.33)

Since Eq. (3.33) holds, we can apply Theorem 3.4 and use λt−1� = 1 to get that

a = λ · dm · diag (u1, . . . , um) = diag (u1, . . . , um) ,where u1, . . . , um ∈ o∗,

d×a =
m∏

i=1

d×ui ,

δ−1
Bm

(a) = 1.

(3.34)

Denote

k0 = diag (u1, . . . , um) k,

d×k = d×k0.
(3.35)

Then k = diag (u1, . . . , um)−1 k0, and by Theorem 3.4

k0 ∈ ν−1 (Nm (f) wmNm (f)) = ν−1 (Nm (f)) = I+
m (3.36)

Furthermore, since ν (k0) ∈ Nm (f) = wmNm (f), by Theorem 3.4 we have that X ∈
N−

m (o) and that X satisfies ν (X) ∈ N−
m (f) ∩ (wmN+

m (f) w−1
m

) = {0m}, i.e.,

X ∈ N−
m (p) . (3.37)

Also, since ν (k0) ∈ wmNm (f), by Theorem 3.4 we have for such Z , X , a, and k that

σ2m

(
Im X

Im

)(
ak

ak

)
σ−1
2m = v0,
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where ν (v0) = v′
0 is an upper triangular unipotent matrix having zeros right above its

diagonal, and therefore,

Y = σ2m+1

⎛

⎝
Im X

Im
1

⎞

⎠

⎛

⎝
ak

ak
1

⎞

⎠

⎛

⎝
Im

Im
Z 1

⎞

⎠ σ−1
2m+1

=
(

v0
1

)
σ2m+1

⎛

⎝
Im

Im
Z 1

⎞

⎠ σ−1
2m+1

(3.38)

satisfies ν (Y ) =
(

v′
0
1

)
, which implies that ν (Y ) is an upper unipotent matrix with

zeros right above its diagonal. Since Y also has zero at its left-bottom corner, we have
from Eq. (2.1)

W (Y ) = 1. (3.39)

From Eqs. (3.34) and (3.35), we have that ak = k0 ∈ I+
m , so det (ak) = det (k0) ∈

1 + p, which implies

|det a|s = 1,

μ (det (ak)) = 1
(3.40)

as μ is tamely ramified.
Therefore, we have by substituting in Eq. (3.31), Eqs. (3.34)–(3.40) that

J
(
s, π

(
σ−1
2m+1

)
W , φ, μ,ψ

)
=
∫

M1×m (p)

∫

I+
m

∫

(o∗)m

∫

N−
m (p)

dX

(
m∏

i=1

d×ui

)

× d×k0dZ

= 1

|M1×m (f)|
1

[GLm (f) : Nm (f)]

1
∣∣N−

m (f)
∣∣ .

(3.41)

Wenowmove to compute J̃
(
s, π

(
σ−1
2m+1

)
W , φ, μ,ψ

)
. ByTheorem2.3,we need

to evaluate the integral

J̃ =
∫

W

⎛

⎝
(

1
I2m

)
σ2m+1

⎛

⎝
Im X

Im
1

⎞

⎠

⎛

⎝
ak

ak
1

⎞

⎠

⎛

⎝
Im − t Z

Im
1

⎞

⎠ σ−1
2m+1

⎞

⎠

· Fψφ (Z) |det a|s μ (det (ak)) δ−1
Bm

(a) dXd×ad×kdZ ,

(3.42)
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where again X ∈ N−
m , a ∈ Am , k ∈ Km = GLm (o), Z ∈ M1×m (F). We notice that

for every Z ∈ M1×m (o),

σ2m+1

⎛

⎝
Im − t Z

Im
1

⎞

⎠ σ−1
2m+1 ∈ I+

2m+1.

Therefore, in order for X , a, k to support the integrand, we need

(
1

I2m

)
σ2m+1

⎛

⎝
Im X

Im
1

⎞

⎠

⎛

⎝
ak

ak
1

⎞

⎠ σ−1
2m+1 = λu′gl2m+1k

′, (3.43)

where λ ∈ F∗, u′ ∈ N2m+1, l ∈ Z, k′ ∈ I+
2m+1. Note that the left-hand side of Eq.

(3.43) has e1 = t (1, 0, . . . , 0) as its last column. Therefore, λu′gl2m+1k
′ needs to have

e1 as its last column, i.e., λu′gl2m+1k
′e2m+1 = e1, which implies λgl2m+1k

′e2m+1 =
u′−1e1 = e1. Since the 2m + 1 − l coordinate of ν

(
gl2m+1k

′e2m+1
)
is 1, we must

have l = 2m. Therefore, from λg2m2m+1k
′e2m+1 = e1, we get that the last column of

k′ is a scalar multiple of e2m+1. Modifying λ by a unit, we may assume that k′ has
e2m+1 as its last column. Write k′ = ( k′′

v 1

)
, where k′′ ∈ I+

2m , v ∈ M1×2m (p). Writing

g2m2m+1 =
(

1
t−1� I2m

)
, we have

λu′g2m2m+1k
′ = λu′

(
1

t−1� I2m

)(
k′′
v 1

)

= λu′
(
1 v
(
t−1�k′′)−1

I2m

)(
1

t−1� I2m

)(
k′′

1

)
.

Therefore, by replacing u′ by u′
(
1 v
(
t−1�k′′)−1

I2m

)
, we may assume k′ = ( k′′

1

)
, which

implies by Eq. (3.43) that u′ = ( 1 u′′
)
for u′′ ∈ N2m . Substituting the expressions for

u′, k′, and the expression g2m2m+1 =
(

1
t−1� I2m

)
in Eq. (3.43), we get that

σ2m+1

⎛

⎝
Im X

Im
1

⎞

⎠

⎛

⎝
ak

ak
1

⎞

⎠ σ−1
2m+1 =

(
λt−1�u′′k′′

λ

)
,

and therefore, λ = 1 and

σ2m

(
Im X

Im

)(
ak

ak

)
σ−1
2m = t−1�u′′k′′.
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By Theorem 3.4, we have that

a = dm · diag (u1, . . . , um) = t−1�diag (u1, . . . , um) , where u1, . . . , um ∈ o∗,

d×a =
m∏

i=1

d×ui ,

δ−1
Bm

(a) = 1.

(3.44)

Denote

k0 = diag (u1, . . . , um) k,

d×k0 = d×k.
(3.45)

Then by Theorem 3.4,

k0 ∈ ν−1 (Nm (f) wmNm (f)) = ν−1 (Nm (f)) = I+
m . (3.46)

Since ν (k0) ∈ wmNm (f) = Nm (f), by Theorem 3.4, we have X ∈ N−
m (o) satisfies

ν (X) ∈ N−
m (f) ∩ (wmN+

m (f) w−1
m

) = {0m}, i.e.,

X ∈ N−
m (p) . (3.47)

Also, since ν (k0) ∈ wmNm (f), by Theorem 3.4 we have for such elements that

σ2m

(
Im X

Im

)(
ak

ak

)
σ−1
2m = g2m2mv0 = t−1�v0,

where v0 ∈ GL2m (o) satisfies that ν (v0) = v′
0 is an upper triangular unipotent matrix

with zeros right above its diagonal. Hence, we have that

Y =
(

1
I2m

)
σ2m+1

⎛

⎝
Im X

Im
1

⎞

⎠

⎛

⎝
ak

ak
1

⎞

⎠

⎛

⎝
Im − t Z

Im
1

⎞

⎠ σ−1
2m+1

= g2m2m+1

(
v0

1

)
σ2m+1

⎛

⎝
Im − t Z

Im
1

⎞

⎠ σ−1
2m+1.

(3.48)

Denote

Y ′ =
(

v0
1

)
σ2m+1

⎛

⎝
Im − t Z

Im
1

⎞

⎠ σ−1
2m+1,

then Y = g2m2m+1Y
′, and ν

(
Y ′) is an upper triangular unipotent matrix with zeros right

above its diagonal, as it is a product of such. Y ′ also has zero at its left-bottom corner.
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Therefore, by Eq. (2.1)

W (Y ) = ζ 2m . (3.49)

By Eq. (3.44) and Eq. (3.45), we have that ak = t−1�k0, and therefore, det (ak) =(
t−1�

)m
det k0. Since k0 ∈ I+

m , then det k0 ∈ 1 + p, which implies

|det a|s = q−ms,

μ (det (ak)) = μ
(
t−1�

)m
,

(3.50)

as μ is tamely ramified.
By substituting in Eq. (3.42), Eqs. (3.44)–(3.50), we have

J̃ =
∫

M1×m (o)

∫

I+
m

∫

(o∗)m

∫

N−
m (p)

ζ 2mq−m
2 q−msμ

(
t−1�

)m

× dX

(
m∏

i=1

d×ui

)

d×k0dZ

= 1

[GLm (f) : Nm (f)]

1
∣∣N−

m (f)
∣∣q

−m
2 ζ 2mq−msμ

(
t−1�

)m
.

(3.51)

We get from Eqs. (3.41) and (3.51),

γ
(
s, π,∧2 ⊗ μ,ψ

)
= J̃

J
= μ

(
t−1�

)m
ζ 2mq−msq

m
2 .

The result regarding the other local factors now follows from Theorems 2.4 and
2.5. ��

4 Exterior square gamma factors local converse theorem

In this section, we present and prove a local converse theorem for simple supercuspidal
representations. Unlike previous local converse theorems, which are usually based
on Rankin–Selberg gamma factors, our theorem is based on twisted exterior square
gamma factors.

Theorem 4.1 Let n = 2m or n = 2m + 1. Let (π, Vπ ),
(
π ′, Vπ ′

)
be simple supercus-

pidal representations of GLn (F), with the same central character ω = ωπ = ωπ ′ ,
such that π , π ′ are associated with the data (t0, ζ ) and

(
t ′0, ζ ′) correspondingly, where

ζ n = ω
(
t−1�

)
, ζ ′n = ω

(
t ′−1

�
)
, and t, t ′ ∈ o∗ are lifts of t0, t ′0 respectively, i.e.,

ν (t) = t0, ν
(
t ′
) = t ′0. Assume that

1. If n = 2m, then gcd (m − 1, q − 1) = 1.
2. If n = 2m + 1, then gcd (m, q − 1) = 1.
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Suppose that for every unitary tamely ramified character μ : F∗ → C
∗, we have

γ
(
s, π,∧2 ⊗ μ,ψ

)
= γ

(
s, π ′,∧2 ⊗ μ,ψ

)
. (4.1)

Then ζ = ±ζ ′ and t0 = t ′0.

Proof Suppose n = 2m. Let μ be a unitary tamely ramified character. Denote ξ =
ζ 2 · μ

(
(−1)m−1 t−1�

)
, ξ ′ = ζ ′2 · μ

(
(−1)m−1 t ′−1�

)
. We claim that ξ = ξ ′.

If (ω · μm) �o∗= 1, we have by Theorem 3.5 and by Eq. (4.1) that

(
ξq

−
(
s− 1

2

))m−2 1 − ξq−s

1 − ξ−1q−(1−s)
=
(

ξ ′q−
(
s− 1

2

))m−2 1 − ξ ′q−s

1 − ξ ′−1q−(1−s)
, (4.2)

and we get ξ = ξ ′ by comparing the poles of both sides of Eq. (4.2).
If (ω · μm) �o∗ �= 1, we have by Theorem 3.5 and by Eq. (4.1) that

(
ξq

−
(
s− 1

2

))m−1 1√
q

∑

λ∈f∗
ψ (λ)ω

(
λ−1
)

μ
(
λ−m)

=
(

ξ ′q−
(
s− 1

2

))m−1 1√
q

∑

λ∈f∗
ψ (λ)ω

(
λ−1
)

μ
(
λ−m).

Therefore,

(
ξ

ξ ′

)m−1

= 1. (4.3)

On the other hand,

ξ

ξ ′ = ζ 2μ
(
(−1)m−1 t−1�

)

ζ ′2μ
(
(−1)m−1 t ′−1�

) = ζ 2

ζ ′2μ
(
t ′t−1

)
. (4.4)

Since ζ 2m = ω
(
t−1�

)
and ζ ′2m = ω

(
t ′−1�

)
, we get from Eq. (4.4) that

(
ξ

ξ ′

)m

= ω
(
t−1�

)

ω
(
t ′−1�

)μ
(
t ′t−1

)m = ω
(
t ′t−1

)
μ
(
t ′t−1

)m
,

which implies that

(
ξ

ξ ′

)m(q−1)

= 1 (4.5)

as ω,μ are tamely ramified. Since m − 1 is coprime to m and to q − 1, we have that
gcd (m − 1,m (q − 1)) = 1, and therefore, m − 1 is invertible modulo m (q − 1),
which implies from Eqs. (4.3) and (4.5) that ξ

ξ ′ = 1, i.e., ξ = ξ ′.
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We proved ξ = ξ ′. Therefore by Eq. (4.4), we have μ
(
t ′t−1

) = (
ζ ′ζ−1

)2
for

every unitary tamely ramified character μ. Choosing the trivial character, this implies
that ζ 2 = ζ ′2. Suppose t0 �= t ′0, then there exists a unitary character μ0 : f∗ → C

∗,
such that μ0

(
t ′0t

−1
0

)
�= 1, and we can lift this to a unitary tamely ramified character

μ : F∗ → C
∗ that satisfies μ �o∗= μ0 ◦ ν and then μ

(
t ′t−1

) = μ0

(
t ′0t

−1
0

)
�= 1,

which is a contradiction to μ
(
t ′t−1

) = (
ζ ′ζ−1

)2 = 1. Therefore, we must have
t0 = t ′0.

For n = 2m + 1, the proof is similar. We have that

(
ζ

ζ ′

)2m+1

= ω
(
t−1�

)

ω
(
t ′−1�

) = ω
(
t ′t−1

)
,

and therefore,

(
ζ

ζ ′

)(2m+1)(q−1)

= 1, (4.6)

as ω is tamely ramified. By Eq. (4.1) and Theorem 3.7, we have for any unitary tamely
ramified character μ

(
μ
(
t−1�

)
ζ 2q

−
(
s− 1

2

))m

=
(

μ
(
t ′−1�

)
ζ ′2q−

(
s− 1

2

))m

,

which implies that

(
ζ

ζ ′

)2m

= μ
(
t ′−1t

)m
. (4.7)

Substituting the trivial character in Eq. (4.7), one gets ζ 2m = ζ ′2m , which implies that

(
ζ 2

ζ ′2

)m

= 1. (4.8)

Since gcd (m, q − 1) = gcd (m, 2m + 1) = 1, we get that gcd (m, (2m + 1) (q − 1))
= 1, and therefore, m is invertible modulo (2m + 1) (q − 1). By Eq. (4.6), Eq. (4.8),

this implies ζ 2

ζ ′2 = 1. By Eqs. (4.7) and (4.8), we have for every unitary tamely ramified

character μ : F∗ → C
∗, μ

(
t ′−1t

)m = 1. Since μ
(
t ′−1t

)q−1 = 1, and since m is

coprime to q − 1, m is invertible modulo q − 1, and therefore, we have that for every

unitary tamely ramified character μ, μ
(
t ′−1t

)
= 1. As in the even case, this implies

t0 = t ′0. ��
Remark 4.2 1. In the even case, although we cannot prove π ∼= π ′, we get ζ = ±ζ ′.

On the other hand, if π and π ′ are simple supercuspidal representations with
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the same central character ω associated to the data (t0, ζ ) and (t0,−ζ ), then we
must have γ

(
s, π,∧2 ⊗ μ,ψ

) = γ
(
s, π ′,∧2 ⊗ μ,ψ

)
for all tamely ramified

character μ. Because by Theorem 3.5,

γ
(
s, π,∧2 ⊗ μ,ψ

)
=
(

ξq
−
(
s− 1

2

))m−1

γ
(
s,
(
ω · μm)

ξ
, ψ
)

,

γ
(
s, π ′,∧2 ⊗ μ,ψ

)
=
(

ξ ′q−
(
s− 1

2

))m−1

γ
(
s,
(
ω · μm)

ξ ′ , ψ
)

,

and ξ = ζ 2 · μ
(
(−1)m−1 t−1�

) = ξ ′.
2. In the odd case, we actually get that ζ = ζ ′, since ζ 2 = ζ ′2 and ζ 2m+1 = ζ ′2m+1 =

ω
(
t−1�

)
, and then

ζ = ζ 2m+1

(
ζ 2
)m = ζ ′2m+1

(
ζ ′2)m = ζ ′.

As a consequence, when the hypotheses in Theorem 4.1 are met, we have t0 = t ′0
and ζ = ζ ′, so π ∼= π ′.
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