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Abstract

Let [n] = (1 — ¢")/(1 — q) denote the g-integer and @, (¢) the nth cyclotomic
polynomial in g. Recently, Guo and Schlosser provided two conjectures: For any odd
integer n > 3, modulo [n]®,(¢)(1 —aq™)(a — q"),

+1)/2 _ _
("Z/ [4k+1](aq 2 qDiq as a)i(q: gD 4

= (ag*; ¢Pi(q*/a; 4% ¢P);

1
=0,

and modulo ®,,(¢)*(1 — ag™)(a — q™),

(n+1)/2

) [4k+1](614_1;qz)k(q‘l/a:qz)k(q‘l;qz)k(q;qz)k o _
k=0

0’
(ag*; ¢ (q*/a; ¢ (g*; gD (g% ¢k

where (a; ¢)x = (1 —a)(1 —aq)---(1 —ag*="). In this paper, we confirm these
two conjectures and further give their generalizations involving two free parameters.
Our proof uses Guo and Zudilin’s ‘creative microscoping’ method and the Chinese
remainder theorem for coprime polynomials.
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1 Introduction

In the past few years, many g-congruences and g-supercongruences have been estab-
lished by different authors. See, for example, [2,4-8,11-25]. In particular, Guo and
Schlosser [9, Theorem 5.5] proved that, for any odd integer n > 3,

(n+1)/2 —1. 2\2 252
@G 5 95(@5 95 ax 2
[4k + 1] =0 (mod [n]P,(q)7), (1.1)
,; (@ 2% g2 ] e

where the g-shifted factorial is defined by

(@; @)oo

(@; @)oo = H(l — aqj) and (a;q)r = m

Jj=0
For convenience, we adopt the notation
(ar,az,...,ar; @k = (a1; Qx(@2; Qi -~ (ar; @k, k € CUoo0.

The g-integer is defined by [n] = [n], = (1 —-¢")/(1—-q) =14+qg+--- + qg" L.
Moreover, @, (g) represents the nth cyclotomic polynomial in g, which may be defined
as

oug)= ] @-¢hH
1<k<n
ged(n,k)=1

with ¢ being an nth primitive root of unity.
Guo and Schlosser [9, Conjecture 5.6] also proposed the following conjecture: for
any odd integer n > 3,

(n+1)/2 —1. 2 —1,..2 . 222
(aq™ 1 q7q™ " /a; g )i (G5 47); 4 n ,1
[4k + 1] =0 (mod [n]®n(g)(1 —aqg™)(a—q")).
,g (@g*: ¢®iq*/a: qDrq% 4*)}

(1.2)
It is known from [9] that, letting @ — 1 in (1.2), we are led to

(n+1)/2 —1., 242, . 2\2
Z [4k+1](q 1»‘] )k(Q»q )k 4k
= (@* a3 (g% 43

=0 (mod [n]®,(q)°),

which is a refinement of the g-supercongruence (1.1).
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Proof of two conjectures of Guo and Schlosser 241

Additionally, Guo and Schlosser [9, Conjecture 5.8] provided another similar con-
jecture: for any odd integer n > 3,

(n+1)/2 _ _ _
"Z/ x4+ 119 Y as D@ i a6
=0

(ag*; qDi(q*/a; aDr(q*, 4% g2k

=0 (mod ®,(¢)*(1 —ag"(a—gq")).

(1.3)
Likewise, when a — 1 in (1.3), we obtain

(n+1)/2

S k1] @' a3 aDk g
k=0

(g% 9D3 (g% ¢

=0 (mod ®,(¢)".

Inspired by Guo and Schlosser’s work, we shall prove these two conjectures in
this paper. Our proof relies on the following theorem, which may be deemed as a
generalization of the g-supercongruences (1.2) and (1.3).

Theorem 1 Let n > 3 be an odd integer and r € {0, 2}. Then, modulo ®,, (q)2(1 —
aqg™(a — q"), we have

(n+1)/2

_ _ — k
S k1) (ag~'.q7'/a.q" ", cq.dq. ;P (4"

4 4 24r 42 2/d. g2 g2 d
P (q%/a,aq®, g~ q%/c,q%/d, 4% g \ ¢

(ag='.q7Va, q"7", q/cd; ¢P) a2
(q.9"%9%)2(q%/c. 42 /d; 42) (r14)2

= [n]Z,(a,n)

n—r—3
2 r+3 _r+3 5 r+5 .2
a . a, 5 Cdv
<3 (aq"™,q" " /a.q°, 9" [cd; gk o

= (@*.q%7. g% Jc.q%" [d: g

(1.4)

where
r42 —2n+r2+10r+26 n(l —a 2 1— 2 a)(l —a Ll<n71)/2 1— 2y2
Zg@my=(-)T g A {( 0= a7/oX 1),, - .(zzq) }
(aq.q/a; q)(r+2)2(1 —a") (4394202

(I—ag@—g") Dby @ g0
(1—a)? @142

Further, for ther = 0Oanda — 1 case of Theorem 1, we have the following stronger
conclusion.
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242 M. Yu, X. Wang

Theorem 2 Let n > 3 be an odd integer. Then

M _
S 14k 4+ 1 (a7 Y ¢3(q; ¢Hi(cq. dg; g (ﬁ)k
= (a* 4)7 % a3 (q?/c, g% /d; q*)i \ cd
_ (@' gH3(q/cd; )2
= Sq(n)—5— 2772
(=, q%/c,q*/d; q*)2
n—3
5 22: (@ a7, ¢ Jed: ¢Pi o
= (4%.4°q%/c.q°/d: ¢%)

(mod [1]®,(q)%), (1.5)

where M € {(n+1)/2,n — 2} and

wn?(1—g?)? — (1 +24q +22¢° + 244> + q*)
24

[n].

S,(n) = AN

1500 [n —2][n + 2]
[n—1][n + 1]

Putting ¢ — 1 and d — oo in Theorem 2, we obtain the following result.

Corollary 3 Let n > 3 be an odd integer. Then, modulo [n]®,(¢)>,

%(—1)"[4k+ 1](q‘1;q2),§(q;q2),§ Sk

= (4% 4)7(q% 9}
,qz)zi(q BT R
2475 =@ anq% qdy

= S§,(n ) @ (1.6)

When M = (p! +1)/2 and g — 11in (1.6), we are led to the following: for odd prime
p >3,

(r'+1/2 12,143 1 (P'=3)/2 3325
(=2):(3) p CIACHL
_1k4k 1 2k2kE— 27k\2 dl+3,
;) D D s e = 4 ]; Kkt op med 7

where [ is a positive integer, and the notation will be used frequently in this section.
Moreover, the case ¢ — 1, d — 1 of Theorem 2 yields the following g-
supercongruence.
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Proof of two conjectures of Guo and Schlosser 243

Corollary 4 Let n > 3 be an odd integer. Then, modulo [n1®,(g)>,

i[4k+ l](q’l;qz),%(q;qz)iQSk
‘ (@* 9%q% 4>}

n—3
s @935 42 = @93 9DE o, wan
! D e AV R A DT

(p! +1)/2and ¢ — 1in (1.7), we gain the following: for odd prime

Putting M =
p >3,
(r'+1/2 4 1 (0'=3/2 3105
(=it 3p CIAC 143
4k 202k pod plt),
Z e+ )k‘4(k+1)'2 6 k; Mkt 2)p  (med P

In addition, letting » = 2 and @ — 1 in Theorem 1, and applying the L’Hospital

rule, we arrive at the following conclusion.

Theorem 5 Let n > 3 be an odd integer. Then

+1)/2 _
g (q~"3 992 cq. dg; 47 <£)k

[4k + 1]

;0 (@* g} @? a?/c, q*/d; >k \cd
(@' gH3(q/cd; ¢*)3

(q:9% 4*)2(q?/c, 4% /d; 4*)3

=T,(n)

n=>5

2 5 2N3,.,.,7 2
@5 97(q" /cd; gDk o 4
d ® , 1.8
) P @ ab a¥ e a¥ds gyt (o4 Pn@) (9

where
T ) — 55 0% = D1+ ¢)%(1 — )% —249(1 + 3¢ + 79> + 9¢° + 7¢* + 3¢° +q6)[ P
! 24(1 = g% (1 +q +¢2)?
w21 (¢" 2 g%
+q 2 L2,
NPT P
Taking ¢ — ¢~2 and d — oo in Theorem 5, we obtain the following result.
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244 M. Yu, X. Wang

Corollary 6 Let n > 3 be an odd integer. Then

(n+1)/2 —1. 2\4(,,. 2
Z (_l)k[4k+1](61 »q )k(qu )k Ok +k2
= (@* 4% g™
() e
) 4. 2 4. 2
(q,9% 97)2(q"%; 9°)3
n—5
2 5 2\3
(g5 97); 2% 4
x Y 2Lk 2k (mod @,(q)%). (1.9)
,; (g% 4% ¢'% ¢?)k !

Letting n = p' be an odd prime power greater than 3 and ¢ — 1 in (1.9), we get

P'+1/2 14,1 1 (p'=5)/2 5\3
(=2 Gk (3)
> (—DF@k 122 = 2y Lk - (mod p).
e K+ DF ~ 8 & Rt 3)k 1 4]
Likewise, putting ¢ — ¢~ 2 and d — ¢~2 in Theorem 5, we get the following

g-supercongruence.

Corollary 7 Let n > 3 be an odd integer. Then

(n+1)/2 —1.,2\5(,.,2
Z [4k+1](q 5435 q )kq“k
P (@ 493(q% 4P

@' 993> 43

=Ty(n)
(q.9% 4*)2(q% ¢*)3

n—5
22: R R AU o VR
= (4% 4% 4Mn(g" ¢}

(mod ®,(q)%). (1.10)

When n = p” is an odd prime power greater than 3 and ¢ — 1 in (1.10), we get

! [
(p'+1)/2 (_%)2(%)]{ =315pl (PZS)/Z

EHE"
;{; (4 + l)k!(k+ DS~ 64

ki(k + 3)!(k + 4)1?

(mod p4).
k=0

The rest of this paper is arranged as follows. Firstly, we present some lemmas which
will be needed in the proof of Theorem 1 in Sect. 2. Then, we prove Theorem 1 and
Guo and Schlosser’s conjectures (1.2) and (1.3) in Sect. 3. Our proof makes use of the
‘creative microscoping’ method which was recently introduced by Guo and Zudilin
[10], and the Chinese remainder theorem for coprime polynomials. Finally, in Sect. 4,
we give a proof of Theorem 2.
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Proof of two conjectures of Guo and Schlosser 245

2 Some Lemmas

We shall make use of Watson’s g¢7 transformation [1, Appendix (III.18)], which can
be expressed as

1 1
o | @ qa?, —qa?, b, ¢, d, e N a?qN+?
7 7 a2 N1 T Thede
a?, a?, aq/b, aq/c, aq/d, aqle, aq
(aq,aq/de; q)N aq/be, d, e, -N
R LN @2.1)
(agq/d,aq/e; @) N aq/b, aq/c, deq™" Ja

where the basic hypergeometric series s.1¢; is defined as

P KR as+1 p _i(al Lay, ... asi1s Okl
SHOS | byby, .o by 0T = (. by, ..., bs; @)k

with 0 < |z] < 1.
In this section, we shall give three lemmas, which will play an important role in
our proof of Theorem 1.

Lemma 1 Letn > 3 be an odd integer and r € {0, 2}. Then

M -1 -1 1—r .2 541\ k
(aq™", a, b,cq.dq,q;q )k (b
Yopak 1 L LBt ST (M) 20 ot 0uq), (22)
s (¢%/a,aq®, bg“*", q*/c.q7/d. q% ")k \ cd

where M € {(n + 1)/2,n — 2}.

Proof Let c, (k) be the kth term on left-hand side of (2.2), i.e.,

cqg(k) = [4k + 1]

(ag™'.q7"/a.q"" /b, cq.dq. q; 4*)k <b45+’>k
(q*/a,aq*, bg*>*", q%/c,q%/d, % ¢*)k \ cd

Using the following g-congruence due to Guo and Schlosser [9, Lemma 3.1]

aq; 4*)mn—1y)2—k
(G*/a: 4*) (n-1)/2-k

= (L)t e _@a: 47
= (—a)" raiary (mod ®u@).

we have
cq(k) = —cg((n —1)/2— k) (mod @ (q)).

@ Springer



246 M. Yu, X. Wang

This proves that

(n=1)/2

(ag'.q7/a.q' 7" /b.cq.dq. q;: 4}k (bqs“

k
[4k + 1] ) =0 (mod u(q)).
,; (q*/a.aq®. bg**". g /c.q*/d. q* qT) \ cd !

2.3)

Since the numerator of ¢, (k) contains the factor (g; qz) k> we see that ¢, (k) is congruent
to O modulo ®,,(¢g) for (n+1)/2 < k < n—2.Thus, the proof of Lemma 1 is completed.

O
Lemma2 Letn > 3 be an odd integer and r € {0, 2}. Then
%[41&1] (ag='.q="/a,q" " /b,cq,dq, q; 4*)k (bq5+’)k
= (q*/a.aq*.bg>*".q*/c.q*/d. q* ¢*) \ cd
ntl =Dt (1 —g" )1 — g"t2) (g2 /b; ¢
E[n]b%qf( q" )1 —q")(q /654 (1) )2 2.4)

(=g HA =g~ BG4 62 (nt1y2
(n+1)/2

(aq='.q7"/a, " " /b, q/cd; 4*) 0 0
d @ 1-— - s
X e i g T gty 8 @ —ad"e ="

k=0
where M € {(n +1)/2,n — 2}.

Proof When a = ¢~" or ¢", the left-hand side of (2.4) equals

5 5 _ 1 _
o | € qlf, —%. . dq, ' 7Tb, g7 g 1+",q2 bg>t"
qf, 7q§, q2/c’ [IZ/d7 bq2+r, q4+n7 q47n cd

Applying Watson’s g¢7 transformation (2.1), we obtain

M _ - _ k
L4k 1 (C] H—n’ q 1 n ql r/b’ cq., dq, q; qZ)k bq5+r
Z + 4—n 4+n_ pg2tr g2 2/d. g2 g2 d
P (", aq™™, bg""", g%/, q7/d, 47 g7k \ ¢

+1)/2 1= _
n / (q 1+n’q 1 nyql r/b,q/Cd;qz)k ”

= (@.q*/c.q?/d.q> /b g
wgt (L= ¢" ) =g G /b g2 =g
1 —g=3)A = g=H®Bg**": ¢ (nr1))2
D2, w1
" qT g g T b g eds 4P o
(g%, q%/c,q?/d, q= > |b; g*)k

N (
_ @b g e
(bg™", g% P (1) 2

= [n]b

X

k=0
which means that the g-supercongruence (2.4) holds modulo 1 —ag” and a — g”. The

proof then follows from Lemma 1 and the fact that ®,(q), | — aq” and a — ¢" are
pairwise relatively prime polynomials. O
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Proof of two conjectures of Guo and Schlosser 247

Lemma3 Letn > 3 be an odd integer and r € {0, 2}. Then

M _ _ _
e a aq" b cq. dg.q: P (DTN
Z[ + ] 4 4 b 24r 2 2 d 2. 4,2 d
(q*/a,aq®*, bqg**", q*/c,q*/d, q*; q*)i \ ¢

ba* 47 2(B; 4*) 14243 4,1y 2

(q; 92)2(q*/a; ¢ nrr—1y2(aq*; ¢ nsr—1))2

(n+r—1)/2 _ _ _
" (ag7 g7 a, q " b, qfed; 4P
x ) q

(q%. q%/c,q*/d,q=>7" |b; ¢*)k

k=0

= [n]

(mod b —¢"),

k=0

where M € {(n + 1)/2,n — 2}.

Proof Letting b = ¢" in the left-hand side of the above relation, we have

M _ _ e

(ag™'.q Va,q" """ cq.dq. q: ¢ (T
>[4k +1]
~ (q*/a.aq*, q**" " q*Jc.q?/d. g% ¢*) \  cd

@ gD 2@ a2 4G
(q: 9492q*/a; ¢ nr—1)2(aq*; ¢ nr—1))2

ntr—1
2

> (ag™'.q7"/a,q" ", q/cd: qPk
(qz’ qz/c, q2/d’ q—2—r—n; q2)k

r

’

k=0

which follows from the substitutions ¢ = ¢,q +— ¢*,b = cq,c = dg,d =
aq’l, e = q’l/a, and N = (n +r — 1)/2 in Watson’s g¢7 transformation (2.1).
Namely, Lemma 3 is true. O

3 Proof of Theorem 1

Firstly, we need the following two g-congruences:

(b — g™ (ab —1—a® +aq")
(a — b)(1 — ab)
(1 —aq")(a—q")
(a — b)(1 — ab)

1 (mod (1 —aq")(a—q")),

1 (mod (b—q")),

which can be found in Guo [3]. Employing the Chinese remainder theorem for coprime
polynomials and combining Lemmas 2 and 3, we conclude that, modulo ®,,(¢)(1 —

aq")(a —q")(b —q"),
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248 M. Yu, X. Wang

(n+1)/2

Z 4k + 1194 g "a.q" " /b, cq.dq, q; ¢¥r [ bg T \*
(614/6! 61614 bg?tr,q%/c, q%/d, g% ¢®)i \ cd

,qil/a qlir/b q/cd; qz)k 2%

s 3.1
@2 a2/ a2d g~ [ oo G-

= [n)W,(a, b, n)Z

where

W, a by = b3 L4 2(1 "f)(q—z—’/b; iy ebyuen
A —g=HA =g HBg** " 4> (nr1))2
(b—q")(ab —1—a®>+aq")
(a —b)(1 —ab)
(ba*; a2 0; 4 e+2@5 451 (1—ag")a — q")
(q; 42)2(q%/a; ¢ nrr—1y2(aq*; P ngr—1y2 (@ —b)(1 —ab)

Obviously, the g-supercongruence (3.1) can be expressed as modulo ®,(g)(1 —
aq")(a—q")(b—q"),

(n+1)/2

Z 4k + 1] a~' g7 /a.q" /b, cq, dq, q; 4P (ba’T\*
4/ aq4 bq2+r 2/C7 qz/da qzqu)k Cd

(r+2)/2 _

= [n]W,(a, b, n) Z

,Clil/a Cllir/b q/cd; qz)k 2%
(q q%/c.q?/d,q=>7" /b; q*)k

(n—r—3)/2
Z (ag='.q7"/a,q" " /b, q/cd; 4P)isir4a)2 vy

(g% 9%/c,q*/d, q727" [b: 4Pkt (r14))2

+ [n]Wy(a, b, n)
k=0
(3.2)

Letting » — 1 in (3.2) and using the relation
(1—¢"(1 +a*> —a—aq") = (1 —a)* + (1 —ag")(a - q"),
we attain modulo ®,(¢)(1 — ag™)(a — ¢")(b — q"),

(n+1)/2

_ _ k
Z 4k + 1] ,q Ya,q'" cq,dq, q; ¢k <q5+’>
(q4/a aq*, q>*",q%/c,q*/d, q*; g* \ cd

(ag™'.q ' q" " q/cd; 4P 2 44
(q.9" % 4*)2(q?/c. 4*/d: 4*) (r14) 2
(aqr+3’ qr+3/a7 qlfr’ qr+5/cd; qS)k "

(qz’ q6+r/c, q6+r/d, q6+r; qz)k

= [n]Yy(a, n)

(n—r—=3)/2
X

) (3-3)
k=0
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Proof of two conjectures of Guo and Schlosser 249

where
- . 2\2
Y,(a,n) = {MQWM 4 (=122 (@912 }
! (qn_r_l; qz)r+2 (q4/a, aq4, q2)(n+r—1)/2
(I —aq")(a—q") q@" % 4 q%#‘
(1 —a)? @Y gD '

Noting ¢" =1 (mod ®,(g)) and recalling

— aMyg— /4
(1 —a)an—1/2
1— an)q(lfnz)/4

(_1)(7171)/2 (1

@q®, 4% /a; ¢*) -1 = (mod @, (q)),

—npl
(aq,q/a; 612)(;1—1)/2 = (_1)(;1 /2

A —a)at—02 (mod ®,(q)),

which were first observed by Guo [3, Lemma 2.1], we are led to the following g-
congruence: modulo @, (q),

_ . 2\2
q" 2; q4)2 g (r—1)2(n+1)+4 n (_1)(r+2)/2 (959 )(nfl)/Z
@ g4 (q*/a,aq"*; 4®)nyr—1y)2
_ (_1)#(] 72n+r24+6r+10 {n(l —ag> (1 - ¢%/a)(1 — a)a®=D/2 - »? (3.4)
(aq,q/a:¢*)42)/2(1 —a") @ 4D 12

The proof then follows from (3.3) and (3.4).

Obviously, Theorem 1 also holds true when the summation in the left-hand side of
(1.4)isfromOton — 2.

We now prove (1.2) and (1.3) which were conjectured by Guo and Schlosser.

Proofof (1.2) When c¢d = ¢ and r = 0 in Theorem 1, we have

(n+1)/2

—1. 2 —1,,..2 L 2\2
Z [4k+1](aq 3 49k(q™ /a5 97k (g5 q )k 4k
k=0

=0 (mod ®,(¢)*(1 —ag")(a —q").
(aq*; q4Di(q*/a: ¢ (q%: 42}

It remains to show that

(n+1)/2

1. 2V (o= e a2V (e a2)2
) [4k+1](aq 2d G/ g3 a )i ax
k=0

(ag*; gDk (q*/a; ¢ (g% gD}

=0 (mod [n]). (3.5)

Forn > 3,let ¢ # 1 be an nth root of unity, not necessarily primitive. Then ¢ must be
a primitive mth root of unity with m|n. Let 4 (k) denote the kth term on the left-hand
side of (3.5):

(aqg™"; q®i(q " Yas ¢®i(q: 47 4
(ag*; ¢®)i(q*/a; ¢2i(q?; )7

g (k) = [4k + 1]
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250 M.Yu, X. Wang

Puttingn = m, cd = g,r = 0 and b — 1 in Lemma 1, and since o, (k) = O for
m+1)/2 <k <m—1, weareled to

(m+1)/2 m—1
Y =) ak)=0.
k=0 k=0

Since

a;(m+k) lim ag(Im + k)

= = k .
ag(im) — q=¢  ag(m) 2
we immediately obtain
(n+1)/2 (n/m=3)/2 m—1 (m+1)/2
Yo=Y am)Y o)+ D ar((n—m)/2+k) =0,
k=0 1=0 k=0 k=0

which shows that the cyclotomic polynomial ®,,(q) divides the sum Z,((":JBI)/ 2 ag (k).
In view of

[T ®n@ =1n
mln,m>1
the proof of (3.5) is completed and therefore (1.2) is true. O

Proofof (1.3) Likewise, letting cd = g and r = 2 in Theorem 1, we get (1.3) imme-
diately. O

4 Proof of Theorem 2

Through the L’Hospital rule, we have

(I -aqg™)(a—q")

i
im 1 —ay2

a—1

{n(l —ag’)(1 - g*/a)(1 — a)a" D2

- 2}
(1 —aq)(1 —q/a)(1 —am) a7y~
n2(1 — ¢2)?% — (1 +24q +22¢% + 24¢° + q4)[ P
[ nj-.
24

Hence, when r = 0 and @ — 1 in Theorem 1, we know that (1.5) holds modulo
D, (q)4. It remains to show that

1

5\ k
(q) =0 (mod [n]), 4.1)

£[4k+1] (@i aileq. dg: D (q°
= cd

(@ g)3(q? g3 (g% /c. g2 /d; qPr
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Proof of two conjectures of Guo and Schlosser 251

where M € {(n + 1)/2, n — 2}. Just like the proof of (3.5), let ¢ # 1 be a primitive
mth root of unity with m|n and let 8, (k) be the kth term on the left-hand side of (4.1),
ie.,

B0 = [k +1] (@75 43 gHi(cq, dg; 4>k (i)k
q - .

(q* gDi(q? g7 (g% /c. q?/d; qP)i \ cd

Fixingn =m,a — 1,b — 1,and x = 0 in Lemma 1, and noticing that 8; (k) = 0
for (m +1)/2 <k <m — 1, we have

(m+1)/2

Z B (k) = Zﬂ;(k) =0.

Similarly as before, we get

n/m—2m—1 m—2
Zﬂ;(k) = Y Y Blm+k+ Y B((n—m)+k) =0,
k=0 =0 k=0 k=0
(n+1)/2 (n/m=3)/2 m—1 (m+1)/2
YooBeky= Y BUm)d B+ Y. B((n—m)/2+k) =0,
k=0 =0 k=0 k=0

which means that the cyclotomic polynomial ®,, (¢g) divides the sums Z("H)/ 2 By (k)
and Y722 B, (k). Since

[T ®n@ =1nl

mln,m>1

we immediately obtain (4.1). The g-supercongruence (1.5) then follows from the fact
that [n] is coprime with the denominator of the right-hand side of (1.5).
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