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Abstract

In this paper, we extend to the function field setting the heuristics formerly developed
by Conrey, Farmer, Keating, Rubinstein and Snaith, for the integral moments of L-
functions. We also adapt to the function field setting the heuristics first developed by
Conrey, Farmer and Zirnbauer to the study of mean values of ratios of L-functions.
Specifically, the focus of this paper is on the family of quadratic Dirichlet L-functions
L(s, xp) where the character x is defined by the Legendre symbol for polynomials
in F,[T] with I, a finite field of odd cardinality, and the averages are taken over all
monic and irreducible polynomials P of a given odd degree. As an application, we
also compute the formula for the one-level density for the zeros of these L-functions.
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1 Introduction

In this paper, we study the family of quadratic Dirichlet L-functions L(s, x p) where
the character x is defined by the Legendre symbol (ﬁ) and P ranges over monic
irreducible polynomials of degree 2g + 1 over F,[T]. We present the conjectures
for the moments and ratios of this family of L-functions, Conjectures 2.2 and 2.3,
respectively, by making use of the recipe developed by Conrey et al. in [7] and adapting
it for this family of L-functions.

The study of moments of families of L-functions is a central topic in analytic number
theory. Many mathematicians have studied this subject, and considerable progress
was made in the last decades in the direction of getting a better understanding of
the asymptotic behaviour of such moments. For example, in the case of the Riemann
zeta-function, the problem is to understand the asymptotic behaviour of

g 1 .\ (2K
Mk(T):/O ¢ (5 +it)|" dr (1.1)

as T — oo.
Hardy and Littlewood [22] proved in 1918 an asymptotic formula for the second

moment, i.€.
M(T)~TlogT. 1.2)

In 1926, Ingham [24] showed that when k = 2,
1 4
My(T) ~ —T (logT)". (1.3)
22

For values of k > 3, it still remains an unsolved problem to obtain asymptotic
formulas for My (T). However, it is conjectured that for every k > 0, there is a
constant ¢ such that

Mi(T) ~ e T (log )X . (1.4)

Conrey and Ghosh [13] made a conjecture for the sixth moment of the Riemann
zeta-function, and later on, Conrey and Gonek [14] put forward a conjecture for the
eighth moment but their approach fails to provide conjectures for higher moments.
Keating and Snaith [28], using random matrix theory, conjectured the precise value
of the constant ¢ for all values of k& > 0. In fact, their conjecture produces a value
for ¢; for (k) > —1/2. More recently, Conrey and Keating, in a series of papers
[9-12], returned to the problem of obtaining conjectures for the higher moments of the
Riemann zeta-function using only number-theoretic heuristics. Their new approach
produced conjectures for moments of the Riemann zeta function, as well as explained
the role of the non-diagonal contribution to the main terms in the asymptotic formulas.

A different example is the family of quadratic Dirichlet L-functions L(s, x4), where
Xa 18 the real primitive Dirichlet character modulo d defined by the Kronecker symbol
Xa(n) = ( %) The problem here is to establish an asymptotic formula for
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YoL(dox) (1.5)

d<X

as X — oo, where the sum is taken over all positive discriminants d and k is a positive
integer. In this case, as it is for the Riemann zeta-function, just the first few moments
were computed. In 1981, Jutila [25] established the asymptotic formula for the first
and second moments. The asymptotic formulas he obtained are

> L(3.x4) ~ C1X log X (1.6)
d<X
and s
D L(%. xa)” ~ C2X (log X)*, 1.7)
d<X

where the constants C1 and C can be expressed in terms of Euler products and factors
containing the Riemann zeta-function. Soundararajan [32] computed the asymptotic
formula for the third moment. He proved that

Z L (3 X8d)3 ~ C3X (log X)°, (1.8)
d<X

where d is an odd, square-free and positive number, xgs is a real, even primitive
Dirichlet character with conductor 8d, and C3 is a constant.

In another paper, Soundararajan and Young [33] claimed that they are able to
establish an asymptotic formula for the fourth power moment for this family of L-
functions under the Generalised Riemann Hypothesis (GRH). The claim is that

S L(doxa) ~ CaX og ), (1.9)
d<X

where Cj is constant. Recently, Shen [31] proved the asymptotic formula for the fourth
moment of quadratic Dirichlet L-functions under the Generalised Riemann Hypothesis
(GRH). He consider the characters of the form xg; and has established that

() 4 a4 10
> L(3-xsa) ”mX(IOgX) , (1.10)
d<X
d,2)=1

where a4 is as defined in [27].

In 2005, Conrey et al. [7] presented a new heuristic for all of the main terms in
the integral moments of several families of primitive L-functions. Their conjectures
agree with previously known results. For the Riemann zeta-function, they gave a
precise conjecture for My (T') including an asymptotic expansion for the lower-order
terms using shifted moments. For the family of quadratic Dirichlet L-functions, they
conjectured that
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26 J.C. Andrade et al.

S L4 ) =Y Qellog ldD(1 +o(1), (111
d

d

where O is polynomial of degree k(k + 1)/2 with k € N.

It is important to observe that Diaconu et al. [16] have also conjectured moments
of families of L-functions using different techniques. Their method is based on mul-
tiple Dirichlet series. Recently, Diaconu and Whitehead [17] established a smoothed
asymptotic formula for the third moment of quadratic Dirichlet L-functions at the
central value. In addition to the main term, which is known, they prove the existence
of a secondary term of size x>/%. The error term in their asymptotic formula is on the
order of O (x%/3+%) for every § > 0.

In 2008, Conrey et al. [8] presented a generalisation of the heuristic method for
moments presented in [7] to the case of ratios of products of L-functions. These
conjectures are very powerful since they encode information about statistics of zeros
of such L-functions. The ratios conjectures as put forward by Conrey, Farmer and
Zirnbauer can be used to prove very precise results about the distribution of zeros of
families of L-functions such as pair-correlation and n-level density (for more details
see [15]). Their ratios conjecture for the family of quadratic Dirichlet L-functions are
read as follow.

Conjecture 1.1 (Conrey, Farmer, Zirnbauer) Let D = {L(s, xg) : d > 0} to be the
symplectic family of L-functions associated with the quadratic character xq. For
positive real parts of oy and yy,, we have

Z H/i(:lL(%_‘_ak’ Xd)
0<d<X 2 L%+ Y xa)

| «K
E 2 : ld]|\2 D ke (ro—ag)
< T )

0<d<X ge{—1,1}K

x l_[g+ + BSEEVY (e1a1, ..., exak; ¥) Ap (101, ..., EKAK; V)
+0(X),
(1.12)
where
(=
g+ () ( - ), (1.13)
r(3)

T T12., ¢ (4 o+ vm)
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and
I1; 1— ———— |11 (1 _ %)

1_[ j<k<K p1+aj+ak m<r<Q plHvmTr

Ap(asy) =
; T T (1= )
p TokTYm (1.15)
-1 0 “m
x(1+(1+1) ) [Ty 1 (PE) )
1 1 !
P 0<Zk ak+2m e is even ka ak(z"‘“k)""zm Cm(z‘i‘Vm)

In 1979, Goldfeld and Viola [21] introduced a variant of the problem about moments
of quadratic Dirichlet L-functions. They conjectured an asymptotic formula for

> L(3.x) (1.16)

p=X
p=3 (mod4)

where the sum is taken over prime numbers and x,(n) = (%) is the usual Legendre
symbol. In this direction, Jutila [25] studied the first moment of this family of L-
functions and proved that

1
> ogp)L(5.xp) ~ ; Xlog X. (1.17)
p=X

p=3 (mod4)

Recently, assuming the Generalised Riemann Hypothesis (GRH), Baluyot and Pratt
[5] obtained the leading order term for the second moment. They proved that

X
Z (log p) L (3, Xp)2 =cy (logX)* + O (X (log X)”/4> ,
<X
p=1 (mods)

where c is a positive constant.

We should notice that the second moment for this family of L-functions seems
to be the limit of the current technology. This is in part due to the fact that for this
family, we are dealing with character sums over prime numbers, and these sums are
more complicated than those over square-free numbers. For example, in the case for
square-free numbers, it was possible to obtain the third moment by making use of the
Poisson summation formula, but the same does not seem to apply for the family over
prime numbers since we cannot directly apply Poisson to the sums over primes.

1.1 The function field setting

LetH2g41,4 be the hyperelliptic ensemble of monic, square-free polynomials of degree
2g + 1. When the cardinality of the field F, is¢g =1 (mod 4), Andrade and Keating
[2] computed the first moment of the family of L-functions associated to the quadratic
character xp, with D € Hjg41,4. They proved that
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28 J.C. Andrade et al.

> L(Lxp) ~ DIPi (log, DI (1.18)

D€H2g+1.q

where Pp is a linear polynomial. For the second, third and fourth moments of this
family, Florea [18,19] proved that .
Y. L(3.xp) ~IDIP(log, |DI), (1.19)
DeHagr14

where Py is a polynomial of degree 3, 6 and 10 respectively, whose coefficients can be
computed explicitly, except for P4 where only the first few coefficients were obtained.
It is worth noticing that Florea in [20] improved the error term for the first moment and
was able to obtain a strenuous lower-order term that was never predicted by random
matrix theory or other heuristics.

In another paper, Andrade and Keating [4] adapted the recipe of [7] and of [8] to the
function field setting and conjectured asymptotic formulas for the integral moments
and ratios of the family of quadratic Dirichlet L-functions in function fields. Their
main conjectures are presented below.

Conjecture 1.2 (Andrade and Keating—Integral Moments Conjecture) Suppose that g
odd is the fixed cardinality of the finite field ¥ and let Xp(s) = | D] 12=s ¥ (s) and

X(S) — q—l/2+s.
That is Xp(s) is the factor in the functional equation

L(s, xp) = Xp(s)L(1 — s, xp). (1.20)

Summing over fundamental discriminants D € Hagy1 4, we have

o L) = Y Oullog, DDA o), (121)

DeHogr1q DeHagr1,4

where Qy is polynomial of degree k(k + 1)/2 given by the k-fold residue

(CDE=D/29k GG A (2., )
Ok(x) = Y %74 k. 2k—1
k! Qi) T, 2 (1.22)

k
X q%2i=1z" dzi ...z,
A (z1, ..., 2k) the Vandermonde determinant given by

AGi.,m) =[]1=i<i<kE -, (1.23)

k
_1
Gaionz) =AkGizn a0 [[XG+2) 7 [] aal+zi+z)).
i=1 I<i<j<k

(1.24)

@ Springer



The integral moments and ratios of quadratic Dirichlet... 29

and Ay, is the Euler product, absolutely convergent for |M(z;)| < %, defined by

1
A l;Z ..... k) = | | | | (1—7>
k(Z 1 k) |P|1+Zi+1f

P monic 1<i<j<k
irreducible

( (ﬁ(l_ lp;zl)‘uﬁ(Hm;ﬂ,)“)mg) (125)

i=1 i=1
()
X e .
|P|

Conjecture 1.3 (Andrade and Keating—Ratios Conjecture) Let oy and y,, complex
numbers with positive and small real parts. Let ® = {L(s, xp) : D € Hag41,4) to be
the family of L-functions associated with the quadratic character xp. Then,

Z Hlf:l L (% + ok, xp)

9 1
D€H2g+l.q Hm:l L (7 + Ym XD)

K (1.26)
= Z Z |D =3 Y (exo—atg) 1_[ X (% + ak—;kak)
DeHogy1,qg ec{—1,1}k k=1
X Yo (e101, ..., 6x0k; V) Ap (g1, ..., exak; V) +0 (D),
with
An(a;y)
l_[ ngkgl( <1 - W) nmgrgQ (1 - W)
e, T Ty (1= i)
-1 (@] Pem
x 1+<1+L> » nr]n:llu( ‘)]
1P 0<Y "y ak+3", cm is even ‘P|Zk W (g e +2 e (3 +ym)
(1.27)
and
; Ca(l+oaj+ax Ca (L + Y +vr)
ot y) = Duzer Sl b sz . (128

l_[1€{=1 ngl ¢a (I +og + Vi)

where {4 (s) is the zeta-function associated to the polynomial ring A = F,[T] and
X (s) is a function that depends on q.

One can note that (1.21) and (1.26) are the function field analogues of the formulas
(1.11) and (1.12), respectively.
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30 J.C. Andrade et al.

The main aim of this paper is to formulate a conjectural asymptotic formula for

Yo L), (1.29)

PePrgii1q

where Pag11 4 is the set of all monic, irreducible polynomials of odd degree 2g + 1
with coefficients in Fy, as |P| — oo.

Andrade and Keating [3] established asymptotic formulas for the first and second
moments of (1.29), namely

1
> (log, IP) L (5 x) ~ 1Pl (log, IPI+1),  (130)
PEP2g+],q
11 )
Z L(%vXP)zw——lPl(logqlPl). (1.31)
b 2442

Recently, Bui and Florea [6] improved Andrade and Keating’s result for the second
moment and proved that

1 o & 23,1 3/2+4¢
> L(3.xp) = 5.0 "¢ <2+2q)+06(g )

P
| 2g+1,q | Peng_*_qu

(1.32)

In this paper, we adapt to the function field case the recipe for the conjectures of the
moments and ratios of L-functions for the family of quadratic Dirichlet L-functions
associated with x p over a fixed finite field IF,. In Sect. 2, we present some basic facts
on L-functions over function fields followed by the statement of our main results. In
Sect. 3, we present the details of the recipe of [7] when it is adapted for the function
field setting. In Sect. 4, we use the integral moments conjecture over function fields
when k = 1, 2, and compare with the main theorems of [4]. Then we conjecture the
precise value for the third moment, i.e. when k = 3 in this setting. In Sect. 5, we
present the recipe of [8] for the same family of L-functions over function fields. In
Sect. 6, we use the ratios conjecture for function fields and compute the one-level
density of the zeros of this same family of L-functions.

2 Statement of the main results

In this section, we gather some basic facts about L-functions over function fields.
Many of the results and notation here can also be found in [29].

Let [F; be a finite field of odd cardinality ¢ = p“, with p a prime. Denote the
polynomial ring over IF, by A = F[T'], and the rational function field by k = F, (T).
For a polynomial f in[F,[T], we define the norm of f by | f| := g% ForR(s) > 1,
the zeta-function attached to A is defined by
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1 e
ta) =y 7 [T a-1pr)™. @.1)

f monic . P monic
irreducible

Since there are ¢ monic polynomials of degree n, we can easily prove that

1
Cals) = W

-5

: (2.2)

which provides an analytic continuation of the zeta-function to the whole complex
plane, with simple pole at s = 1, which leads to the analogue of the Prime Number
Theorem for polynomials in A = [F,[T].

Theorem 2.1 (Prime Polynomial Theorem) Let w4 (n) denote the number of monic
irreducible polynomials of degree n in A. Then

n n/2
() = % o (qn ) . 2.3)

Now, let P be a monic irreducible polynomial, define the quadratic character (%)
by

f 1 if f is a square (mod P), P 1 f,
(F) ={—1 if fisnotasquare (mod P), P { f, (2.4)
0 ifP|f.

The quadratic reciprocity law states that for A, B non-zeros and relatively prime monic
polynomials, we have

A B a=ly
=1 = —1) 2 eg(A)deg(B) . 25
(5)=(5)e es)
We denote by xp the quadratic character defined in terms of the quadratic residue
symbol for A
P
xp(f)= (?> ) (2.6)

where f € A.
In this paper, the focus will be in the family of quadratic Dirichlet L-functions
associated with polynomials P € Pg41,4, Where

Prg+1,4 = {P € A, monic, irreducible and deg(P) = 2g + 1}. 2.7
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32 J.C. Andrade et al.

The quadratic Dirichlet L-function attached to the character y p is defined to be

L= Y. X|’°f(|{)
feA

f monic (28)
= [ (=xeip™)", %) > 1.

. P monic
irreducible

With the change of variables u = g™, L(s, xp) is a polynomial of degree 2g given
by

2g
Ls,xp)=Lu,xp) =) Y xp(Hu". 2.9)
n=0 f monic
deg(f)=n

(see Propositions 14.6 and 17.7 in [29]).
We are now in a position to state the main conjectures of this paper.

Conjecture 2.2 Suppose that g = 1(mod 4) is the fixed cardinality of the finite field
F, and let Xp(s) = |P|V/2=5 X (s) where

X(S) — q—1/2+s'
That is Xp(s) is the factor in the functional equation
L(s, xp) = Xp(s)L(1 =, xp). (2.10)

Summing over primes P € Pagy1 4, we have

Y L) = Y Oclog, IPHA+0(), @11

PePagi14 PePrgiiy

where Qy is polynomial of degree k(k + 1)/2 given by the k-fold residue

0 (x) = (—DkGk=D/29k f % Gz, ..z (z%,...,z%)z
= k! Qrik J e, 2+ T (212

x vk .
xq2zl:11’ dzi ...z

where A (z1, ..., zr) is defined as in (1.23),

1
(3+z)* [] @al+z+zp,

I<i<j<k

G@iso-nzk) = Ak ( 2,11,---,Zk

||:|»

(2.13)
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and Ay, is the Euler product, absolutely convergent for |M(z;)| < %, defined by

Ak(%;Zh...,Zk 1_[ l_[ < |P|1+—1t+1/>

P monic 1<i<j<k
irreducible

1 (& 1 -k -
X = 1 - +
2 1]( |P|;+z,-) 1]( |P|z+2'>

(2.14)

More generally, we have

Z L(%+061,XP)~-~L(%+OH<,XP)

PePogi1q

1
- ¥ 1’[2( +ai) 2 [P|7E 4% 9y (log, | Pl a)(1 + o(1)
PePrgy1,y i=1
(2.15)
where

0i(x.a) = (—Dkk=D/2 gk ?g fﬁG(m, S YN (< S o § L
k! (27Tz)k e 11_[! G —an(; +a)

X ini:lZi le CeZk
(2.16)
and the path of integration encloses the o’s.

Note that, for the cases k = 1, 2, our conjecture agrees with Andrade and Keating’s
results in (1.30) and (1.31) and Bui and Florea’s result in (1.32). See Sects. 4.1 and
4.2 for further details.

The next conjecture is the translation for function fields of the ratios conjecture for
quadratic Dirichlet L-functions associated with the characters x p.

Conjecture 2.3 Suppose that the real parts of oy and yi are positive and that g odd
is the fixed cardinality of the finite field F,. Let B = {L(s, xp) : P € Pagy1,4} to be
the family of L-functions associated with the quadratic character xp. Then with the
same notation as before, we have

Z Hlf:lL(%‘l'akaXP)

Q 1
PePrgiiy Hm:l L (E + Vm, XP)

K
= Z Z |P|—% Zf:l(skak—ak) l_[ X (% + Ofk*;kak)

PePogi1,q eef{—1,1} k=1

2.17)

x Yy (e101, ..., exag; y) Ap (11, ..., egag; y) +o(P),
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where
1 1
Ap =[] Hﬁgfk<1_Tﬁﬂﬁqﬁ>ruf69(l‘rﬁﬁmmz)
i Q (1 _ ;)
b e, [Tizi Ty (1 = peiaesm
[ 1+ ) 12, w(Pem)
0<d yak+),, cm is even |P|Zkak(%+ak)+2m Cm(%"'ym)
k “K m Cm
(2.18)
and
i<k<k a1l +oaj+ox o Ca (14 Vm + )
Yplasy) = [sker éa (140 +a) Tlnsr<o o (219)

TTE T2, 2a (1 4 ax + i)

If we compare the above conjectures with the ones presented by Andrade and
Keating in the previous section, one can immediately see that although they are similar
in nature, there is an important difference between the formulas and the final shape of
the conjectures. More specifically, one of the main differences is the arithmetic term
that is produced in both conjectures. These factors are not the same and this is due
to the fact that in one setting, we are averaging over square-free polynomials and so
an Euler product is produced that needs to be carried out through the recipe and in
the end produce the term Ay in Andrade and Keating conjecture, while in the case
presented in this paper, the average is taken over prime numbers and the final formula
produces a simpler arithmetic factor due to precise formula that we have when using
the prime polynomial theorem in IF, [T']. This difference comes from the fourth step
in the recipe when we replace each summand by its expected value.

In the following sections, we present the details of how to arrive at these conjectures.

3 Integral moments of L-functions over prime polynomials

In this section, we present the details of the recipe for conjecturing moments of the
family of quadratic Dirichlet L-function L(s, xp) associated to hyperelliptic curves
of genus g over fixed finite field I, as g — oo. As in Andrade and Keating [4], we
will adjust the recipe first presented in [7] to the function field setting.

Let P € Pag41,4- For a fixed k, we aim to obtain an asymptotic expression for

> L) G

PEPzg_H{q
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as g — oo. In order to achieve this, we consider the more general expression obtained

by introducing small shifts, say o1, ..., ok
Z L(%+a1,XP)~-'L(%+Oék,XP)- (32)
P€P2g+1,q

Introducing the shifts helps to reveal the hidden structures in the form of symmetries.
Moreover, the calculations are simplified by the removal of higher-order poles. In the
end, letting each «y, - - - , ax tend to O will provide an asymptotic formula for (3.1).

3.1 Analogies between classical L-functions and L-functions over function fields

The first step to obtaining a conjecture for the integral moments of L-functions of
any family is the use of the approximate functional equation. Thus, the “approximate”
functional equation for the L-function attached to the character y p is given by

xp(n) xp(n)
L(s, xp) = Z s + &Xp(s) Z =" (3.3)
7 monic n monic
deg(n)<g deg(n)<g—1

where P € Ppg11,4 and Xp(s) = g%172%) Note that Xp(s) can also be re-written as
follows: .
Xp(s) = |P[27 X (s), (3.4)

where X' (s) = q_%ﬂ corresponds to the gamma factor that appears in the classical
quadratic L-functions.

The next result, quoted from [4], makes the analogy between the function field case
and the number field case more apparent.

Lemma 3.1 We have that . .
Xp(s)2 = Xp(1 —s)72 (3.5)

and
XP(S)XP(l—S)Z 1. (36)

Consider the following completed L-function:

Zr(s, xp) = Xp()"IL(s. xp). 3.7)

We will apply the recipe to this completed L-function, since it simplifies the calcula-
tions and satisfies a more symmetric functional equation given by the next lemma.

Lemma 3.2 Let Z, (s, xp) be the Z-function defined above, then we have the following
Jfunctional equation:

Zp(s, xp) = Ze( =5, xp). (3-8)

Proof Direct from the definition of Z (s, xp) and Lemma 3.1. O
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36 J.C. Andrade et al.

Now, let
Lp)= D Z(sior...,m) (3.9)

PePrgii1q

be the k-shifted moment, with

k

Z(siar....oa0) = [ | Zels + i xp). (3.10)
i=1

Using the “approximate” functional equation (3.3) and Lemma 3.1, we have

_1 xp(n) 1 xp(n)
ZeGom =Xp@ Y TEE 4 -9 Y SRR G
7 monic n n monic n
deg(n)<g deg(n)<g—1

3.2 Adapting the CFKRS recipe for the function field case

We present the steps of the recipe which follows from [4,7] with the necessary modi-
fications for the family of L(s, xp).

(1) Write the product of k-shifted L-functions.

Z(gan,..,o)=Ze (3 +an xp) - Ze (5 + ok, xp)- (.12)

(2) Replace each L-function with the two terms from its approximate functional
equation (3.3) with s = 1/2 + «;.

k
1. 1 _1 xp(ny---ng)
Zgen....oa)= ) [[XeGreen™ 3 S
si=+1i=1 ny,...ng Hi:1 [ng| 278
deg(ni)<f (&)

where f(1) =g, and f(-1) =g — 1.

(3) Replace each product of ¢ s-factors by its expected value when averaged over
P2g+l,q~
In our case, ¢ r-factors are equal to 1. Thus, the product will not appear and will
not affect the result.

(4) Replace each summand by its expected value when averaged over Pg11 4.
We need first to average over all primes P € Pagy1 4. The next lemma gives
the orthogonality relation for these quadratic Dirichlet characters over function
fields.

Lemma 3.3

1 1 ifn =0,
im  ——— Y xpm) = ffn =t (3.14)
deg(P)—>00 #P2g 11 4 PP, 0  otherwise.

8§+1.q9
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Proof Consider the case when n = [J, then we have

DYoo= Y xe@®= Y 1, (3.15)

PePagt1,4 PePagti14 PePrgti1q
PHl

since we are summing over primes of degree 2¢ + 1 and P 1 [, and deg(l) < 2g,
which means that we are counting all primes of degree 2g + 1, thus,

Z 1= #Pogi1.,4- (3.16)

PE’Pngr]ﬂ
Pl

Hence, if n is a square of a polynomial,

1
lim  ——— > xpm)=1. (3.17)
deg(P)—o00 #’Pzg.q_],q PePrgsi

gT1l.q

It remains to consider the case when n # [J, Rudnick [30] shows that

1
P|2
> x| <o || 5 deg), (3.18)
PE'Pzg+1,q gq
and from Polynomial Prime Theorem (2.1), we have
1 1
D Z xp(n) K [P|”zdeg(n). (3.19)
2g+1,q PePrgiig

Hence, if n is not a square of a polynomial, we have that

I 1 Y xpm) =0 (3.20)
m e p(n) =0. ]
deg(P)—o0 #P2g 11,4 b, X
8§+1.q
]
Using Lemma 3.3, we can average the summand in (3.13) that is
' 1 xp(ny---ng)
lim —— —
deg(P) =00 #P2g+1.4 PE%JH,([ 111;’% nle |ng| 2+
1 (3.21)

=2 > o
m monic M1s.--Mk Hi:] |ng|2TE%
ny--ng=m?>
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(5) Let each nj,...,n; to be monic polynomials and call the total result
My (s, aq, ..., ar) to produce the desired conjecture.
If we let
1
1. _ -
Ry (2, E1001, « vy skotk) = Z Z . T (3.22)
m monic 1, g Hi:l |i’l,|
n; monic
ny--ng=m?

then the extended sum produced by the recipe is

1
M(%;Oll,.._, Z l_[XP +8;Oé, sz(%;alal,...,skak).
=+1i=1
(3.23)

(6) The conclusion is

> ZGenw)= Y M(zenw) (o). 5,

P€P2g+1.q P€P2g+1,q

3.3 Putting the conjecture in a more useful form

In this section, we put the conjecture (3.24) in a more useful form, we write Ry as an
Euler product, then factor out the appropriate ¢4 (s)-factors. Let

1

V(x) = Z , (3.25)
e |n1 |s+a1 e |nk|s+ak
n; monic
ny-ng=x
then it is easy to see that ¢ (m?)is multiplicative on m. We can write Ry (s; o1, . .., ?)
as follows:
R(s;ar,...,a) = Y y(m?)
m monic
00 ) (3.26)
- T1 (1 + przf)),
. P monic j=1
irreducible
where {
2jy —
(P = > PRSP (3.27)
ni,..., ny
n; monic
ni nk:Pz’
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Since we have ny - - - nj = P2/ then foreachi =1, --- , k, write n; asn; = P¢,
for some e; > 0and ey + --- 4+ ex = 2, and (3.27) becomes

2jy —
pPh= ) l_[|P|e,(s+ot,)’ (3.28)
€1y x>0 i=1
e1+ter=2j

and so, we have

Ri(s; o, ..., 0p) = 1_[ (1 + Z: Z l_[ |P|el(s+ozl ) (3.29)

. P monic J Ler>0 i=1
irreducible €1+ +ek 2j

One can see that when «; = 0 and s = 1/2, the poles only arise from the terms with
el +---+ex = 2. Define Ry p(s; a1, - -+ , o) to be as follows:

Ri p(s;aq, ... Olk)—1+2 Z 1_[|P|e,(s+oz,

j=1 e ,...ex>0 i=l1

e+ +ek 2j
=1+ Z l_[ Pl (A o + (lower-order terms)
er>0 i=1
c1+ e =2
1+ Z |25+¢x,+a1 0(|P| ’ e)’
1<1<,<k
(3.30)
for P (¢;) small enough (see [7] for more details). And so, we have
Ry, p(s; o, ..., o)
1 45+ (3.31)
- 11 (1 +—|P|2S+ai+aj) x (140 (1P+)).
1<i<j<k
Recall that £4(25) :
= 1 ()
2s
Lads) P monic [P (3.32)
irreducible

has a simple pole as s = 1/2. Therefore,

[T (1+o(pP*)) (3.33)

P monic
irreducible

is analytic in 2R(s) > 1/4, and [ [p Rk, p has a pole at s = 1/2 of order k(k + 1)/2 if
o =0foralli =1,..., k. It remains to factor out the appropriate zeta-factors. Since
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we have
Re(s;ar, ..o = [ RepGsar... a0, (3.34)

. P monic
irreducible

then from (3.31) and (3.32), we can write

Ri(s; a1, ..., 0p) = 1_[ CA(2s + o +aj)Ar(s;ar, ..., ap), (3.35)
I<i<j<k
where
Ar(ssar, ..., ak)
] 1
= 1_[ Rk’p(s,()l],...,()lk) 1_[ 1_|P|23+—ai+0¢j
P monic I<i<j<k
irreducible
(3.36)

Notice that for some 6 > 0 and for all «; ’s in some sufficiently small neighbourhood
of 0, A is an absolutely convergent Dirichlet series for R(s) > 1/2 + §. Combining
(3.23) and (3.35), we have

_1
M(%;ou,..., ZHXP 3 +eio) 2 1_[ tal +a; +aj) (3.37)
=+1i=1 I<i<j<k .
XAk(%;Sl(X],...,sk(xk).
Hence,

Z Z(%;al,...,ak)

P€P2g+1.q

1
= Y ZHXP T +eie) P A (Siean, ... eox)  (3.38)

PePogy1q ci=Eli=1

< ] caQ+eai+apd+o).

l<i<j<k

From the definition of X’p(s) in (3.4), we have

Xp (% +8,'0(i) 2 = |P|"2" X (% -l—&‘i()l,')i7 . (3.39)
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Hence,

Y z(an )

PePogi1q

Z HX +81al % Z Rk (%,glal, ?gkak) (340)

=+1i=1 PePargi14
k
x | P2 iz 4% (1 4 o(1)).
We finish this section writing Ay as an Euler product in the following lemma.

Lemma 3.4 We have

Ak(%;al,...,ak): 1_[ 1_[ < |P|1+—Olz+0lj)

P monic 1<i<j<k

irreducible
1 (& I 1\

X = I+ — .
2 (H( |P|l/2+a,-> +H< + |P|1/2+a,-) )

(3.41)

Proof Applying Ax(s; a1, ..., ax) and R p(s; &1, ..., ax) in (3.36) and (3.30) for

s = 1/2, we have

1.
Ak(j,al, ees O)

- I T () (52 E M)

P monic 1<i<j<k ~ '" ' 7 N =1 eq,.., x>0 i=l1
irreducible €1+ Fer=2j
(3.42)
By simplifying the second brackets, we obtain the result in the lemma, i.e.
e
Y Y ()
j=1 e, ,ex>0 i=1
e1+- +ek 2j
oo 1 ej
S ()
j=0 er,,ex>0 i=1
e1+ +€k 2j (3.43)
1 e’} e; k oo 1 €j
e
E(l_[ Z <|P|(1/2+a, ) + 1_[ Z(_l) <|P|(1/2+a,~)> )
i=1e;=0 i=1e;=0
1/& 1 1 -1
5(1_[(1 |p|l/2+al) +H<1+ |P|1/2+ai) )
i=1 i=1
O
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3.4 The contour integral representation of the conjecture

We begin this section with Lemma 2.5.2 from [7], which helps write our conjecture
as a contour integral.

Lemma 3.5 Suppose F is a symmetric function of k variables, regular near (0, ..., 0),
and that f(s) has a simple pole s = 0 of residue 1 and is otherwise analytic in a
neighbourhood of s = 0, and let

K@i, ....q) = Far.....a0) [] flai+ap, (3.44)
I<i<j<k
or
K, ....,ax) =F(ar,....,ax) [] flai+ap. (3.45)
I<i<j<k

If a; + o) are contained in the region of analyticity of f(s), then

( )k(k 1)/2 2k
Z K(e1ay, ..., eray) = (an)k ‘¢\ %K(Zl,...,Zk)

gi==x1

s 52 vk (3.46)
A(Zly s Zk) Hi:l Zi
X — T dzy -+ -dz,
[Tici [Tj=1 Gi — @) @i + o))
and
k
Z (H&)K(slal,m,skak)
gi=+1 Ni=l
(_l)k(kfl)/Z 2/{% f
= & ---PK(z..., (3.47)
Qrif @
AZ2, -, 72)?
(11 Zk) ]_L 1 %i dz; - dz.
H, ]Hj 1(Zz Olj)(Zi‘i‘Olj)
where the path of the integration encloses the *a;s.
Recall that
Z Z(%;al,...,ak)
PePrgi1q
(3.48)

= Y HXP 5 + ) %L(%'i‘aisXP),

Peng_qu i=1
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where X'p (s) is defined in (3.4). Since Xp(% + al-)’% does not depend on P, we can
factor out it, and from (3.48) and (3.40), we have

Z HL(%—FOQ,XP)

PePagi1,qi=1

1

k
- ¥ e’ TGy,

PEPZngl,q i=1 e
k
x Ag (%, o, e, ak) |P|%Zi:05iai
[T catt+eia+ejan(1+o(1).
I<i<j<k

From each term in the second product, we factor out (log¢)~! to get

Z HL(%-{-O[,’,XP)

PE'Pzg_H'q i=1
P73 T [ & (4 a)? }
= 2 (log q)F*+D/2 Z l_[X +eioi) 7 (350
PePrgi1y =+1i=1

X Ag (2, o, .. .,o{k) |P|%Zf:05iai
< T a0 +eedt Sjaj)(logq)(l +o(1)).

I<i<j<k
Now, call
k
Flar, ... ) = [[XG +a) AL o, .. )| P D= (3.51)
i=1
and
f(s)=2¢a(1+s)logg andso f(o; +aj)=¢a(l+a; +aj)logg, (3.52)

where f(s) has a simple pole at s = 0 with residue 1.
If we denote

K. ....o0) = F(ar.....o0) [ flew+e). (3.53)

I<i<j<k
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then (3.50) can be written as follows:

Y 126G +aixe)

PEPg1,q i=I
k 1k g 3
= 2 [Ticy (P72 20X (5 + i) (3.54)
- 1 k(k+1)/2
PePzg_Hﬂ ( qu)

X Z K(eraq, ..., erar) (14+0(1)).

Using Lemma 3.5, we have

Z HL(%-FOH,XP)

PePagy1,4i=1

- ¥

PE'Pzg+1_q

AZ2,...,Z22 l.c_ Zi
?g fK(Zl,n-,Zk) @ O iz dzy -+ -dzx
[T 11—[, 1@ — o)z +aj)
x (140(1))
k 1L (k=172 ok
D I | L R
PePagrigi=] @mi)yt K (3.55)

?g fF(Zl,...,Zk) [T ta+eici +eje))

1<1<]<k
X A(Z%y‘~-aZk)21_[l ]Zz
H:‘(:l H’;:l(zi —o;)(z +aj)
( 1)k(k 1/2 2k

k
-1 I«C,Oll‘ 1
= > [lipmzeex (3 +a) T aE &

PePrgyiqi=1

A2, ..., 20)? ;
% fK(Zl,...,Zk) G DMl = dzy -+ -dz
Hz 1H 1@ —oj)(zi +aj)

1
[T, 1PI72 0 & (4 4 )7 (= 1yk=D/2 ok
(log g)ktk+D/2 Qri)k k!

dzy - dzx + o(| P)

+0|P|
with
K@i ...z =FGi....) [ a0 + e +¢ja)). (3.56)

I<i<j<k
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Moreover, if we denote

G(zl,...,zk)—l_[/'\.’ T+ a) zAk(z,a,,...,ozk) [T ea+z+z)
I<i<j<k
(3.57)
then (3.55) becomes

k
1w L (Db o
Dico 1 N2~ 7 00—
2 [l =enx Gra)’ —o g

P€P2g+1_q i=1

A2, ... 22
X%"'%G(Zl,---,Zk)|P|%Z{'(:oZi - (Zlk Zk) l_[z 1%i dzy - - dzg
[lici [T @ —ap) @i +a))

+ o(|PJ).
(3.58)
Now, letting o; — 0, we have
> LG et
PePagiiq
( 1)k(k /2 Zk
Z (27n)k % fG(Zl,-~~,Zk)|P| 1 Zino (3.59)
P€P2g+lq
A(Z%, ey Zk)2 l_L 1%i
x T o dzy -+~ dzk + o(|P)).
i=1
Calling
( l)k(k 1)/2 2k
0 =P p o
5 (3.60)
X q% Yoz A(Zl’ H]; Zk)2kl—[l 1% dz; - - dz,
i=1%;

we obtain the formula of the Conjecture 2.2, i.e.

Yo LG.ap)f = ) Owlog, IPh(I+0(1).  (3.61)

PE'Pzg+1_q P€P2g+1,q

4 Some conjectural formulae for moments of L-functions associated
with xp

We use Conjecture 2.2 to obtain explicit conjectural values for several moments of
quadratic Dirichlet L-functions associated with y p over function fields.
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4.1 First moment

We will use Conjecture 2.2 when k = 1 to compute the first moment of our family of
L-functions, then compare the result with that of Andrade and Keating proved in [3].
For k = 1, the formula in Conjecture 2.2 gives

Z L(3.xp) = Z 01 (log, [P1)(1+o(1)), @.1)

PePagi1q PePgtig

where Q1 (x) is polynomial of degree 1. From the contour integral formula for QO (x)
in (2.14), we have

G(iz)AZH? .
01(x) = — f GIAGD yar g, 4.2)
Tl 21
where 1
G =A%z) X (5 +21) 7 tald +229). (4.3)

Recall that, the Vandermonde determinant is defined

AzL, ..., 20) = l_[ (zj — zi), 4.4)

I<i<j<k
which for k£ = 1 is equal to
A@ED? =1, (4.5)

and 1

X(5+z) 2=q0" (4.6)
Therefore, (4.2) becomes

1 ALz 1+2z1)
00 = ¢ ) 220 sy, A7
i Z1
with .
1. —
A(f’zl)_ 1_[ (1_ |p|1+2z1>
. P monic
irreducible (4.8)

L, LN 1\
x5 © P12+ T |P|1/2+a1 )

In order to compute the integral in (4.7) where the contour is a small circle around
the origin, we need to locate the poles of the integrand. So let

(3:21) ¢a(l +221) e

A
flz) = 1, 4.9)

21

note that the zeta-function ¢4 (1 4+ 2z1) has a simple pole at z; = 0, which means that
f(z1) has a pole of order 2 at z; = 0. We compute the residue by expand f(z1) as a
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Laurent series and consider the coefficient of zl_l. Expanding the numerator of f(z1)
around z; = 0, we have

(1)
A(ziz1) = A(3:0) + A" (3 O)Zl+;A”( 10)2f + -
(2) L
ta(l42z1) = 7o —+ -+ (Iqu)m——(logCI)3
oggz1 2
(3)

Fa 4 ie—na L= )2(10g )22
q =147« = Dlogg)zi + 2 (x — D)*(logg)"zi +

Hence, f(z1) can be written as follows:

1 1
flan = (A(%; 0=+ A0+ 34 G0z + )

1
( — —+ (ogq)m——(logq)3 )
210gq 21 6 (4.10)
1
x (1 3togqyz + 8(10gq)2z1 +-o)
1
x (1+5ogq)xzi + (logq)zx ).
Considering the coefficient of zfl, we have
Res /(e1) = ~(1 + A (15 0) + =——— A’ (J;21) @.11)
21=0 4 2 2logqg 27 '
After straightforward calculations, using the definition for Ay (%, Zlsvens zk), we
have
A(3izi)=1and A" (};z1) =0, (4.12)
and so |
Res f(z1) = = (1 + x). (4.13)
z1=0 4
Hence, we have .
010 = -0 +x>?§ 1dz,
T (4.14)

= %(1 + x).
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Finally, we can write the first moment as follows:

Yoo L(oar)= Y Qilog, [P (1+0(1)

PePrgtiq PEPagt1q
1
- Z 5(1+logq|P|)(1+0(1)) (4.15)
PePrgiiy
|P|
=—— (1+1log, |P P).
Ziog, [P ' 1108 P+ e(PD

If we compare Theorem 2.4 of [3] with the conjecture, we can see that the main
term and the principal lower-order terms are the same. In other words, Theorem 2.4
of [3] proves our conjecture with an error O (| PP/ 4+€). In the next two sections, we
use our conjecture to determine the asymptotic of the second and third moments of
our family of L-functions, and it can be seen that the polynomials Q> (x) and Q3(x)
in (4.22) and (4.25) are similar to ones in [4].

4.2 Second moment

For k = 2, the conjecture 2.2 gives

o LG = Y. Oa(log, P (1+0(1).  (416)

PePogiq PePy+14

where Q> (x) is a polynomial of degree 3, given by

G(z1,22)A(z3, 23)?
0>(x) = 7{% (z1 zzz)z(z] 23) 3G+ 4z da. @.17)
122
with
_1 _1
G(z1,22) ZA(%;Zl,Zz)X(%—}-Zl) 2X(%+Z2) :
X a1+ 2z21)¢a(1 + 21 + 22)¢a(1 + 222), (4.18)
1 _1
XA 4) Ta(d4a) =g 1@t (4.19)
and
2 2 2 2 2 2 4.20
A(zl,zg) =(zz—zl) . (4.20)
If
PO A(Liz1,22) cal + 220084 (1 + 21 + 22)8a (1 + 222) (23 — 2D)?
1,22) =
7%
% q%(11+22)7

4.21)
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then we have

-1
Q%) =7 jg f f(z1,z22)dz1dzs
T
1

3 2 3
= — 4+ 6x°+ 11lx +6)A(1/2;0,0) 10
Tiiog (q)(<x 2%+ 11x +6)A(1/2;0,0) log*(g)

+ GBx2+12x 4+ 11)
x log?(@)(A1(X;0,0) + Ax(1;0,0)) + 122 + x) log(g) A12(1: 0, 0)

— 2(A222(3:0,0) = 3A122(3:0,0) — 3A112(5;0,0) + A111(3: 0, 0>)),
(4.22)
where A is the partial derivative, evaluates at zero, of the function A (%, 21,0, Zk)
with respect to jth variable, with indices denoting higher derivatives, i.e.

a 9°
l;Zl,...,Zk)

1. -
A2 (2,0,...,0) P BZ% (2

z1=20="=2;=0

Hence, we can write the leading order asymptotic for the second moment for the
family of L-function when g — oo as

1
S LG e~ 21t P10og, P>, (4.23)

PEP28+1.61

Comparing with Andrade and Keating result (Theorem 2.5 of [3]), we see that their
theorem proves our conjecture with an error O (| P|log, |P|).

4.3 Third moment

For the third moment, Conjecture 2.2 states that

o L)’ = Y 0s(log, IP)(14+0(D),  (@424)

PePrgi1q PePrgii1q

where Q3(x) is a polynomial of degree 3.
Thus, with the help of the symbolic manipulation software Mathematica, we com-
pute the triple contour integral and obtain

03(x) (3(x +3)2 (x4 41203 4+ 49x2 + 78x + 40) A(0,0,0) log®(q)

_ 1

~ 864010g°(q)

+4 <3x5 + 45x% 4+ 260x3 + 720x2 + 949x + 471) (A3(0, 0,0) + A2(0,0, 0)
14100,0, 0)> log3(q) + 4 (15x4 + 180x3 + 780x2 + 1440x + 949) (A23(0, 0,0)

+A13(0,0,0) + A12(0, 0, 0)) log*(q) — 10 (x3 +9x2 +26x + 24) (2A333(0, 0,0)
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—3A233(0,0,0) —3423(0,0,0)
+2A222(0,0,0) —3A4133(0,0,0) —36A123(0,0,0)
—3A122(0,0,0) —3A4113(0,0,0) —3A112(0,0,0) +2A111(0, 0, 0)) log*(q)

—~20 (3x2 +18x + 26) <A2333(O, 0,0) 4+ A2223(0, 0, 0)
+ A1333(0,0,0) —641233(0,0,0)
—6A1223(0,0,0) + A1222(0,0,0) — 6A71123(0, 0, 0)
+ A1113(0,0,0) + 41112(0,0.0))

x log?(q) + 6(x + 3)<2A33333(0, 0,0) —5A423333(0,0,0)
—10422333(0, 0, 0) — 10422233(0, 0, 0)
—5A22223(0,0,0) + 2A422222(0, 0, 0) — 5A13333(0, 0, 0)
+60A12233(0,0,0) — 5A412222(0,0,0)
—10A11333(0,0,0) +60A11233(0, 0, 0)
+60A11223(0,0,0) — 10A411222(0, 0, 0)
—10A411133(0,0,0) — 104111220, 0, 0)
—5A11113(0,0,0) —=5A11112(0,0,0) + 2411111 (0, 0, 0)) log(q)

+4(3A233333(0, 0,0) —20A222333(0, 0, 0) + 3A222223(0, 0, 0)
+3A133333(0, 0, 0) — 30A123333(0, 0, 0)
+30A4122333(0, 0, 0) + 304 122233(0, 0, 0)
—30A122223(0, 0, 0) + 3A122222(0, 0, 0)
+30A112333(0, 0, 0) + 30A112223(0, 0, 0)
—20A111333(0,0,0) +30A111233(0, 0, 0)
+30A111223(0,0,0) —204111222(0, 0, 0)

—30A111123(0,0,0) +3A111113(0, 0, 0) + 3A111112(0, 0, 0))), (4.25)

where A (%, 21, 22, Z3) is defined in Lemma 3.4. Hence, the leading order asymptotic
for the third moment for our family of L-functions is given by

1oL piacl. 5
D L(3xp) ~ 55! PIAG0,0,0)(log, |PI), (4.26)
P€P2g+l,q
where 5
6|P|- —8|P|+3
1. _ B Sl e bl L
A(3:0,0,0) = H (1 PP : 4.27)
P monic
irreducible
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4.4 Leading order for general k

The main aim in this section is to obtain a conjecture for the leading order asymptotics
of the moments for a general integer k. The calculations presented here are based
on the calculations first presented in [1,26]. To obtain the main formula we need the
following lemma.

Lemma4.1 Let F be a symmetric function of k variables, regular near (0, --- ,0)
and f(s) has a simple pole of residue 1 at s = 0 and analytic in a neighbourhood of
s =0. Let

1 Kk ews
K(PLwi .. ow) = Y e IR E (gqwy, . ew)
==l

(4.28)
X 1_[ f(s,-wi +8jwj),
I<i<j<k
and define I (|P|, k; w = 0) to be the value of K when wy, . .., wy = 0. We have that
| k(k+1)/2 ) koo
I(|P|,k;0) ~ | =1log|P F@©,...,0)2 . : . 4.29
(1P|, k; 0) (2 og| |) ( ) H@i)’ (4.29)

Proof See Lemma 5 in [4].

We are in a position to obtain the desired formula, from (3.55) recall that

k
Z HL(% + i, xp)

PEPgi1,q i=I
Lyk 1
Pz E0a X () 4 )2

- Z l_[ (log g)kG+D/2

P€P2g+l,q i=l1

Z K (101, ...,ekoek)(l + 0(1)),

gi==%1

(4.30)
where
K(eray, ..., exoy)
k
1 1 vk e
= Y [[xG+een 2 AGs e, ... P2 im0
gi=+1i=1 (4.31)
x [ ¢a( +eiai +eje))(logq).
1<i<j<k
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Applying the above Lemma with

f(s) =ta(l +s)logg,
k
F(wy, ..., wr) ZHX(%-l-OCi)_%Ak (%;wl,...,wk),

i=1
Ly e
K (Pl;wy, ..., wg) = Z |P|2 &=t F (gqwy, ..., ggwg)
ei==%1

X 1_[ f(8iwi+8jwj),

I<i<j<k
and letting oy, ..., ox — 0, we obtain

k(k+1)
2

1 1
E 1 k 2 N
L(jv XP) (logq)k(k+])/2 <2]0g|PI>

PePagi1q PePrgi1q (4.32)
k(k+1) i!
x A%;0,...,02 2 | [ ==,
(2 ) H (2i)!
as g — oo. Summing over P, we get that
! X k(k+1) 1 k 1!
DooLGixe)~ Y (logIP) P A(3:0,. 0[] =
PePrgt PePrgt1 i=1 @i!
s o (4.33)

k(k+1) i!

k
-1 1
=|P|(1 P 2 Ar(5:;0,...,0 .
|P| (log, |P1) (3 )E@")’

Hence, we have proved the following.

Theorem 4.2 Conditional on Conjecture 2.2, we have that as g — 00, the following
holds:

k

!
*‘A(%;o,...,O)Hﬁ. 434)

k(k+1

> LG.xp)f ~1|P|(log, |P]) >

P€P2g+l,q i=l1

4.4.1 Some conjectural values for leading order asymptotic for the moments of
L(s, xp)

We end this section by writing the asymptotic formula for the fourth and the fifth
moment for our family of L-functions. Theorem 4.2 implies that the leading order for
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the fourth moment can be written as follows:

4
4 94
> L(3.xp) ~ 1P| (log, |P|)” A(5:0.0.0,0) (2—
PePg14 i=1 (4.35)
1 9 1
=——|P|(I P|)"A(5;0,0,0,0),
as3saon| 1 (02 1P)7 A G )
where
A(3:0,0,0,0)
-1 [ 20|P|® — 64| P> + 90| P|* — 64| P> + 20| P|> — 1
Con |P[® ’
P monic
irreducible
and the leading order for the fifth moment is
5
Z L(%,XP)
PePargi14
14 >
~ 1.
|P| (log, |Pl) ™ A(3:0.,0,0,0,0) 1:[(21), (4.36)
1 14 h(P|)
=———|P|(l P 1- .
126313216000 | o4 1P1) 1_[ < |P|‘2>
P monic
irreducible

with

h(x) = 50x'0 — 280x7 + 765x% — 1248x7 + 1260x% — 720x°

4 5 ) (4.37)
+ 105x™ 4+ 160x” — 126x~ 4 40x — 5.
5 Ratios conjecture for L-functions over function fields
The main aim of this section is to obtain a conjectural asymptotic formula for
K 1
-1 L(3 + o,
Z Hk_] (2 ks XP) (5.1)

0 1 ’
PEPZngl,q l—lq:] L(i + Vq, XP)

where Prg11,4 = {P monic, P irreducible, deg(P) = 2¢g + 1, P € Fy[T]}, and
B ={L(s, xp) : P € Pagi1,4}. We adapt the original recipe of Conrey, Farmer and
Zirnbauer [8] for this family of L-functions.
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The idea is to replace the L-functions in the numerator by their “approximate

functional equation:

xp(n) xp(n)
Leoxm= ) ZEE+d) 3 (5.2)
1 monic n monic I’l|
deg(n)<g deg(n)<g—1

and expand the L-functions in the denominator into the series

! ( m(P)) () xp ()
- 1_[ 1— — Z PARIAPA
’ 53
L(s, xp) P o I S Il 5.3)
rreauciple

where w(n) and xp(n) are defined in Sect. 2.
As in the previous section, we apply the recipe to the quantity

[T Ze G+ o, xp) 5
M, LG+ vy xp)

2

PePagi1q

where Z (s, xp) is defined in (3.7) with “approximate” functional equation given by
(3.11). Now expanding the denominator, we get

1_[/{(:1 Zﬁ(% + [673) XP)
M2 LG+ v xp)

2

PePagiiq

why)---uho)xp(hy---ho)
= > Hchak xp) Z P
1|2 Y. lhgl2tre

PePogyi1,q k=1 -ho
h monic
(5.5)
Making use of the “approximate” functional equation (5.2), we have
K
[122G + o xp)
k=1
K ( : (5.6)
-1 xplmy---mg
- ¥ [odraw?! ¥ -
|m |§+£1a| < m |§+8K(XK
ere{—1,1}K k=1 mp,....mg 1 K
m; monic
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so we can write (5.5) as follows:

Z I Zﬁ(% + o, xp)
0 1
PePogiig [g=1 LG +vq xp)

K
= Y Y J]rd e 5

PePagig exe{—1,1}K k=1
0 K Q
5 Z [ 1) xp ([ Ty ma [1521 hg)
K 1 i '
mip, Mg nkzl |mk|2+£kak 1_[!1Q=1 |hq|2+yq

hi.+hg
m;,hj monic

Following the recipe, we replace each summand by its expected value when aver-
aged over primes P € Pag1 4, in other words, we have that

K
deg(lii’r)n%oo ( : Z Z 1_[ XP(% + 8k01k)7%

#
P2g+1q PEPagi1 exef{—1,1}K k=1
o K ]
y Z qul M(hq)XP (Hk:] mip l_[q=1 hq))
K 1 1
my,....mg szl |mk|2+8kak HqQ:I |h‘7|2+yq

hi,..., hQ
m;,h; monic

K
1
= Z l_[ Xp(3 + era) 2
ere(—1,1}K k=1
K
Hqul 1(hg)d (Hk:l mg I—L?:l hq)
K 1 1
mi,...,mg Hk:l |mk|2+skak anzl |hq|2+yq

hi,...ho
m;,hj monic

(5.8)

where §(n) = 1 if n is a square and 0 otherwise.

Next we factor out the zeta-function factors. Note that, the main difficulty here is to
identify and factor out the appropriate zeta-functions factors that contribute to poles
and zeros. With the same notation used in [1], we define the following series:

T2, ()8 (T, me [T, 1
Gpasy= Y — (T T q>. (5.9)

K 1 1
mivomg | L=t my |2 l_[qul |hq|2+yq

hi,....hg
m;,h j monic
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If mi = [[p P and hy = []p P, then we can write G (c; ¥) as a convergent
Euler product provided that JR(cx) > 0 and R(y,) > 0,

Gplaiy)
= [T [+ [15; w(Po) (5.10)
- P monic 0 . |P|Zkak(%+(xk)+zch(%+yq) ’
irreducible <Xkt cq iseven

We now write Ggz in terms of the zeta-function of F,[T]. First, we express the
contribution of all poles and zeros of (5.10) in terms of ¢4 (s) by rewriting the Euler
product in (5.10) as follows:

1 1
G ; = 1
p(@y) H < + ;; |P|(%+0!_/)+(%+Olk) + Z | P|(1+2a)

_P(rinouliﬁ k
ureduciple i
“’; (5.11)
u(P) w(P)
+Z (GHy)+G+ )+ZZ TranrGir T777)
rq |P|'2 Yr)T(3TVq g |P|l2Te)T 2 Yq
r<q

where - - - are referring to the convergent terms. Recall that

1 J
) e

We can see from (5.11) that the terms with ) f: 1 ak +ZqQ:l ¢y = 2contribute to the
poles and zeros. The poles are coming from the terms witha; =ay =1,1 < j <k <
K,ar=2,1 <k <K, and also from the terms with¢, = ¢, =1,1 <r <g < Q.
Note that there are no poles coming from the terms with ¢, = 2,1 < ¢ < 0,
since (P?) = 0. Moreover, the zeros come from the terms with a; = ¢g = 1 with
l1<k<K,and1 <g < Q.

From the above, we can define the function Ys3(r; ) in terms of {4 (s) by

ae =[] (1—|,1|s>]= n(x

. P monic P monic \j=0
irreducible irreducible

nlijkSK EA(I +aj +C¥k) HlfrquQ ;A(l + Yr + Vq)

Yyp(a;y) = (5.13)
TTEo) T2 cal+ an+ )
Thus, we can factor out Y (a; v) from G (o; ), such that
Gy(a; y) = Yp(o; y)Agp(as y), (5.14)
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where Ags(; y) is the Euler product that converges absolutely for all of the variables
in the small discs around 0:

Ap(a;y)
Mi<jesx (1 - W) [Ti<r<g=0 (1 - ‘p|1+++l/q)
) inreduiie et T (1 - |m'+++w) (5.15)
o1 [T, n(Pe)

ar(Aa)+X, cg (3 4vy)
0<) " ak+3, cq is even | P2k (2 2q¢q(3tyg

Returning to the recipe, we can conclude from (5.7), (5.9), and (5.14) that

Z I Zr (% + ok, xp)
o 1
PePagt1 4 Hq:l L(E + vy, XP)

L 1 (5.16)
= Z Z l_[XP (5 + exax) * Yp(erar, -+, erons v)
PePogilq epef{—1,1}K k=1
x Aqp(e1ay, -+, g y) +o (|P)),
Now, using (3.7), we have
Z [T LG+ o, xp)
o 1
PePagiig Hq:l L(j + Yq> XP)
1 N (5.17)
= Z Z HXP “FOlkZXP( + o) 2
PePrgy1,q exe{—1,1}K k=1
x Yyp(e1aq, ..., eap; v)Agp(e1at, ..., gag; ) +o (|P]).
Remembering that
1
Xp(s) = |P[27 X (s) (5.18)
with 1
X(s)=q 2", (5.19)
we have that
K | _1 | 1
l_[ Xp (5 +exow) 2 Xp (5 + exon)?
k=l (5.20)

K
= |P|% SR (erok—ap) 1_[ X (% + ak—zb“kotk) )
k=1
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For positive real parts of oy and y,, we have

) [Tie) L3 + o, xp)
0 1
PePrgiiq qul L(E + Vg, XP)

K 5.21
= Z Z |p|%Zf=1(8kak—ak) 1_[ X (% + ak—;kak) ( )
PePrgi1,q exef{—1,11K k=1
x Yoy(ero, ..., epop; Y)Ag(eran, ..., &xag; v) +o (|P)).
Finally, if we let
1 k K
Hyg 1play (w; ) = P2 2= [T X (§ + 452)
kel (5.22)
x Yp(w; y)Ap(w: y),
then the conjecture may be formulated as follows:
3 T LG + ks xp)
Q 1
PePogiig HQ=1 L(§ + ¥4 xP) (5.23)

1 K
= Y |PT2Z% N Hyplay(easy) +o(IP)).

P€P2g+l,q ee{—1,1}K

5.1 Refinements of Conjecture
In this section, we state the final form of our ratios conjecture. In the first part, we

derive a closed form expression for the Euler product Ag(e; ), and in the second
part, we express the combinatorial sum as a multiple integral.

5.1.1 Closed form expression for A

Suppose that f(x) =1+ Y o7, u,x", then

1
D " =S (W) + (=) =), (5.24)

neven
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and so, let

f<1>_2 [15- w(P0)
\P1) |p|2kak(z+“k)+zqfq(§+yq)

B pu(P)
ZH Z H L PGt (5.25)

ak k=1

o (,_
_H":l (1 |P5*Vq>
K 1
S [
M= ( |P§+°‘k>

Using the above equations, we can establish the following lemma.

|p|ak( +ag)

Lemma 5.1 We have that,

5 12, nepea)

1+
| P2k @k GFan+ T, ¢ G+

Yok ak+3, cq even

0 1 0 1 (5.26)
1— 1
_1! M- < Pﬁ”q) N g ( i |P%+V">

T2 K 1 K 1
(1 —— (1
M= < Pﬁ*“k) [ R

The following result is a direct corollary from Lemma 5.1 and Eq. (5.15).

Corollary 5.2

1
1_[1<]<k<1< < 1+a +ak> H1<r<q<Q W)
Ap@; =[]
P monic Hk:l 1_[ ( |P|1+ozk+yq )
Q
q:

irreducible
o 1— 1
« 1 Hq_l( |P|5*W> ( |P|2*V‘1)
2 K 1 «
(11— _
M= ( |P5*"k) M= |P|2*“k

5.1.2 The final form of the ratios conjecture

(5.27)

To obtain our final form of the Ratios Conjecture 2.3, we need the following lemma
(Lemma 6.8, [8]).

Lemma 5.3 Suppose that F(z) = F(z1, -, zx) is a function of K variables, which
is symmetric and regular near (0, - - - , 0). Suppose further that f (s) has a simple pole
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of residue 1 at s = 0 but is otherwise analytic in |s| < 1. Let either

HG@.....2k)=F@i.....zx) [ fGi+a (5.28)
l<j<k=K
or
HGio.ooozp) = Fneonz0) [ fe+a. (5.29)
1<j<k<K

If lak| < 1, then

Z H(eraq, ..., exak)

ee{—1,1}K

(—DKE=D/29K H(zp, .o z) A, 2 T
= W Vi I dZ] "'dZK
K!(2mi) lzi]=1 ]—Ijzl [Tiei e — o) (zx + )
(5.30)
and
Z sgn(e)H (101, ..., EKUK)
se{—1,1}K
(—DKE=D/2pK H(zi, . 20 A L 2 T o
— TEv T dzy---dzg.
K!(2mi) lzil=1 Hj:l I—[kzl(Zk_aj)(Zk+Olj)
(5.31)

Now, we are in a position to present the final form of the ratios conjecture 2.3.

Conjecture 5.4 Suppose that the real parts of ay and y, are positive. Then we have,

3 [T, L (5 + ok xp)
P€P2g+1.q l_[qul L (% + VQ’ XP)

R Y [ P> T ke
B K!Q2ri)K (5.32)

P€P2g+|yq

K
Hy (Play (21, -0 2k)AED o 23 [T 2
X/ BoAPLay 1 W) M=ty g,
|zi|=1

152 TS Gk — ) i+ @)
+o(|P)).

6 One-level density
In this section, we give an application of the Ratios Conjecture 2.3 for L-functions
over function fields. We compute a smooth linear statistic, the one-level density for the

family of quadratic Dirichlet L-functions associated with monic irreducible polyno-
mials in [F, [T']. The one-level density for the family of quadratic Dirichlet L-functions
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over fundamental discriminants was computed using the rations conjecture by Conrey
and Snaith [15] in the number field setting and by Andrade and Keating [4] in the
function field setting.

Consider
3 L(z + o xp)

. 6.1)
L5+, xp)

Rp(a;y) =

P e732g+1,q
Using the ratios conjecture as presented in the last section with one L-function in the

numerator and one L-function in the denominator, we arrive at the following particular
conjecture.

Conjecture 6.1 With —3 < R(a) < 1, m < R(y) < 3 and I(@),I(y) <e

|P|'=€ for every € > 0, we have

LG5 +a. xp)
Rp(asy) = Z Ty,
PePagiig 2TV XP

S (Mﬂmw(%w) (6.2)

PPty tall+a+y)
sa(l = 2a) )
SIS P)).
G0 —at ) +o(|lP])

To compute the one-level density, we need to have a formula for

L'(G+r.xp) d
———— =—Rp(a; )‘ .
> LD ke 63

PePogtiq

A direct calculation gives

i( ca(l + 20) ) g +2r) ”
da \eaC+a+ )|, ,_, " ta+2n) ©4)
and that q 5
_ ta(l —2a)
— (P %X l_|_ [ —
da <| G a)zA(l—aer)) ey (6.5)

= —(logq) |P|7" X (5 +r) ¢all —2r).

Therefore, the ratios conjecture implies that the following result holds.
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Theorem 6.2 Assuming Conjecture 6.1, m <K R(r) < 4—11 and J3(r) < |P|'"€ for
every € > 0, we have

Z Ll(% +r,xp)
1
P€P2g+l.z] L(E + r, XP)

_ Gad+2n (L (6.6)
> (CA(1+2r) (ogq) P17 X (L +7)

PePogiig

x a1 =2r)) + 0 (IP).

We have available all the necessary machinery to derive the formula for the one-
level density for the zeros of Dirichlet L-functions associated to quadratic characters
xp with P € Pag41 4, complete with lower-order terms.

Let yp be the ordinate of a generic zero of L(s, x p) on the half-line. Since L(s, xp)
is a function of u = ¢~* and periodic with period 2i/logg, we can restrict our
analysis of the zeros for the range —mi/logg < J(s) < mi/loggq. Consider the
one-level density

SiH =Y, Y fe) (6.7)

PE'PZng],q V44

where f is an even 27/ log g-periodic test functions and holomorphic.
Using Cauchy’s Theorem, we have

_ (- L'(sxp) , o
SH= Y 5 (/() /(l_c) o[ Cie—1mds 68)

PE'Pzg.H,q

where (c) is the vertical line fromc—mi/logg toc+mi/loggand 1/2+1/log | P| <
¢ < 3/4.Forthe integral on the (c¢)-line, we make the following variable change, letting
s — ¢+ it, so

1 [7™/logq L'(c+it, xp)
— —i(it+c—1/2 L
o fl=ilit+c—1/2) Y APERTR

(6.9)
—/logq PePyt14

Since the integrand is regular at 1 = 0, we move the path of the integration to
¢ = 1/2 and replace the sum over P by Theorem 6.2 to obtain

1 [7/logq ch(1 4 2it)
2 UCEpY (5?(1 ¥ 2i1)
—m/logg PePngqu

(6.10)
— (logq) |P| ™" x (% + it) ca(l — 2it)>dt +o(IP]).
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The functional equation (2.10) implies that

L'(1=s,xp) _ Xp(s) L'Gs, xp)

_ 6.11)
L(—s,xp) Xp(s) L(s, xp)
with X(s) Xes)
P S _ S
—Xp(s) = —log|P|+ o) (6.12)

For the integral on the (1 —¢)-line, we change variables, letting s — 1 —s, then use
(6.11) and with the similar calculations as for the integral on the (c¢)-line, we obtain
the following theorem.

Theorem 6.3 Assuming the ratios Conjecture 6.1, we have that

SiH= D, Y fe)

P€P2g+11,1 ye

w/logq Py [
=5 O (10g|P|+M
27 ) _z/10gq PePagi1y X(§—zt) (6.13)
M_ —it 1 . e >>
2(;A(1+2n) (logq) | P17 X (5 +ir) cal = 2ir) ) )dt
+o(|P]),

where yp is the ordinate of a generic zero of L(s, xp) and f is an even and periodic
suitable test function.

6.1 The scaled one-level density

Defining
t(2g1
F) =h (—( J 0gq>> (6.14)
2
and scaling the variable ¢ from Theorem 6.3 as
t(2g1
T = M’ (6.15)

21
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we have that

) Zf< 2g10gq)

PE’Pngrl g VP

r (1 2rit
X (7 - 2g]0gq)

1 g
= 5oioee /_gh(r) > <log|P|+—X —

PePrgt1,4 2 7 2glogq (6.16)
(1+ 2471nr )
0O .
( img,q _ (logq) e(—2mr/2glogq)log|P\X< n Z?ilcl;q)
(1 + 2glogq>
4
weq (1 2T dtv+o(P)).
2gloggq
Writing
1 1
tall+5) = 1—gq+2+—<logq>s+0<s2> (6.17)
and % y | .
é-A + s —1 2 3
e =1 —— 0(s?), 6.18
a5 s+ 5 logg — 5 (ogg)’s + O(s7) (6.18)
we have
2glogq
> T’
PEPngr]q yp
(1 2rmit
1 8 X (E - 2g10gq>
~ 2glo / h(®) Z <log|P| + 1 2mit
81084 J—¢ PePagt1q X (5 - 2glogq)
2¢1 1 1 4i )
+2( = S22 4 Jlogg — (logq) - — (logq) 2T/ oz e P
4mit 2 12 2g
2g 1 1 4rmit
2
x X( + zgqf;;q) (—471” t3 T )))dr Yo(P).
(6.19)

then, for g large, only the term log | P|, the ;1/4 /¢4 and the final term in the integral
contribute, yielding the asymptotic

Z Zf< 2g10g61)

PEPngrlq YP
~ ! foo h(r)((#P2g+1,q)1og|P| (6.20)
2glogg J_oo
2glogg _oniz 2810gg
- (#'Pzg_t,_[,q) W + (#P2g+1’q) e 27“1% dr.
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However, since & is an even function, we can drop out the middle term and the last
term can be duplicated with a change of sign of 7, leaving

fim PN (yp —2g212g q)

870 #Pag 1 PePrgy1q VP

> “omic | 2mi 1
/ A1 4+e ™" —— ™" — |dt
00 2mit —2mit

/oo h(l’)(l + L((cos(ZJTt) —sin(2w 1)) — (cos(Qmt) — sin(27 7)) ))dl’
2T

—00

ooh 1 ! 2sin(2 d
/OO (T)< +E<_ sin( nr))) T

/00 h(r)<1 B sin(2nt)>dt
o T
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