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Abstract
In this paper, we extend to the function field setting the heuristics formerly developed
by Conrey, Farmer, Keating, Rubinstein and Snaith, for the integral moments of L-
functions. We also adapt to the function field setting the heuristics first developed by
Conrey, Farmer and Zirnbauer to the study of mean values of ratios of L-functions.
Specifically, the focus of this paper is on the family of quadratic Dirichlet L-functions
L(s, χP ) where the character χ is defined by the Legendre symbol for polynomials
in Fq [T ] with Fq a finite field of odd cardinality, and the averages are taken over all
monic and irreducible polynomials P of a given odd degree. As an application, we
also compute the formula for the one-level density for the zeros of these L-functions.
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24 J. C. Andrade et al.

1 Introduction

In this paper, we study the family of quadratic Dirichlet L-functions L(s, χP ) where
the character χ is defined by the Legendre symbol

( ·
P

)
and P ranges over monic

irreducible polynomials of degree 2g + 1 over Fq [T ]. We present the conjectures
for the moments and ratios of this family of L-functions, Conjectures 2.2 and 2.3,
respectively, bymaking use of the recipe developed byConrey et al. in [7] and adapting
it for this family of L-functions.

The studyofmoments of families of L-functions is a central topic in analytic number
theory. Many mathematicians have studied this subject, and considerable progress
was made in the last decades in the direction of getting a better understanding of
the asymptotic behaviour of such moments. For example, in the case of the Riemann
zeta-function, the problem is to understand the asymptotic behaviour of

Mk(T ) =
∫ T

0

∣∣ζ
( 1
2 + i t

)∣∣2k dt (1.1)

as T → ∞.
Hardy and Littlewood [22] proved in 1918 an asymptotic formula for the second

moment, i.e.
M1(T ) ∼ T log T . (1.2)

In 1926, Ingham [24] showed that when k = 2,

M2(T ) ∼ 1

2π2 T (log T )4 . (1.3)

For values of k ≥ 3, it still remains an unsolved problem to obtain asymptotic
formulas for Mk(T ). However, it is conjectured that for every k ≥ 0, there is a
constant ck such that

Mk(T ) ∼ ckT (log T )k
2
. (1.4)

Conrey and Ghosh [13] made a conjecture for the sixth moment of the Riemann
zeta-function, and later on, Conrey and Gonek [14] put forward a conjecture for the
eighth moment but their approach fails to provide conjectures for higher moments.
Keating and Snaith [28], using random matrix theory, conjectured the precise value
of the constant ck for all values of k > 0. In fact, their conjecture produces a value
for ck for R(k) > −1/2. More recently, Conrey and Keating, in a series of papers
[9–12], returned to the problem of obtaining conjectures for the higher moments of the
Riemann zeta-function using only number-theoretic heuristics. Their new approach
produced conjectures for moments of the Riemann zeta function, as well as explained
the role of the non-diagonal contribution to the main terms in the asymptotic formulas.

A different example is the family of quadraticDirichlet L-functions L(s, χd ), where
χd is the real primitive Dirichlet character modulo d defined by the Kronecker symbol
χd(n) = ( d

n

)
. The problem here is to establish an asymptotic formula for
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The integral moments and ratios of quadratic Dirichlet… 25

∑

d≤X

L
( 1
2 , χd

)k
(1.5)

as X → ∞, where the sum is taken over all positive discriminants d and k is a positive
integer. In this case, as it is for the Riemann zeta-function, just the first few moments
were computed. In 1981, Jutila [25] established the asymptotic formula for the first
and second moments. The asymptotic formulas he obtained are

∑

d≤X

L
( 1
2 , χd

) ∼ C1X log X (1.6)

and ∑

d≤X

L
( 1
2 , χd

)2 ∼ C2X (log X)3 , (1.7)

where the constantsC1 andC2 can be expressed in terms of Euler products and factors
containing the Riemann zeta-function. Soundararajan [32] computed the asymptotic
formula for the third moment. He proved that

∑

d≤X

L
( 1
2 , χ8d

)3 ∼ C3X (log X)6 , (1.8)

where d is an odd, square-free and positive number, χ8d is a real, even primitive
Dirichlet character with conductor 8d, and C3 is a constant.

In another paper, Soundararajan and Young [33] claimed that they are able to
establish an asymptotic formula for the fourth power moment for this family of L-
functions under the Generalised Riemann Hypothesis (GRH). The claim is that

∑

d≤X

L
( 1
2 , χd

)4 ∼ C4X (log X)10 , (1.9)

whereC4 is constant. Recently, Shen [31] proved the asymptotic formula for the fourth
moment of quadraticDirichlet L-functions under theGeneralisedRiemannHypothesis
(GRH). He consider the characters of the form χ8d and has established that

∑∗

d≤X
(d,2)=1

L
( 1
2 , χ8d

)4 ∼ a4
26 · 33 · 52 · 7 · π

X(log X)10, (1.10)

where a4 is as defined in [27].
In 2005, Conrey et al. [7] presented a new heuristic for all of the main terms in

the integral moments of several families of primitive L-functions. Their conjectures
agree with previously known results. For the Riemann zeta-function, they gave a
precise conjecture for Mk(T ) including an asymptotic expansion for the lower-order
terms using shifted moments. For the family of quadratic Dirichlet L-functions, they
conjectured that
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26 J. C. Andrade et al.

∑

d

L
( 1
2 , χd

)k =
∑

d

Qk(log |d|)(1 + o(1)), (1.11)

where Qk is polynomial of degree k(k + 1)/2 with k ∈ N.
It is important to observe that Diaconu et al. [16] have also conjectured moments

of families of L-functions using different techniques. Their method is based on mul-
tiple Dirichlet series. Recently, Diaconu and Whitehead [17] established a smoothed
asymptotic formula for the third moment of quadratic Dirichlet L-functions at the
central value. In addition to the main term, which is known, they prove the existence
of a secondary term of size x3/4. The error term in their asymptotic formula is on the
order of O(x2/3+δ) for every δ > 0.

In 2008, Conrey et al. [8] presented a generalisation of the heuristic method for
moments presented in [7] to the case of ratios of products of L-functions. These
conjectures are very powerful since they encode information about statistics of zeros
of such L-functions. The ratios conjectures as put forward by Conrey, Farmer and
Zirnbauer can be used to prove very precise results about the distribution of zeros of
families of L-functions such as pair-correlation and n-level density (for more details
see [15]). Their ratios conjecture for the family of quadratic Dirichlet L-functions are
read as follow.

Conjecture 1.1 (Conrey, Farmer, Zirnbauer) Let D = {L(s, χd) : d > 0} to be the
symplectic family of L-functions associated with the quadratic character χd . For
positive real parts of αk and γm, we have

∑

0<d≤X

∏K
k=1 L

( 1
2 + αk, χd

)

∏Q
m=1 L

( 1
2 + γm, χd

)

=
∑

0<d≤X

∑

ε∈{−1,1}K

( |d|
π

) 1
2

∑K
k=1(εkαk−αk )

×
K∏

k=1

g+
( 1
2 + αk−εkαk

2

)
Y (ε1α1, . . . , εKαK ; γ ) AD (ε1α1, . . . , εKαK ; γ )

+ o(X),

(1.12)
where

g+(s) = 	
( 1−s

2

)

	
( s
2

) , (1.13)

Y (α; γ ) =
∏

j≤k≤K ζ
(
1 + α j + αk

)∏
m≤r≤Q ζ (1 + γm + γr )

∏K
k=1

∏Q
m=1 ζ (1 + αk + γm)

(1.14)
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and

AD(α; γ ) =
∏

p

∏
j≤k≤K

(
1 − 1

p1+α j+αk

)
∏

m≤r≤Q

(
1 − 1

p1+γm+γr

)

∏K
k=1

∏Q
m=1

(
1 − 1

p1+αk+γm

)

×
⎛

⎝1 +
(
1 + 1

p

)−1 ∑

0<
∑

k ak+
∑

m cm is even

∏Q
m=1 μ

(
Pcm

)

p
∑

k ak (
1
2+αk )+∑

m cm( 12+γm )

⎞

⎠ .

(1.15)

In 1979,Goldfeld andViola [21] introduced a variant of the problem aboutmoments
of quadratic Dirichlet L-functions. They conjectured an asymptotic formula for

∑

p≤X
p≡3 (mod4)

L
( 1
2 , χp

)
, (1.16)

where the sum is taken over prime numbers and χp(n) = ( np ) is the usual Legendre
symbol. In this direction, Jutila [25] studied the first moment of this family of L-
functions and proved that

∑

p≤X
p≡3 (mod4)

(log p) L
( 1
2 , χp

) ∼ 1

4
X log X . (1.17)

Recently, assuming the Generalised Riemann Hypothesis (GRH), Baluyot and Pratt
[5] obtained the leading order term for the second moment. They proved that

∑

p≤X
p≡1 (mod8)

(log p) L
( 1
2 , χp

)2 = c
X

4
(log X)3 + O

(
X (log X)11/4

)
,

where c is a positive constant.
We should notice that the second moment for this family of L-functions seems

to be the limit of the current technology. This is in part due to the fact that for this
family, we are dealing with character sums over prime numbers, and these sums are
more complicated than those over square-free numbers. For example, in the case for
square-free numbers, it was possible to obtain the third moment by making use of the
Poisson summation formula, but the same does not seem to apply for the family over
prime numbers since we cannot directly apply Poisson to the sums over primes.

1.1 The function field setting

LetH2g+1,q be the hyperelliptic ensemble ofmonic, square-free polynomials of degree
2g + 1. When the cardinality of the field Fq is q ≡ 1 (mod 4), Andrade and Keating
[2] computed the first moment of the family of L-functions associated to the quadratic
character χD , with D ∈ H2g+1,q . They proved that
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28 J. C. Andrade et al.

∑

D∈H2g+1,q

L
( 1
2 , χD

) ∼ |D|P1
(
logq |D|) , (1.18)

where P1 is a linear polynomial. For the second, third and fourth moments of this
family, Florea [18,19] proved that∑

D∈H2g+1,q

L
( 1
2 , χD

)k ∼ |D|Pk
(
logq |D|) , (1.19)

where Pk is a polynomial of degree 3, 6 and 10 respectively, whose coefficients can be
computed explicitly, except for P4 where only the first few coefficients were obtained.
It is worth noticing that Florea in [20] improved the error term for the first moment and
was able to obtain a strenuous lower-order term that was never predicted by random
matrix theory or other heuristics.

In another paper, Andrade and Keating [4] adapted the recipe of [7] and of [8] to the
function field setting and conjectured asymptotic formulas for the integral moments
and ratios of the family of quadratic Dirichlet L-functions in function fields. Their
main conjectures are presented below.

Conjecture 1.2 (Andrade and Keating–Integral Moments Conjecture) Suppose that q
odd is the fixed cardinality of the finite field Fq and let XD(s) = |D|1/2−sX (s) and

X (s) = q−1/2+s .

That is XD(s) is the factor in the functional equation

L(s, χD) = XD(s)L(1 − s, χD). (1.20)

Summing over fundamental discriminants D ∈ H2g+1,q , we have

∑

D∈H2g+1,q

L
( 1
2 , χD

)k =
∑

D∈H2g+1,q

Qk(logq |D|)(1 + o(1)), (1.21)

where Qk is polynomial of degree k(k + 1)/2 given by the k-fold residue

Qk(x) = (−1)k(k−1)/2 2k

k!
1

(2π i)k

∮
· · ·

∮
G(z1, . . . , zk)


(
z21, . . . , z

2
k

)2
∏k

i=1 z
2k−1
i

× q
x
2

∑k
i=1 zi dz1 . . . zk,

(1.22)


(z1, . . . , zk) the Vandermonde determinant given by


(z1, . . . , zk) =
∏

1 ≤ i ≤ j ≤ k(z j − zi ), (1.23)

G(z1, . . . , zk) = Ak(
1
2 ; z1, . . . , zk)

k∏

i=1

X ( 1
2 + zi

)− 1
2

∏

1≤i≤ j≤k

ζA(1 + zi + z j ),

(1.24)
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The integral moments and ratios of quadratic Dirichlet… 29

and Ak is the Euler product, absolutely convergent for |�(zi )| < 1
2 , defined by

Ak(
1
2 ; z1, . . . , zk) =

∏

P monic
irreducible

∏

1≤i≤ j≤k

(
1 − 1

|P|1+zi+z j

)

×
(
1

2

(
k∏

i=1

(
1 − 1

|P| 12 +zi

)−1

+
k∏

i=1

(
1 + 1

|P| 12 +zi

)−1
)

+ 1

|P|

)

×
(
1 + 1

|P|
)−1

.

(1.25)

Conjecture 1.3 (Andrade and Keating–Ratios Conjecture) Let αk and γm complex
numbers with positive and small real parts. LetD = {L(s, χD) : D ∈ H2g+1,q} to be
the family of L-functions associated with the quadratic character χD. Then,

∑

D∈H2g+1,q

∏K
k=1 L

( 1
2 + αk, χD

)

∏Q
m=1 L

( 1
2 + γm, χD

)

=
∑

D∈H2g+1,q

∑

ε∈{−1,1}k
|D|− 1

2

∑K
k=1(εkαk−αk )

K∏

k=1

X ( 1
2 + αk−εkαk

2

)

× YD (ε1α1, . . . , εKαK ; γ ) AD (ε1α1, . . . , εKαK ; γ ) + o (D) ,

(1.26)

with

AD(α; γ )

=
∏

P monic
irreducible

∏
j≤k≤K

(
1 − 1

|P|1+α j+αk

)
∏

m≤r≤Q

(
1 − 1

|P|1+γm+γr

)

∏K
k=1

∏Q
m=1

(
1 − 1

|P|1+αk+γm

)

×
⎛

⎝1 +
(
1 + 1

|P|
)−1 ∑

0<
∑

k ak+
∑

m cm is even

∏Q
m=1 μ (Pcm )

|P|
∑

k ak (
1
2 +αk )+∑

m cm ( 12 +γm )

⎞

⎠

(1.27)
and

YD(α; γ ) =
∏

j≤k≤K ζA
(
1 + α j + αk

) ∏
m≤r≤Q ζA (1 + γm + γr )

∏K
k=1

∏Q
m=1 ζA (1 + αk + γm)

, (1.28)

where ζA(s) is the zeta-function associated to the polynomial ring A = Fq [T ] and
X (s) is a function that depends on q.

One can note that (1.21) and (1.26) are the function field analogues of the formulas
(1.11) and (1.12), respectively.
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30 J. C. Andrade et al.

The main aim of this paper is to formulate a conjectural asymptotic formula for

∑

P∈P2g+1,q

L
( 1
2 , χP

)k
, (1.29)

where P2g+1,q is the set of all monic, irreducible polynomials of odd degree 2g + 1
with coefficients in Fq , as |P| → ∞.

Andrade and Keating [3] established asymptotic formulas for the first and second
moments of (1.29), namely

∑

P∈P2g+1,q

(
logq |P|) L ( 1

2 , χP
) ∼ 1

2
|P| (logq |P| + 1

)
, (1.30)

∑

P∈P2g+1,q

L
( 1
2 , χP

)2 ∼ 1

24

1

ζA(2)
|P| (logq |P|)2 . (1.31)

Recently, Bui and Florea [6] improved Andrade and Keating’s result for the second
moment and proved that

1

|P2g+1,q |
∑

P∈P2g+1,q

L
( 1
2 , χP

)2 = g3

3ζA(2)
+ g2

(
3

2
+ 1

2q

)
+ Oε

(
g3/2+ε

)
.

(1.32)

In this paper, we adapt to the function field case the recipe for the conjectures of the
moments and ratios of L-functions for the family of quadratic Dirichlet L-functions
associated with χP over a fixed finite field Fq . In Sect. 2, we present some basic facts
on L-functions over function fields followed by the statement of our main results. In
Sect. 3, we present the details of the recipe of [7] when it is adapted for the function
field setting. In Sect. 4, we use the integral moments conjecture over function fields
when k = 1, 2, and compare with the main theorems of [4]. Then we conjecture the
precise value for the third moment, i.e. when k = 3 in this setting. In Sect. 5, we
present the recipe of [8] for the same family of L-functions over function fields. In
Sect. 6, we use the ratios conjecture for function fields and compute the one-level
density of the zeros of this same family of L-functions.

2 Statement of themain results

In this section, we gather some basic facts about L-functions over function fields.
Many of the results and notation here can also be found in [29].

Let Fq be a finite field of odd cardinality q = pa , with p a prime. Denote the
polynomial ring over Fq by A = Fq [T ], and the rational function field by k = Fq(T ).

For a polynomial f inFq [T ], we define the normof f by | f | := qdeg( f ).ForR(s) > 1,
the zeta-function attached to A is defined by
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The integral moments and ratios of quadratic Dirichlet… 31

ζA(s) =
∑

f monic

1

| f |s =
∏

P monic
irreducible

(
1 − |P|−s)−1

. (2.1)

Since there are qn monic polynomials of degree n, we can easily prove that

ζA(s) = 1

1 − q1−s
, (2.2)

which provides an analytic continuation of the zeta-function to the whole complex
plane, with simple pole at s = 1, which leads to the analogue of the Prime Number
Theorem for polynomials in A = Fq [T ].

Theorem 2.1 (Prime Polynomial Theorem) Let πA(n) denote the number of monic
irreducible polynomials of degree n in A. Then

πA(n) = qn

n
+ O

(
qn/2

n

)
. (2.3)

Now, let P be a monic irreducible polynomial, define the quadratic character (
f
P )

by
(

f

P

)
=

⎧
⎪⎨

⎪⎩

1 if f is a square (mod P), P � f ,

−1 if f is not a square (mod P), P � f ,

0 if P | f .

(2.4)

The quadratic reciprocity law states that for A, B non-zeros and relatively primemonic
polynomials, we have

(
A

B

)
=

(
B

A

)
(−1)

q−1
2 deg(A)deg(B) . (2.5)

We denote by χP the quadratic character defined in terms of the quadratic residue
symbol for A

χP ( f ) =
(
P

f

)
, (2.6)

where f ∈ A.
In this paper, the focus will be in the family of quadratic Dirichlet L-functions

associated with polynomials P ∈ P2g+1,q , where

P2g+1,q = {P ∈ A, monic, irreducible and deg(P) = 2g + 1}. (2.7)
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32 J. C. Andrade et al.

The quadratic Dirichlet L-function attached to the character χP is defined to be

L (s, χP ) =
∑

f ∈A
f monic

χP ( f )

| f |s

=
∏

P monic
irreducible

(
1 − χP (P)|P|−s)−1

, R(s) > 1.
(2.8)

With the change of variables u = q−s, L(s, χP ) is a polynomial of degree 2g given
by

L (s, χP ) = L(u, χP ) =
2g∑

n=0

∑

f monic
deg( f )=n

χP ( f )un . (2.9)

(see Propositions 14.6 and 17.7 in [29]).
We are now in a position to state the main conjectures of this paper.

Conjecture 2.2 Suppose that q ≡ 1(mod 4) is the fixed cardinality of the finite field
Fq and let XP (s) = |P|1/2−sX (s) where

X (s) = q−1/2+s .

That is XP (s) is the factor in the functional equation

L(s, χP ) = XP (s)L(1 − s, χp). (2.10)

Summing over primes P ∈ P2g+1,q , we have

∑

P∈P2g+1,q

L
( 1
2 , χP

)k =
∑

P∈P2g+1,q

Qk(logq |P|)(1 + o(1)), (2.11)

where Qk is polynomial of degree k(k + 1)/2 given by the k-fold residue

Qk(x) = (−1)k(k−1)/2 2k

k!
1

(2π i)k

∮
. . .

∮
G(z1, . . . , zk)


(
z21, . . . , z

2
k

)2
∏k

i=1 z
2k−1
i

,

× q
x
2

∑k
i=1 zi dz1 . . . zk,

(2.12)

where 
(z1, . . . , zk) is defined as in (1.23),

G(z1, . . . , zk) = Ak
( 1
2 ; z1, . . . , zk

) k∏

i=1

X ( 1
2 + zi

)− 1
2

∏

1≤i≤ j≤k

ζA(1 + zi + z j ),

(2.13)
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and Ak is the Euler product, absolutely convergent for |�(zi )| < 1
2 , defined by

Ak
( 1
2 ; z1, . . . , zk

) =
∏

P monic
irreducible

∏

1≤i≤ j≤k

(
1 − 1

|P|1+zi+z j

)

× 1

2

⎛

⎝
k∏

i=1

(

1 − 1

|P| 12+zi

)−1

+
k∏

i=1

(

1 + 1

|P| 12+zi

)−1
⎞

⎠ .

(2.14)
More generally, we have

∑

P∈P2g+1,q

L
( 1
2 + α1, χP

) · · · L ( 1
2 + αk, χP

)

=
∑

P∈P2g+1,q

k∏

i=1

X ( 1
2 + αi

)− 1
2 |P|− 1

2

∑k
i=1 αi Qk(logq |P|, α)(1 + o(1))

(2.15)
where

Qk(x, α) = (−1)k(k−1)/2 2k

k!
1

(2π i)k

∮
· · ·

∮
G(z1, · · · , zk)


(
z21, . . . , z

2
k

)2 ∏k
i=1 zi∏k

i=1
∏k

j=1(z j − αi )(z j + αi )

× q
x
2

∑k
i=1 zi dz1 · · · zk,

(2.16)
and the path of integration encloses the ±α’s.

Note that, for the cases k = 1, 2, our conjecture agrees with Andrade and Keating’s
results in (1.30) and (1.31) and Bui and Florea’s result in (1.32). See Sects. 4.1 and
4.2 for further details.

The next conjecture is the translation for function fields of the ratios conjecture for
quadratic Dirichlet L-functions associated with the characters χP .

Conjecture 2.3 Suppose that the real parts of αk and γk are positive and that q odd
is the fixed cardinality of the finite field Fq . Let P = {L(s, χP ) : P ∈ P2g+1,q} to be
the family of L-functions associated with the quadratic character χP . Then with the
same notation as before, we have

∑

P∈P2g+1,q

∏K
k=1 L

( 1
2 + αk, χP

)

∏Q
m=1 L

( 1
2 + γm, χP

)

=
∑

P∈P2g+1,q

∑

ε∈{−1,1}k
|P|− 1

2

∑K
k=1(εkαk−αk )

K∏

k=1

X ( 1
2 + αk−εkαk

2

)

× YP (ε1α1, . . . , εKαK ; γ ) AP (ε1α1, . . . , εKαK ; γ ) + o (P) ,

(2.17)
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where

AP(α; γ ) =
∏

P monic
irreducible

∏
j≤k≤K

(
1 − 1

|P|1+α j+αk

)
∏

m≤r≤Q

(
1 − 1

|P|1+γm+γr

)

∏K
k=1

∏Q
m=1

(
1 − 1

|P|1+αk+γm

)

×
⎛

⎝1 +
∑

0<
∑

k ak+
∑

m cm is even

∏Q
m=1 μ (Pcm )

|P|
∑

k ak(
1
2+αk )+∑

m cm ( 12+γm )

⎞

⎠

(2.18)
and

YP(α; γ ) =
∏

j≤k≤K ζA
(
1 + α j + αk

) ∏
m≤r≤Q ζA (1 + γm + γr )

∏K
k=1

∏Q
m=1 ζA (1 + αk + γm)

. (2.19)

If we compare the above conjectures with the ones presented by Andrade and
Keating in the previous section, one can immediately see that although they are similar
in nature, there is an important difference between the formulas and the final shape of
the conjectures. More specifically, one of the main differences is the arithmetic term
that is produced in both conjectures. These factors are not the same and this is due
to the fact that in one setting, we are averaging over square-free polynomials and so
an Euler product is produced that needs to be carried out through the recipe and in
the end produce the term Ak in Andrade and Keating conjecture, while in the case
presented in this paper, the average is taken over prime numbers and the final formula
produces a simpler arithmetic factor due to precise formula that we have when using
the prime polynomial theorem in Fq [T ]. This difference comes from the fourth step
in the recipe when we replace each summand by its expected value.

In the following sections, we present the details of how to arrive at these conjectures.

3 Integral moments of L-functions over prime polynomials

In this section, we present the details of the recipe for conjecturing moments of the
family of quadratic Dirichlet L-function L(s, χP ) associated to hyperelliptic curves
of genus g over fixed finite field Fq as g → ∞. As in Andrade and Keating [4], we
will adjust the recipe first presented in [7] to the function field setting.

Let P ∈ P2g+1,q . For a fixed k, we aim to obtain an asymptotic expression for

∑

P∈P2g+1,q

L
( 1
2 , χP

)k
(3.1)
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as g → ∞. In order to achieve this, we consider the more general expression obtained
by introducing small shifts, say α1, . . . , αk

∑

P∈P2g+1,q

L
( 1
2 + α1, χP

) · · · L ( 1
2 + αk, χP

)
. (3.2)

Introducing the shifts helps to reveal the hidden structures in the formof symmetries.
Moreover, the calculations are simplified by the removal of higher-order poles. In the
end, letting each α1, · · · , αk tend to 0 will provide an asymptotic formula for (3.1).

3.1 Analogies between classical L-functions and L-functions over function fields

The first step to obtaining a conjecture for the integral moments of L-functions of
any family is the use of the approximate functional equation. Thus, the “approximate”
functional equation for the L-function attached to the character χP is given by

L(s, χP ) =
∑

n monic
deg(n)≤g

χP (n)

|n|s + Xp(s)
∑

n monic
deg(n)≤g−1

χP (n)

|n|1−s
, (3.3)

where P ∈ P2g+1,q and XP (s) = qg(1−2s). Note that XP (s) can also be re-written as
follows:

XP (s) = |P| 12−sX (s), (3.4)

where X (s) = q− 1
2+s corresponds to the gamma factor that appears in the classical

quadratic L-functions.
The next result, quoted from [4], makes the analogy between the function field case

and the number field case more apparent.

Lemma 3.1 We have that
XP (s)

1
2 = XP (1 − s)−

1
2 (3.5)

and
XP (s)XP (1 − s) = 1. (3.6)

Consider the following completed L-function:

ZL(s, χP ) = XP (s)−
1
2 L(s, χP ). (3.7)

We will apply the recipe to this completed L-function, since it simplifies the calcula-
tions and satisfies a more symmetric functional equation given by the next lemma.

Lemma 3.2 Let ZL(s, χP ) be the Z-function defined above, thenwe have the following
functional equation:

ZL(s, χP ) = ZL(1 − s, χP ). (3.8)

Proof Direct from the definition of ZL(s, χP ) and Lemma 3.1. �
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Now, let
LP (s) =

∑

P∈P2g+1,q

Z(s;α1, . . . , αk) (3.9)

be the k-shifted moment, with

Z(s;α1, . . . , αk) =
k∏

i=1

ZL(s + αi , χP ). (3.10)

Using the “approximate” functional equation (3.3) and Lemma 3.1, we have

ZL(s, χP ) = XP (s)−
1
2

∑

n monic
deg(n)≤g

χP (n)

|n|s + Xp(1 − s)−
1
2

∑

n monic
deg(n)≤g−1

χP (n)

|n|1−s
. (3.11)

3.2 Adapting the CFKRS recipe for the function field case

We present the steps of the recipe which follows from [4,7] with the necessary modi-
fications for the family of L(s, χP ).

(1) Write the product of k-shifted L-functions.

Z
( 1
2 ;α1, . . . , αk

) = ZL
( 1
2 + α1, χP

) · · · ZL
( 1
2 + αk, χP

)
. (3.12)

(2) Replace each L-function with the two terms from its approximate functional
equation (3.3) with s = 1/2 + αi .

Z( 12 ;α1, . . . , αk) =
∑

εi=±1

k∏

i=1

XP ( 12 + εiαi )
− 1

2
∑

n1,...,nk
deg(ni )≤ f (εi )

χP (n1 · · · nk)
∏k

i=1 |ni | 12+εiαi
,

(3.13)
where f (1) = g, and f (−1) = g − 1.

(3) Replace each product of ε f -factors by its expected value when averaged over
P2g+1,q .
In our case, ε f -factors are equal to 1. Thus, the product will not appear and will
not affect the result.

(4) Replace each summand by its expected value when averaged over P2g+1,q .
We need first to average over all primes P ∈ P2g+1,q . The next lemma gives
the orthogonality relation for these quadratic Dirichlet characters over function
fields.

Lemma 3.3

lim
deg(P)→∞

1

#P2g+1,q

∑

P∈P2g+1,q

χP (n) =
{
1 if n = �,

0 otherwise.
(3.14)
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Proof Consider the case when n = �, then we have

∑

P∈P2g+1,q

χP (n) =
∑

P∈P2g+1,q

χP (l2) =
∑

P∈P2g+1,q
P�l

1, (3.15)

since we are summing over primes of degree 2g + 1 and P � l, and deg(l) ≤ 2g,
which means that we are counting all primes of degree 2g + 1, thus,

∑

P∈P2g+1,q
P�l

1 = #P2g+1,q . (3.16)

Hence, if n is a square of a polynomial,

lim
deg(P)→∞

1

#P2g+1,q

∑

P∈P2g+1,q

χP (n) = 1. (3.17)

It remains to consider the case when n �= �, Rudnick [30] shows that

∣∣∣∣
∣∣

∑

P∈P2g+1,q

χP (n)

∣∣∣∣
∣∣
� |P| 12

logq |P|deg(n), (3.18)

and from Polynomial Prime Theorem (2.1), we have

1

#P2g+1,q

∑

P∈P2g+1,q

χP (n) � |P|− 1
2 deg(n). (3.19)

Hence, if n is not a square of a polynomial, we have that

lim
deg(P)→∞

1

#P2g+1,q

∑

P∈P2g+1,q

χP (n) = 0. (3.20)

�

Using Lemma 3.3, we can average the summand in (3.13) that is

lim
deg(P)→∞

1

#P2g+1,q

∑

P∈P2g+1,q

∑

n1,...,nk

χP (n1 · · · nk)
∏k

i=1 |ni | 12+εiαi

=
∑

m monic

∑

n1,...,nk
n1···nk=m2

1
∏k

i=1 |ni | 12+εiαi
.

(3.21)
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(5) Let each n1, . . . , nk to be monic polynomials and call the total result
M f (s, α1, . . . , αk) to produce the desired conjecture.
If we let

Rk
( 1
2 ; ε1α1, . . . , εkαk

) =
∑

m monic

∑

n1,...,nk
ni monic

n1···nk=m2

1
∏k

i=1 |ni | 12+εiαi
, (3.22)

then the extended sum produced by the recipe is

M
( 1
2 ;α1, . . . , αk

) =
∑

εi=±1

k∏

i=1

χP
( 1
2 + εiαi

)− 1
2 Rk

( 1
2 ; ε1α1, . . . , εkαk

)
.

(3.23)

(6) The conclusion is

∑

P∈P2g+1,q

Z
( 1
2 ;α1, . . . , αk

) =
∑

P∈P2g+1,q

M
( 1
2 , α1, . . . , αk

)
(1 + o(1)) . (3.24)

3.3 Putting the conjecture in amore useful form

In this section, we put the conjecture (3.24) in a more useful form, we write Rk as an
Euler product, then factor out the appropriate ζA(s)-factors. Let

ψ(x) :=
∑

n1,...,nk
ni monic
n1···nk=x

1

|n1|s+α1 · · · |nk |s+αk
, (3.25)

then it is easy to see thatψ(m2) is multiplicative onm.We canwrite Rk(s;α1, . . . , αk)

as follows:
Rk(s;α1, . . . , αk) =

∑

m monic

ψ(m2)

=
∏

P monic
irreducible

(
1 +

∞∑

j=1

ψ(P2 j )

)
,

(3.26)

where

ψ(P2 j ) =
∑

n1,...,nk
ni monic

n1···nk=P2 j

1

|n1|s+α1 · · · |nk |s+αk
. (3.27)
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Since we have n1 · · · nk = P2 j , then for each i = 1, · · · , k, write ni as ni = Pei ,

for some ei ≥ 0 and e1 + · · · + ek = 2 j, and (3.27) becomes

ψ(P2 j ) =
∑

e1,...,ek≥0
e1+···+ek=2 j

k∏

i=1

1

|P|ei (s+αi )
, (3.28)

and so, we have

Rk(s;α1, . . . , αk) =
∏

P monic
irreducible

(
1 +

∞∑

j=1

∑

e1,...,ek≥0
e1+···+ek=2 j

k∏

i=1

1

|P|ei (s+αi )

)
. (3.29)

One can see that when αi = 0 and s = 1/2, the poles only arise from the terms with
e1 + · · · + ek = 2. Define Rk,P (s;α1, · · · , αk) to be as follows:

Rk,P (s;α1, . . . , αk) = 1 +
∞∑

j=1

∑

e1,...,ek≥0
e1+···+ek=2 j

k∏

i=1

1

|P|ei (s+αi )

= 1 +
∑

e1,...,ek≥0
e1+···+ek=2

k∏

i=1

1

|P|ei (s+αi )
+ (lower-order terms)

= 1 +
∑

1≤i≤ j≤k

1

|P|2s+αi+α j
+ O

(
|P|−4s+ε

)
,

(3.30)
for R(αi ) small enough (see [7] for more details). And so, we have

Rk,P (s;α1, . . . , αk)

=
∏

1≤i≤ j≤k

(
1 + 1

|P|2s+αi+α j

)
×

(
1 + O

(
|P|−4s+ε

))
.

(3.31)

Recall that
ζA(2s)

ζA(4s)
=

∏

P monic
irreducible

(
1 + 1

|P|2s
)

(3.32)

has a simple pole as s = 1/2. Therefore,

∏

P monic
irreducible

(
1 + O

(|P|−4s+ε
))

(3.33)

is analytic inR(s) > 1/4, and
∏

P Rk,P has a pole at s = 1/2 of order k(k + 1)/2 if
αi = 0 for all i = 1, . . . , k. It remains to factor out the appropriate zeta-factors. Since
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we have
Rk(s;α1, . . . , αk) =

∏

P monic
irreducible

Rk,P (s;α1, . . . , αk), (3.34)

then from (3.31) and (3.32), we can write

Rk(s;α1, . . ., αk) =
∏

1≤i≤ j≤k

ζA(2s + αi + α j )Ak(s;α1, . . . , αk), (3.35)

where

Ak(s;α1, . . . , αk)

=
∏

P monic
irreducible

⎛

⎝Rk,P (s;α1, . . . , αk)
∏

1≤i≤ j≤k

(
1 − 1

|P|2s+αi+α j

)⎞

⎠ .

(3.36)
Notice that for some δ > 0 and for allαi ’s in some sufficiently small neighbourhood

of 0, Ak is an absolutely convergent Dirichlet series forR(s) > 1/2 + δ. Combining
(3.23) and (3.35), we have

M
( 1
2 ;α1, . . . , αk

) =
∑

εi=±1

k∏

i=1

XP
( 1
2 + εiαi

)− 1
2

∏

1≤i≤ j≤k

ζA(1 + αi + α j )

× Ak
( 1
2 ; ε1α1, . . . , εkαk

)
.

(3.37)

Hence,

∑

P∈P2g+1,q

Z
( 1
2 ;α1, . . . , αk

)

=
∑

P∈P2g+1,q

∑

εi=±1

k∏

i=1

XP
( 1
2 + εiαi

)− 1
2 Ak

( 1
2 ; ε1α1, . . . , εkαk

)

×
∏

1≤i≤ j≤k

ζA(1 + αi + α j ) (1 + o (1)) .

(3.38)

From the definition of XP (s) in (3.4), we have

XP
( 1
2 + εiαi

)− 1
2 = |P| εi αi

2 X ( 1
2 + εiαi

)− 1
2 . (3.39)
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Hence,

∑

P∈P2g+1,q

Z
( 1
2 ;α1, · · · , αk

)

=
∑

εi=±1

k∏

i=1

X ( 1
2 + εiαi

)− 1
2

∑

P∈P2g+1,q

Rk
( 1
2 ; ε1α1, · · · , εkαk

)

× |P| 12
∑k

i=1 εiαi
(
1 + o

(
1
))

.

(3.40)

We finish this section writing Ak as an Euler product in the following lemma.

Lemma 3.4 We have

Ak
( 1
2 ;α1, . . . , αk

) =
∏

P monic
irreducible

∏

1≤i≤ j≤k

(
1 − 1

|P|1+αi+α j

)

× 1

2

(
k∏

i=1

(
1 − 1

|P|1/2+αi

)−1

+
k∏

i=1

(
1 + 1

|P|1/2+αi

)−1
)

.

(3.41)

Proof Applying Ak(s;α1, . . . , αk) and Rk,P (s;α1, . . . , αk) in (3.36) and (3.30) for
s = 1/2, we have

Ak(
1
2 ;α1, . . . , αk)

=
∏

P monic
irreducible

∏

1≤i≤ j≤k

(
1 − 1

|P|1+αi+α j

)(
1 +

∞∑

j=1

∑

e1,...,ek≥0
e1+···+ek=2 j

k∏

i=1

1

|P|ei (1/2+αi )

)
.

(3.42)
By simplifying the second brackets, we obtain the result in the lemma, i.e.

1 +
∞∑

j=1

∑

e1,··· ,ek≥0
e1+···+ek=2 j

k∏

i=1

(
1

|P|(1/2+αi )

)ei

=
∞∑

j=0

1

2

(
2

∑

e1,··· ,ek≥0
e1+···+ek=2 j

k∏

i=1

(
1

|P|(1/2+αi )

)ei)

= 1

2

( k∏

i=1

∞∑

ei=0

(
1

|P|(1/2+αi )

)ei

+
k∏

i=1

∞∑

ei=0

(−1)ei
(

1

|P|(1/2+αi )

)ei)

= 1

2

( k∏

i=1

(
1 − 1

|P|1/2+αi

)−1 +
k∏

i=1

(
1 + 1

|P|1/2+αi

)−1
)

.

(3.43)

�
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3.4 The contour integral representation of the conjecture

We begin this section with Lemma 2.5.2 from [7], which helps write our conjecture
as a contour integral.

Lemma 3.5 Suppose F is a symmetric function of k variables, regular near (0, . . . , 0),
and that f (s) has a simple pole s = 0 of residue 1 and is otherwise analytic in a
neighbourhood of s = 0, and let

K (a1, . . . , ak) = F(a1, . . . , ak)
∏

1≤i≤ j≤k

f (ai + a j ), (3.44)

or
K (a1, . . . , ak) = F(a1, . . . , ak)

∏

1≤i< j≤k

f (ai + a j ). (3.45)

If αi + α j are contained in the region of analyticity of f (s), then

∑

εi=±1

K (ε1a1, . . . , εkak) = (−1)k(k−1)/2

(2π i)k
2k

k!
∮

· · ·
∮

K (z1, . . . , zk)

× 
(z21, . . . , z
2
k)

2 ∏k
i=1 zi∏k

i=1
∏k

j=1(zi − α j )(zi + α j )
dz1 · · · dzk,

(3.46)

and
∑

εi=±1

( k∏

i=1

εi

)
K (ε1a1, . . . , εkak)

= (−1)k(k−1)/2

(2π i)k
2k

k!
∮

· · ·
∮

K (z1, . . . , zk)

× 
(z21, · · · , z2k)
2 ∏k

i=1 αi
∏k

i=1
∏k

j=1(zi − α j )(zi + α j )
dz1 · · · dzk,

(3.47)

where the path of the integration encloses the ±αi s.

Recall that

∑

P∈P2g+1,q

Z
( 1
2 ;α1, . . . , αk

)

=
∑

P∈P2g+1,q

k∏

i=1

XP
( 1
2 + αi

)− 1
2 L

( 1
2 + αi , χP

)
,

(3.48)
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where XP (s) is defined in (3.4). Since XP ( 12 + αi )
− 1

2 does not depend on P , we can
factor out it, and from (3.48) and (3.40), we have

∑

P∈P2g+1,q

k∏

i=1

L
( 1
2 + αi , χP

)

=
∑

P∈P2g+1,q

|P|− 1
2

∑k
i=0 αi

k∏

i=1

X ( 1
2 + αi

) 1
2

∑

εi=±1

k∏

i=1

X ( 1
2 + εiαi

)− 1
2

× Ak
( 1
2 ;α1, · · · , αk

) |P| 12
∑k

i=0 εiαi

×
∏

1≤i< j≤k

ζA(1 + εiαi + ε jα j )
(
1 + o

(
1
))

.

(3.49)

From each term in the second product, we factor out (log q)−1 to get

∑

P∈P2g+1,q

k∏

i=1

L
( 1
2 + αi , χP

)

=
∑

P∈P2g+1,q

|P|− 1
2

∑k
i=0 αi

∏k
i=1 X

( 1
2 + αi

) 1
2

(log q)k(k+1)/2

∑

εi=±1

k∏

i=1

X ( 1
2 + εiαi

)− 1
2

× Ak
( 1
2 ;α1, . . . , αk

) |P| 12
∑k

i=0 εiαi

×
∏

1≤i< j≤k

ζA(1 + εiαi + ε jα j )(log q)
(
1 + o

(
1
))

.

(3.50)

Now, call

F(α1, . . . , αk) =
k∏

i=1

X ( 12 + αi )
− 1

2 Ak(
1
2 ;αi , . . . , αk)|P| 12

∑k
i=1 αi (3.51)

and

f (s) = ζA(1 + s) log q and so f (αi + α j ) = ζA(1 + αi + α j ) log q, (3.52)

where f (s) has a simple pole at s = 0 with residue 1.
If we denote

K (α1, . . . , αk) = F(α1, . . . , αk)
∏

1≤i≤ j≤k

f (αi + α j ), (3.53)
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then (3.50) can be written as follows:

∑

P∈P2g+1,q

k∏

i=1

L
( 1
2 + αi , χP

)

=
∑

P∈P2g+1,q

∏k
i=1 |P|− 1

2

∑k
i=0 αiX ( 1

2 + αi
) 1
2

(log q)k(k+1)/2

×
∑

εi=±1

K (ε1α1, . . . , εkαk) (1 + o (1)) .

(3.54)

Using Lemma 3.5, we have

∑

P∈P2g+1,q

k∏

i=1

L
( 1
2 + αi , χP

)

=
∑

P∈P2g+1,q

∏k
i=1 |P|− 1

2

∑k
i=0 αiX ( 1

2 + αi
) 1
2

(log q)k(k+1)/2

(−1)k(k−1)/2

(2π i)k
2k

k!

×
∮

· · ·
∮

K (z1, . . . , zk)

(z21, . . . , z

2
k)

2 ∏k
i=1 zi∏k

i=1
∏k

j=1(zi − α j )(zi + α j )
dz1 · · · dzk

×
(
1 + o

(
1
))

=
∑

P∈P2g+1,q

k∏

i=1

|P|− 1
2

∑k
i=0 αiX ( 1

2 + αi
) 1
2

(−1)k(k−1)/2

(2π i)k
2k

k!

×
∮

· · ·
∮

F(z1, . . . , zk)
∏

1≤i≤ j≤k

ζA(1 + εiαi + ε jα j )

× 
(z21, . . . , z
2
k)

2 ∏k
i=1 zi∏k

i=1
∏k

j=1(zi − α j )(zi + α j )
dz1 · · · dzk + o

(|P|)

=
∑

P∈P2g+1,q

k∏

i=1

|P|− 1
2

∑k
i=0 αiX ( 1

2 + αi
) 1
2

(−1)k(k−1)/2

(2π i)k
2k

k!

×
∮

· · ·
∮

K (z1, . . . , zk)

(z21, . . . , z

2
k)

2 ∏k
i=1 zi∏k

i=1
∏k

j=1(zi − α j )(zi + α j )
dz1 · · · dzk

+ o
(|P|)

(3.55)

with
K (z1, . . . , zk) = F(z1, . . . , zk)

∏

1≤i≤ j≤k

ζA(1 + εiαi + ε jα j ). (3.56)
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Moreover, if we denote

G(z1, . . . , zk) =
k∏

i=1

X ( 1
2 + αi

)− 1
2 Ak

( 1
2 ;αi , . . . , αk

) ∏

1≤i≤ j≤k

ζA(1 + zi + z j )

(3.57)
then (3.55) becomes

∑

P∈P2g+1,q

k∏

i=1

|P|− 1
2

∑k
i=0 αiX ( 1

2 + αi
) 1
2

(−1)k(k−1)/2

(2π i)k
2k

k!

×
∮

· · ·
∮

G(z1, . . . , zk)|P| 12
∑k

i=0 zi

(z21, . . . , z

2
k)

2 ∏k
i=1 zi∏k

i=1
∏k

j=1(zi − α j )(zi + α j )
dz1 · · · dzk

+ o
(|P|).

(3.58)
Now, letting αi → 0, we have

∑

P∈P2g+1,q

L( 12 , χP )k

=
∑

P∈P2g+1,q

(−1)k(k−1)/2

(2π i)k
2k

k!
∮

· · ·
∮

G(z1, . . . , zk)|P| 12
∑k

i=0 zi

× 
(z21, . . . , z
2
k)

2 ∏k
i=1 zi∏k

i=1 z
2k
i

dz1 · · · dzk + o
(|P|).

(3.59)

Calling

Qk(x) = (−1)k(k−1)/2

(2π i)k
2k

k!
∮

· · ·
∮

G(z1, . . . , zk)

× q
x
2

∑k
i=0 zi


(z21, . . . , z
2
k)

2 ∏k
i=1 zi∏k

i=1 z
2k
i

dz1 · · · dzk,
(3.60)

we obtain the formula of the Conjecture 2.2, i.e.

∑

P∈P2g+1,q

L( 12 , χP )k =
∑

P∈P2g+1,q

Qk(logq |P|) (1 + o (1)) . (3.61)

4 Some conjectural formulae for moments of L-functions associated
with �P

We use Conjecture 2.2 to obtain explicit conjectural values for several moments of
quadratic Dirichlet L-functions associated with χP over function fields.
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4.1 First moment

We will use Conjecture 2.2 when k = 1 to compute the first moment of our family of
L-functions, then compare the result with that of Andrade and Keating proved in [3].
For k = 1, the formula in Conjecture 2.2 gives

∑

P∈P2g+1,q

L
( 1
2 , χP

) =
∑

P∈P2g+1,q

Q1
(
logq |P|)(1 + o(1)

)
, (4.1)

where Q1(x) is polynomial of degree 1. From the contour integral formula for Qk(x)
in (2.14), we have

Q1(x) = 1

π i

∮
G(z1)
(z21)

2

z1
q

x
2 z1 dz1, (4.2)

where

G(z1) = A
( 1
2 ; z1

)X ( 1
2 + z1

)− 1
2 ζA(1 + 2z1). (4.3)

Recall that, the Vandermonde determinant is defined


(z1, . . . , zk) =
∏

1≤i< j≤k

(z j − zi ), (4.4)

which for k = 1 is equal to

(z21)

2 = 1, (4.5)

and

X ( 1
2 + z1

)− 1
2 = q−z1/2. (4.6)

Therefore, (4.2) becomes

Q1(x) = 1

π i

∮
A

( 1
2 ; z1

)
ζA(1 + 2z1)

z1
q

x−1
2 z1 dz1, (4.7)

with

A
( 1
2 ; z1

) =
∏

P monic
irreducible

(
1 − 1

|P|1+2z1

)

× 1

2

((
1 − 1

|P|1/2+z1

)−1

+
(
1 + 1

|P|1/2+z1

)−1
)

.

(4.8)

In order to compute the integral in (4.7) where the contour is a small circle around
the origin, we need to locate the poles of the integrand. So let

f (z1) = A
( 1
2 ; z1

)
ζA(1 + 2z1)

z1
q

x−1
2 z1 , (4.9)

note that the zeta-function ζA(1+ 2z1) has a simple pole at z1 = 0, which means that
f (z1) has a pole of order 2 at z1 = 0. We compute the residue by expand f (z1) as a
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Laurent series and consider the coefficient of z−1
1 . Expanding the numerator of f (z1)

around z1 = 0, we have

(1)

A
( 1
2 ; z1

) = A
( 1
2 ; 0

) + A′ ( 1
2 ; 0

)
z1 + 1

2
A′′ ( 1

2 ; 0
)
z21 + · · ·

(2)

ζA(1 + 2z1) = 1

2 log q

1

z1
+ 1

2
+ 1

6
(log q)z1 − 1

90
(log q)3z31 + · · ·

(3)

q
x−1
2 z1 = 1 + 1

2
(x − 1)(log q)z1 + 1

8
(x − 1)2(log q)2z21 + · · ·

Hence, f (z1) can be written as follows:

f (z1) =
(
A( 12 ; 0)

1

z1
+ A′( 12 ; 0) + 1

2
A′′( 12 ; 0)z1 + · · ·

)

×
( 1

2 log q

1

z1
+ 1

2
+ 1

6
(log q)z1 − 1

90
(log q)3z31 + · · ·

)

×
(
1 − 1

2
(log q)z1 + 1

8
(log q)2z21 + · · ·

)

×
(
1 + 1

2
(log q)xz1 + 1

8
(log q)2x2z21 + · · ·

)
.

(4.10)

Considering the coefficient of z−1
1 , we have

Res
z1=0

f (z1) = 1

4
(1 + x)A

( 1
2 ; 0

) + 1

2 log q
A′ ( 1

2 ; z1
)
. (4.11)

After straightforward calculations, using the definition for Ak
( 1
2 , z1, . . . , zk

)
, we

have
A

( 1
2 ; z1

) = 1 and A′ ( 1
2 ; z1

) = 0, (4.12)

and so

Res
z1=0

f (z1) = 1

4
(1 + x). (4.13)

Hence, we have

Q1(x) = 1

4π i
(1 + x)

∮
1 dz1

= 1

2
(1 + x).

(4.14)
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Finally, we can write the first moment as follows:

∑

P∈P2g+1,q

L
( 1
2 , χP

) =
∑

P∈P2g+1,q

Q1(logq |P|) (1 + o (1))

=
∑

P∈P2g+1,q

1

2

(
1 + logq |P|) (1 + o (1))

= |P|
2 logq |P|

(
1 + logq |P|) + o

(|P|).

(4.15)

If we compare Theorem 2.4 of [3] with the conjecture, we can see that the main
term and the principal lower-order terms are the same. In other words, Theorem 2.4
of [3] proves our conjecture with an error O

(|P|3/4+ε
)
. In the next two sections, we

use our conjecture to determine the asymptotic of the second and third moments of
our family of L-functions, and it can be seen that the polynomials Q2(x) and Q3(x)
in (4.22) and (4.25) are similar to ones in [4].

4.2 Secondmoment

For k = 2, the conjecture 2.2 gives

∑

P∈P2g+1,q

L
( 1
2 , χP

)2 =
∑

P∈P2g+1,q

Q2
(
logq |P|) (1 + o(1)) , (4.16)

where Q2(x) is a polynomial of degree 3, given by

Q2(x) = −1

2π2

∮ ∮
G(z1, z2)
(z21, z

2
2)

2

z31z
3
2

q
x
2 (z1+z2) dz1 dz2, (4.17)

with

G(z1, z2) = A
( 1
2 ; z1, z2

)X ( 1
2 + z1

)− 1
2 X ( 1

2 + z2
)− 1

2

× ζA(1 + 2z1)ζA(1 + z1 + z2)ζA(1 + 2z2), (4.18)

X ( 1
2 + z1

)− 1
2 X ( 1

2 + z2
)− 1

2 = q− 1
2 (z1+z2), (4.19)

and



(
z21, z

2
2

)2 =
(
z22 − z21

)2
. (4.20)

If

f (z1, z2) = A
( 1
2 ; z1, z2

)
ζA(1 + 2z1)ζA(1 + z1 + z2)ζA(1 + 2z2)(z22 − z21)

2

z31z
3
2

× q
x−1
2 (z1+z2),

(4.21)
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then we have

Q2(x) = −1

2π2

∮ ∮
f (z1, z2) dz1 dz2

= 1

24 log3(q)

(
(x3 + 6x2 + 11x + 6)A(1/2; 0, 0) log3(q)

+ (3x2 + 12x + 11)

× log2(q)(A1(
1
2 ; 0, 0) + A2(

1
2 ; 0, 0)) + 12(2 + x) log(q)A12(

1
2 ; 0, 0)

− 2(A222(
1
2 ; 0, 0) − 3A122(

1
2 ; 0, 0) − 3A112(

1
2 ; 0, 0) + A111(

1
2 ; 0, 0))

)
,

(4.22)
where A j is the partial derivative, evaluates at zero, of the function A

( 1
2 ; z1, · · · , zk

)

with respect to j th variable, with indices denoting higher derivatives, i.e.

A122
( 1
2 ; 0, . . . , 0

) = ∂

∂z1

∂2

∂z22
A

( 1
2 ; z1, . . . , zk

)
∣∣∣∣
z1=z2=···=zk=0

.

Hence, we can write the leading order asymptotic for the second moment for the
family of L-function when g → ∞ as

∑

P∈P2g+1,q

L( 12 , χP )2 ∼ 1

24ζA(2)
|P|(logq |P|)2. (4.23)

Comparing with Andrade and Keating result (Theorem 2.5 of [3]), we see that their
theorem proves our conjecture with an error O

(|P| logq |P|) .

4.3 Thirdmoment

For the third moment, Conjecture 2.2 states that

∑

P∈P2g+1,q

L
( 1
2 , χP

)3 =
∑

P∈P2g+1,q

Q3
(
logq |P|)(1 + o(1)

)
, (4.24)

where Q3(x) is a polynomial of degree 3.
Thus, with the help of the symbolic manipulation software Mathematica, we com-

pute the triple contour integral and obtain

Q3(x) = 1
8640 log6(q)

(
3(x + 3)2

(
x4 + 12x3 + 49x2 + 78x + 40

)
A(0, 0, 0) log6(q)

+ 4
(
3x5 + 45x4 + 260x3 + 720x2 + 949x + 471

) (
A3(0, 0, 0) + A2(0, 0, 0)

+A1(0, 0, 0)
)
log5(q) + 4

(
15x4 + 180x3 + 780x2 + 1440x + 949

) (
A23(0, 0, 0)

+A13(0, 0, 0) + A12(0, 0, 0)
)
log4(q) − 10

(
x3 + 9x2 + 26x + 24

) (
2A333(0, 0, 0)

123



50 J. C. Andrade et al.

− 3A233(0, 0, 0) − 3A223(0, 0, 0)

+ 2A222(0, 0, 0) − 3A133(0, 0, 0) − 36A123(0, 0, 0)

− 3A122(0, 0, 0) − 3A113(0, 0, 0) − 3A112(0, 0, 0) + 2A111(0, 0, 0)
)
log3(q)

− 20
(
3x2 + 18x + 26

) (
A2333(0, 0, 0) + A2223(0, 0, 0)

+ A1333(0, 0, 0) − 6A1233(0, 0, 0)

− 6A1223(0, 0, 0) + A1222(0, 0, 0) − 6A1123(0, 0, 0)

+ A1113(0, 0, 0) + A1112(0, 0, 0)
)

× log2(q) + 6(x + 3)
(
2A33333(0, 0, 0) − 5A23333(0, 0, 0)

− 10A22333(0, 0, 0) − 10A22233(0, 0, 0)

− 5A22223(0, 0, 0) + 2A22222(0, 0, 0) − 5A13333(0, 0, 0)

+ 60A12233(0, 0, 0) − 5A12222(0, 0, 0)

− 10A11333(0, 0, 0) + 60A11233(0, 0, 0)

+ 60A11223(0, 0, 0) − 10A11222(0, 0, 0)

− 10A11133(0, 0, 0) − 10A11122(0, 0, 0)

− 5A11113(0, 0, 0) − 5A11112(0, 0, 0) + 2A11111(0, 0, 0)
)
log(q)

+4
(
3A233333(0, 0, 0) − 20A222333(0, 0, 0) + 3A222223(0, 0, 0)

+3A133333(0, 0, 0) − 30A123333(0, 0, 0)

+30A122333(0, 0, 0) + 30A122233(0, 0, 0)

−30A122223(0, 0, 0) + 3A122222(0, 0, 0)

+30A112333(0, 0, 0) + 30A112223(0, 0, 0)

−20A111333(0, 0, 0) + 30A111233(0, 0, 0)

+30A111223(0, 0, 0) − 20A111222(0, 0, 0)

−30A111123(0, 0, 0) + 3A111113(0, 0, 0) + 3A111112(0, 0, 0)
))

, (4.25)

where A
( 1
2 ; z1, z2, z3

)
is defined in Lemma 3.4. Hence, the leading order asymptotic

for the third moment for our family of L-functions is given by

∑

P∈P2g+1,q

L
( 1
2 , χP

)3 ∼ 1

2880
|P|A( 12 ; 0, 0, 0)(logq |P|)5, (4.26)

where

A( 12 ; 0, 0, 0) =
∏

P monic
irreducible

(
1 − 6|P|2 − 8|P| + 3

|P|4
)

. (4.27)
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4.4 Leading order for general k

The main aim in this section is to obtain a conjecture for the leading order asymptotics
of the moments for a general integer k. The calculations presented here are based
on the calculations first presented in [1,26]. To obtain the main formula we need the
following lemma.

Lemma 4.1 Let F be a symmetric function of k variables, regular near (0, · · · , 0)
and f (s) has a simple pole of residue 1 at s = 0 and analytic in a neighbourhood of
s = 0. Let

K (|P|;w1, . . . , wk) =
∑

εi=±1

e
1
2 log |P| ∑k

i=1 εiwi F (ε1w1, . . . , εkwk)

×
∏

1≤i≤ j≤k

f
(
εiwi + ε jw j

)
,

(4.28)

and define I (|P|, k;w = 0) to be the value of K when w1, . . . , wk = 0. We have that

I (|P|, k; 0) ∼
(
1

2
log |P|

)k(k+1)/2

F(0, . . . , 0)2k(k+1)/2.

(
k∏

i=1

i !
(2i)!

)

. (4.29)

Proof See Lemma 5 in [4].

We are in a position to obtain the desired formula, from (3.55) recall that

∑

P∈P2g+1,q

k∏

i=1

L( 12 + αi , χP )

=
∑

P∈P2g+1,q

k∏

i=1

|P|− 1
2

∑k
i=0 αiX ( 12 + αi )

1
2

(log q)k(k+1)/2

∑

εi=±1

K (ε1α1, . . . , εkαk)
(
1 + o

(
1
))

,

(4.30)
where

K (ε1α1, . . . , εkαk)

=
∑

εi=±1

k∏

i=1

X ( 12 + εiαi )
− 1

2 Ak(
1
2 ;α1, . . . , αk)|P| 12

∑k
i=0 εiαi

×
∏

1≤i< j≤k

ζA(1 + εiαi + ε jα j )(log q).

(4.31)

123



52 J. C. Andrade et al.

Applying the above Lemma with

f (s) = ζA(1 + s) log q,

F (w1, . . . , wk) =
k∏

i=1

X ( 12 + αi )
− 1

2 Ak
( 1
2 ;w1, . . . , wk

)
,

K (|P|;w1, . . . , wk) =
∑

εi=±1

|P| 12
∑k

i=1 εiwi F (ε1w1, . . . , εkwk)

×
∏

1≤i≤ j≤k

f
(
εiwi + ε jw j

)
,

and letting α1, . . . , αk → 0, we obtain

∑

P∈P2g+1,q

L( 12 , χP )k ∼
∑

P∈P2g+1,q

1

(log q)k(k+1)/2

(
1

2
log |P|

) k(k+1)
2

× A( 12 ; 0, . . . , 0)2
k(k+1)

2

k∏

i=1

i !
(2i)! ,

(4.32)

as g → ∞. Summing over P , we get that

∑

P∈P2g+1,q

L( 12 ;χP )k ∼
∑

P∈P2g+1,q

(
logq |P|) k(k+1)

2 Ak(
1
2 ; 0, . . . , 0)

k∏

i=1

i !
(2i)!

= |P| (logq |P|) k(k+1)
2 −1

Ak(
1
2 ; 0, . . . , 0)

k∏

i=1

i !
(2i)! .

(4.33)

Hence, we have proved the following.

Theorem 4.2 Conditional on Conjecture 2.2, we have that as g → ∞, the following
holds:

∑

P∈P2g+1,q

L( 12 , χP )k ∼ |P| (logq |P|) k(k+1)
2 −1

A( 12 ; 0, . . . , 0)
k∏

i=1

i !
(2i)! . (4.34)

4.4.1 Some conjectural values for leading order asymptotic for the moments of
L(s,�P)

We end this section by writing the asymptotic formula for the fourth and the fifth
moment for our family of L-functions. Theorem 4.2 implies that the leading order for
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the fourth moment can be written as follows:

∑

P∈P2g+1,q

L
( 1
2 , χP

)4 ∼ |P| (logq |P|)9 A ( 1
2 ; 0, 0, 0, 0

) 4∏

i=1

i !
(2i)!

= 1

4838400
|P| (logq |P|)9 A ( 1

2 ; 0, 0, 0, 0
)
,

(4.35)

where

A
( 1
2 ; 0, 0, 0, 0

)

=
∏

P monic
irreducible

(

1 − 20|P|6 − 64|P|5 + 90|P|4 − 64|P|3 + 20|P|2 − 1

|P|8
)

,

and the leading order for the fifth moment is

∑

P∈P2g+1,q

L
( 1
2 , χP

)5

∼ |P| (logq |P|)14 A ( 1
2 ; 0, 0, 0, 0, 0

) 5∏

i=1

i !
(2i)!

= 1

146313216000
|P| (logq |P|)14

∏

P monic
irreducible

(
1 − h(|P|)

|P|12
)

.

(4.36)

with

h(x) = 50x10 − 280x9 + 765x8 − 1248x7 + 1260x6 − 720x5

+ 105x4 + 160x3 − 126x2 + 40x − 5.
(4.37)

5 Ratios conjecture for L-functions over function fields

The main aim of this section is to obtain a conjectural asymptotic formula for

∑

P∈P2g+1,q

∏K
k=1 L( 12 + αk, χP )

∏Q
q=1 L( 12 + γq , χP )

, (5.1)

where P2g+1,q = {P monic, P irreducible, deg(P) = 2g + 1, P ∈ Fq [T ]}, and
P = {L(s, χP ) : P ∈ P2g+1,q}. We adapt the original recipe of Conrey, Farmer and
Zirnbauer [8] for this family of L-functions.
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The idea is to replace the L-functions in the numerator by their “approximate”
functional equation:

L(s, χP ) =
∑

n monic
deg(n)≤g

χP (n)

|n|s + XP (s)
∑

n monic
deg(n)≤g−1

χP (n)

|n|1−s
, (5.2)

and expand the L-functions in the denominator into the series

1

L(s, χP )
=

∏

P monic
irreducible

(
1 − χP (P)

|P|s
)

=
∑

n monic

μ(n)χP (n)

|n|s , (5.3)

where μ(n) and χP (n) are defined in Sect. 2.
As in the previous section, we apply the recipe to the quantity

∑

P∈P2g+1,q

∏K
k=1 ZL( 12 + αk, χP )

∏Q
q=1 L( 12 + γq , χP )

, (5.4)

where ZL(s, χP ) is defined in (3.7) with “approximate” functional equation given by
(3.11). Now expanding the denominator, we get

∑

P∈P2g+1,q

∏K
k=1 ZL( 12 + αk, χP )

∏Q
q=1 L( 12 + γq , χP )

=
∑

P∈P2g+1,q

K∏

k=1

ZL( 12 + αk, χP )
∑

h1,...,hQ
hq monic

μ(h1) · · · μ(hQ)χP (h1 · · · hQ)

|h1| 12+γ1 · · · |hQ | 12+γQ
.

(5.5)
Making use of the “approximate” functional equation (5.2), we have

K∏

k=1

ZL( 12 + αk, χP )

=
∑

εk∈{−1,1}K

K∏

k=1

XP ( 12 + εkαk)
− 1

2
∑

m1,...,mK
mi monic

χP (m1 · · ·mK )

|m1| 12+ε1α1 · · · |mK | 12+εK αK
,

(5.6)
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so we can write (5.5) as follows:

∑

P∈P2g+1,q

∏K
k=1 ZL( 12 + αk, χP )

∏Q
q=1 L( 12 + γq , χP )

=
∑

P∈P2g+1,q

∑

εk∈{−1,1}K

K∏

k=1

XP ( 12 + εkαk)
− 1

2

×
∑

m1,··· ,mK
h1,··· ,hQ

mi ,h j monic

∏Q
q=1 μ(hq)χP (

∏K
k=1 mk

∏Q
q=1 hq)

∏K
k=1 |mk | 12+εkαk

∏Q
q=1 |hq | 12+γq

.

(5.7)

Following the recipe, we replace each summand by its expected value when aver-
aged over primes P ∈ P2g+1,q , in other words, we have that

lim
deg(P)→∞

(
1

#P2g+1,q

∑

P∈P2g+1,q

∑

εk∈{−1,1}K

K∏

k=1

XP ( 12 + εkαk)
− 1

2

×
∑

m1,...,mK
h1,...,hQ

mi ,h j monic

∏Q
q=1 μ(hq)χP (

∏K
k=1 mk

∏Q
q=1 hq)

∏K
k=1 |mk | 12+εkαk

∏Q
q=1 |hq | 12+γq

)

=
∑

εk∈{−1,1}K

K∏

k=1

XP ( 12 + εkαk)
− 1

2

×
∑

m1,...,mK
h1,...,hQ

mi ,h j monic

∏Q
q=1 μ(hq)δ

(∏K
k=1mk

∏Q
q=1 hq

)

∏K
k=1 |mk | 12+εkαk

∏Q
q=1 |hq | 12+γq

,

(5.8)

where δ(n) = 1 if n is a square and 0 otherwise.
Next we factor out the zeta-function factors. Note that, the main difficulty here is to

identify and factor out the appropriate zeta-functions factors that contribute to poles
and zeros. With the same notation used in [1], we define the following series:

GP(α; γ ) =
∑

m1,...,mK
h1,...,hQ

mi ,h j monic

∏Q
q=1 μ(hq)δ

(∏K
k=1mk

∏Q
q=1 hq

)

∏K
k=1 |mk | 12+εkαk

∏Q
q=1 |hq | 12+γq

. (5.9)
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If mk = ∏
P Pak and hq = ∏

P Pcq , then we can write GP(α; γ ) as a convergent
Euler product provided that R(αk) > 0 and R(γq) > 0,

GP(α; γ )

=
∏

P monic
irreducible

⎛

⎜
⎝1 +

∑

0<
∑

k ak+
∑

q cq is even

∏Q
q=1 μ(Pcq )

|P|
∑

k ak (
1
2+αk )+∑

q cq ( 12+γq )

⎞

⎟
⎠ .

(5.10)

We now write GP in terms of the zeta-function of Fq [T ]. First, we express the
contribution of all poles and zeros of (5.10) in terms of ζA(s) by rewriting the Euler
product in (5.10) as follows:

GP(α; γ ) =
∏

P monic
irreducible

(
1 +

∑

j,k
j<k

1

|P|( 12+α j )+( 12+αk )
+

∑

k

1

|P|(1+2αk)

+
∑

r ,q
r<q

μ(P)2

|P|( 12+γr )+( 12+γq )
+

∑

k

∑

q

μ(P)

|P|( 12+αk )+( 12+γq )
+ · · ·

)
,

(5.11)

where · · · are referring to the convergent terms. Recall that

ζA(s) =
∏

P monic
irreducible

(
1 − 1

|P|s
)−1

=
∏

P monic
irreducible

⎛

⎝
∞∑

j=0

(
1

|P|s
) j

⎞

⎠ . (5.12)

We can see from (5.11) that the termswith
∑K

k=1 ak+
∑Q

q=1 cq = 2 contribute to the
poles and zeros. The poles are coming from the terms with a j = ak = 1, 1 ≤ j < k ≤
K , ak = 2, 1 ≤ k ≤ K , and also from the terms with cr = cq = 1, 1 ≤ r < q ≤ Q.
Note that there are no poles coming from the terms with cq = 2, 1 ≤ q ≤ Q,

since μ(P2) = 0. Moreover, the zeros come from the terms with ak = cq = 1 with
1 ≤ k ≤ K , and 1 ≤ q ≤ Q.

From the above, we can define the function YP(α; γ ) in terms of ζA(s) by

YP(α; γ ) :=
∏

1≤ j≤k≤K ζA(1 + α j + αk)
∏

1≤r≤q≤Q ζA(1 + γr + γq)
∏k

k=1
∏Q

q=1 ζA(1 + αk + γq)
. (5.13)

Thus, we can factor out YP(α; γ ) from GP(α; γ ), such that

GP(α; γ ) = YP(α; γ )AP(α; γ ), (5.14)
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where AP(α; γ ) is the Euler product that converges absolutely for all of the variables
in the small discs around 0:

AP(α; γ )

=
∏

P monic
irreducible

∏
1≤ j≤k≤K

(
1 − 1

|P|1+α j+αk

)
∏

1≤r≤q≤Q

(
1 − 1

|P|1+γr+γq

)

∏k
k=1

∏Q
q=1

(
1 − 1

|P|1+αk+γq

)

×
⎛

⎜
⎝1 +

∑

0<
∑

k ak+
∑

q cq is even

∏Q
q=1 μ(Pcq )

|P|
∑

k ak (
1
2+αk )+∑

q cq ( 12+γq )

⎞

⎟
⎠ .

(5.15)

Returning to the recipe, we can conclude from (5.7), (5.9), and (5.14) that

∑

P∈P2g+1,q

∏K
k=1 ZL( 12 + αk, χP )

∏Q
q=1 L( 12 + γq , χP )

=
∑

P∈P2g+1,q

∑

εk∈{−1,1}K

K∏

k=1

XP
( 1
2 + εkαk

)− 1
2 YP(ε1α1, · · · , εkαk; γ )

× AP(ε1α1, · · · , εkαk; γ ) + o (|P|) ,

(5.16)

Now, using (3.7), we have

∑

P∈P2g+1,q

∏K
k=1 L( 12 + αk, χP )

∏Q
q=1 L( 12 + γq , χP )

=
∑

P∈P2g+1,q

∑

εk∈{−1,1}K

K∏

k=1

XP
( 1
2 + αk

) 1
2 XP

( 1
2 + αk

)− 1
2

× YP(ε1α1, . . . , εkαk; γ )AP(ε1α1, . . . , εkαk; γ ) + o (|P|) .

(5.17)

Remembering that

XP (s) = |P| 12−sX (s) (5.18)

with
X (s) = q− 1

2+s, (5.19)

we have that
K∏

k=1

XP
( 1
2 + εkαk

)− 1
2 XP

( 1
2 + εkαk

) 1
2

= |P| 12
∑K

k=1(εkαk−αk )
K∏

k=1

X ( 1
2 + αk−εkαk

2

)
.

(5.20)
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For positive real parts of αk and γq , we have

∑

P∈P2g+1,q

∏K
k=1 L( 12 + αk, χP )

∏Q
q=1 L( 12 + γq , χP )

=
∑

P∈P2g+1,q

∑

εk∈{−1,1}K
|P| 12

∑K
k=1(εkαk−αk )

K∏

k=1

X ( 1
2 + αk−εkαk

2

)

× YP(ε1α1, . . . , εkαk; γ )AP(ε1α1, . . . , εkαk; γ ) + o (|P|) .

(5.21)

Finally, if we let

HP,|P|,α,γ (w; γ ) = |P| 12
∑k

k=1 wk

K∏

k=1

X ( 1
2 + αk−wk

2

)

× YP(w; γ )AP(w; γ ),

(5.22)

then the conjecture may be formulated as follows:

∑

P∈P2g+1,q

∏K
k=1 L( 12 + αk, χP )

∏Q
q=1 L( 12 + γq , χP )

=
∑

P∈P2g+1,q

|P|− 1
2

∑K
k=1 αk

∑

ε∈{−1,1}K
HP,|P|,α,γ (εα; γ ) + o (|P|) .

(5.23)

5.1 Refinements of Conjecture

In this section, we state the final form of our ratios conjecture. In the first part, we
derive a closed form expression for the Euler product AP(α; γ ), and in the second
part, we express the combinatorial sum as a multiple integral.

5.1.1 Closed form expression for AP

Suppose that f (x) = 1 + ∑∞
n=1 unx

n , then

∑

n even

unx
n = 1

2
( f (x) + f (−x) − 2) , (5.24)
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and so, let

f

(
1

|P|
)

=
∑

ak ,cq

∏Q
q=1 μ(Pcq )

|P|
∑

k ak(
1
2+αk )+∑

q cq ( 12+γq )

=
∑

ak

K∏

k=1

1

|P|ak( 12+αk )

∑

cq

Q∏

q=1

μ(Pcq )

|P|cq ( 12+γq )

=
∏Q

q=1

(
1 − 1

|P| 12+γq

)

∏K
k=1

(
1 − 1

|P| 12+αk

) .

(5.25)

Using the above equations, we can establish the following lemma.

Lemma 5.1 We have that,

1 +
∑

∑
k ak+

∑
q cq even

∏Q
q=1 μ(Pcq )

|P|
∑

k ak(
1
2+αk )+∑

q cq ( 12+γq )

= 1

2

⎛

⎜⎜
⎝

∏Q
q=1

(
1 − 1

|P| 12+γq

)

∏K
k=1

(
1 − 1

|P| 12+αk

) +
∏Q

q=1

(
1 + 1

|P| 12+γq

)

∏K
k=1

(
1 + 1

|P| 12+αk

)

⎞

⎟⎟
⎠ .

(5.26)

The following result is a direct corollary from Lemma 5.1 and Eq. (5.15).

Corollary 5.2

AP(α; γ ) =
∏

P monic
irreducible

∏
1≤ j≤k≤K

(
1 − 1

|P|1+α j+αk

)
∏

1≤r≤q≤Q

(
1 − 1

|P|1+γr+γq

)

∏k
k=1

∏Q
q=1

(
1 − 1

|P|1+αk+γq

)

×

⎛

⎜⎜
⎝
1

2

⎛

⎜⎜
⎝

∏Q
q=1

(
1 − 1

|P| 12+γq

)

∏K
k=1

(
1 − 1

|P| 12+αk

) +
∏Q

q=1

(
1 + 1

|P| 12+γq

)

∏K
k=1

(
1 + 1

|P| 12+αk

)

⎞

⎟⎟
⎠

⎞

⎟⎟
⎠ .

(5.27)

5.1.2 The final form of the ratios conjecture

To obtain our final form of the Ratios Conjecture 2.3, we need the following lemma
(Lemma 6.8, [8]).

Lemma 5.3 Suppose that F(z) = F(z1, · · · , zK ) is a function of K variables, which
is symmetric and regular near (0, · · · , 0). Suppose further that f (s) has a simple pole
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of residue 1 at s = 0 but is otherwise analytic in |s| ≤ 1. Let either

H(z1, . . . , zK ) = F(z1, . . . , zK )
∏

1≤ j≤k≤K

f (z j + zk) (5.28)

or
H(z1, . . . , zK ) = F(z1, . . . , zK )

∏

1≤ j<k≤K

f (z j + zk). (5.29)

If |αk | < 1, then

∑

ε∈{−1,1}K
H(ε1α1, . . . , εKαK )

= (−1)K (K−1)/22K

K !(2π i)K
∫

|zi |=1

H(z1, . . . , zK )
(z21, . . . , z
2
K )2

∏K
k=1 zk∏K

j=1
∏K

k=1(zk − α j )(zk + α j )
dz1 · · · dzK

(5.30)

and
∑

ε∈{−1,1}K
sgn(ε)H(ε1α1, . . . , εKαK )

= (−1)K (K−1)/22K

K !(2π i)K
∫

|zi |=1

H(z1, . . . , zK )
(z21, . . . , z
2
K )2

∏K
k=1 αk

∏K
j=1

∏K
k=1(zk − α j )(zk + α j )

dz1 · · · dzK .

(5.31)
Now, we are in a position to present the final form of the ratios conjecture 2.3.

Conjecture 5.4 Suppose that the real parts of αk and γq are positive. Then we have,

∑

P∈P2g+1,q

∏K
k=1 L

( 1
2 + αk, χP

)

∏Q
q=1 L

( 1
2 + γq , χP

)

=
∑

P∈P2g+1,q

|P|− 1
2

∑K
k=1 αk

(−1)K (K−1)/22K

K !(2π i)K

×
∫

|zi |=1

HP,|P|,α,γ (z1, . . . , zK )
(z21, . . . , z
2
K )2

∏K
k=1 zk∏K

j=1
∏K

k=1(zk − α j )(zk + α j )
dz1 · · · dzK

+ o(|P|).

(5.32)

6 One-level density

In this section, we give an application of the Ratios Conjecture 2.3 for L-functions
over function fields.We compute a smooth linear statistic, the one-level density for the
family of quadratic Dirichlet L-functions associated with monic irreducible polyno-
mials in Fq [T ]. The one-level density for the family of quadratic Dirichlet L-functions
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over fundamental discriminants was computed using the rations conjecture by Conrey
and Snaith [15] in the number field setting and by Andrade and Keating [4] in the
function field setting.

Consider

RP (α; γ ) =
∑

P∈P2g+1,q

L( 12 + α, χP )

L( 12 + γ, χP )
. (6.1)

Using the ratios conjecture as presented in the last section with one L-function in the
numerator and one L-function in the denominator, we arrive at the following particular
conjecture.

Conjecture 6.1 With − 1
4 < R(α) < 1

4 ,
1

log |P| � R(γ ) < 1
4 and I(α),I(γ ) �ε

|P|1−ε for every ε > 0, we have

RP (α; γ ) =
∑

P∈P2g+1,q

L( 12 + α, χP )

L( 12 + γ, χP )

=
∑

P∈P2g+1,q

(
ζA(1 + 2α)

ζA(1 + α + γ )
+ |P|−αX ( 1

2 + α
)

× ζA(1 − 2α)

ζA(1 − α + γ )

)
+ o (|P|) .

(6.2)

To compute the one-level density, we need to have a formula for

∑

P∈P2g+1,q

L ′( 12 + r , χP )

L( 12 + r , χP )
= d

dα
RP (α; γ )

∣
∣∣
α=γ=r

. (6.3)

A direct calculation gives

d

dα

(
ζA(1 + 2α)

ζA(1 + α + γ )

) ∣
∣∣∣
α=γ=r

= ζ ′
A(1 + 2r)

ζA(1 + 2r)
(6.4)

and that
d

dα

(
|P|−αX ( 12 + α)

ζA(1 − 2α)

ζA(1 − α + γ )

)∣
∣∣∣
α=γ=r

= − (log q) |P|−rX ( 1
2 + r

)
ζA(1 − 2r).

(6.5)

Therefore, the ratios conjecture implies that the following result holds.
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Theorem 6.2 Assuming Conjecture 6.1, 1
log |P| � R(r) < 1

4 and I(r) �ε |P|1−ε for
every ε > 0, we have

∑

P∈P2g+1,q

L ′( 12 + r , χP )

L( 12 + r , χP )

=
∑

P∈P2g+1,q

(ζ ′
A(1 + 2r)

ζA(1 + 2r)
− (log q) |P|−rX ( 1

2 + r
)

× ζA(1 − 2r)
)

+ o (|P|) .

(6.6)

We have available all the necessary machinery to derive the formula for the one-
level density for the zeros of Dirichlet L-functions associated to quadratic characters
χP with P ∈ P2g+1,q , complete with lower-order terms.

Let γP be the ordinate of a generic zero of L(s, χP ) on the half-line. Since L(s, χP )

is a function of u = q−s and periodic with period 2π i/ log q, we can restrict our
analysis of the zeros for the range −π i/ log q ≤ I(s) ≤ π i/ log q. Consider the
one-level density

S1( f ) :=
∑

P∈P2g+1,q

∑

γP

f (γP ), (6.7)

where f is an even 2π/ log q-periodic test functions and holomorphic.
Using Cauchy’s Theorem, we have

S1( f ) =
∑

P∈P2g+1,q

1

2π i

(∫

(c)
−

∫

(1−c)

)
L ′(s, χP )

L(s, χP )
f (−i (s − 1/2)) ds, (6.8)

where (c) is the vertical line from c−π i/ log q to c+π i/ log q and 1/2+1/ log |P| <

c < 3/4. For the integral on the (c)-line,wemake the following variable change, letting
s → c + i t , so

1

2π

∫ π/ log q

−π/ log q
f (−i(i t + c − 1/2))

∑

P∈P2g+1,q

L ′(c + i t, χP )

L(c + i t, χP )
dt . (6.9)

Since the integrand is regular at t = 0, we move the path of the integration to
c = 1/2 and replace the sum over P by Theorem 6.2 to obtain

1

2π

∫ π/ log q

−π/ log q
f (t)

∑

P∈P2g+1,q

(
ζ ′
A(1 + 2i t)

ζA(1 + 2i t)

− (log q) |P|−i tX
(
1

2
+ i t

)
ζA(1 − 2i t)

)
dt + o (|P|) .

(6.10)
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The functional equation (2.10) implies that

L ′(1 − s, χP )

L(1 − s, χP )
= X ′

P (s)

XP (s)
− L ′(s, χP )

L(s, χP )
(6.11)

with
X ′

P (s)

XP (s)
= − log |P| + X ′(s)

X (s)
. (6.12)

For the integral on the (1−c)-line, we change variables, letting s → 1−s, then use
(6.11) and with the similar calculations as for the integral on the (c)-line, we obtain
the following theorem.

Theorem 6.3 Assuming the ratios Conjecture 6.1, we have that

S1( f ) =
∑

P∈P2g+1,q

∑

γP

f (γP )

= 1

2π

∫ π/ log q

−π/ log q
f (t)

∑

P∈P2g+1,q

(
log |P| + X ′( 12 − i t)

X ( 12 − i t)

+ 2

(
ζ ′
A(1 + 2i t)

ζA(1 + 2i t)
− (log q) |P|−i tX ( 1

2 + i t
)
ζA(1 − 2i t)

))
dt

+ o (|P|) ,

(6.13)

where γP is the ordinate of a generic zero of L(s, χP ) and f is an even and periodic
suitable test function.

6.1 The scaled one-level density

Defining

f (t) = h

(
t(2g log q)

2π

)
(6.14)

and scaling the variable t from Theorem 6.3 as

τ = t(2g log q)

2π
, (6.15)
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we have that

∑

P∈P2g+1,q

∑

γP

f

(
γP

2g log q

2π

)

= 1

2g log q

∫ g

−g
h(τ )

∑

P∈P2g+1,q

(
log |P| +

X ′
(
1
2 − 2π iτ

2g log q

)

X
(
1
2 − 2π iτ

2g log q

)

+ 2

(ζ ′
A

(
1 + 4π iτ

2g log q

)

ζA

(
1 + 4π iτ

2g log q

) − (log q) e(−2π iτ/2g log q) log |P|X
(
1
2 + 2π iτ

2g log q

)

× ζA

(
1 − 4π iτ

2g log q

) ))
dτ + o (|P|) .

(6.16)

Writing

ζA(1 + s) = 1

s log q
+ 1

2
+ 1

12
(log q)s + O(s2), (6.17)

and
ζ ′
A(1 + s)

ζA(1 + s)
= −s−1 + 1

2
log q − 1

12
(log q)2s + O(s3), (6.18)

we have

∑

P∈P2g+1,q

∑

γP

f

(
γP

2g log q

2π

)

= 1

2g log q

∫ g

−g
h(τ )

∑

P∈P2g+1,q

(
log |P| +

X ′
(
1
2 − 2π iτ

2g log q

)

X
(
1
2 − 2π iτ

2g log q

)

+ 2

(
− 2g log q

4π iτ
+ 1

2
log q − 1

12
(log q)

4π iτ

2g
− (log q) e(−2π iτ/2g log q) log |P|

× X
(
1
2 + 2π iτ

2g log q

) (
− 2g

4π iτ
+ 1

2
− 1

12

4π iτ

2g

) ))
dτ + o (|P|) .

(6.19)
then, for g large, only the term log |P|, the ζ

′
A/ζA and the final term in the integral

contribute, yielding the asymptotic

∑

P∈P2g+1,q

∑

γP

f

(
γP

2g log q

2π

)

∼ 1

2g log q

∫ ∞

−∞
h(τ )

(
(
#P2g+1,q

)
log |P|

− (
#P2g+1,q

) 2g log q
2π iτ

+ (
#P2g+1,q

)
e−2π iτ 2g log q

2π iτ

)
dτ.

(6.20)
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However, since h is an even function, we can drop out the middle term and the last
term can be duplicated with a change of sign of τ, leaving

lim
g→∞

1

#P2g+1,q

∑

P∈P2g+1,q

∑

γP

f

(
γP

2g log q

2π

)

=
∫ ∞

−∞
h(τ )

(
1 + e−2π iτ 1

2π iτ
+ e2π iτ

1

−2π iτ

)
dτ

=
∫ ∞

−∞
h(τ )

(
1 + 1

2πτ

(
(cos(2πτ) − sin(2πτ)) − (cos(2πτ) − sin(2πτ))

))
dτ

=
∫ ∞

−∞
h(τ )

(
1 + 1

2πτ

(
− 2 sin(2πτ)

))
dτ

=
∫ ∞

−∞
h(τ )

(
1 − sin(2πτ)

πτ

)
dτ.

(6.21)
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