The Ramanujan Journal (2022) 57:863-905
https://doi.org/10.1007/s11139-021-00386-y

®

Check for
updates

Simultaneous cubic and quadratic diagonal equations in 12
prime variables

Alan Talmage'

Received: 8 July 2020 / Accepted: 2 January 2021 / Published online: 13 April 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021

Abstract
The system of equations

urpt 4 -+ ugp? =0,
vipi 4 upl =0

has prime solutions (py, ..., ps) for s > 12, assuming that the system has solutions
modulo each prime p. This is proved via the Hardy-Littlewood circle method, building
on Wooley’s work on the corresponding system over the integers and recent results on
Vinogradov’s mean value theorem. Additionally, a set of sufficient conditions for local
solvability is given: If both equations are solvable modulo 2, the quadratic equation
is solvable modulo 3, and for each prime p at least 7 of each of the u;, v; are not zero
modulo p, then the system has solutions modulo each prime p.

Keywords Diophantine equations - Hardy—Littlewood circle method -
Waring—Goldbach problem - Diagonal forms

Mathematics Subject Classification 11P05 - 11P32

1 Introduction

Much work has been done in applying the Hardy-Littlewood circle method to find
integral solutions to systems of simultaneous equations (see [2,3,10], and [12] for
examples). In particular, recent progress on Vinogradov’s mean value theorem (see [1,
9]) has enabled progress on questions of this type. Here we consider the question of
solving systems of equations with prime variables, generalizing the Waring—Goldbach
problem in the same way existing work on integral solutions of systems of equations
generalizes Waring’s problem. Following Wooley [12], we address here the simplest
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nontrivial case: one quadratic equation and one cubic equation. We find that under

suitable local conditions, 12 variables will suffice for us to establish an eventually

positive asymptotic formula guaranteeing solutions to the system of equations.
Consider a pair of equations of the form

u1p12+---+usp3=0,

ey
vipi + - +up; =0,
where u1, ..., ug, vy, ..., vg are nonzero integer constants and py, ..., ps are vari-
ables restricted to prime values. We seek to prove the following theorem:
Theorem 1.1 If
1. the system (1) has a nontrivial real solution,
2.8 > 12, and
3. for every prime p, the corresponding local system
u1x12_|_...+usx32£0 (mod p), )
v1x13 + -+ vs)cs3 =0 (mod p)
has a solution (x1, ..., xs) with all x; # 0 (mod p),
then the system has a solution (p1, ..., ps) with all p; prime. Moreover, if we let

R(P) be the number of solutions (p1, ..., ps) with each p; < P, each weighted by
(log p1) ... (log ps), then we have R(P) ~ CPS’Sforsome constant C > Quniformly
over all choices of uy, ..., us, v1, ..., Us.

In Sect. 9 we give a sufficient condition for (2) to be satisfied, giving us the explicit
theorem

Theorem 1.2 Consider the system
wipi + - +usp; = U,

3 3 (3)
vipit+--tupy =V,

where uy, ..., us, v, ..., Vs, are nonzero integer constants and U, V are integer
constants. If

1. the system has a nontrivial real solution,
s > 12,
. the quadratic form u]pl2 + -+ usps2 is indefinite,

2
3

S S
4. Zi:l u; = U (mod 2) and Zi:l v; =V (mod 2),
5
6

. Zf_l u; = U (mod 3), and
. for le;tch prime p # 2, at least 7 of each of the u; and the v; are not zero modulo
p;
then the system has a solution (p1, ..., ps) with all p; prime. Moreover, if we let
R(P) be the nu mber of solutions (p1, ..., ps), each weighted by (log p1) ... (log py),
then we have R(P) ~ CP’™> where C > 0 uniformly over all choices of
ULy ooy Ug, V], ..., 05, U,and V.
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We use the Hardy—Littlewood circle method to prove these results. Section 2 per-
forms the necessary setup for the application of the circle method: defining the relevant
functions and the major arc/minor arc dissection. Section 3 consists of a number of
preliminary lemmas, which are referenced throughout. Section 4 proves a Hua-type
bound necessary for the minor arcs. Section 5 proves a Weyl-type bound on the minor
arcs by means of Vaughan’s identity. Section 6 is the circle method reduction to the
singular series and singular integral. Section 7 shows the convergence of the singular
series and Sect. 8 shows that it is eventually positive, contingent on the local solvability
of the system (3). Section 9 shows sufficient conditions for the solvability of the local
system. This depends on a computer check of local solvability for a finite number of
primes. Section 10 discusses several techniques which can be employed to improve the
efficiency of this computation. Section 11 finishes the proof of Theorems 1.1 and 1.2.
Appendix 1 contains the source code used to run the computations laid out in Sect. 10.

2 Notation and definitions

As is standard in the literature, we use e(«) to denote ¢27' . The letter p is assumed to
refer to a prime wherever it is used, and € means a sufficiently small positive real num-
ber. The symbols A and u are the von Mangoldt and Md&bius functions, respectively.
Symbols in bold are tuples, with the corresponding symbol with a subscript denoting
acomponent, i.e.,a = (ay, ..., ar). The letter C is used to refer to a positive constant,
with the value of C being allowed to change from line to line. We write f(x) < g(x)
for f(x) = 0(g(x)), f(x) < g(x) ifboth f(x) K g(x) and g(x) <K f(x) hold, and
fx) ~gx)if f(x)/g(x) — lasx — oo. When we refer to a solution of the system
under study, we mean an ordered s-tuple of prime numbers (p1, ..., py) satisfying (1)
or (3), depending on context.
Define the generating function

filea, @3) = ) (log p)e(au; p* + azvip*). )
p<P

Let A be the unit square (R/ 7)% and let Sy be the set of solutions of the system (1).
Then

Lnﬁ(az,%)dmdas
/ Z ]"[((logme(azulp,+a3v,p,))dazda3

p<Pz 1

= Z H(logp,»>=R<P> )

{p1,....ps}€Sy i=1

by orthogonality. Thus R(P) > 0 if and only if there is a solution to the system (1).
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866 A.Talmage

We divide A4 into major and minor arcs. For any 7 with 1 < T < P. and for
allg < T,1 <ay < q,1 < a3 < q, (a2,a3,q) = 1, let a typical major arc
M(az, a3, g; T) consist of all (a2, a3) such that

lax —az/q| < and  |az —asz/q| <

qP? qP3’

Let the major arcs 9(T) be the union of all such 9 (as, as, ¢), and let the minor arcs
m(T) be the complement of 9(T) in A.

We will use two distinct dissections in our argument: the primary dissection into
M =M(Q) andm = m(Q) with Q = (log P)4, where A is a positive constant whose

value will be fixed later, and a secondary dissection 9t(R), m(R) with R = P 2+ for
some sufficiently small positive &.

3 Preliminary lemmas

We begin by defining the necessary generating functions. Let

f@y = Y el@p’+ap),

P<p<2P
g@) = Y elmn’+an),
P<n<2P
q 2 3
an” + azn
S(g.a) =Y e (—) : (6)
n=1 q
4 2 3
an” +aszn
Vo= 3 (20
n=1 q
(n,g)=1
2p
V(@) = f e(62x? + 63x°)dx, (7
P
and fory € M(R) let
1 a as
Viy)=-S@.av|rn—-—rn—-—]).
q q q

Lemma 3.1 We have the bounds
/ g@)|'"da < PT
A
and

/ lg(@)|?da < P.
A
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Simultaneous cubic and quadratic diagonal equations... 867

Proof This is the relevant portion of Theorem 1.3 of [12]. O

Lemma 3.2 We have the bounds
/ |f@)]"Vde < P&+ da
A
and

/ | f(@)|?da < Pda.
A

Proof For any positive integer k,

f lg(@) X der
A

is the number of positive integer solutions to the system

2 2 _ 2 2
Xt X =X e Xy

Xt =

and

f | f (@)X der
A

is the number of prime solutions to the same system, so this lemma follows from
Lemma 3.1. o

Lemma 3.3

sup |g(@)] < Poite,

aem(R)
Proof This follows from Lemma 5.2 of [12]. O
Lemma 3.4
V() K

(1+ PRIg)12

Proof If |03] < P73, the result is immediate. Thus we assume |63] > P73. Let
K = (|63 P)? and let r(x) = 62x2 + 03x3. Then r'(x) = 265x + 363x2 has at most
one zero in [P, 2P]. Thus we can divide [P, 2 P] into subsets /1 and I, such that
|r’(x)] > K on I, where I; is the union of at most three intervals such that 7’ (x)
is monotonic on each, and |r'(x)| < K on I, where I is the union of at most two
intervals.
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868 A.Talmage

First we consider /;:

1 d
/e(r(x))dx:/ —— —e(r(x))dx,
I

n, 2mwir'(x) dx
so0, upon integrating by parts,

et
fz. crWdx = 30

The integral on the right is bounded by

+f "D yda
I 1

| 2mir’ (x)?

r’(x r’(x -1 1
[ g || 2 ] 2 |,
I 2mr'(x) n 2mr'(x) 2mr’(x) I K
since r’(x) is monotonic on each interval in /7. Thus
f roodx < L@ 1 L 1 P @®)
r — K =KL -
RS o |, TR S K S U165 PH12

Next we consider I>. Given an interval in 1>, let xo be one of its endpoints. Then
for any x in Iy,

lx — x011262 + 363 (x + x0)| = Ir'(x) — r"(x0)| < 2K.

Moreover,
r’(x K
1265 + 36330] = Lol < X ©)
X0 X0
Applying the triangle identity to (9) yields
K
1363x] — o= 1262 + 363(x + x0)|. (10)
0
Also,
K K
1303x] — — = 3|63|P — — > 2|63| P. (11)
X0 P
Combining (9), (10), and (11) yields
2K P

— < = .
=0l = 500F = e P

Thus
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Simultaneous cubic and quadratic diagonal equations... 869

/ e(r(x))dx < le(r(x))| (meas(/2))
I

< 2max |x — xg|
xelp

P
_ . 12
DRTEATAVSTE (12
Combining (8) and (12) now gives the desired result.
O
Lemma3.5 Lett = 12 — 6. Then
/ |f(a)|t—lda << Pl—6+%+8.
A
Proof By Holder’s inequality
/ |f @) da < ( / |f(a)|12da) ( / If(a)lloda)
A A A
Applying Lemma 3.2 gives
/ f @) da « PTRTHER e = prootie,
A
O

Lemma3.6 Let R = P>% and lety € 9N(R). Then

5 34
gy)=Viy)+o0 (Pg_j) .
This follows from Theorem 7.2 of [7].

Lemma 3.7 Let k(q) be the multiplicative function defined by

e =1,
k(ph)=1Cp™* j=2,
Cp~i* j>o2.

Then there is a positive constant C such that

S@al _ o

max

a
(g,a2,a3)=1

Proof The case j = 1 follows from Theorem 2E of [6]. The cases with j > 1 follow
from Theorem 7.1 of [7]. O
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870 A.Talmage

Let
sk(m)zm]f—l—mé—i—mé—mﬁ—mlg—mlg. (13)
Lemma 3.8 Let Q > 0 and let M(Q) be the number of solutions of the system

s2(m) =0,
sy(m) =0

with all m; < Q. Then there is a positive constant C such that
M(Q) ~ CQ’log Q.
This is a result of Rogovskaya [5].
Lemma3.9 If (g, az,a3) = 1, then
W(g.a) < g7
In addition, if (p, ax, az) = 1, then
W(p,a) K€ p%.

Proof The case where g = p follows from Theorem 2E of [6]. The case for general g
follows from Lemma 8.5 of [4]. O

4 Minor arc bounds
The primary purpose of this section is to prove the following theorem, which, together

with the result of the next section, will provide the necessary minor arc bounds for our
circle method approach.

Recall from the end of Sect. 2 that § is a small positive number with R = P 243,
Assume § < landlett = 12 — 4.

Theorem 4.1 For § sufficiently small,

/ |f (@) da < P'>(log P).
A
Let

It(P)Z/ | f (@) da.
A
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Lemma 4.1

L(PY < PE10 4 p /A/A Vi - B)lIf @B dadb.

a—BeM(R)

Proof
L(P) = /A Fl@)f(—a)|f @) de

= > / el p® +a3p’) f ()| f (@) *da. (14)
P<p<2P A
Applying the Cauchy—Schwarz inequality to (14) yields

2
L(PYP <P >

P<n<2P

=P fA ng@t —B fa)|f@] " fBIf B dadp

/ e(an® + a3n) f ()| f @) ~2dex

IA

P//Ig(a—ﬂ)llf(a)lt‘lIf(ﬂ)l"ldadﬂ. (15)
AJA

By Lemmas 3.3 and 3.5 and recalling that t = 12 — §, we can bound the minor arc
portion of (15):

o t—1 t—1
P /A/A g@— BIf @ f(B) " dadB

a—pem(R)
2
« Pt (f If(a)l"da>
A
« pU—10-¢+2 o p2-10, (16)

We now apply Lemma 3.6 to the major arc portion of (15).

_ t—1 t—1
P /A/A g@— B f @[ 1B dadB

a—BeM(R)

=P ff Ve - B f@ ' fB 'dadp
AJA

a—BeM(R)

2
+0 (Plé? (/A|f(a)|’1da) )

=P fA/A V@ —B)If@ £ B 'dadp + 0> 1%, 17)

a—BeM(R)
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Combining (15), (16), and (17) yields the lemma. m]
Lety =a — B,
(18)

(note that A > 2), and
J(B) = / VI If B+ y)|°dy. (19)
M (R)

Lemma 4.2

I,(P) < P'=3 + P* sup J(B).
BeA

Proof We begin by noting that
Ve -Bllfel e’

can be rewritten as

(Ve-prir@rirer)”
(V@ -Brr®rirer)” 20
< (F@f @) .

Let
I[}(P) = /A/A Ve — B f@ ' fB 'dadp
a—BeM(R)

be the integral on the right in Lemma 4.1. Using (20) to apply Holder’s inequality to
1 (P), we obtain

1
x

I (P) < / / Vi - B @f (B dap
AJA

a—BeM(R)
-4
x / / @ f (B dap @1)
AJA
a—BeM(R)
1
< L(P)Z—i(sup f IV(y)IAIf(ﬂ+y)|6dy) : (22)
BecAJIM(R)
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Applying (22) to Lemma 4.1, we have

1
: x*
L(P? < P04 Pr,(P)> 5 |supJ(B)| .
BeA

Thus either I;,(P) <« P!~ or

I,(P) < P* sup J(B),
BecA

which implies the desired result. O

Lemma 4.3 Let N(q) be the number of solutions of the system

s3(p) =0 (mod q),
s2(p) =0,
P <pj <2P.

Then

J(B) < P72 ) k() qN(q).

g=R

Proof By (19) and the definition of M(R),

s 6
JpB) = ZZ | (q a)| f R / Gk f(ﬂ+3+o) de.
g<R ar=1a3=1 P2 " T qP3 q
(g.a2,a3)=1

By Lemmas 3.4, 3.7, and the fact that for a given g, the intervals [ — q%, ‘;—2 + q%]

NS

are disjoint for distinct ay,

_R_ 6
s k(@tPr
p=> 1" de dos.
®) _q<R/—R 1+ P3|65)+2 ¢ d63
= qP

<ﬁ2+¢,ﬁ3+2—3+93>

(23)
We now examine the inner sum and integral.

@ Springer



874 A.Talmage

6
d¢

<,32+¢,,33+6;—3+93)

az=1

- Z / Z e <(,32 + $)s2(p) + (ﬂ3 + C;—S + 93) S3(P)> d¢

az=1
P<p]<2P

1
= > e(ﬁzSz(p)+(ﬁ3+93)S3(p))Z (?sz(p)) /0 e(ps2(p)do.

p az=1
P<p;<2P

Now

i (_m( )> {o s3(p) #0  (mod g),

g s3(p)=0 (mod gq)

and

1 0 0,
/O €(¢S2(P))d¢={ 2(p) #

1 s2(p) =0,
SO
as 6
Bo+d, B3+ —+03)| dp K gN(q). (24)
az=1 q
Substituting (24) into (23) yields
P}»

1B < Y k@) qN(q)f

—————dbs.
2 (14 P63 )2
g<R

Since A > 2, this becomes

J(B) < P2 k() qN(q).

q=R
Lemma 4.4 Let N1(q) be the number of solutions to the system
s3(p) =0 (mod g),
s2(p) =0,
P <pj<2P pjiq.
Then

gN(q) < q(logq)® + gN:(q).
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Proof First, note that

6

4q 1
aN(q) = Z/O

az=1

a3
f<x’ q)

Let

filwy= > elarp® +azp’)

P<p<2P
rlq

and

fley= " e(@p®+asp?).
P<p<2P
rlq

Thus

fl@) = fi@) + fi@).
Since | fj(@)| < loggq,

| £ @)|® < (logq)® + | fr(@)[°.

)

az=1

Now

6
dx =qNi(g),

SO

gN(q) < q(logq)® + gN:(q).

Lemma 4.5 Let Na2(q) be the number of solutions of the system

s3(r) =0 (mod q),
s2(gm +r1) =0,
1<rj<q(g,rj)=1,

P—rj <m; < 2P—rj
q = q -

Then

Ni(g) < Na(q).

dx.

(25)

@ Springer



876 A.Talmage

Proof We classify the solutions p counted by N;(g) according to the residue class r;
of each p; modulo g, and let m ; = %. Thus

0=s(gm+1) =5(r) (mod q),
so Ni(q) < Na(q). |

Lemma 4.6 Let N3(q) be the number of solutions of the system

s3(r) =0 (mod q),
s2(r) =0 (mod gq),
1<rj<gq (q,rj)=1.

Then
qz
Na(q) < N3(q)P*q>(log P) (P 1) .

Proof Let r, m be a solution counted in N2(q), i.e., let r, m satisfy (25). Expanding
the third equation of (25) gives

q*sa(m) + 2q (rimy + ramy + rym3y — ramy — rsms — reme) + s2(r) = 0.

Since s7(r) = 0 (mod ¢) by the second equation of (25), this can be rewritten as

s2(r
gs2(m) + 2(rymy + romy + rym3 — ram4 — rsms — reme) + 2™ _o
with each term remaining integer-valued. For a fixed r, define
Hi@w= Y e (a(qm2 + 2rjm)) . (26)

Pfrj - 2P7rj

Thus the number of m satisfying (25) for a given r is

! s2(T)
/0 Hl(Ol)Hz(Ol)H3(0l)H4(—(¥)H5(—05)H6(—05)€< y a)da.

By Holder’s inequality this is
6 1 3
<TT( [ era)

j=1
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The integral

1
| 1ty @da
0
counts the number of solutions of
gsz2(m) + 2rjs;(m) = 0. 27

Let s2(m) = u and s;(m) = v. Then (27) becomes qu + 2r jv = 0. For any solution,
Vg

@ Thus the number of choices for

we have |v| < 67}), and since (g, 7;) =1, v =

v is < 1 + 24P /g%, and u is determined by v'.
Let

hia) = Z e(aym —l—azmz).

P—r; 2P—r;
J J
<m<
q q

For fixed pair u, v, the number of choices of m is

/ |h(a)|6e(—oz1v—a2u)da§/ |h(e)|Cder.
A A

But this is the number of solutions of the system

s2(m) =0,
Sl (m) = 05

so by Lemma 3.8,

P 3
f |h(e)|®da < (—) log P.
A q

So, given r satisfying the first two equations of (25) and (g, r;) = 1, the number of
solutions to the third equation of (25) is

P\ P? 2
< (1 + —2) —log P = P> (1 + q—) log P.
q9-/) q P
Thus
q2
Na(g) < N3(g)P*q(log P) (1 + ?) .

O
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Lemma 4.7 Let N3(q) be as defined in Lemma 4.6 above. Then there exists a positive
constant C such that

Niq) < q* | (1 + %) :

plg

Proof We begin by observing that N3(g) is a multiplicative function, and that by
orthogonality,

P P

N3Py =p 2 Y0 Y T IW(PF, b, b3) [,

br=1b3=1

Sorting the terms of this sum by the value of (pk, by, b3) = pk_j, where 0 < j <k,
gives

ko plopl
N3Py =p Y0 Y Wt pa, P a .

j=0 a=1a3=1
(p/.az,a3)=1

If j =0, then

W(p*, p*ay, p*laz) = ¢ (p*) = pF(1 - 1/p)

and if j > 0, then

Wk, p*ar, pFias) = pHIW(p!, ar, a3).
Thus

ko plpl
N3P = p* U =1/p)°+p* Y DY pTYIW( az, a9

j=1 ar=1a3=1
(pl.az,a3)=1

By Lemma 3.9,
Yo OIWp )’ < p
(P,a2,aa3)=l
and for j > 2,
S P YW ar.a3)|® « pT ORI  pmitE
a
(p!az,a3)=1
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Thus
C
N3(pF) < p* (1 + —>
p

and the lemma follows by multiplicativity. O

Proof of Theorem 4.1 By Lemma 4.2,

I,(P) < P> + P* sup J(B).

BeA
Bounding J(B) with Lemma 4.3 yields
L(P) < P+ P73 3 " k() qN(q). (28)
g=<R

Lemmas 4.4, 4.5, and 4.6 successively bound N (g) in terms of Nj(g), then Nz(q),
then N3(g), and Lemma 4.7 bounds N3(g). Collecting these bounds and applying
them to (28) gives

1(P) < P'= + PP 0g P) Y (a)* (P~ log 0"
q=R

(re)II(+5)

rlq
. 1
Sinceq < R = P21,

P4q(logg)® « P73 « 1,

and
2
q 45
—< 14268
p=9
so we have
C
1(P) < P54 PPl (log P) Y wlg)q ™ [ | (1 + —) S
g=R rlq

‘We now desire a bound on
C
Y k@qms [ (1 + —) .
g=<R plq P
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880 A.Talmage

Since « is multiplicative, it suffices to bound

I1 1+§:K(pj)kpiu%a

P=R Jj=1
We have
ad . .48 s 2
Yok P TS < pT g p Ty pT
j=1 j=3
< p4
Thus

C ad . . 48
I 1+<1+;)Zx(p1)kpmza < JJa+cp™h «,

P=R j=l1 P=R

which implies that

Y k@qmE [ (1 + %) < 1. (30)

q=<R rlq

Applying (30) to (29) yields
I,(P) < P73 4 P**!(log P),
which, upon applying the definition of A in (18), is

I,(P) < P'>(log P).

5 A pointwise minor arc bound sensitive to multiple coefficients
In this section, we will work with a narrower set of minor arcs m(Q), where Q =

(log P)A. Henceforth m will be assumed to mean m(Q) rather than m(R) unless
otherwise specified. Leta = (o, ..., o) and let

Fr(a) = Z An)e(ain + a2n2 + -4 ozknk).

n<P
This section consists of the proof of the following theorem and corollary:
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Theorem 5.1 For D > 0, where D = D(A) can be made arbitrarily large by increas-
ing A, if (az, @3) € m(Q), then

sup F3(a) <« P(log P)*D.
aem(Q)

Corollary 5.1 Foreachi, 1 <i <,

sup  fi(en, a3) < P(log P)~P.
(az,a3)em(Q)

Proof Take (0, u;a, v;a3) as the argument of F3 in Theorem 5.1 and sum over the
dyadic intervals, noting that multiplying o> and «3 by the integer coefficients u; and
v; does not move them out of m(Q), and that there are trivially <« P'/?log P prime
powers < P which contribute < P/ 2(log P)? to the sum. O

We begin by citing some known results on Vinogradov’s mean value theorem. Let

Jox(P) = / | (@) da.
[0, 1)k

We cite the bound
J2(P) < PPlog P 31

from [5] (cf. [7] chap. 7 exercise 2) and for s > 6
Js3(P) < PB0 (32)

from equation (7) of [1].
Let X = (log P)B for some B > 0 to be fixed later. For brevity, we let (n) :=
e(ain + axn? + aszn?). Then

Fi@) =Y Amh(n).

n<P

Applying Vaughan’s identity [8] to this sum yields

Z A(m)h(n) = S1 + S> + S3 + Sa, (33)

n<P

where

Si =Y Amhn),

n<X
S2= ) | D nkylogl | h(n),
n<P \ kl=n

k<X
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Ss=Y" > | D> Amum | hm,
n<P kl:n2 m’fk
k=X mfm)r(l,ZSX
Sa=Y | Do a®b®) [hm,
n<pP kl=n
k>X,1>X
with
a(k) =Yy A,
i1k
I>X
X
b(l) = wd), 1>
0, [ <X.

This now enables us to bound each of the sums S1, 2, S3, S4 individually to obtain
the desired bound on F3(e). The bounds on these four sums constitute Lemmas 5.1—

54.

Lemma 5.1
S <€ X.

Proof Since |h(n)| < 1,

Si=) AmWhn) < Y A KX,

n<X m<X

where the last bound is a classical result of Chebyshev.

Lemma 5.2
S3 << P(log P)B_A/12+4.
Proof
S5=>Y" > A(m)umy) | h(my).
n<P kl:r12 mlam2k

< mimpy=

k=x mlSIX}nzSX
Let

= Y Am)uim)

mip,my
mimay=k
my<X,my<X
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and note for future reference that

les ()] < Y Alm) =logk.
mlk

Interchanging the order of summation in (35) yields

Sy = Z c3(k) Z h(kl)

k<X? 1<P/k
- Z c3 (k) Z e(arkl + ark*1? + ask’1P). (36)
k<X? I<P/k

We now use Dirichlet’s theorem on Diophantine approximation to obtain integers b,
qj for j € {2, 3} such that (bj, g;) =1,

by| (log(P/RNA

J— 2L R-h S A—
A Y
(P/k))

U = log(P k) Gn

Assume for contradiction that g; < (log(P /k))A/ 2 for both j =2and j = 3 and
rewrite (37) as

bj

(log(P /k))*/?
o — — < .
J qu/

- qjP

Let b, = b;/(k?, b)), q} = k/q;/(k/, b)). Then

bj

(log(P /k))A/?
o — — <
J kJQj

= q}P/

El

(b}, q) = 1, and ¢} < (log(P/k))"/? for j € {2,3). Let g = lem(gy, q3) and
aj =bq/q;. Then (a2, a3, q) = 1, ¢ < (log(P/k))*, and

aj
q

< (log(P/_k))A.

o

This implies that (a2, a3) € 9M(Q). However, we have (a2, @3) € m(Q), which is
the desired contradiction, so we may assume that g; > (log(P/ k))A/2 for at least one
jo € (2,3}, |

Define oz} = ajk/ and note that (37) becomes

bj
q;

_ (log(P/kp""2

4, (P/K)] 3%

'ajkj —
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We now need a bound on

H@, P/k):= ) e@l+al” +ail).
I<P/k

By Theorem 5.2 of [7], using the Diophantine approximation of (38), we have

, PNk dlk\ )
H@, P/k) < (ogP)(h22P/0) () [+ +2—) .
k ‘m P P

Now by (31), we have J3 2(P) < P3(log P), so

H@' P/k) < (log P) + L ) . (39)
i C] p pPi

Now— < P12 and << (logP)sz A 1/q] < (log P)2Bio—A/Z g

1k gk
a+;+ o

& (log P)?Bio=A/2, (40)

assuming 2Bjo — A/2 < 0.
Applying the bound of (40) to (39) yields

P .
H(@' P/k) < o (log P)*(log P)2ER=A4/2/12
P
& ;(log P)BfA/12+2’ (41)

since jo < 3.
Substituting the bound of (41) into (36), we obtain

S5 < Z(logk) (log P)B—A/12+2
k<X?

« P(log P)B=A/12+4,

Lemma 5.3

S, < P(log P)B=A/12+4,
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Proof
=Y | D nwlogl | h(n)
n<P \ ki=n
k<X
I
dt
=t Y ) [
k<X I<PJk 1
P/k dt
=S [ X
k<X N Y
P/k dt
= / > uk) Y hk) — (42)
1 k<X 1<PJk
Now by (41),
P
> (kD) = H@, PJK) < - (og PYP /1242
I<PJk
Substituting this into (42) yields
P/k P dt
£ B—A/1242 41
S <<f1 > oz P) t
k<X
K\ [Pk ar
P(log P)B—A/12+2 e / at
< P(log P) Z — 1 ;
k<X
&« P(log P)**B=4/12(10g X)(log P /k)
« P(log Py+B=A/12,
O
Lemma 5.4
Sy < P(log P)4—min{A,B}/(4b2)
Proof We begin by splitting S4 into dyadic ranges. Let M = {X2™ : 0 < k,2" <
P/X?}. Then
Sa= ) Sa(M), 43)
MeM
where

SaMy=>" > a(k)b()h(kl).

M<k<2M <P [k
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Our goal is now to replace the sum over the range [ < P /k with one over the range
| < P/M. We begin by considering the integral

sin(27 Rt)
I(x) :=/ ——e(—xt)dt,
R e

where R > 0 is a constant. Computing the integral via the residue theorem gives

1 R
o [1 <R
0, |x| > R.

Now forx # R, t > 1,

/ SNCTR ,—xoydr = / AR =0) el RED) gy
lt|>T [t|>T

wt 2mwit

Integrating the right-hand side of (44) by parts gives

/ sin(2m Rt) (—xt)dt < 1 n 1 n 1 < 1
—e(—x Py P
i Tt TIR—x| T|R+x| T3 7 T|R—|x||

Thus we can rewrite I (x) as an integral over [—7', T'] with an acceptable error term:

T sin(27 Rt) 1
I(x)—/_T — e(—xt)dt+0<—T|R_|x||>.

We now take R = log(| P] + %), x = log(kl), giving us

SaM)y =) > atbOhkhI(log(kl))

M<k<2M I<P/M

T a(k)b(l) sin(2w Rt) P2log P
/_ XX Gk dt+0<T).

T M<k<2Mi<P/M

Now
sin(27 Rt) 1 1
Tt Tt ]
and

sin(27 Rt) 27 Rt
<
Tt Tt

< R,
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SO

sin(27 Rt) .
— < min(R, 1/[t]).

Take T = P3,a(k, t) = a(k)k= 2", b(l, 1) = b(1)|~ ¥ and let

Sa(M, 1) = Z Za(k,t)b(l,t)h(kl). (45)

M<k<2M I<P/k
Then

T .
sin(2w Rt
Sa(M) <« sup |S4(M, 1)| ¥dt
|t|<T -T et

<K 1+ (log P) sup [S4(M, 1)].
|t|]<T

We now consider S4(M, t). Let b > 6. By Holder’s inequality

2b—1 2b

s < |3 Jatk, o) oY baohGkn| . @6)

M<k<2M M<k<2M |I<P/M

Now |a(k, t)] = |a(k)] <logk < logM < log P, so
2b
2b—1
Sy, 0% < (Mog Y1) 3 |3 b 0k
M<k<2M |I<P/M
2b

< (log PP M= N 1N bl k(KD (47)

M<k<2M |I<P/M

Expanding the 2b-th power in (47) yields
2b

> b t)h(kl)

1<P/M

b 2b
=) (]‘[b(zi,t) I b(lia[))
i=1

1 i=b+1
1j<P/M
X e (ot1ks1 M) + aak2s2 (1) + a3ks3 (1)) , (48)
where

SO =0 4l — 1~ 1,
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Collecting terms in (48) by values of s; yields

2b
Yo bUohKD| = Y RiWel@ikv +ak’vy +a3k’vs),  (49)
I<P/M \
lvjl<bPI
where
b 2b
Riwy = Y J]bt.0 [] b0 < Jos(P/M) < (P/M)*
i=1 i=b+1

1./5}’//\4
s(h=v

by (32). Substituting (49) into (47) yields

Sa(M, 1)*" < (log P)* M0~

X Z Ri(v) Z e(arkvy

Voo M<k<2M
[vj|<bPi M~ -

+ark®vy + azk’v3)

< (log P)2 5 p2=6

DD

V.o M<k<2M
lvjl<bPi M~

e(arkvy + a2k2v2 + a3k3v3). (50)

We now repeat the procedure followed from (46) to (50). By Holder’s inequality

2b—1

SiM. 0 < (dog PP Y
|uj|5b;iM*i
2b
X Z Z e(a1kvy + ank’vy + azk>v3) (51)

v |M<k<2M
[v;|<bPiM~i

< (log p)4bM10bP4b2_12h (b3P6M_6>2b—1
2b
Y > elarkvr + ok?vy + ask’vs)

M | M<k<2M
[vj|<bPIM™/ -
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<« (log P)4b2M672bP4b276
2b

x Z Z e(arkvy + aak?vy + ask3v3)| . (52)

Vo |M<k<2M
lvjl<bPiM~i -

We expand the 2b-th power in (52) and collect like terms. Thus

2b

Z e(arkvy + a2k2v2 + 0(3/(3113)
M<k<2M

= Y elarsi®vr + as2(K)v2 + a353(K)v3)
M<klj(§2M
> Ra(welonuivr + equavy + 3u3vs), (53)

u . .
luj|<b2] M

where

Row)y = > 1< Jp32M) < M*

k
M<kj <2M
s(k)=u

by (32). Substituting (53) into (52), we obtain

Si(M, H)*" & (log P)** p40*=6

X Z Z e(ajuivy + aaurvy + azusvs)| .
luj|<b2i MJ ||vj|<bPiM~i

Summing over each of the v; gives

1
Sa(M, )" < (log P)** pi¥=6 )> Hm ( )

=1 ”O[]u]“
|uj|<b21M/

Applying Lemma 2.2 of [7] yields
2 2 2 1 1 M i
SaM. " < (log Y P T (— +—+ —+ ﬂ) NI
J

j=1
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Combining (54) with (43) and (45), we obtain

1_[ 1 i 1/(4b%)
Sy < P(log P)* ( + —’.) .
i Xi " pi

Recalling that g; > (log P)A for some j and X = (log P)5, this is
Sy < P(log P)47min(A,B)/(4b2) (55)

for b > 6. O

Proof of Theorem 5.1 Using the Vaughan’s identity breakdown of (33) and the esti-
mates for the S; found in Lemmas 5.1, 5.2, 5.3, and 5.4, we have

F3@) = S1+ S+ S3+ 84
< (log P)B + P(log P)B_A/12+4 + P(log P)B—A/12+4
+P(log p)4—min(4,B)/(4b%)

So, taking B > 4b’D(D +4) and A > 12(B + D + 4) for some D > 0 yields
F3(@) < P(log P)~P

uniformly in «. O

6 Major arc approximations

0

On a typical major arc M (az, a3, q), let ap = ‘;—2 +0, a3 = ‘;—‘ + w, with 8 < 2L

w < and ¢ < Q. For ease of notation, let q% =0, q% = Q. Let

q 2 3
axuir- 4+ asv;ir
Wi(g, a2, a3) = ) e(—)

Q
qP3’

r=1 q
(r,q)=1
fif (@, a3) = 5@ )W(q az,as)/ e(Quix* 4+ wvix’)dx,
QU p° + azv;
Tix.az.a3) = Y (log p)e (#) ,
p=x 1

and for x > \/?,

aru; p* + azv; p? )

T (x,az,a3) = Y (logp)e< p

VP<p<x
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We begin with preliminary bounds on 7; (x, a3, a3) and TiT (g, az,az).

Lemma 6.1

Ti(x, az, a3) = %Wl’(q, a2, a3) + O (x exp(—C(logx)'/?)).

Proof The exponential function e((apu; p2 +azv; p3) /q) is only sensitive to the residue
class of p modulo ¢, so

2 3
axu;ir- + azv;r
Ti(x, a2, a3) = Z Z (log p)e (%)JrO(qslogq)

(r, q) 1 p= r(mod q)

q 2 3
-y (#) S logp | + 06 0g ).
r=1

= q p=<x
(r,q)=1 p=r (mod q)

Now by the Siegel-Walfisz theorem we have that

Z log p = —— + O(x exp(—C(logx)'/?)), (56)
p=r ¢>( )
p=r (mod q)
)
T ) Xq: <e (azuir2+a3vir3>< X b O exp(—C(lo x)l/z))))
P(x,ap,a3) = —
n q $(@) prTToE

r=1
(r, q)—l

= 51y Vi@ @2, @) + Wil a2, a9 (O exp(~Cllog )

= qu a2, a3) + O (x exp(—C(logx)'/%)).

Corollary 6.1 For x > /P,

i - w _ 12
T, (x,az,ag)_¢(q)W,(q,a2,a3)+0(xexp( C(logx) /).

Proof

T/ (x, a2, a3) = Ti(x, a2, a3) — Ti(V'P, a2, a3)

- X w 12
= ——Wi(q,a2,a3) + O(x exp(—C(logx) /%))
#(q)
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+0(P'% exp(—C(log P)'/?)

__x
 $(q)

Lemma6.2 On M(q, az, az),

filaa, a3) = f* (a2, @3) + O(P exp(—C(log P)'/?))

for some positive constant C.

Wi(q, as, az) + O(x exp(—C (log x)/?)).

Proof First, we isolate the range (~/P, P], bounding the remainder immediately.

| fi(aa, @3) — f" (a2, @3)]

Z (log p)e(azu; p* + azv; p*)
p<P

P
Wi(q,a2,a3)/ e(Ou;x* 4+ wv;x>)dx
0

b
#(q)

Z (log p)e(aau; p* + azv; p*)
f<P<P

—Wi(q, a2,a3)/ e(Ou; x? + wv;x" )dx

¢>( )
+0(P'?log P).

Now
> (ogple(cou; p* + 30 p?)
VP<p=P

P
Wi(q,az,as)/ e(Ou;x* 4+ wv;x>)dx
VP

b
(q)

= ‘Wi (q,a2,a3) Y (log p)e(Bu; p* + wv; p*)

VP<p<P
p=r (mod q)

¢( ) Wi(q, 02,03)/ e(Ouix® + wvix>)dx

. 3
- ¥ [(logm)e (”2“”" +asvim )117;
q

f<m<P

—mW(q az,as)}e(Qu m? + wvim?®) + O (lo| P*'?),
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where 1p is the indicator function of the primes.

We now apply Abel summation to (58), with the term in square brackets serving as

the coefficient. This yields that

| fi(a2, a3) — fi* (o2, @3)]

e(GuP +a)vP)<T(xa a)—L Z Wilg,a a))
- 1 2, U3 ¢() ~ lqa 2,d3

P 1
_/ 2wi(20u;x 4+ 3wv;x )(T(x a,as) — —— Z Wi(q,az,a3)>dx

VP ¢( )\/F<m§x
+0(|lw|P??).
Now Corollary 6.1 gives that for x > /P,
T (x, a2, a3) — — Y Wi(g. a2 a3) < xexp(—C(logx)'/?),
</>( )
\/F<m§x

SO

| filo2, @3) — fi (a2, @3)|
= e(6u; P? + wvi P*) (0(6(q) P exp(~Clog P)'/))

P
i / (20u;x + 30v;x?) (0(¢ (¢)x exp(—C (log P)l/z))) dx
0

+0(P'"?log P) 4+ O(lw|P/?)
< (14 10|P? + || P*)$(g) P exp(—C (log P)'/?)
)A ?(q)
q

< (log P exp(—C(log P)'/?)

&« Pexp(—C(log P)'/?).

For clarity of notation, let

Alg) = azzmzl ¢(Q)SHW(q a2, a3),
(a2,a3,9)=1

&(0) =) A9
q<Q

s P
J(Q) :/ / 1_[/ e(@u,-x2+wv,-x3)dx dwdb.
11<Q/P? Jiwl<@/P3 ;_7 /o

(59)
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We are now able to state the primary lemma of this section:

Lemma 6.3 For some E > 0,
R(P) = 6(0)J(Q) + O(P*>(log P)~F).

Proof We first introduce variant major arcs whose length is independent of ¢:

0 0
B(q.r. Q) = {(az,as) Heo —az/ql < 7k laz —asz/ql < 73
forl<Q<P,g<Q,1<ar<gq,1 <a3z <gq,and (a2, a3z, q) = 1. Let B be the
union of all such B(g, r, Q) and note that 97 C ‘B and thus B \ 91 C m.
It follows immediately from Lemma 6.2 that

[1/ie2.03) =[] fi* (@2, 03)| < P*exp(~C(log P)'/?). (60)

i=1 i=1

Summing (60) over all arcs in B gives

Il

n fila, a3) — H [ (o2, 3)
i=1 i=1
a q
IDDN|

q<Q ary=1az=1 SB(QZ’(BJ])
(a2,a3.9)=1

.4, re/pt o/
SPIDID ﬁ [ P* exp(—C(log P)'/*)de; da3

q<Q ar=laz=1 o/P? o/P?
(a2,a3,9)=1

< Q*P*Sexp(—C(log P)'/?). (61)

doy dos

[]fite2, a3) = [ ] £ (@2, @3)| dea dess
i=1

i=1

We now wish to compute
s
/ [ £ (2. a3)dendes
B i1

q q K}
=y > > Hq%q)wi(q,az,ag

qg<0 ax=1laz=1 i=1
(az,a3,9)=1

Q/P* (Q/P? [P
B

-o/P2J-0/P3J0
e(@uix2 + wvix3)dx dfdw
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+0(P*(og P)"F)
=6(0)J(Q) + O(P(log P)~E). (62)

Combining (61) and (62) yields the bound
N
/% [1 /i (2. a3) = 6(0)7(Q) + 0(P*5(log P)~E). (63)
i=1
Combining Theorem 4.1 and Corollary 5.1 yields the minor arc bound

/ [ it a3) < P*~>(log P)"~, (64)

mi=1

and moreover, since A \ 8 C m, by Corollary 5.1 and Theorem 4.1 we have

/ Hﬁ(az, a3) < P*(log P)~E. (65)
A\B
Now by (5), (63), and (65) we have
R(P) = 6(0)J(Q) + O(P*>(log P)~F). (66)
O

7 Convergence of the singular series

Lemma 7.1 Let (q1,q2) = 1. Then
Wi (q192, a2, a3) = Wi(q2, a2q1, azqi) Wi(q1, a2qa, a3q3).

Proof Each residue class r modulo g;¢q2> with (r, g1q2) = 1 is uniquely represented
ascq) +dgy with 1 < ¢ < g2, (c,qp) = 1,1 <d < q1,and (d, q1) = 1. Also,
cq1, dq> run over all residue classes modulo ¢, g1 with (cq1, ¢2) = 1, (dg2, q1) = 1,
respectively. Thus

axui(cqr +dg)? + azvi(eqr + dga)?
Wilq192. a2, a3) = Z Z ( nen T n s 1

(e, qz) 1, ql) 1

B i i , (azuic q1 +a3vic3q12) , (Clzuid2QZ +a3vid3q22>

q2 q1

= Wi(q2, a2q1, a3gD) Wi (q1, axq2, a3q3).

O
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Lemma 7.2 A(q) is multiplicative.
Proof Let (g1, q2) = 1. Then

q192 4192 l s
Agig) = Y Y ———[[Wil@ig2, a2, a3).
== @9
r=1laz= i=
(a2,a3.q192)=1

Now a» and a3 can be represented by b1g> + baq1 and c1q2 + ¢2q1, respectively, with
1 <bi,c1 <q1,1 < by, c2 < ¢go. So we can rewrite our sum as

q1 q1 q2 q2 N
1
Agig) = Y > Y. Y ———]]Wila2 baai, c2a)Wilar, 13, c193).
= oo e
1=la= 2=1c2= 1=
(br,c1,91)=1 (b2,c2,92)=1

Now since q1.q2) = 1, (c2, by, q1) = 1, and (bl,Cl,q2) = 1, we have
that bquz, czq?, b1q22, clqg run through complete sets of residue classes modulo
q2, 92, q1, q1, respectively. Thus

2 92 q1 41 s
1
Agig) = Y. Y, Y > ——— ][] Wiq b2, c2)Wilg1, bi, c1)
e oo e
1=lci=1 by=lc= i=
(b1,b1,g2)=1 (b2,¢2,q1)=1
= Aq1)A(q2).

Let G be the completed singular series

=) A@.
g=1

Since A(g) is multiplicative,
o0
S = ]‘[ (1 + ZA(;:")) ) (67)
)4 k=1

Lemma 7.3 G converges absolutely.

Proof
Pk Pk 1 K
APH = Y Y —= [ Wir" a2, a3).
w=1a3=1 ¢ (p") i=1
r=laz= i=
(az,a3,p¥)=1
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By Lemma 3.9 and the fact that there are < pzk choices for the pair a, b, we have

AR < pEe(ph) s (ph) ey
<< (pk)zf%sﬁ’&'

Since s > 7, we have

3
AR < (phH72Te (68)
Thus
. k . ky—3 p e 32
Y AphH <Y (pH Tt = Ry, i pFE
k=1 k=1 -r
Then

ZZA(pk) < prs/zﬂ

p k=1 P

converges, So
oo
s=] (1 + ZA(p%)
p k=1

converges. O

8 Positivity of the singular series

To show that R(P) is eventually positive, we now need to show that G is positive.

Lemma 8.1 There exists R > 0 such that
1 o0
k
5 < I <I+ZA(p )).
pP>R k=1

Proof By (68), we have A(p*) <« (p¥)73/%*¢ « (p¥)~1/4. Choose C, R such that
A(pH < cp™* < cp™1/4 < %for all p > R — 1. Then

I1 (1 - Cp—5/4) >1- Y cp
P=R p>R
* 1
>1- Cf xdx =1—4C(R-1)"V* > =,
R—1 2
O
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We now need only show thatfor p < R, 1+Z,fil A(pk) > 0.Forl <t < s,define
M;(g) to be the number of solutions (x, ..., x;) to the simultaneous congruences

t
Zuixiz =0 (mod q),

i=1

t
Z v,-xl.?’ =0 (mod q)

with (x;, g) = 1 for all i.

Lemma 8.2 For any positive integer q,

q

1 7.0 rgu,-xiz—i—rgv,uci3

p ZZH Z —
rn=lrn=li=1 x;=1
(x1,9)=1

and ap =

Then, rearranging according to the

— q — 2 3
Letd = ) N = o) (r2,73,9)

value of d, we have

1 ¢ 4 qu au,-xiz—i—avixi?’
TXEF D95 39 9l | b » (f)

dlg ax=laz= i= xi=1
(a,a3,d)= (xi,d)=1
¢(q)*
_ 2 S
dlg

Lemma 8.3 For positive integers t,y witht > vy,

My(p") = My(p?)pt=V6=2),
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Proof This is [11], Lemma 6.7, with the added observation that (in that paper’s nota-
tion)

max{|by — ailp, by —az2lp} < p~7 = p¥|(b1 —ay), (b2 — a2).

Soifay, by # 0 (mod p), then ay, by # 0 (mod p). Thus the argument lifts solutions
over reduced residue classes modulo p? to solutions over reduced residue classes
modulo p’, so it applies here without modification. O

Theorem 8.1 Iffor every prime p there exists a positive integer vy such that My(p?) >
0, then S > 0.

Proof By Lemma 8.2,

2t
M(p")

o0
kyn _ 1:
1+ 2 A0 = lim S0
> lim p@™" M (p").
—>0o0

By Lemma 8.3, for some positive integer y,

o
1+ Z A(pk) > tl_l)ngo p(z—s)tM(p)/)p(t—y)(s—Z)

k=1
> lim p6=2 5 0. (69)
—00
The lemma now follows from (67), Lemma 8.1, and (69). O

In Sects. 9 and 10 we prove that, under the conditions of Theorem 1.2, for every p
there exists a positive integer y such that M (p?) > 0.

9 Solvability of the local problem
We now consider the local system

x4 +ux> =0 (mod p),

3 3 (70)
vixy +---+vx; =0 (mod p)
withx; #0inZ/pZ.
We will prove the following result:
Theorem 9.1 The system
u1x12 + -4 usxf =U (mod p),
(71)

v1x13 4+ 4 vxxx3 =V (mod p)

has a solution (x1, ..., xs) with all x; # 0 modulo every prime p if
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s S

1. Zu,- = U (mod 2) andz v; =V (mod 2),
i=1 i=1
s

2. Zu,- = U (mod 3), and

i=1
3. for each prime p at least 7 of the u;, v; are not zero modulo p.

Observe that if the system

uwcf +-~-+utx,2 =U (mod p),

3 N (72)
vixj +---+vx; =V (mod p)
has a solution for all uy, ..., us, vy, ..., v; # 0, then so does the system
2 2 _
wiy X + -+ +uxi; =U  (mod p), 7
vjlxj3-1 4+ 4 v.,-tx;-[ =V (mod p)
for any {i1, ..., i}, {j1,...,Jj:} C {1,...,s}. Also observe that the conditions of

Theorem 9.1 guarantee solvability modulo p = 2 and p = 3: p = 2 is immediate and
for p = 3, the condition guarantees that the quadratic equation is satisfied and each
term v,-xl.3 of the cubic equation can be independently set to 1 or —1, allowing us to
set lef =V if V #£ 0 (mod 3) and partition the remainder of {1, ..., ¢} into groups
of 2 and 3, which can be zeroed by setting them to {1, —1} and {1, 1, 1}.

Thus we have reduced Theorem 9.1 to this lemma:

Lemma9.1 Forall u;, v; #0 (mod p), p >5,¢t>7, U, V, there exist {xy, ..., Xs}
with x; # 0 (mod p) such that

ulx%+...+utxt2 =U (mod p), (74)
le% 4+ ... +Utx;3 =V (mod P)

Lemma9.2 Suppose p > 3, and that a and b are not both equal to p. Then
IWi(p,az,a3)| =2/p+ 1.

Proof Corollary 2F of [6] gives

p—l 2 3
axu;r- + azv;r
Ze< 2Uj 3V ) < 2p1/2.

r=0 p

Now
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—1

p 3
aruir< 4+ asv
|Wi(p, az, a3)| = e(—l>
r=I1
p—1 3
- e(w>+1§2ﬁ+l,
r=0 p

Lemma 9.3 M,(p) > #((p D' = (p*-D2yp+1D)).

Proof

1 P P t
M (p) = —ZZZH i(p, 2, 73).

We have W;(p, p, p) = p — 1 and for r, r3 not both p, W;(p, r2,r3) <2,/p+1by
Lemma 9.2. Thus

P=D'_15 s T
Mt(p)—T SPZ > ]’[2@+1)
T S
1
< puﬂ— DEYP+ 1.
So we have
1
M (p) > ?((p - D' = (p* = DC2Yp+ D).

Taking t = 7, we get

1
M7 (p) > ?((p - = @P*-neyp+1)).

This gives that M7(p) > 0 for p > 40.58. This means that we now need only check
that Lemma 9.1 holds for each prime smaller than 41. This is now a finite number
of cases to check and thus can be verified by computer. In the following section, we
note several techniques that may be employed to bring the computational difficulty
of the task into the realm of feasibility, and in Appendix 1 we provide Sage code for
performing the computation.

It is worth noting that = 7 appears to only be required for p = 7. It seems highly
probable that r = 5 will suffice for all other primes; however, reducing 7 to 5 weakens
the bound of Lemma 9.3 to requiring us to check all primes less than 1193, which
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would require more computation than is feasible, since even after the optimizations of
Sect. 10, the algorithm checks O (p”) distinct forms for solvability to verify Lemma 9.3
for all primes up through p.

10 Computational techniques

First, we note that if every pair U, V modulo p can be represented by the form in #
variables, then every pair can be represented by ¢ variables for ¢ > fy. So we will start
our search with ¢+ = 3 and store the forms that represent all pairs (U, V) of residue
classes mod p. We then need only search higher values of ¢ for the forms that failed
to represent all pairs of residue classes with a smaller 7.

(The methods in this paragraph are closely modeled after those of [10].) By inde-
pendently substituting c¢;x; for each x;, we can assume each x; is either 1 or a fixed
quadratic nonresidue ¢ modulo p. By rearranging and multiplying by b~ as needed,
we canassume thatuy, ..., u, = Luy4q, ..., u, = c withr > [r/27. By multiplying
the cubic equation by v Iand rearranging, we may assume 1 = v) < vy <--- < v;.
By substituting —x; for x; as needed, we can assume 1 < v; < (p — 1)/2 for each v;
without affecting the u;.

As a final optimization, we note that if the system of congruences

ulx%+--~+utx;2 =U (mod p), (75)
U1X%+"‘+Utxt3 =V (mod p)

represents p> — 1 of the possible p? pairs of residue classes (U, V) modulo p, then

wixf + - ugaxty =U (mod p), (76)
vIx} Uy =V (mod p)

will necessarily represent all p? residue classes, since (u ,+1xt2 1 v,+1x? ', 1) must rep-
resent at least two distinct pairs of residue classes, so

M]X]2+"‘+Mtxt2 = U_ut+1x12+] (mod p)’ (77)
vixg + -+ ux, =V —vgixy,  (mod p)

will be solvable for some (1,41, v;41). This turns out to be quite useful: a substantial
number of forms represent exactly p> — 1 pairs of residue classes modulo p.

Using these techniques to minimize the computation needed, running the Sage code
in Appendix 1 verifies that Lemma 9.1 holds for p < 41. This allows us to conclude
the following unconditional form of Theorem 8.1.

Lemma 10.1 & > 0.
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11 Conclusion

We have that R(P) = &(Q)J(Q)+ O(P*3(log P)~F) by Lemma 6.3. Lemma 10.1,
in conjunction with Lemma 8.1, shows that G(Q) > 0 uniformly over all u;, v;
satisfying the conditions of Theorem 1.1 or Theorem 1.2.

The singular integral J(Q) is the same as the one Wooley obtains in the corre-
sponding problem over the integers, so by Lemma 7.4 of [12], there exists a positive
constant C such that

J(Q)=CP> + 0P 0713,

In addition, we have the asymptotic upper bound G(Q) « 1 from Lemma 7.3. So we
have

R(P)=CP*7 + 0(P*>(og P)~F)

for E > 0, C > 0 uniformly.
Thus R(P) is eventually positive. This can only be true if there is a solution of (1)
over the primes, so we can conclude Theorems 1.1 and 1.2.

Acknowledgements The author is greatly indebted to Professor Robert Vaughan for suggesting the problem,
for a great deal of guidance and assistance, and for many of the ideas of Sects. 4 and 5. The author also
thanks Trevor Wooley, who suggested the approach taken in Lemma 4.1.

Appendix 1: Sage code

Code: (SageMath 8.6)

for p in prime_range(5,41):

# Find a quadratic non-residue modulo p
for i in range(1l,p):
if 1 not in quadratic_residues (p):
c =1
break

uv_done = []
print("p = " + str(p))

for t in range(3,8):
u = [0] *t
v = [0] * t
for number_of_c in range(floor(t/2) + 1): # Set u
for u_index in range(t):
if u_index < t - number_of_c:
ulu_index] = 1
else:
ulu_index] = c¢
skip_v = False

for v_counter in range(((p-1)/2)"(t-1)): # Set v
v[0] =1
for v_index in range(l,t):
v[v_index] = floor(v_counter % ((p-1)/2)"(v_index) /
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if u[v_index]

((p-1)/2) " (v_index-1)) + 1
ul[v_index-1]

and v[v_index] < v[v_index-1]:

skip_v = True
if skip_v == True:
skip_v = False
else:

# If removing the last coefficients yields a smaller form that

# has already passed,

if |

add this form to that list and continue

else:

print ("Search complete")

0T oo T T OO T oo

earch complete

@ Springer

ul:t-1], v[:t-1]) in uv_done:
uv_done.append ( (deepcopy (u) , deepcopy (V) ) )
L =[]

done = False

for i in range((p-1)"t):

if done:
break;
x = [None] * t
for j in range(t): # Set x
x[Jj] = floor(i % (p-1)"(j+1) / (p-1)"3) + 1
a=2>0
b=0
for k in range(t):
a = mod(a + ulkl*x[k]"2, p)
b = mod(b + v[k]l*x[k]"3, p)
inL = False
for pair in L:
if (pair([0] == a and pair[l] == b):
inL = True
break;

# If the pair (a, b) has not already been represented
# by this form, store that it can be

if inL == False:
L.append((a,b))
if len(L) == p"2:
done = True

# Uncomment this line to print information on each form
#print ("u: " + str(u) + " + str(v) + " + str(len(L))

v: "

# If the form represents all pairs (a, b), add it to the list
if done:
uv_done. append ( (deepcopy (u) , deepcopy (v)))
# If the form represents all pairs (a, b) but one,
elif len(L) == p"2-1 and t < 7:
uv_done.append ( (deepcopy (u) ,
else:

if

add it

deepcopy (v) ))

t

print("u: " + str(u) + " v: " + str(v) + "fails.")
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