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Abstract
The system of equations

u1 p
2
1 + · · · + us p

2
s = 0,

v1 p
3
1 + · · · + vs p

3
s = 0

has prime solutions (p1, . . . , ps) for s ≥ 12, assuming that the system has solutions
modulo each prime p. This is proved via theHardy–Littlewood circlemethod, building
onWooley’s work on the corresponding system over the integers and recent results on
Vinogradov’s mean value theorem. Additionally, a set of sufficient conditions for local
solvability is given: If both equations are solvable modulo 2, the quadratic equation
is solvable modulo 3, and for each prime p at least 7 of each of the ui , vi are not zero
modulo p, then the system has solutions modulo each prime p.

Keywords Diophantine equations · Hardy–Littlewood circle method ·
Waring–Goldbach problem · Diagonal forms

Mathematics Subject Classification 11P05 · 11P32

1 Introduction

Much work has been done in applying the Hardy–Littlewood circle method to find
integral solutions to systems of simultaneous equations (see [2,3,10], and [12] for
examples). In particular, recent progress on Vinogradov’s mean value theorem (see [1,
9]) has enabled progress on questions of this type. Here we consider the question of
solving systems of equations with prime variables, generalizing theWaring–Goldbach
problem in the same way existing work on integral solutions of systems of equations
generalizes Waring’s problem. Following Wooley [12], we address here the simplest
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nontrivial case: one quadratic equation and one cubic equation. We find that under
suitable local conditions, 12 variables will suffice for us to establish an eventually
positive asymptotic formula guaranteeing solutions to the system of equations.

Consider a pair of equations of the form

u1 p
2
1 + · · · + us p

2
s = 0,

v1 p
3
1 + · · · + vs p

3
s = 0,

(1)

where u1, . . . , us, v1, . . . , vs are nonzero integer constants and p1, . . . , ps are vari-
ables restricted to prime values. We seek to prove the following theorem:

Theorem 1.1 If

1. the system (1) has a nontrivial real solution,
2. s ≥ 12, and
3. for every prime p, the corresponding local system

u1x
2
1 + · · · + usx

2
s ≡ 0 (mod p),

v1x
3
1 + · · · + vs x

3
s ≡ 0 (mod p)

(2)

has a solution (x1, . . . , xs) with all xi �= 0 (mod p),

then the system has a solution (p1, . . . , ps) with all pi prime. Moreover, if we let
R(P) be the number of solutions (p1, . . . , ps) with each pi ≤ P, each weighted by
(log p1) . . . (log ps), thenwe have R(P) ∼ CPs−5 for some constantC > 0 uniformly
over all choices of u1, . . . , us, v1, . . . , vs .

In Sect. 9 we give a sufficient condition for (2) to be satisfied, giving us the explicit
theorem

Theorem 1.2 Consider the system

u1 p
2
1 + · · · + us p

2
s = U ,

v1 p
3
1 + · · · + vs p

3
s = V ,

(3)

where u1, . . . , us, v1, . . . , vs , are nonzero integer constants and U, V are integer
constants. If

1. the system has a nontrivial real solution,
2. s ≥ 12,
3. the quadratic form u1 p21 + · · · + us p2s is indefinite,

4.
∑s

i=1
ui ≡ U (mod 2) and

∑s

i=1
vi ≡ V (mod 2),

5.
∑s

i=1
ui ≡ U (mod 3), and

6. for each prime p �= 2, at least 7 of each of the ui and the vi are not zero modulo
p,

then the system has a solution (p1, . . . , ps) with all pi prime. Moreover, if we let
R(P) be the nu mber of solutions (p1, . . . , ps), each weighted by (log p1) . . . (log ps),
then we have R(P) ∼ CPs−5 where C > 0 uniformly over all choices of
u1, . . . , us, v1, . . . , vs , U , and V .

123



Simultaneous cubic and quadratic diagonal equations… 865

We use the Hardy–Littlewood circle method to prove these results. Section 2 per-
forms the necessary setup for the application of the circlemethod: defining the relevant
functions and the major arc/minor arc dissection. Section 3 consists of a number of
preliminary lemmas, which are referenced throughout. Section 4 proves a Hua-type
bound necessary for the minor arcs. Section 5 proves a Weyl-type bound on the minor
arcs by means of Vaughan’s identity. Section 6 is the circle method reduction to the
singular series and singular integral. Section 7 shows the convergence of the singular
series and Sect. 8 shows that it is eventually positive, contingent on the local solvability
of the system (3). Section 9 shows sufficient conditions for the solvability of the local
system. This depends on a computer check of local solvability for a finite number of
primes. Section 10 discusses several techniques which can be employed to improve the
efficiency of this computation. Section 11 finishes the proof of Theorems 1.1 and 1.2.
Appendix 1 contains the source code used to run the computations laid out in Sect. 10.

2 Notation and definitions

As is standard in the literature, we use e(α) to denote e2π iα . The letter p is assumed to
refer to a prime wherever it is used, and ε means a sufficiently small positive real num-
ber. The symbols � and μ are the von Mangoldt and Möbius functions, respectively.
Symbols in bold are tuples, with the corresponding symbol with a subscript denoting
a component, i.e., a = (a1, . . . , ak). The letterC is used to refer to a positive constant,
with the value of C being allowed to change from line to line. We write f (x) � g(x)
for f (x) = O(g(x)), f (x) � g(x) if both f (x) � g(x) and g(x) � f (x) hold, and
f (x) ∼ g(x) if f (x)/g(x) → 1 as x → ∞. When we refer to a solution of the system
under study, we mean an ordered s-tuple of prime numbers (p1, . . . , ps) satisfying (1)
or (3), depending on context.

Define the generating function

fi (α2, α3) =
∑

p≤P

(log p)e(α2ui p
2 + α3vi p

3). (4)

LetA be the unit square (R/Z)2 and let S0 be the set of solutions of the system (1).
Then

∫

A

s∏

i=1

fi (α2, α3)dα2 dα3

=
∫

A

∑

p1,...,ps≤P

s∏

i=1

(
(log pi )e(α2ui p

2
i + α3vi p

3
i )

)
dα2 dα3

=
∑

{p1,...,ps }∈S0

s∏

i=1

(log pi ) = R(P) (5)

by orthogonality. Thus R(P) > 0 if and only if there is a solution to the system (1).
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866 A. Talmage

We divide A into major and minor arcs. For any T with 1 ≤ T ≤ P . and for
all q < T , 1 ≤ a2 ≤ q, 1 ≤ a3 ≤ q, (a2, a3, q) = 1, let a typical major arc
M(a2, a3, q; T ) consist of all (α2, α3) such that

|α2 − a2/q| ≤ T

qP2 and |α3 − a3/q| ≤ T

qP3 .

Let the major arcsM(T ) be the union of all suchM(a2, a3, q), and let the minor arcs
m(T ) be the complement of M(T ) in A.

We will use two distinct dissections in our argument: the primary dissection into
M = M(Q) andm = m(Q)with Q = (log P)A, where A is a positive constant whose

value will be fixed later, and a secondary dissectionM(R),m(R) with R = P
1
2+δ for

some sufficiently small positive δ.

3 Preliminary lemmas

We begin by defining the necessary generating functions. Let

f (ααα) =
∑

P<p≤2P

e(α2 p
2 + α3 p

3),

g(ααα) =
∑

P<n≤2P

e(α2n
2 + α3n

3),

S(q,aaa) =
q∑

n=1

e

(
a2n2 + a3n3

q

)
, (6)

W (q,aaa) =
q∑

n=1
(n,q)=1

e

(
a2n2 + a3n3

q

)
,

v(θθθ) =
∫ 2P

P
e(θ2x

2 + θ3x
3)dx, (7)

and for γγγ ∈ M(R) let

V (γγγ ) = 1

q
S(q,aaa)v

(
γ2 − a2

q
, γ3 − a3

q

)
.

Lemma 3.1 We have the bounds
∫

A
|g(ααα)|10dααα � P

31
6 +ε

and
∫

A
|g(ααα)|12dααα � P7.
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Simultaneous cubic and quadratic diagonal equations… 867

Proof This is the relevant portion of Theorem 1.3 of [12]. �
Lemma 3.2 We have the bounds

∫

A
| f (ααα)|10dααα � P

31
6 +εdααα

and
∫

A
| f (ααα)|12dααα � P7dααα.

Proof For any positive integer k,

∫

A
|g(ααα)|2kdααα

is the number of positive integer solutions to the system

x21 + · · · + x2k = x2k+1 + · · · + x22k,

x31 + · · · + x3k = x3k+1 + · · · + x32k

and
∫

A
| f (ααα)|2kdααα

is the number of prime solutions to the same system, so this lemma follows from
Lemma 3.1. �
Lemma 3.3

sup
ααα∈m(R)

|g(ααα)| � P
5
6− δ

3+ε.

Proof This follows from Lemma 5.2 of [12]. �
Lemma 3.4

v(θθθ) � P

(1 + P3|θ3|)1/2 .

Proof If |θ3| ≤ P−3, the result is immediate. Thus we assume |θ3| > P−3. Let
K = (|θ3|P)

1
2 and let r(x) = θ2x2 + θ3x3. Then r ′(x) = 2θ2x + 3θ3x2 has at most

one zero in [P, 2P]. Thus we can divide [P, 2P] into subsets I1 and I2 such that
|r ′(x)| ≥ K on I1, where I1 is the union of at most three intervals such that r ′(x)
is monotonic on each, and |r ′(x)| ≤ K on I2, where I2 is the union of at most two
intervals.

123



868 A. Talmage

First we consider I1:

∫

I1
e(r(x))dx =

∫

I1

1

2π ir ′(x)
d

dx
e(r(x))dx,

so, upon integrating by parts,

∫

I1
e(r(x))dx = e(r(x))

2π ir ′(x)

∣∣∣∣
I1

+
∫

I1

r ′′(x)
2π ir ′(x)2

e(r(x))dx .

The integral on the right is bounded by

∫

I1

|r ′′(x)|
2πr ′(x)2

dx =
∣∣∣∣
∫

I1

r ′′(x)
2πr ′(x)2

dx

∣∣∣∣ =
∣∣∣∣∣

−1

2πr ′(x)

∣∣∣∣
I1

∣∣∣∣∣ � 1

K
,

since r ′(x) is monotonic on each interval in I1. Thus

∫

I1
e(r(x))dx � e(r(x))

2π ir ′(x)

∣∣∣∣
I1

+ 1

K
� 1

K
� P

(1 + |θ3|P3)1/2
. (8)

Next we consider I2. Given an interval in I2, let x0 be one of its endpoints. Then
for any x in I2,

|x − x0||2θ2 + 3θ3(x + x0)| = |r ′(x) − r ′(x0)| ≤ 2K .

Moreover,

|2θ2 + 3θ3x0| = |r ′(x0)|
x0

≤ K

x0
. (9)

Applying the triangle identity to (9) yields

|3θ3x | − K

x0
≤ |2θ2 + 3θ3(x + x0)|. (10)

Also,

|3θ3x | − K

x0
≥ 3|θ3|P − K

P
≥ 2|θ3|P. (11)

Combining (9), (10), and (11) yields

|x − x0| ≤ 2K

2|θ3|P = P

(|θ3|P3)1/2
.

Thus
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Simultaneous cubic and quadratic diagonal equations… 869

∫

I2
e(r(x))dx � |e(r(x))| (meas(I2))

� 2max
x∈I2

|x − x0|

� P

(1 + |θ3|P3)1/2
. (12)

Combining (8) and (12) now gives the desired result.
�

Lemma 3.5 Let t = 12 − δ. Then

∫

A
| f (ααα)|t−1dααα � Pt−6+ 1+δ

12 +ε.

Proof By Hölder’s inequality

∫

A
| f (ααα)|t−1dααα ≤

(∫

A
| f (ααα)|12dααα

) t−11
2

(∫

A
| f (ααα)|10dααα

) 13−t
2

.

Applying Lemma 3.2 gives

∫

A
| f (ααα)|t−1dααα � P

7t−77
2 + 403−31t

12 +ε = Pt−6+ 1+δ
12 +ε.

�
Lemma 3.6 Let R = P

1
2+δ and let γγγ ∈ M(R). Then

g(γγγ ) = V (γγγ ) + O
(
P

5
6− δ

3

)
.

This follows from Theorem 7.2 of [7].

Lemma 3.7 Let κ(q) be the multiplicative function defined by

κ(p j ) =

⎧
⎪⎨

⎪⎩

Cp−1/2 j = 1,

Cp−5/8 j = 2,

Cp− j/4 j > 2.

Then there is a positive constant C such that

max
a

(q,a2,a3)=1

|S(q, a)|
q

≤ κ(q).

Proof The case j = 1 follows from Theorem 2E of [6]. The cases with j > 1 follow
from Theorem 7.1 of [7]. �
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870 A. Talmage

Let
sk(m) = mk

1 + mk
2 + mk

3 − mk
4 − mk

5 − mk
6. (13)

Lemma 3.8 Let Q > 0 and let M(Q) be the number of solutions of the system

s2(m) = 0,

s1(m) = 0

with all m j ≤ Q. Then there is a positive constant C such that

M(Q) ∼ CQ3 log Q.

This is a result of Rogovskaya [5].

Lemma 3.9 If (q, a2, a3) = 1, then

W (q, a) � q
1
2+ε.

In addition, if (p, a2, a3) = 1, then

W (p, a) � p
1
2 .

Proof The case where q = p follows from Theorem 2E of [6]. The case for general q
follows from Lemma 8.5 of [4]. �

4 Minor arc bounds

The primary purpose of this section is to prove the following theorem, which, together
with the result of the next section, will provide the necessary minor arc bounds for our
circle method approach.

Recall from the end of Sect. 2 that δ is a small positive number with R = P
1
2+δ .

Assume δ < 1 and let t = 12 − δ.

Theorem 4.1 For δ sufficiently small,

∫

A
| f (ααα)|t dααα � Pt−5(log P).

Let

It (P) =
∫

A
| f (ααα)|t dααα.
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Lemma 4.1

It (P)2 � P2t−10 + P
∫

A

∫

A
ααα−βββ∈M(R)

|V (ααα − βββ)|| f (ααα)|t−1| f (βββ)|t−1dααα dβββ.

Proof

It (P) =
∫

A
f (ααα) f (−ααα)| f (ααα)|t−2dααα

=
∑

P<p≤2P

∫

A
e(α2 p

2 + α3 p
3) f (−ααα)| f (ααα)|t−2dααα. (14)

Applying the Cauchy–Schwarz inequality to (14) yields

It (P)2 � P
∑

P<n≤2P

∣∣∣∣
∫

A
e(α2n

2 + α3n
3) f (−ααα)| f (ααα)|t−2dααα

∣∣∣∣
2

= P
∫

A

∫

A
g(ααα − βββ) f (−ααα)| f (ααα)|t−1 f (βββ)| f (βββ)|t−1dααα dβββ

≤ P
∫

A

∫

A
|g(ααα − βββ)|| f (ααα)|t−1| f (βββ)|t−1dααα dβββ. (15)

By Lemmas 3.3 and 3.5 and recalling that t = 12− δ, we can bound the minor arc
portion of (15):

P
∫

A

∫

A
ααα−βββ∈m(R)

|g(ααα − βββ)|| f (ααα)|t−1| f (βββ)|t−1dααα dβββ

� P
11
6 − δ

3+ε

(∫

A
| f (ααα)|t−1dααα

)2

� P2t−10− δ
6+2ε � P2t−10. (16)

We now apply Lemma 3.6 to the major arc portion of (15).

P
∫

A

∫

A
ααα−βββ∈M(R)

|g(ααα − βββ)|| f (ααα)|t−1| f (βββ)|t−1dααα dβββ

= P
∫

A

∫

A
ααα−βββ∈M(R)

|V (ααα − βββ)|| f (ααα)|t−1| f (βββ)|t−1dααα dβββ

+O

(
P

11
6 − δ

3

(∫

A
| f (ααα)|t−1dααα

)2
)

= P
∫

A

∫

A
ααα−βββ∈M(R)

|V (ααα − βββ)|| f (ααα)|t−1| f (βββ)|t−1dααα dβββ + O(P2t−10). (17)
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872 A. Talmage

Combining (15), (16), and (17) yields the lemma. �
Let γγγ = ααα − βββ,

λ = t − 6

2
= 3 − δ

2
(18)

(note that λ > 2), and

J (βββ) =
∫

M(R)

|V (γγγ )|λ| f (βββ + γγγ )|6dγγγ . (19)

Lemma 4.2

It (P) � Pt−5 + Pλ sup
βββ∈A

J (βββ).

Proof We begin by noting that

|V (ααα − βββ)|| f (ααα)|t−1| f (βββ)|t−1

can be rewritten as

(
|V (ααα − βββ)|λ| f (ααα)|6| f (βββ)|t

) 1
2λ

×
(
|V (ααα − βββ)|λ| f (βββ)|6| f (ααα)|t

) 1
2λ

× (| f (ααα) f (βββ)|t)1− 1
λ .

(20)

Let

I ∗
t (P) =

∫

A

∫

A
ααα−βββ∈M(R)

|V (ααα − βββ)|| f (ααα)|t−1| f (βββ)|t−1dααα dβββ

be the integral on the right in Lemma 4.1. Using (20) to apply Hölder’s inequality to
I ∗
t (P), we obtain

I ∗
t (P) �

⎛

⎜⎝
∫

A

∫

A
ααα−βββ∈M(R)

|V (ααα − βββ)|λ| f (ααα)|6| f (βββ)|t dαααβββ

⎞

⎟⎠

1
λ

×
⎛

⎜⎝
∫

A

∫

A
ααα−βββ∈M(R)

| f (ααα) f (βββ)|t dαααβββ

⎞

⎟⎠

1− 1
λ

(21)

≤ It (P)2−
1
λ

(
sup
βββ∈A

∫

M(R)

|V (γγγ )|λ| f (βββ + γγγ )|6dγγγ
) 1

λ

. (22)
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Applying (22) to Lemma 4.1, we have

It (P)2 � P2t−10 + P It (P)2−
1
λ

(
sup
βββ∈A

J (βββ)

) 1
λ

.

Thus either It (P) � Pt−5 or

It (P) � Pλ sup
βββ∈A

J (βββ),

which implies the desired result. �

Lemma 4.3 Let N (q) be the number of solutions of the system

⎧
⎪⎨

⎪⎩

s3(p) ≡ 0 (mod q),

s2(p) = 0,

P < p j ≤ 2P.

Then

J (βββ) � Pλ−3
∑

q≤R

κ(q)λqN (q).

Proof By (19) and the definition ofM(R),

J (βββ) =
∑

q≤R

q∑

a2=1

q∑

a3=1
(q,a2,a3)=1

|S(q, a)|λ
qλ

∫ R
qP2

− R
qP2

∫ R
qP3

− R
qP3

|v(θθθ)|λ
∣∣∣∣ f

(
βββ + a

q
+ θθθ

)∣∣∣∣
6

dθθθ.

ByLemmas 3.4, 3.7, and the fact that for a given q, the intervals
[
a2
q − R

qP2 ,
a2
q + R

qP2

]

are disjoint for distinct a2,

J (βββ) ≤
∑

q≤R

∫ R
qP3

− R
qP3

κ(q)λPλ

(1 + P3|θ3|)λ/2

q∑

a3=1

∫ 1

0

∣∣∣∣ f
(

β2 + φ, β3 + a3
q

+ θ3

)∣∣∣∣
6

dφ dθ3.

(23)
We now examine the inner sum and integral.
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874 A. Talmage

q∑

a3=1

∫ 1

0

∣∣∣∣ f
(

β2 + φ, β3 + a3
q

+ θ3

)∣∣∣∣
6

dφ

=
q∑

a3=1

∫ 1

0

∑

p
P<p j≤2P

e

(
(β2 + φ)s2(p) +

(
β3 + a3

q
+ θ3

)
s3(p)

)
dφ

=
∑

p
P<p j≤2P

e(β2s2(p) + (β3 + θ3)s3(p))

q∑

a3=1

e

(
a3
q
s3(p)

) ∫ 1

0
e(φs2(p))dφ.

Now

q∑

a3=1

e

(
a3
q
s3(p)

)
=

{
0 s3(p) �≡ 0 (mod q),

q s3(p) ≡ 0 (mod q)

and

∫ 1

0
e(φs2(p))dφ =

{
0 s2(p) �= 0,

1 s2(p) = 0,

so
q∑

a3=1

∫ 1

0

∣∣∣∣ f
(

β2 + φ, β3 + a3
q

+ θ3

)∣∣∣∣
6

dφ � qN (q). (24)

Substituting (24) into (23) yields

J (βββ) �
∑

q≤R

κ(q)λqN (q)

∫ R
qP3

− R
qP3

Pλ

(1 + P3|θ3|)λ/2 dθ3.

Since λ > 2, this becomes

J (βββ) � Pλ−3
∑

q≤R

κ(q)λqN (q).

�
Lemma 4.4 Let N1(q) be the number of solutions to the system

⎧
⎪⎨

⎪⎩

s3(p) ≡ 0 (mod q),

s2(p) = 0,

P < p j ≤ 2P p j � q.

Then

qN (q) � q(log q)6 + qN1(q).
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Proof First, note that

qN (q) =
q∑

a3=1

∫ 1

0

∣∣∣∣ f
(
x,

a3
q

)∣∣∣∣
6

dx .

Let

f|(ααα) =
∑

P≤p<2P
p|q

e(α2 p
2 + α3 p

3)

and

f�(ααα) =
∑

P≤p<2P
p�q

e(α2 p
2 + α3 p

3).

Thus

f (ααα) = f|(ααα) + f�(ααα).

Since | f|(ααα)| � log q,

| f (ααα)|6 � (log q)6 + | f�(ααα)|6.

Now

q∑

a3=1

∫ 1

0

∣∣∣∣ f�
(
x,

a3
q

)∣∣∣∣
6

dx = qN1(q),

so

qN (q) � q(log q)6 + qN1(q).

�
Lemma 4.5 Let N2(q) be the number of solutions of the system

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

s3(r) ≡ 0 (mod q),

s2(qm + r) = 0,

1 ≤ r j ≤ q(q, r j ) = 1,
P−r j
q < m j ≤ 2P−r j

q .

(25)

Then

N1(q) ≤ N2(q).
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Proof We classify the solutions p counted by N1(q) according to the residue class r j
of each p j modulo q, and let m j = p j−r j

q . Thus

0 = s2(qm + r) ≡ s2(r) (mod q),

so N1(q) ≤ N2(q). �
Lemma 4.6 Let N3(q) be the number of solutions of the system

⎧
⎪⎨

⎪⎩

s3(r) ≡ 0 (mod q),

s2(r) ≡ 0 (mod q),

1 ≤ r j ≤ q (q, r j ) = 1.

Then

N2(q) � N3(q)P4q−5(log P)

(
q2

P
+ 1

)
.

Proof Let r, m be a solution counted in N2(q), i.e., let r, m satisfy (25). Expanding
the third equation of (25) gives

q2s2(m) + 2q(r1m1 + r2m2 + r3m3 − r4m4 − r5m5 − r6m6) + s2(r) = 0.

Since s2(r) ≡ 0 (mod q) by the second equation of (25), this can be rewritten as

qs2(m) + 2(r1m1 + r2m2 + r3m3 − r4m4 − r5m5 − r6m6) + s2(r)
q

= 0

with each term remaining integer-valued. For a fixed r, define

Hj (α) =
∑

P−r j
q <m≤ 2P−r j

q

e
(
α(qm2 + 2r jm)

)
. (26)

Thus the number of m satisfying (25) for a given r is

∫ 1

0
H1(α)H2(α)H3(α)H4(−α)H5(−α)H6(−α)e

(
s2(r)
q

α

)
dα.

By Hölder’s inequality this is

≤
6∏

j=1

(∫ 1

0
|Hj (α)|6dα

) 1
6

.
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The integral

∫ 1

0
|Hj (α)|6dα

counts the number of solutions of

qs2(m) + 2r j s1(m) = 0. (27)

Let s2(m) = u and s1(m) = v. Then (27) becomes qu + 2r jv = 0. For any solution,

we have |v| ≤ 6P
q , and since (q, r j ) = 1, v = v′q

(q,2) . Thus the number of choices for

v′ is ≤ 1 + 24P/q2, and u is determined by v′.
Let

h(ααα) =
∑

P−r j
q <m≤ 2P−r j

q

e(α1m + α2m
2).

For fixed pair u, v, the number of choices of m is

∫

A
|h(ααα)|6e(−α1v − α2u)dααα ≤

∫

A
|h(ααα)|6dααα.

But this is the number of solutions of the system

s2(m) = 0,

s1(m) = 0,

so by Lemma 3.8,

∫

A
|h(ααα)|6dααα �

(
P

q

)3

log P.

So, given r satisfying the first two equations of (25) and (q, r j ) = 1, the number of
solutions to the third equation of (25) is

�
(
1 + P

q2

)
P3

q3
log P = P4q−5

(
1 + q2

P

)
log P.

Thus

N2(q) � N3(q)P4q−5(log P)

(
1 + q2

P

)
.

�
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Lemma 4.7 Let N3(q) be as defined in Lemma 4.6 above. Then there exists a positive
constant C such that

N3(q) � q4
∏

p|q

(
1 + C

p

)
.

Proof We begin by observing that N3(q) is a multiplicative function, and that by
orthogonality,

N3(p
k) = p−2k

pk∑

b2=1

pk∑

b3=1

|W (pk, b2, b3)|6.

Sorting the terms of this sum by the value of (pk, b2, b3) = pk− j , where 0 ≤ j ≤ k,
gives

N3(p
k) = p−2k

k∑

j=0

p j∑

a2=1

p j∑

a3=1
(p j ,a2,a3)=1

|W (pk, pk− j a2, p
k− j a3)|6.

If j = 0, then

W (pk, pk− j a2, p
k− j a3) = φ(pk) = pk(1 − 1/p)

and if j > 0, then

W (pk, pk− j a2, p
k− j a3) = pk− jW (p j , a2, a3).

Thus

N3(p
k) = p4k(1 − 1/p)6 + p4k

k∑

j=1

p j∑

a2=1

p j∑

a3=1
(p j ,a2,a3)=1

p−6 j |W (p j , a2, a3)|6.

By Lemma 3.9,

∑

a
(p,a2,a3)=1

p−6|W (p, a2, a3)|6 � p−1,

and for j ≥ 2,

∑

a
(p j ,a2,a3)=1

p−6 j |W (p j , a2, a3)|6 � p−4 j+6 j/2+ jε � p− j+ jε.
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Thus

N3(p
k) ≤ p4k

(
1 + C

p

)

and the lemma follows by multiplicativity. �
Proof of Theorem 4.1 By Lemma 4.2,

It (P) � Pt−5 + Pλ sup
βββ∈A

J (βββ).

Bounding J (βββ) with Lemma 4.3 yields

It (P) � Pt−5 + P2λ−3
∑

q≤R

κ(q)λqN (q). (28)

Lemmas 4.4, 4.5, and 4.6 successively bound N (q) in terms of N1(q), then N2(q),
then N3(q), and Lemma 4.7 bounds N3(q). Collecting these bounds and applying
them to (28) gives

It (P) � Pt−5 + P2λ+1(log P)
∑

q≤R

κ(q)λ
(
P−4q(log q)6

+
(
q2

P
+ 1

) ∏

p|q

(
1 + C

p

)⎞

⎠ .

Since q ≤ R = P
1
2+δ ,

P−4q(log q)6 � P−3 � 1,

and

q2

P
≤ q

4δ
1+2δ ,

so we have

It (P) � Pt−5 + P2λ+1(log P)
∑

q≤R

κ(q)λq
4δ

1+2δ
∏

p|q

(
1 + C

p

)
. (29)

We now desire a bound on

∑

q≤R

κ(q)λq
4δ

1+2δ
∏

p|q

(
1 + C

p

)
.
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Since κ is multiplicative, it suffices to bound

∏

p≤R

⎛

⎝1 +
∞∑

j=1

κ(p j )λ p j 4δ
1+2δ

⎞

⎠ .

We have

∞∑

j=1

κ(p j )λ p j 4δ
1+2δ � p−5/4 + p−3/2 +

∞∑

j=3

p− 2
3 j

� p−5/4.

Thus

∏

p≤R

⎛

⎝1 +
(
1 + C

p

) ∞∑

j=1

κ(p j )λ p j 4δ
1+2δ

⎞

⎠ �
∏

p≤R

(1 + Cp−5/4) � 1,

which implies that
∑

q≤R

κ(q)λq
4δ

1+2δ
∏

p|q

(
1 + C

p

)
� 1. (30)

Applying (30) to (29) yields

It (P) � Pt−5 + P2λ+1(log P),

which, upon applying the definition of λ in (18), is

It (P) � Pt−5(log P).

�

5 A pointwise minor arc bound sensitive tomultiple coefficients

In this section, we will work with a narrower set of minor arcs m(Q), where Q =
(log P)A. Henceforth m will be assumed to mean m(Q) rather than m(R) unless
otherwise specified. Let ααα = (α1, . . . , αk) and let

Fk(ααα) =
∑

n≤P

�(n)e(α1n + α2n
2 + · · · + αkn

k).

This section consists of the proof of the following theorem and corollary:

123



Simultaneous cubic and quadratic diagonal equations… 881

Theorem 5.1 For D > 0, where D = D(A) can be made arbitrarily large by increas-
ing A, if (α2, α3) ∈ m(Q), then

sup
ααα∈m(Q)

F3(ααα) � P(log P)−D .

Corollary 5.1 For each i , 1 ≤ i ≤ s,

sup
(α2,α3)∈m(Q)

fi (α2, α3) � P(log P)−D .

Proof Take (0, uiα2, viα3) as the argument of F3 in Theorem 5.1 and sum over the
dyadic intervals, noting that multiplying α2 and α3 by the integer coefficients ui and
vi does not move them out of m(Q), and that there are trivially � P1/2 log P prime
powers ≤ P which contribute � P1/2(log P)2 to the sum. �

We begin by citing some known results on Vinogradov’s mean value theorem. Let

Js,k(P) =
∫

[0,1)k
|Fk(ααα)|2sdααα.

We cite the bound
J3,2(P) � P3 log P (31)

from [5] (cf. [7] chap. 7 exercise 2) and for s > 6

Js,3(P) � P2s−6 (32)

from equation (7) of [1].
Let X = (log P)B for some B > 0 to be fixed later. For brevity, we let h(n) :=

e(α1n + α2n2 + α3n3). Then

F3(ααα) =
∑

n≤P

�(n)h(n).

Applying Vaughan’s identity [8] to this sum yields

∑

n≤P

�(n)h(n) = S1 + S2 + S3 + S4, (33)

where

S1 =
∑

n≤X

�(n)h(n),

S2 =
∑

n≤P

⎛

⎜⎝
∑

kl=n
k≤X

μ(k) log l

⎞

⎟⎠ h(n),
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S3 =
∑

n≤P

∑

kl=n
k≤X2

⎛

⎜⎜⎜⎝
∑

m,n
mn=k

m≤X ,n≤X

�(m)μ(n)

⎞

⎟⎟⎟⎠ h(n),

S4 =
∑

n≤P

⎛

⎜⎜⎝
∑

kl=n
k>X ,l>X

a(k)b(l)

⎞

⎟⎟⎠ h(n),

with

a(k) =
∑

l|k
l>X

�(l),

b(l) =
{

μ(l), l > X

0, l ≤ X .

This now enables us to bound each of the sums S1, S2, S3, S4 individually to obtain
the desired bound on F3(ααα). The bounds on these four sums constitute Lemmas 5.1–
5.4.

Lemma 5.1
S1 � X . (34)

Proof Since |h(n)| � 1,

S1 =
∑

n≤X

�(n)h(n) �
∑

m≤X

�(n) � X ,

where the last bound is a classical result of Chebyshev. �
Lemma 5.2

S3 � P(log P)B−A/12+4.

Proof

S3 =
∑

n≤P

∑

kl=n
k≤X2

⎛

⎜⎜⎜⎜⎝

∑

m1,m2
m1m2=k

m1≤X ,m2≤X

�(m1)μ(m2)

⎞

⎟⎟⎟⎟⎠
h(m2). (35)

Let

c3(k) :=
∑

m1,m2
m1m2=k

m1≤X ,m2≤X

�(m1)μ(m2)
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and note for future reference that

|c3(k)| ≤
∑

m|k
�(m) = log k.

Interchanging the order of summation in (35) yields

S3 =
∑

k≤X2

c3(k)
∑

l≤P/k

h(kl)

=
∑

k≤X2

c3(k)
∑

l≤P/k

e(α1kl + α2k
2l2 + α3k

3l3). (36)

We now use Dirichlet’s theorem on Diophantine approximation to obtain integers b j ,
q j for j ∈ {2, 3} such that (b j , q j ) = 1,

∣∣∣∣α j k
j − b j

q j

∣∣∣∣ ≤ (log(P/k))A/2

q j (P/k) j
,

q j ≤ (P/k) j

(log(P/k))A/2 . (37)

Assume for contradiction that q j ≤ (log(P/k))A/2 for both j = 2 and j = 3 and
rewrite (37) as

∣∣∣∣α j − b j

k jq j

∣∣∣∣ ≤ (log(P/k))A/2

q j P j
.

Let b′
j = b j/(k j , b j ), q ′

j = k jq j/(k j , b j ). Then

∣∣∣∣α j − b j

k jq j

∣∣∣∣ ≤ (log(P/k))A/2

q ′
j P

j
,

(b′
j , q

′
j ) = 1, and q ′

j ≤ (log(P/k))A/2 for j ∈ {2, 3}. Let q = lcm(q ′
2, q

′
3) and

a j = b′
j q/q j . Then (a2, a3, q) = 1, q ≤ (log(P/k))A, and

∣∣∣∣α j − a j

q

∣∣∣∣ ≤ (log(P/k))A

qP j
.

This implies that (α2, α3) ∈ M(Q). However, we have (α2, α3) ∈ m(Q), which is
the desired contradiction, so we may assume that q j > (log(P/k))A/2 for at least one
j0 ∈ {2, 3}.
Define α′

j = α j k j and note that (37) becomes

∣∣∣∣α j k
j − b j

q j

∣∣∣∣ ≤ (log(P/k))A/2

q j (P/k) j
. (38)
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We now need a bound on

H(ααα′, P/k) :=
∑

l≤P/k

e(α′
1l + α′

2l
2 + α′

3l
3).

By Theorem 5.2 of [7], using the Diophantine approximation of (38), we have

H(ααα′, P/k) � (log P)

(
J3,2(2P/k)

(
P

k

)3
(

1

q ′
j0

+ k

P
+ q ′

j0
k j0

P j0

))1/6

.

Now by (31), we have J3,2(P) � P3(log P), so

H(ααα′, P/k) � P

k
(log P)2

3∏

j=1

(
1

q ′
j

+ k

P
+ q ′

j k
j

P j

)1/6

. (39)

Now k
P � P−1/2, and

q ′
j k

j

P j � (log P)2 j B−A, 1/q ′
j0

� (log P)2Bj0−A/2, so

1

q ′
j0

+ k

P
+ q ′

j0
k j0

P j0
� (log P)2Bj0−A/2, (40)

assuming 2Bj0 − A/2 < 0.
Applying the bound of (40) to (39) yields

H(ααα′, P/k) � P

k
(log P)2(log P)(2Bj0−A/2)/12

� P

k
(log P)B−A/12+2, (41)

since j0 ≤ 3.
Substituting the bound of (41) into (36), we obtain

S3 �
∑

k≤X2

(log k)
P

k
(log P)B−A/12+2

� P(log P)B−A/12+4.

�

Lemma 5.3

S2 � P(log P)B−A/12+4.
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Proof

S2 =
∑

n≤P

⎛

⎜⎝
∑

kl=n
k≤X

μ(k) log l

⎞

⎟⎠ h(n)

=
∑

k≤X

μ(k)
∑

l<P/k

h(kl)
∫ l

1

dt

t

=
∑

k≤X

μ(k)
∫ P/k

1

∑

l<P/k

h(kl)
dt

t

=
∫ P/k

1

⎛

⎝
∑

k≤X

μ(k)
∑

l<P/k

h(kl)

⎞

⎠ dt

t
. (42)

Now by (41),

∑

l<P/k

h(kl) = H(ααα′, P/k) � P

k
(log P)B−A/12+2.

Substituting this into (42) yields

S2 �
∫ P/k

1

∑

k≤X

P

k
(log P)B−A/12+2 dt

t

� P(log P)B−A/12+2

⎛

⎝
∑

k≤X

μ(k)

k

⎞

⎠
∫ P/k

1

dt

t

� P(log P)2+B−A/12(log X)(log P/k)

� P(log P)4+B−A/12.

�
Lemma 5.4

S4 � P(log P)4−min{A,B}/(4b2)

Proof We begin by splitting S4 into dyadic ranges. Let M = {X2m : 0 ≤ k, 2m ≤
P/X2}. Then

S4 =
∑

M∈M
S4(M), (43)

where

S4(M) =
∑

M<k≤2M

∑

l≤P/k

a(k)b(l)h(kl).
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Our goal is now to replace the sum over the range l ≤ P/k with one over the range
l ≤ P/M . We begin by considering the integral

I (x) :=
∫

R

sin(2πRt)

π t
e(−xt)dt,

where R > 0 is a constant. Computing the integral via the residue theorem gives

I (x) =
{
1, |x | < R,

0, |x | > R.

Now for x �= R, t ≥ 1,

∫

|t |>T

sin(2πRt)

π t
e(−xt)dt =

∫

|t |>T

e
(
(R − x)t

) − e
( − (R + x)t

)

2π i t
dt . (44)

Integrating the right-hand side of (44) by parts gives

∫

|t |>T

sin(2πRt)

π t
e(−xt)dt � 1

T |R − x | + 1

T |R + x | + 1

T 3 � 1

T
∣∣R − |x |∣∣ .

Thus we can rewrite I (x) as an integral over [−T , T ] with an acceptable error term:

I (x) =
∫ T

−T

sin(2πRt)

π t
e(−xt)dt + O

(
1

T
∣∣R − |x |∣∣

)
.

We now take R = log(�P� + 1
2 ), x = log(kl), giving us

S4(M) =
∑

M<k≤2M

∑

l≤P/M

a(k)b(l)h(kl)I (log(kl))

=
∫ T

−T

∑

M<k≤2M

∑

l≤P/M

a(k)b(l)

(kl)2π i t
h(kl)

sin(2πRt)

π t
dt + O

(
P2 log P

T

)
.

Now

sin(2πRt)

π t
� 1

π t
� 1

|t |

and

sin(2πRt)

π t
� 2πRt

π t
� R,
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so

sin(2πRt)

π t
� min(R, 1/|t |).

Take T = P3, a(k, t) = a(k)k−2π i t , b(l, t) = b(l)l−2π i t , and let

S4(M, t) =
∑

M<k≤2M

∑

l≤P/k

a(k, t)b(l, t)h(kl). (45)

Then

S4(M) � sup
|t |<T

|S4(M, t)|
∫ T

−T

sin(2πRt)

π t
dt

� 1 + (log P) sup
|t |<T

|S4(M, t)|.

We now consider S4(M, t). Let b > 6. By Hölder’s inequality

S4(M, t)2b �
⎛

⎝
∑

M<k≤2M

|a(k, t)| 2b
2b−1

⎞

⎠
2b−1

∑

M<k≤2M

∣∣∣∣∣∣

∑

l≤P/M

b(l, t)h(kl)

∣∣∣∣∣∣

2b

. (46)

Now |a(k, t)| = |a(k)| ≤ log k � logM � log P , so

S4(M, t)2b �
(
M(log P)

2b
2b−1

)2b−1 ∑

M<k≤2M

∣∣∣∣∣∣

∑

l≤P/M

b(l, t)h(kl)

∣∣∣∣∣∣

2b

� (log P)2bM2b−1
∑

M<k≤2M

∣∣∣∣∣∣

∑

l≤P/M

b(l, t)h(kl)

∣∣∣∣∣∣

2b

. (47)

Expanding the 2b-th power in (47) yields

∣∣∣∣∣∣

∑

l≤P/M

b(l, t)h(kl)

∣∣∣∣∣∣

2b

=
∑

l
l j≤P/M

(
b∏

i=1

b(li , t)
2b∏

i=b+1

b(li , t)

)

× e
(
α1ks1(l) + α2k

2s2(l) + α3k
3s3(l)

)
, (48)

where

s j (l) = l j1 + · · · + l jb − l jb+1 − · · · − l j2b.
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Collecting terms in (48) by values of s j yields

∣∣∣∣∣∣

∑

l≤P/M

b(l, t)h(kl)

∣∣∣∣∣∣

2b

=
∑

v
|v j |≤bP j

R1(v)e(α1kv1 + α2k
2v2 + α3k

3v3), (49)

where

R1(v) =
∑

l
l j≤P/M
s(l)=v

b∏

i=1

b(li , t)
2b∏

i=b+1

b(li , t) � Jb,3(P/M) � (P/M)2b−6

by (32). Substituting (49) into (47) yields

S4(M, t)2b � (log P)2bM2b−1

×
∑

v
|v j |≤bP j M− j

R1(v)
∑

M<k≤2M

e(α1kv1

+α2k
2v2 + α3k

3v3)

� (log P)2bM5P2b−6

×
∑

v
|v j |≤bP j M− j

∑

M<k≤2M

e(α1kv1 + α2k
2v2 + α3k

3v3). (50)

We now repeat the procedure followed from (46) to (50). By Hölder’s inequality

S4(M, t)|4b2 �
(
(log P)2bM5P2b−6

)2b
⎛

⎜⎜⎝
∑

v
|v j |≤bP j M− j

1
2b

2b−1

⎞

⎟⎟⎠

2b−1

×
∑

v
|v j |≤bP j M− j

∣∣∣∣∣∣

∑

M<k≤2M

e(α1kv1 + α2k
2v2 + α3k

3v3)

∣∣∣∣∣∣

2b

(51)

� (log P)4bM10b P4b2−12b
(
b3P6M−6

)2b−1

×
∑

v
|v j |≤bP j M− j

∣∣∣∣∣∣

∑

M<k≤2M

e(α1kv1 + α2k
2v2 + α3k

3v3)

∣∣∣∣∣∣

2b
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� (log P)4b
2
M6−2b P4b2−6

×
∑

v
|v j |≤bP j M− j

∣∣∣∣∣∣

∑

M<k≤2M

e(α1kv1 + α2k
2v2 + α3k

3v3)

∣∣∣∣∣∣

2b

. (52)

We expand the 2b-th power in (52) and collect like terms. Thus

∣∣∣∣∣∣

∑

M<k≤2M

e(α1kv1 + α2k
2v2 + α3k

3v3)

∣∣∣∣∣∣

2b

=
∑

k
M<k j≤2M

e(α1s1(k)v1 + α2s2(k)v2 + α3s3(k)v3)

=
∑

u
|u j |≤b2 j M j

R2(u)e(α1u1v1 + α2u2v2 + α3u3v3), (53)

where

R2(u) =
∑

k
M<k j≤2M
s(k)=u

1 � Jb,3(2M) � M2b−6

by (32). Substituting (53) into (52), we obtain

S4(M, t)4b
2 � (log P)4b

2
P4b2−6

×
∑

u
|u j |≤b2 j M j

∣∣∣∣∣∣∣∣

∑

v
|v j |≤bP j M− j

e(α1u1v1 + α2u2v2 + α3u3v3)

∣∣∣∣∣∣∣∣
.

Summing over each of the v j gives

S4(M, t)4b
2 � (log P)4b

2
P4b2−6

∑

u
|u j |≤b2 j M j

3∏

j=1

min

(
P j

M j
,

1

‖α j u j‖
)

.

Applying Lemma 2.2 of [7] yields

S4(M, t)4b
2 � (log P)4b

2+3P4b2
3∏

j=1

(
1

q j
+ 1

M j
+ M j

P j
+ q j

P j

)
. (54)
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890 A. Talmage

Combining (54) with (43) and (45), we obtain

S4 � P(log P)4
3∏

j=1

(
1

q j
+ 1

X j
+ q j

P j

)1/(4b2)

.

Recalling that q j > (log P)A for some j and X = (log P)B , this is

S4 � P(log P)4−min(A,B)/(4b2) (55)

for b > 6. �
Proof of Theorem 5.1 Using the Vaughan’s identity breakdown of (33) and the esti-
mates for the Si found in Lemmas 5.1, 5.2, 5.3, and 5.4, we have

F3(ααα) = S1 + S2 + S3 + S4
� (log P)B + P(log P)B−A/12+4 + P(log P)B−A/12+4

+P(log P)4−min(A,B)/(4b2).

So, taking B > 4b2D(D + 4) and A > 12(B + D + 4) for some D > 0 yields

F3(ααα) � P(log P)−D

uniformly in ααα. �

6 Major arc approximations

On a typical major arc M(a2, a3, q), let α2 = a2
q + θ , α3 = a3

q + ω, with θ <
Q

qP2 ,

ω <
Q

qP3 , and q < Q. For ease of notation, let Q
qP2 = �, Q

qP3 = �. Let

Wi (q, a2, a3) =
q∑

r=1
(r ,q)=1

e

(
a2uir2 + a3vi r3

q

)
,

f ∗
i (α2, α3) = 1

φ(q)
Wi (q, a2, a3)

∫ P

0
e(θui x

2 + ωvi x
3)dx,

Ti (x, a2, a3) =
∑

p≤x

(log p)e

(
a2ui p2 + a3vi p3

q

)
,

and for x >
√
P ,

T †
i (x, a2, a3) =

∑
√
P<p≤x

(log p)e

(
a2ui p2 + a3vi p3

q

)
.
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We begin with preliminary bounds on Ti (x, a2, a3) and T †
i (q, a2, a3).

Lemma 6.1

Ti (x, a2, a3) = x

φ(q)
Wi (q, a2, a3) + O(x exp(−C(log x)1/2)).

Proof The exponential function e((a2ui p2+a3vi p3)/q) is only sensitive to the residue
class of p modulo q, so

Ti (x, a2, a3) =
q∑

r=1
(r ,q)=1

∑

p≤x
p≡r (mod q)

(log p)e

(
a2uir2 + a3vi r3

q

)
+ O(qε log q)

=
q∑

r=1
(r ,q)=1

⎛

⎜⎜⎝e

(
a2uir2 + a3vi r3

q

) ∑

p≤x
p≡r (mod q)

log p

⎞

⎟⎟⎠ + O(qε log q).

Now by the Siegel–Walfisz theorem we have that

∑

p≤x
p≡r (mod q)

log p = x

φ(q)
+ O(x exp(−C(log x)1/2)), (56)

so

Ti (x, a2, a3) =
q∑

r=1
(r ,q)=1

(
e

(
a2uir2 + a3vi r3

q

)(
x

φ(q)
+ O(x exp(−C(log x)1/2))

))

= x

φ(q)
Wi (q, a2, a3) + Wi (q, a2, a3)

(
O(x exp(−C(log x)1/2))

)

= x

φ(q)
Wi (q, a2, a3) + O(x exp(−C(log x)1/2)).

�
Corollary 6.1 For x >

√
P,

T †
i (x, a2, a3) = x

φ(q)
Wi (q, a2, a3) + O(x exp(−C(log x)1/2)).

Proof

T †
i (x, a2, a3) = Ti (x, a2, a3) − Ti (

√
P, a2, a3)

= x

φ(q)
Wi (q, a2, a3) + O(x exp(−C(log x)1/2))
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+O(P1/2 exp(−C(log P)1/2)

= x

φ(q)
Wi (q, a2, a3) + O(x exp(−C(log x)1/2)).

�
Lemma 6.2 On M(q, a2, a3),

fi (α2, α3) = f ∗
i (α2, α3) + O(P exp(−C(log P)1/2))

for some positive constant C.

Proof First, we isolate the range (
√
P, P], bounding the remainder immediately.

| fi (α2, α3) − f ∗
i (α2, α3)|

=
∣∣∣∣∣∣

∑

p≤P

(log p)e(α2ui p
2 + α3vi p

3)

− 1

φ(q)
Wi (q, a2, a3)

∫ P

0
e(θui x

2 + ωvi x
3)dx

∣∣∣∣

=
∣∣∣∣∣∣

∑

√
P<p≤P

(log p)e(α2ui p
2 + α3vi p

3)

− 1

φ(q)
Wi (q, a2, a3)

∫ P

√
P
e(θui x

2 + ωvi x
3)dx

∣∣∣∣

+O(P1/2 log P).

Now
∣∣∣∣∣∣

∑
√
P<p≤P

(log p)e(α2ui p
2 + α3vi p

3)

− 1

φ(q)
Wi (q, a2, a3)

∫ P

√
P
e(θui x

2 + ωvi x
3)dx

∣∣∣∣

=
∣∣∣∣Wi (q, a2, a3)

∑
√
P<p≤P

p≡r (mod q)

(log p)e(θui p
2 + ωvi p

3)

− 1

φ(q)
Wi (q, a2, a3)

∫ P

√
P
e(θui x

2 + ωvi x
3)dx

∣∣∣∣ (57)

=
∑

√
P<m≤P

[
(logm)e

(
a2uim2 + a3vim3

q

)
1P

− 1

φ(q)
Wi (q, a2, a3)

]
e(θuim

2 + ωvim
3) + O(|ω|P5/2), (58)
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where 1P is the indicator function of the primes.
We now apply Abel summation to (58), with the term in square brackets serving as

the coefficient. This yields that

| fi (α2, α3) − f ∗
i (α2, α3)|

= e(θui P
2 + ωvi P

3)

(
Ti (x, a2, a3) − 1

φ(q)

∑
√
P<m≤P

Wi (q, a2, a3)

)

−
∫ P

√
P
2π i(2θui x + 3ωvi x

2)

(
Ti (x, a2, a3) − 1

φ(q)

∑
√
P<m≤x

Wi (q, a2, a3)

)
dx

+O(|ω|P5/2). (59)

Now Corollary 6.1 gives that for x >
√
P ,

T †
i (x, a2, a3) − 1

φ(q)

∑
√
P<m≤x

Wi (q, a2, a3) � x exp(−C(log x)1/2),

so

| fi (α2, α3) − f ∗
i (α2, α3)|

= e(θui P
2 + ωvi P

3)
(
O(φ(q)P exp(−C(log P)1/2))

)

−2π i
∫ P

0
(2θui x + 3ωvi x

2)
(
O(φ(q)x exp(−C(log P)1/2))

)
dx

+O(P1/2 log P) + O(|ω|P5/2)

� (1 + |θ |P2 + |ω|P3)φ(q)P exp(−C(log P)1/2)

� (log P)A
φ(q)

q
P exp(−C(log P)1/2)

� P exp(−C(log P)1/2).

�
For clarity of notation, let

A(q) =
q∑

a2=1

q∑

a3=1
(a2,a3,q)=1

1

φ(q)s

s∏

i=1

Wi (q, a2, a3),

S(Q) =
∑

q<Q

A(q),

J (Q) =
∫

|θ |<Q/P2

∫

|ω|<Q/P3

s∏

i=1

∫ P

0
e(θui x

2 + ωvi x
3)dx dω dθ.
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We are now able to state the primary lemma of this section:

Lemma 6.3 For some E > 0,

R(P) = S(Q)J (Q) + O(Ps−5(log P)−E ).

Proof We first introduce variant major arcs whose length is independent of q:

B(q, r, Q) =
{
(a2, a3) : |α2 − a2/q| <

Q

P2 , |α3 − a3/q| <
Q

P3

}

for 1 ≤ Q ≤ P , q < Q, 1 ≤ a2 ≤ q, 1 ≤ a3 ≤ q, and (a2, a3, q) = 1. Let B be the
union of all such B(q, r, Q) and note that M ⊆ B and thus B \ M ⊆ m.

It follows immediately from Lemma 6.2 that

∣∣∣∣∣

s∏

i=1

fi (α2, α3) −
s∏

i=1

f ∗
i (α2, α3)

∣∣∣∣∣ � Ps exp(−C(log P)1/2). (60)

Summing (60) over all arcs inB gives

∫

B

∣∣∣∣∣

s∏

i=1

fi (α2, α3) −
s∏

i=1

f ∗
i (α2, α3)

∣∣∣∣∣ dα2 dα3

=
∑

q<Q

q∑

a2=1

q∑

a3=1
(a2,a3,q)=1

∫

B(a2,a3,q)

∣∣∣∣∣

s∏

i=1

fi (α2, α3) −
s∏

i=1

f ∗
i (α2, α3)

∣∣∣∣∣ dα2 dα3

�
∑

q<Q

q∑

a2=1

q∑

a3=1
(a2,a3,q)=1

∫ Q/P2

−Q/P2

∫ Q/P3

−Q/P3
Ps exp(−C(log P)1/2)dα2 dα3

� Q3Ps−5 exp(−C(log P)1/2). (61)

We now wish to compute

∫

B

s∏

i=1

f ∗
i (α2, α3)dα2dα3

=
∑

q<Q

q∑

a2=1

q∑

a3=1
(a2,a3,q)=1

s∏

i=1

1

φ(q)
Wi (q, a2, a3)

×
∫ Q/P2

−Q/P2

∫ Q/P3

−Q/P3

∫ P

0

e(θui x
2 + ωvi x

3)dx dθ dω
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+O(Ps−5(log P)−E )

= S(Q)J (Q) + O(Ps−5(log P)−E ). (62)

Combining (61) and (62) yields the bound

∫

B

s∏

i=1

fi (α2, α3) = S(Q)J (Q) + O(Ps−5(log P)−E ). (63)

Combining Theorem 4.1 and Corollary 5.1 yields the minor arc bound

∫

m

s∏

i=1

fi (α2, α3) � Ps−5(log P)−E , (64)

and moreover, since A \ B ⊆ m, by Corollary 5.1 and Theorem 4.1 we have

∫

A\B

s∏

i=1

fi (α2, α3) � Ps−5(log P)−E . (65)

Now by (5), (63), and (65) we have

R(P) = S(Q)J (Q) + O(Ps−5(log P)−E ). (66)

�

7 Convergence of the singular series

Lemma 7.1 Let (q1, q2) = 1. Then

Wi (q1q2, a2, a3) = Wi (q2, a2q1, a3q
2
1 )Wi (q1, a2q2, a3q

2
2 ).

Proof Each residue class r modulo q1q2 with (r , q1q2) = 1 is uniquely represented
as cq1 + dq2 with 1 ≤ c ≤ q2, (c, q2) = 1, 1 ≤ d ≤ q1, and (d, q1) = 1. Also,
cq1, dq2 run over all residue classes modulo q2, q1 with (cq1, q2) = 1, (dq2, q1) = 1,
respectively. Thus

Wi (q1q2, a2, a3) =
q2∑

c=1
(c,q2)=1

q1∑

d=1
(d,q1)=1

e

(
a2ui (cq1 + dq2)2 + a3vi (cq1 + dq2)3

q1q2

)

=
q2∑

c=1
(c,q2)=1

q1∑

d=1
(d,q1)=1

e

(
a2ui c2q1 + a3vi c3q21

q2

)
e

(
a2uid2q2 + a3vi d3q22

q1

)

= Wi (q2, a2q1, a3q
2
1 )Wi (q1, a2q2, a3q

2
2 ).

�
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Lemma 7.2 A(q) is multiplicative.

Proof Let (q1, q2) = 1. Then

A(q1q2) =
q1q2∑

a2=1

q1q2∑

a3=1
(a2,a3,q1q2)=1

1

φ(q1q2)s

s∏

i=1

Wi (q1q2, a2, a3).

Now a2 and a3 can be represented by b1q2 + b2q1 and c1q2 + c2q1, respectively, with
1 ≤ b1, c1 ≤ q1, 1 ≤ b2, c2 ≤ q2. So we can rewrite our sum as

A(q1q2) =
q1∑

b1=1

q1∑

c1=1
(b1,c1,q1)=1

q2∑

b2=1

q2∑

c2=1
(b2,c2,q2)=1

1

φ(q1q2)s

s∏

i=1

Wi (q2, b2q
2
1 , c2q

3
1 )Wi (q1, b1q

2
2 , c1q

3
2 ).

Now since (q1, q2) = 1, (c2, b2, q1) = 1, and (b1, c1, q2) = 1, we have
that b2q21 , c2q

3
1 , b1q

2
2 , c1q

3
2 run through complete sets of residue classes modulo

q2, q2, q1, q1, respectively. Thus

A(q1q2) =
q2∑

b1=1

q2∑

c1=1
(b1,b1,q2)=1

q1∑

b2=1

q1∑

c2=1
(b2,c2,q1)=1

1

φ(q1q2)s

s∏

i=1

Wi (q2, b2, c2)Wi (q1, b1, c1)

= A(q1)A(q2).

�
Let S be the completed singular series

S =
∞∑

q=1

A(q).

Since A(q) is multiplicative,

S =
∏

p

(
1 +

∞∑

k=1

A(pk)

)
. (67)

Lemma 7.3 S converges absolutely.

Proof

A(pk) =
pk∑

a2=1

pk∑

a3=1
(a2,a3,pk )=1

1

φ(pk)s

s∏

i=1

Wi (p
k, a2, a3).
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By Lemma 3.9 and the fact that there are � p2k choices for the pair a, b, we have

A(pk) � p2kφ(pk)−s((pk)
1
2+ε)s

� (pk)2−
1
2 s+ε.

Since s ≥ 7, we have
A(pk) � (pk)−

3
2+ε. (68)

Thus

∞∑

k=1

A(pk) �
∞∑

k=1

(pk)−
3
2+ε = p−3/2+ε

1 − p−3/2+ε
� p−3/2+ε.

Then

∑

p

∞∑

k=1

A(pk) �
∑

p

p−3/2+ε

converges, so

S =
∏

p

(
1 +

∞∑

k=1

A(pk)

)

converges. �

8 Positivity of the singular series

To show that R(P) is eventually positive, we now need to show that S is positive.

Lemma 8.1 There exists R > 0 such that

1

2
<

∏

p≥R

(
1 +

∞∑

k=1

A(pk)

)
.

Proof By (68), we have A(pk) � (pk)−3/2+ε � (pk)−1/4. Choose C, R such that
A(pk) ≤ Cp−5/4 < Cp−1/4 < 1

8 for all p ≥ R − 1. Then

∏

p≥R

(
1 − Cp−5/4

)
≥ 1 −

∑

p≥R

Cp−5/4

≥ 1 − C
∫ ∞

R−1
x−5/4dx = 1 − 4C(R − 1)−1/4 ≥ 1

2
.

�
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Wenowneed only show that for p ≤ R, 1+∑∞
k=1 A(pk) > 0. For 1 ≤ t ≤ s, define

Mt (q) to be the number of solutions (x1, . . . , xs) to the simultaneous congruences

t∑

i=1

ui x
2
i ≡ 0 (mod q),

t∑

i=1

vi x
3
i ≡ 0 (mod q)

with (xi , q) = 1 for all i .

Lemma 8.2 For any positive integer q,

Ms(q) = φ(q)s

q2
∑

d|q
A(d).

Proof

Ms(q) = 1

q2

q∑

r2=1

q∑

r3=1

q∑

x1=1
(x1,q)=1

· · ·

×
q∑

xs=1
(xs ,q)=1

e

(
r2(u1x21 + · · · + usx2s ) + r3(v1x31 + · · · + vs x3s )

q

)

= 1

q2

q∑

r2=1

q∑

r3=1

s∏

i=1

q∑

xi=1
(x1,q)=1

e

(
r2ui x2i + r3vi x3i

q

)
.

Let d = q
(r2,r3,q)

, a1 = r2
(r2,r3,q)

, and a2 = r3
(r2,r3,q)

. Then, rearranging according to the
value of d, we have

Ms(q) = 1

q2
∑

d|q

d∑

a2=1

d∑

a3=1
(a2,a3,d)=1

s∏

i=1

φ(q)

φ(d)

d∑

xi=1
(xi ,d)=1

e

(
a2ui x2i + a3vi x3i

d

)

= φ(q)s

q2
∑

d|q
A(d).

�
Lemma 8.3 For positive integers t, γ with t > γ ,

Ms(p
t ) ≥ Ms(p

γ )p(t−γ )(s−2).
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Proof This is [11], Lemma 6.7, with the added observation that (in that paper’s nota-
tion)

max{|b1 − a1|p, |b2 − a2|p} ≤ p−γ ⇒ pγ |(b1 − a1), (b2 − a2).

So if a1, b1 �≡ 0 (mod p), then a2, b2 �≡ 0 (mod p). Thus the argument lifts solutions
over reduced residue classes modulo pγ to solutions over reduced residue classes
modulo pt , so it applies here without modification. �
Theorem 8.1 If for every prime p there exists a positive integer γ such that Ms(pγ ) >

0, then S > 0.

Proof By Lemma 8.2,

1 +
∞∑

k=1

A(pk) = lim
t→∞

p2t

φ(pt )s
M(pt )

≥ lim
t→∞ p(2−s)t M(pt ).

By Lemma 8.3, for some positive integer γ ,

1 +
∞∑

k=1

A(pk) ≥ lim
t→∞ p(2−s)t M(pγ )p(t−γ )(s−2)

≥ lim
t→∞ p(−γ )(s−2) > 0. (69)

The lemma now follows from (67), Lemma 8.1, and (69). �
In Sects. 9 and 10 we prove that, under the conditions of Theorem 1.2, for every p

there exists a positive integer γ such that M(pγ ) > 0.

9 Solvability of the local problem

We now consider the local system

u1x
2
1 + · · · + usx

2
s ≡ 0 (mod p),

v1x
3
1 + · · · + vs x

3
s ≡ 0 (mod p)

(70)

with xi �= 0 in Z/pZ.
We will prove the following result:

Theorem 9.1 The system

u1x
2
1 + · · · + usx

2
s ≡ U (mod p),

v1x
3
1 + · · · + vs x

3
s ≡ V (mod p)

(71)

has a solution (x1, . . . , xs) with all xi �= 0 modulo every prime p if
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1.
s∑

i=1

ui ≡ U (mod 2) and
s∑

i=1

vi ≡ V (mod 2),

2.
s∑

i=1

ui ≡ U (mod 3), and

3. for each prime p at least 7 of the ui , vi are not zero modulo p.

Observe that if the system

u1x
2
1 + · · · + ut x

2
t ≡ U (mod p),

v1x
3
1 + · · · + vt x

3
t ≡ V (mod p)

(72)

has a solution for all u1, . . . , ut , v1, . . . , vt �= 0, then so does the system

ui1x
2
i1 + · · · + uit x

2
it ≡ U (mod p),

v j1x
3
j1 + · · · + v jt x

3
jt ≡ V (mod p)

(73)

for any {i1, . . . , it }, { j1, . . . , jt } ⊂ {1, . . . , s}. Also observe that the conditions of
Theorem 9.1 guarantee solvability modulo p = 2 and p = 3: p = 2 is immediate and
for p = 3, the condition guarantees that the quadratic equation is satisfied and each
term vi x3i of the cubic equation can be independently set to 1 or −1, allowing us to
set v1x31 = V if V �≡ 0 (mod 3) and partition the remainder of {1, . . . , t} into groups
of 2 and 3, which can be zeroed by setting them to {1,−1} and {1, 1, 1}.

Thus we have reduced Theorem 9.1 to this lemma:

Lemma 9.1 For all ui , vi �= 0 (mod p), p ≥ 5, t ≥ 7, U , V , there exist {x1, . . . , xs}
with xi �= 0 (mod p) such that

u1x
2
1 + · · · + ut x

2
t ≡ U (mod p),

v1x
3
1 + · · · + vt x

3
t ≡ V (mod p).

(74)

Lemma 9.2 Suppose p > 3, and that a and b are not both equal to p. Then
|Wi (p, a2, a3)| ≤ 2

√
p + 1.

Proof Corollary 2F of [6] gives

∣∣∣∣∣∣

p−1∑

r=0

e

(
a2uir2 + a3vi r3

p

)∣∣∣∣∣∣
≤ 2p1/2.

Now

123



Simultaneous cubic and quadratic diagonal equations… 901

|Wi (p, a2, a3)| =
∣∣∣∣∣∣

p−1∑

r=1

e

(
a2uir2 + a3vi r3

p

)∣∣∣∣∣∣

≤
∣∣∣∣∣∣

p−1∑

r=0

e

(
a2uir2 + a3vi r3

p

)∣∣∣∣∣∣
+ 1 ≤ 2

√
p + 1.

�
Lemma 9.3 Mt (p) ≥ 1

p2
(
(p − 1)t − (p2 − 1)(2

√
p + 1)t

)
.

Proof

Mt (p) = 1

p2

p∑

r2=1

p∑

r3=1

t∏

i=1

Wi (p, r2, r3).

We have Wi (p, p, p) = p − 1 and for r2, r3 not both p, Wi (p, r2, r3) ≤ 2
√
p + 1 by

Lemma 9.2. Thus

∣∣∣∣Mt (p) − (p − 1)t

p2

∣∣∣∣ ≤ 1

p2

p∑

r2=1

p∑

r3=1
{r2,r3}�={p,p}

t∏

i=1

(2
√
p + 1)

≤ 1

p2
(p2 − 1)(2

√
p + 1)t .

So we have

Mt (p) ≥ 1

p2
(
(p − 1)t − (p2 − 1)(2

√
p + 1)t

)
.

�
Taking t = 7, we get

M7(p) ≥ 1

p2
(
(p − 1)7 − (p2 − 1)(2

√
p + 1)7

)
.

This gives that M7(p) > 0 for p > 40.58. This means that we now need only check
that Lemma 9.1 holds for each prime smaller than 41. This is now a finite number
of cases to check and thus can be verified by computer. In the following section, we
note several techniques that may be employed to bring the computational difficulty
of the task into the realm of feasibility, and in Appendix 1 we provide Sage code for
performing the computation.

It is worth noting that t = 7 appears to only be required for p = 7. It seems highly
probable that t = 5 will suffice for all other primes; however, reducing t to 5 weakens
the bound of Lemma 9.3 to requiring us to check all primes less than 1193, which
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would require more computation than is feasible, since even after the optimizations of
Sect. 10, the algorithmchecks O(p7) distinct forms for solvability to verify Lemma9.3
for all primes up through p.

10 Computational techniques

First, we note that if every pair U , V modulo p can be represented by the form in t0
variables, then every pair can be represented by t variables for t > t0. So we will start
our search with t = 3 and store the forms that represent all pairs (U , V ) of residue
classes mod p. We then need only search higher values of t for the forms that failed
to represent all pairs of residue classes with a smaller t .

(The methods in this paragraph are closely modeled after those of [10].) By inde-
pendently substituting ci xi for each xi , we can assume each xi is either 1 or a fixed
quadratic nonresidue c modulo p. By rearranging and multiplying by b−1 as needed,
we can assume that u1, . . . , ur = 1, ur+1, . . . , ut = cwith r ≥ �t/2�. By multiplying
the cubic equation by v−1

1 and rearranging, we may assume 1 = v1 ≤ v2 ≤ · · · ≤ vt .
By substituting −xi for xi as needed, we can assume 1 ≤ vi ≤ (p − 1)/2 for each vi
without affecting the ui .

As a final optimization, we note that if the system of congruences

u1x
2
1 + · · · + ut x

2
t ≡ U (mod p),

v1x
3
1 + · · · + vt x

3
t ≡ V (mod p)

(75)

represents p2 − 1 of the possible p2 pairs of residue classes (U , V ) modulo p, then

u1x
2
1 + · · · + ut+1x

2
t+1 ≡ U (mod p),

v1x
3
1 + · · · + vt+1x

3
t+1 ≡ V (mod p)

(76)

will necessarily represent all p2 residue classes, since (ut+1x2t+1, vt+1x3t+1) must rep-
resent at least two distinct pairs of residue classes, so

u1x
2
1 + · · · + ut x

2
t = U − ut+1x

2
t+1 (mod p),

v1x
3
1 + · · · + vt x

3
t = V − vt+1x

3
t+1 (mod p)

(77)

will be solvable for some (ut+1, vt+1). This turns out to be quite useful: a substantial
number of forms represent exactly p2 − 1 pairs of residue classes modulo p.

Using these techniques tominimize the computation needed, running the Sage code
in Appendix 1 verifies that Lemma 9.1 holds for p < 41. This allows us to conclude
the following unconditional form of Theorem 8.1.

Lemma 10.1 S > 0.
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11 Conclusion

Wehave that R(P) = S(Q)J (Q)+O(Ps−5(log P)−E ) by Lemma 6.3. Lemma 10.1,
in conjunction with Lemma 8.1, shows that S(Q) > 0 uniformly over all ui , vi
satisfying the conditions of Theorem 1.1 or Theorem 1.2.

The singular integral J (Q) is the same as the one Wooley obtains in the corre-
sponding problem over the integers, so by Lemma 7.4 of [12], there exists a positive
constant C such that

J (Q) = CPs−5 + O(Ps−5Q−1/2).

In addition, we have the asymptotic upper boundS(Q) � 1 from Lemma 7.3. So we
have

R(P) = CPs−5 + O(Ps−5(log P)−E )

for E > 0, C > 0 uniformly.
Thus R(P) is eventually positive. This can only be true if there is a solution of (1)

over the primes, so we can conclude Theorems 1.1 and 1.2.
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for a great deal of guidance and assistance, and for many of the ideas of Sects. 4 and 5. The author also
thanks Trevor Wooley, who suggested the approach taken in Lemma 4.1.

Appendix 1: Sage code

Code: (SageMath 8.6)

for p in prime_range(5,41):

# Find a quadratic non-residue modulo p
for i in range(1,p):

if i not in quadratic_residues(p):
c = i
break

uv_done = []
print("p = " + str(p))

for t in range(3,8):
u = [0] * t
v = [0] * t
for number_of_c in range(floor(t/2) + 1): # Set u

for u_index in range(t):
if u_index < t - number_of_c:

u[u_index] = 1
else:

u[u_index] = c
skip_v = False
for v_counter in range(((p-1)/2)ˆ(t-1)): # Set v

v[0] = 1
for v_index in range(1,t):

v[v_index] = floor(v_counter % ((p-1)/2)ˆ(v_index) /
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((p-1)/2)ˆ(v_index-1)) + 1
if u[v_index] == u[v_index-1] and v[v_index] < v[v_index-1]:

skip_v = True
if skip_v == True:

skip_v = False
else:

# If removing the last coefficients yields a smaller form that
# has already passed, add this form to that list and continue
if (u[:t-1], v[:t-1]) in uv_done:

uv_done.append((deepcopy(u),deepcopy(v)))
else:

L = []
done = False
for i in range((p-1)ˆt):

if done:
break;

x = [None] * t
for j in range(t): # Set x

x[j] = floor(i % (p-1)ˆ(j+1) / (p-1)ˆj) + 1
a = 0
b = 0
for k in range(t):

a = mod(a + u[k]*x[k]ˆ2, p)
b = mod(b + v[k]*x[k]ˆ3, p)

inL = False
for pair in L:

if (pair[0] == a and pair[1] == b):
inL = True
break;

# If the pair (a, b) has not already been represented
# by this form, store that it can be
if inL == False:

L.append((a,b))
if len(L) == pˆ2:

done = True

# Uncomment this line to print information on each form
#print("u: " + str(u) + " v: " + str(v) + " " + str(len(L)))

# If the form represents all pairs (a, b), add it to the list
if done:

uv_done.append((deepcopy(u), deepcopy(v)))
# If the form represents all pairs (a, b) but one, add it
elif len(L) == pˆ2-1 and t < 7:

uv_done.append((deepcopy(u), deepcopy(v)))
else:

if t == 7:
print("u: " + str(u) + " v: " + str(v) + "fails.")

print("Search complete")

Output:

p = 5
p = 7
p = 11
p = 13
p = 17
p = 19
p = 23
p = 29
p = 31
p = 37
Search complete
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