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Abstract
We discuss two theorems in analytic number theory and combinatory analysis that
have seen increased use in recent years. A corollary to a Tauberian theorem of Ingham
allows one to quickly prove asymptotic formulas for arithmetic sequences, so long
as the corresponding generating function exhibits exponential growth of a certain
form near its radius of convergence. Two common methods for proving the required
analytic behavior aremodular transformations andEuler–Maclaurin summation.How-
ever, these results are sometimes stated without certain technical conditions that are
necessary for the complex analytic techniques that appear in Ingham’s proof. We
carefully examine the precise statements and proofs of these results, and find that in
practice, the technical conditions are satisfied for those cases appearing in recent appli-
cations. We also generalize the classical approach of Euler–Maclaurin summation in
order to prove asymptotic expansions for series with complex values, simple poles, or
multi-dimensional summation indices.

Keywords Tauberian Theorem · Asymptotic · Partitions · Euler–Maclaurin
summation formula

The first author was supported by the European Research Council (ERC) under the European Union’s
Horizon 2020 Research and Innovation Programme (Grant agreement no. 101001179).

B Kathrin Bringmann
kbringma@math.uni-koeln.de

Chris Jennings-Shaffer
chrisjenningsshaffer@gmail.com

Karl Mahlburg
mahlburg@math.lsu.edu

1 Faculty of Mathematical and Natural Sciences, Mathematical Institute, University of Cologne,
Weyertal 86-90, 50931 Cologne, Germany

2 Department of Mathematics, University of Denver, Denver, CO 80208, USA

3 Department of Mathematics, Louisiana State University, Baton Rouge, LA 70803, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11139-020-00377-5&domain=pdf


56 K. Bringmann et al.

Mathematics Subject Classification 11B68 · 11M45 · 11P82

1 Introduction and statement of results

In mathematics, one often encounters sequences {bn}n∈N0 whose terms enumerate
the objects in some family of interest. Although the problem of finding closed-form
expressions for the bn is often intractable, for some applications it is sufficient to
determine the asymptotic behavior of bn . A powerful technique is to consider the gen-
erating function of the sequence as a complex analytic power series, as its asymptotic
analytic behavior can provide information about the asymptotic behavior of the bn . In
this article we revisit Ingham’s Tauberian theorem [13], whichwas devised to carry out
the above idea for a class of sequences related to modular forms and the combinatorics
of integer partitions.

Recall that a partition of a non-negative integer n is a weakly decreasing sequence
of positive integers that sum to n, and that the partition function p(n) denotes the
number of partitions of n. For example, p(5) = 7 and the relevant partitions are: (5),
(4, 1), (3, 2), (3, 1, 1), (2, 2, 1), (2, 1, 1, 1), and (1, 1, 1, 1, 1). The function p(n) does
not have a closed form, nor does it satisfy any finite order recurrence. However, its
asymptotic behavior was proven by Hardy and Ramanujan [12], who showed that

p(n) ∼ 1

4
√
3n

eπ

√
2n
3 as n → ∞. (1.1)

In fact, they obtained a much stronger result by introducing what is now known as
the Hardy–Ramanujan Circle Method, which uses modular transformations to obtain
a divergent series whose truncations approximate p(n) with a very small error (a later
refinement of Rademacher [17] gave a convergent series representation for p(n)).

Ingham [13] showed that (1.1) can also be derived from a certain Tauberian theorem
(see Sect. 4 below). This approach has recently seen increased use in combinatorics
and number theory, including applications in plane partitions [11], t-core partitions
[18], overpartitions [8,9], partitions arising from permutation groups [10], families of
partitionswith certain “gap” conditions [14], andbounds for the coefficients ofmodular
functions [7]. In usage, Ingham’s theorem is often stated as follows: Suppose that
B(q) = ∑

n≥0 bnq
n is a power serieswithweakly increasing non-negative coefficients

and radius of convergence 1. If λ, β, and γ are real numbers with γ > 0 such that
B(e−t ) ∼ λtβe

γ
t as t → 0+, then

bn ∼ λγ
β
2 + 1

4

2
√

πn
β
2 + 3

4

e2
√

γ n as n → ∞.

However, this is not quite correct as written, as it is missing an important technical
condition from Ingham’s work. In particular, the analytic behavior of B(e−z) for
z → 0+ along the real axis is not sufficient in general to determine the asymptotic
behavior of the coefficients bn , as one also needs to consider B(e−z) for complex
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On a Tauberian theorem of Ingham and Euler–Maclaurin summation 57

values of z (see Sect. 3.2 below for some counterexamples). The full statement of
Ingham’s theorem from [13] is given in Theorem 4.1 below, and the following result
includes all necessary conditions for B(e−z). The general statement also includes an
additional logarithmic term that has been needed in some recent applications (see for
example [5]).

Theorem 1.1 Suppose that B(q) = ∑
n≥0 bnq

n is a power series with non-negative
real coefficients and radius of convergence at least one. If λ, α, β, and γ are real
numbers with γ > 0 such that

B
(
e−t) ∼ λ log

( 1
t

)α
tβe

γ
t as t → 0+,

B
(
e−z) � log

(
1
|z|

)α |z|βe γ
|z| as z → 0, (1.2)

with z = x + iy (x, y ∈ R, x > 0) in each region of the form |y| ≤ �x for � > 0,
then

N∑
n=0

bn ∼ λγ
β
2 − 1

4 log (N )α

2α+1
√

πN
β
2 + 1

4

e2
√

γ N as N → ∞. (1.3)

Furthermore, if the bn are weakly increasing, then

bn ∼ λγ
β
2 + 1

4 log (n)α

2α+1
√

πn
β
2 + 3

4

e2
√

γ n as n → ∞. (1.4)

Remark 1. The conclusion ofTheorem1.1 forces B(q) to have radius of convergence
exactly one. We also note that the second condition in (1.2) does not follow from
the first using a simple term-by-term estimate, as

∣∣B (
e−z)∣∣ ≤

∑
n≥0

bne
−n Re(z) = B

(
e−Re(z)

)
,

but e
γ

Re(z) is not O(e
γ
|z| ) for complex z → 0. In fact, in Sect. 3.2 we see that the

second condition is essential in general.
2. If in each region |y| ≤ �x we have

B
(
e−z) ∼ λLog

(
1

z

)α

zβe
γ
z , (1.5)

then the second bound in (1.2) is automatically satisfied. As explained in Sect. 3.1,
this case holds for any modular form with a pole at z = 0. Here and throughout
we follow the standard convention that Log denotes the principal branch of the
logarithm, so that for z 
= 0, Log(z) = log |z| + Arg(z), with Arg(z) ∈ (−π, π ].

The appeal of Ingham’s Tauberian theorem is that it yields asymptotics for
sequences with very little effort, particularly in comparison to the Circle Method,
which typically requires modular transformations and bounds along various arcs near
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the complex unit circle. Fortunately, although the bound along the restricted angle� in
Theorem 1.1 has not always been mentioned explicitly, the conclusion of the theorem
statement still applies in all published applications that we are aware of. Indeed, one
of the purposes of this article is to show that the extra condition is often guaranteed by
whatever method is used to determine the asymptotic growth of B(e−t ). For example,
as discussed in Sect. 4, if the growth is determined by applying transformations of a
modular form, then the required bound in the restricted angle is always satisfied as
well.

Another commonmethod for determining the growth of B(e−t ) is to find an asymp-
totic expansion of B(e−t ) for t near zero. The classical Euler–Maclaurin summation
formula is (see e.g. [16, Eq. (2.10.1)])

M∑
m=0

f (m) =
∫ M

0
f (x)dx + 1

2
( f (M) + f (0))

−
N−1∑
n=1

B2n

(2n)!
(
f (2n−1)(M) − f (2n−1)(0)

)

+
∫ M

0

f (2N )(x) (B2N − B2N (x − �x�))
(2N )! dx,

where M, N ∈ N, Bn(x) is the n-th Bernoulli polynomial, Bn the n-th Bernoulli
number, and f is continuous on the interval [0, M] and 2N -times continuously differ-
entiable inside the interval. In [21], Zagier gave an elegant account of how this formula
implies asymptotic expansions of the form (N ∈ N0)

∑
m≥0

f (t(m + a)) ∼ 1

t

∫ ∞

0
f (x)dx −

N−1∑
n=0

Bn+1(a) f (n)(0)

(n + 1)! tn + ON

(
t N

)
, (1.6)

where a ∈ R
+ and f : (0,∞) → C is a C∞ function such that f (x) and all of its

derivatives are of “rapid decay” as x → 0. For example, this approach has been used
to determine the asymptotic behavior of partial theta functions

∑
n≥0(−1)nqan

2+bn

as q → 1− in [14,20].
In consideration of Theorem 1.1, the immediate question is to what extent do we

also have expansions of this form when f is a function of a complex variable. To be
precise, we say that a function f is of sufficient decay in a domain D ⊂ C if there
exists some ε > 0 such that f (w) � w−1−ε as |w| → ∞ in D. Our first result
shows that Euler–Maclaurin summation gives an asymptotic expansion that converges
uniformly on domains that preclude a tangential approach to 0.

Theorem 1.2 Suppose that 0 ≤ θ < π
2 and let Dθ := {reiα : r ≥ 0 and |α| ≤ θ}. Let

f : C → C be holomorphic in a domain containing Dθ , so that in particular f is
holomorphic at the origin, and assume that f and all of its derivatives are of sufficient
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decay. Then for a ∈ R and N ∈ N0,

∑
m≥0

f (w(m + a)) = 1

w

∫ ∞

0
f (x)dx −

N−1∑
n=0

Bn+1(a) f (n)(0)

(n + 1)! wn + ON

(
wN

)
,

uniformly, as w → 0 in Dθ .

Remark We see in the proof of Theorem 1.2 that the decay assumption can be slightly
relaxed, as the primary technical condition is that | f (n)(w)| is integrable. However, in
practice f (w) often has much stronger decay (for example, f (w) = g(w)e−w for a
rational function g).

The next result extends Theorem 1.2 to the case that the function has a simple pole
at zero. In order to state it we need the constants

Ca := (1 − a)
∑
m≥0

1

(m + a)(m + 1)
,

which are defined for a ∈ R, a /∈ −N0. We note that Ca = −γ − ψ(a), where
ψ(a) := �′(a)

�(a)
is the digamma function [1, Eq. 6.3.16], and γ is the Euler–Mascheroni

constant.

Theorem 1.3 Suppose that 0 ≤ θ < π
2 , let f : C → C be holomorphic in a domain

containing Dθ , except for a simple pole at the origin, and assume that f and all of
its derivatives are of sufficient decay in Dθ . If f (w) = ∑

n≥−1 bnw
n near 0, then for

a ∈ R, a /∈ −N0, and N ∈ N0, then uniformly, as w → 0 in Dθ ,

∑
m≥0

f (w(m + a)) = b−1 Log
( 1

w

)

w
+ b−1Ca

w
+ 1

w

∫ ∞

0

(
f (x) − b−1e−x

x

)
dx

−
N−1∑
n=0

Bn+1(a)bn
n + 1

wn + ON

(
wN

)
.

There are also applications where one needs asymptotic expansions of the form
(1.6) for sums over multiple indices in N (e.g. [6, Sect. 4]). This requires a multi-
dimensional generalization of Theorem 1.2. While the two-dimensional version of
this formula has appeared in a small number of recent articles, and the authors stated
the general form in [6], we are not aware of any recorded proofs. Writing vectors
in bold letters and their components with subscripts here and throughout the paper,
we say that a multivariable function f in s variables is of sufficient decay in D if
there exist ε j > 0 such that f (x) � (x1 + 1)−1−ε1 · · · (xs + 1)−1−εs uniformly as
|x1| + · · · + |xs | → ∞ in D.

Theorem 1.4 Suppose that 0 ≤ θ j < π
2 for 1 ≤ j ≤ s, and that f : C

s → C

is holomorphic in a domain containing Dθ := Dθ1 × · · · × Dθs . If f and all of its
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derivatives are of sufficient decay in Dθ , then for a ∈ R
s and N ∈ N0 we have

∑
m∈N

s
0

f (w(m + a))

= (−1)s
∑
n∈N s

N

f (n)(0)
∏

1≤ j≤s

Bn j+1(a j )

(n j + 1)! wn j +
∑

∅⊆S�{1,...,s}

(−1)|S |

ws−|S |

×
∑

n j∈NN
j∈S

∫

[0,∞)s−|S |

⎡
⎣ ∏

j∈S

∂n j

∂x
n j
j

f (x)

⎤
⎦
x j=0
j∈S

∏
1≤k≤s
k /∈S

dxk
∏
j∈S

Bn j+1(a j )

(n j + 1)! wn j

+ ON

(
wN

)
,

uniformly, as w → 0 in Dθ , where NN := {0, 1, . . . , N − 1}.

We are writing Theorem 1.4 in a compact form, so to illustrate the unpacked state-
ment we note that the two-dimensional case is

∑

m∈N
2
0

f (w(m + a)) = 1

w2

∫ ∞

0

∫ ∞

0
f (x)dx1dx2

− 1

w

N−1∑
n1=0

Bn1+1(a1)

(n1 + 1)! wn1

∫ ∞

0
f (n1,0)(0, x2)dx2

− 1

w

N−1∑
n2=0

Bn2+1(a2)

(n2 + 1)! wn2

∫ ∞

0
f (0,n2)(x1, 0)dx1

+
∑

n1+n2<N

Bn1+1(a1)Bn2+1(a2) f (n1,n2)(0)
(n1 + 1)!(n2 + 1)! wn1+n2

+ ON

(
wN

)
.

The remainder of this article is organized as follows. In the following section we
recall known facts for Bernoulli polynomials. In Sect. 3, we give examples of a few
applications related to Theorems 1.1 and 1.2. In particular, we demonstrate why the
additional growth constraint in the right half-plane is necessary for Theorem 1.1 and
why the limit in Theorem 1.2 must be taken non-tangentially to the imaginary axis. In
Sect. 4, we state Ingham’s Tauberian theorem and use it to prove Theorem 1.1. In Sect.
5 we extend the classical use of Euler–Maclaurin summation to complex functions,
proving Theorems 1.2, 1.3, and 1.4. We conclude in Sect. 6 with a brief discussion
comparing Ingham’s Tauberian theorem and Wright’s Circle Method.
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2 Preliminaries

We begin by recalling basic properties of the Bernoulli polynomials (see [1, Sect.
23.1]), which have the exponential generating function

∑
n≥0

Bn(x)
tn

n! = tet x

et − 1
.

For n ∈ N0\{1}, the Bernoulli numbers are defined by

Bn := Bn(1) = Bn(0), (2.1)

whereas in order to avoid confusion for n = 1, we typically simply directly plug in

B1(1) = 1

2
= −B1(0). (2.2)

The polynomials satisfy many useful identities, including

B ′
n+1(x) = (n + 1)Bn(x), and (2.3)

Bk(x + y) =
k∑

n=0

(
k

n

)
Bn(x)y

k−n . (2.4)

We also need the Euler polynomials, which have the generating function

∑
n≥0

En(x)
tn

n! = 2et x

et + 1
. (2.5)

These are related to the Bernoulli polynomials by the identity

Bn+1

( x
2

)
− Bn+1

(
x

2
+ 1

2

)
= − (n + 1)

2n+1 En(x). (2.6)

3 Examples

In this section, we consider some applications for Theorems 1.1 and 1.2. In these
examples, we carefully examine the technical issues that arise in applying and using
these theorems.
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3.1 Partitions and weakly holomorphic modular forms

To illustrate the use of Theorem 1.1, we first revisit one of the motivating examples in
[13]. Euler’s partition generating function is

P(q) :=
∑
n≥0

p(n)qn = q
1
24

η(τ)
,

where η(τ) := q
1
24

∏
n≥1(1 − qn) is Dedekind’s η-function. Here, and in the other

examples, q and τ are related by q := e2π iτ . The Dedekind η-function satisfies the
modular transformation [2, Theorem 3.1]

η

(
−1

τ

)
= √−iτη(τ),

which implies that for z ∈ C with Re(z) > 0,

P(e−z) =
√

z

2π
e− z

24+ π2
6z

∑
n≥0

p(n)e− 4π2n
z =

√
z

2π
e

π2
6z

(
1 + O

(∣∣∣∣e− 4π2
z

∣∣∣∣
))

.

We now easily see that Theorem 1.1 can be applied, since if z = x + iy (x > 0) with
|y| ≤ �x , then ∣∣∣e− 1

z

∣∣∣ = e
− x

x2+y2 ≤ e
− 1

(1+�2)x ≤ e
− 1

(1+�2)|z| . (3.1)

Thus, in these regions of restricted angle, we have (see (1.5))

P
(
e−z) ∼

√
z

2π
e

π2
6z as z → 0. (3.2)

And indeed, Theorem 1.1 does give the correct asymptotic formula, as (1.4) implies
(1.1).

Finally,we also note that (3.2) does not hold in thewhole right half-planeRe(z) > 0.

For example, if z approaches 0 tangentially along the path z = x + i x
1
3 , then

exp

(
−1

z

)
= exp

(
− x

x2 + x
2
3

+ i x
1
3

x2 + x
2
3

)
,

and

x

x2 + x
2
3

→ 0,
x

1
3

x2 + x
2
3

→ ∞, (3.3)

as x → 0+. Thus, |e− 1
z | → 1 and we can no longer isolate the leading asymptotic

term in (3.1). This can also be seen numerically. In Table 1, we give a numerical

123



On a Tauberian theorem of Ingham and Euler–Maclaurin summation 63

Table 1 Approximate size of the

error, P(e−z)

√
2π
z e−

π2
6z − 1,

along three paths

Path

x z = x + i x z = x + i x2 z = x + i x
1
3

10−1 0.0058802931 0.0041787363 0.0197422414

10−2 0.0005891329 0.0004166007 0.0088566903

10−3 0.0000589243 0.0000416658 0.0234673077

10−4 0.0000058925 0.0000041666 0.1284298533

10−5 0.0000005892 0.0000004166 0.2648476442

approximation of the size of P(e−z)

√
2π
z e− π2

6z − 1 along three different paths, with
the first two being non-tangential and the third being tangential. As expected, the error
tends to zero for the first two paths, but not the third.

The principle is similar for any other modular form, as the modular inversion map
τ �→ − 1

τ
always gives an expansion in terms of e−cz for some c > 0, which rapidly

tends to 0 so long as the angle of z is restricted.

3.2 A counterexample for the real-analytic version of Ingham’s theorem

In this section, we give a detailed presentation of an example that demonstrates the
necessity of the second condition in (1.2).

3.2.1 General discussion

The importance of the example under consideration was highlighted by Ingham, who
stated in note 2) on page 1088 of [13] that “In Theorem 1′ we may regard…(ii) (for
every �) as Tauberian conditions which convert the generally false inference…into a
true proposition. An example…has been constructed by Avakumović and Karamata
(353, e).”

More specifically, we work with the special case γ = 3
2 of Avakumović and Kara-

mata’s example e) [3] (after making someminor modifications to obtain a power series
instead of the continuous Laplace transform used in their original construction).

We define the coefficients

A(n) :=
{
0 if n = 0,

e2m
3
2 m− 1

4 if m3 ≤ n < (m + 1)3,

and the corresponding series F(q) := ∑
n≥0 A(n)qn .

Proposition 3.1 As t → 0+,

F
(
e−t) ∼ 2

√
π

3

e
1
t

t
,
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and

lim sup
n→∞

n
1
12 e−2

√
n A(n) = 1, (3.4)

lim inf
n→∞ n

1
12 e−2

√
n+3n

1
6 A(n) = 1. (3.5)

As a consequence, we see that Theorem 1.1 is false in general if one only considers
the asymptotic behavior of the series along the real line. In particular, the A(n) are
weakly increasing and F(e−t ) satisfies the first condition in (1.2). However, a short
calculation shows that (1.4) does not hold; otherwise, the conclusion would be that
A(n) ∼ B(n), with

B(n) := 1

3
n− 1

4 e2
√
n .

But (3.4) and (3.5) show that this expression does not accurately describe the behavior
of A(n), either from above or below, as

lim sup
n→∞

A(n)

B(n)
= 3 lim sup

n→∞
n

1
6 = ∞, lim inf

n→∞
A(n)

B(n)
= 3 lim inf

n→∞ n
1
6 e−3n

1
6 = 0.

3.2.2 Proof of Proposition 3.1

We first verify the asymptotic formulas for the coefficients. By construction, if s(n) is
an increasing sequence, then any maxima of A(n)

s(n)
occur at the values n = m3, thus

lim sup
n→∞

n
1
12 e−2

√
n A(n) = lim sup

m→∞
m

1
4 e−2

√
m3

A
(
m3

)
= 1.

This proves (3.4).
Similarly, theminimaof A(n)

B(n)
occur atn = (m+1)3−1. To simplify the calculations,

note that the expression n
1
12 e−2

√
n+3n

1
6 is asymptotically equal to the same expression

with n �→ n − 1. We can therefore plug in (m + 1)3 instead of (m + 1)3 − 1. Thus

lim inf
n→∞ e−2

√
n+3n

1
6 n

1
12 A(n) = lim inf

m→∞ e−2(m+1)
3
2 +3(m+1)

1
2
(m + 1)

1
4 A

(
m3

)

= lim inf
m→∞ e−2(m+1)

3
2 +3(m+1)

1
2
(m + 1)

1
4 e2m

3
2 m− 1

4 .

As m → ∞, we have that (m + 1)
1
4m− 1

4 → 1. The exponential term has the overall
exponent

−2(m + 1)
3
2 + 3(m + 1)

1
2 + 2m

3
2 = O

(
m− 1

2

)
,

which goes to 0 as m → ∞. This proves (3.5).

123



On a Tauberian theorem of Ingham and Euler–Maclaurin summation 65

It is more involved to determine the asymptotic behavior of F . By definition,

F
(
e−t) =

∑
m≥1

e2m
3
2 m− 1

4

(m+1)3−1∑

n=m3

e−nt

= 1

1 − e−t

∑
m≥1

e2m
3
2 m− 1

4

(
e−m3t − e−(m+1)3t

)
. (3.6)

We see below that the final exponential term is asymptotically negligible, and we
next show that when this final term is removed, the resulting sum indeed gives the
claimed asymptotic formula.

Proposition 3.2 As t → 0+, we have

∑
m≥1

m− 1
4 e2m

3
2 −m3t ∼ et

−1
∫ ∞

1
u− 1

4 e
−t

(
u
3
2 − 1

t

)2

du ∼ 2
√

π

3
e
1
t .

Proof We roughly follow the arguments on pp. 354–355 of [3], with some additional
details added.Webegin by showing thefinal asymptotic equality, as it is useful through-

out the rest of the proof. Using the substitutionw = √
t(u

3
2 − 1

t ), the integral becomes

∫ ∞

1
u− 1

4 e
−t

(
u
3
2 − 1

t

)2

du = 2

3
√
t

∫ ∞
√
t− 1√

t

(
w√
t

+ 1

t

)− 1
2

e−w2
dw

t→0→ 2

3

∫ ∞

−∞
e−w2

dw = 2
√

π

3
.

For the sum, noting that e2m
3
2 −m3t = e

1
t e−t(m

3
2 − 1

t )
2
,we approximate

∑
m≥1 g(m

3
2 ),

where

g(x) := x− 1
6 e

−t
(
x− 1

t

)2
.

We prove the integral approximation by showing that the summands g(m) are uni-

modal, with a peak near m ∼ t− 2
3 . The growth rate of these terms is determined by

the derivative of g(x), which is

g′(x) = 2t x− 7
6 e

−t
(
x− 1

t

)2 (
−x2 + x

t
− 1

12t

)
.

The terms in front are always positive for x > 0, so the sign of g′(x) is determined by
the quadratic expression in the parentheses. The roots of this expression are

x1 = 1

2t

(
1 −

√
1 − t

3

)
, x2 = 1

2t

(
1 +

√
1 − t

3

)
;
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the minimum of g occurs at x1, and the maximum at x2.
However, the behavior near x1 does not have any effect on F(t), since, as t → 0

x1 ∼ 1
12 . Specifically, this means that for sufficiently small t , the minimum of g(x)

occurs at some x < 1, and thus the sumbeginning atm = 1 ismonotonically increasing

until m2 := �x
2
3
2 �, and monotonically decreasing beginning from m2 + 1. Moreover,

we need the observation that x2 ∼ 1
t .

The standard integral comparison criterion for monotonic functions now implies
that

∫ m2

1
g

(
x

3
2

)
dx <

m2∑
m=1

g
(
m

3
2

)
<

∫ m2

1
g

(
x

3
2

)
dx + g (x2) ,

∫ ∞

m2+1
g

(
x

3
2

)
dx <

∞∑
m=m2+1

g
(
m

3
2

)
<

∫ ∞

m2+1
g

(
x

3
2

)
dx + g (x2) .

From this, we obtain that

∫ ∞

1
g

(
x

3
2

)
dx <

∫ m2

1
g

(
x

3
2

)
dx + g (x2) +

∫ ∞

m2+1
g

(
x

3
2

)
dx

<

∞∑
m=1

g
(
m

3
2

)
+ g (x2) <

∫ ∞

1
g

(
x

3
2

)
dx + 3g(x2).

Thus ∣∣∣∣∣∣
∑
m≥1

g
(
m

3
2

)
−

∫ ∞

1
g

(
x

3
2

)
dx

∣∣∣∣∣∣
< 2g (x2) . (3.7)

Using that g(x2) = o(1) and the integral evaluation
∫ ∞
1 g(x

3
2 )dx ∼ 2

√
π

3 , the
bound in (3.7) shows that the sum and integral are asymptotically equal. ��

Wenowprove that the final sum in (3.6) is asymptotically smaller than the remaining
terms.

Lemma 3.3 ([3], p. 350) As t → 0+, we have

∑
m≥1 m

− 1
4 e2m

3
2 −(m+1)3t

∑
m≥1 m

− 1
4 e2m

3
2 −m3t

= o(1).

Proof Weshow that the sum in the numerator is termwise smaller than the denominator
for m > t− 1

2−ε (for some ε > 0), and the sum over this initial segment of ms is itself

asymptotically negligible. More precisely, since g(m
3
2 ) is increasing in this range we
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obtain for 0 < ε < 1
6 ,

⌊
t−

1
2−ε

⌋

∑
m=1

g
(
m

3
2

)
≤ t−

1
2−εg

(
t
− 3

2

(
1
2+ε

))

= t−
3
8 (1+2ε)e

−t

(
t−

3
4 (1+2ε)− 1

t

)2

= o(1). (3.8)

This also gives ∑
m≥1

g
(
m

3
2

)
∼

∑

m>t−
1
2−ε

g
(
m

3
2

)
,

since Proposition 3.2 shows that the left-hand side is asymptotically 2
√

π

3 .
Continuing, since each term in the numerator of the lemma statement is smaller

than the corresponding denominator term, (3.8) also implies that

∑
m≥1

m− 1
4 e2m

3
2 −(m+1)3t = o(1) +

∑

m>t−
1
2−ε

m− 1
4 e2m

3
2 −(m+1)3t .

The final sum can then be compared termwise to the denominator sum, that is,

∑

m>t−
1
2−ε

m− 1
4 e2m

3
2 −(m+1)3t =

∑

m>t−
1
2−ε

m− 1
4 e2m

3
2 −m3te−(

3m2+3m+1
)
t

< e−3t−2ε ∑

m>t−
1
2−ε

m− 1
4 e2m

3
2 −m3t .

Using (3.8) and Proposition 3.2 gives that

∑
m≥1 m

− 1
4 e2m

3
2 −(m+1)3t

∑
m≥1 m

− 1
4 e2m

3
2 −m3t

= o(1) + 2
√

π

3 e−3t−2ε+ 1
t

o(1) + 2
√

π

3 e
1
t

= o(1). ��

Finally, the proof of Proposition 3.1 is completed by combining Proposition 3.2
and Lemma 3.3. In particular, by plugging these in to (3.6), we find that the main
asymptotic term is

f (t) ∼ 1

1 − e−t

∑
m≥1

m− 1
4 e2m

3
2 −m3t ∼ 2

√
π

3t
e
1
t .
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3.3 Eisenstein series

Here we give an example to demonstrate that the expansion in Theorem 1.2 may fail
when w is allowed to approach 0 along tangential paths in the right half-plane. For
this we use the Eisenstein series of weight four for the full modular group. However,
examples of this type generally arise from any modular form to which Theorem 1.2
can be applied. Set

E4(τ ) := 1 + 240
∑
n≥1

n3qn

1 − qn
= 1 + 240

∑
n≥1

σ3(n)qn,

g3(q) :=
∑
n≥1

σ3(n)qn =
∑
n≥1

n3qn

1 − qn
.

From the modular transformation,

E4

(
−1

τ

)
= τ 4E4(τ ),

for Im(τ ) > 0, we find that, for Re(w) > 0,

g3
(
e−w

) = E4
( iw
2π

) − 1

240
=

( 2π
w

)4
E4

( 2π i
w

) − 1

240

=
(
2π

w

)4 (
g3

(
e− 4π2

w

)
+ 1

240

)
− 1

240
. (3.9)

Thus, when w → 0 on paths non-tangential to the imaginary axis, we have for each
N ∈ N0 that

g3
(
e−w

) = π4

15w4 − 1

240
+ ON

(
wN

)
. (3.10)

As explained in Example 3 of [21], one can also deduce (3.10) directly from Theorem
1.2 by taking f (w) := w3e−w

1−e−w and a = 1, writing

g3
(
e−w

) =
∑
n≥1

n3e−wn

1 − e−wn
= 1

w3

∑
m≥0

f (w(m + 1)).

However, along paths tangential to the imaginary axis, (3.10) may fail. For example,

along the path w = x + i x
1
3 , (3.3) shows that every point along the unit circle is

a limit point of e− 4π2
w . In particular, since g3(q) → ∞ as q → 1−, we see that

lim supw→0 |g3(e− 4π2
w )| = ∞ on the path w = x + i x

1
3 . Thus, (3.9) implies that

(3.10) cannot hold along this path. This gives an example where Theorem 1.2 fails
without the additional assumption that w ∈ Dθ . Again this is visible from numerical
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Table 2 Approximate size of the error g3(e−w) − π4

15w4 + 1
240

Path

x w = x + i x w = x + i x2 w = x + i x
1
3

10−1 0.18293 · 10−55 0.67139 · 10−139 19030 · 1016
10−2 0.53168 · 10−823 0.17223 · 10−1679 37122 · 1021
10−3 0.22863 · 10−8534 0.22329 · 10−17106 75858 · 1024
10−4 0.49431 · 10−85684 0.10073 · 10−171409 12065 · 1027
10−5 0.11030 · 10−857216 0.49985 · 10−1714479 58757 · 1028

data. In Table 2, we give a numerical approximation of the size of g3(e−w)− π4

15w4 + 1
240

along three different paths.

3.4 Asymptotic expansions valid along any path

In contrast to the previous example, there are also functions where the asymptotic
expansion of Theorem 1.2 is valid on general paths. For example, taking f (w) := e−w

and a = 0 in Theorem 1.2 gives

∑
m≥0

e−wm = 1

w
−

N−1∑
n=0

(−1)n Bn+1(0)

(n + 1)! wn + ON

(
wN

)
, (3.11)

as w → 0 in any Dθ . The left-hand side of (3.11) can be summed as a geometric
series when Re(w) > 0,

∑
m≥0

e−wm = 1

1 − e−w
.

The right hand-side of (3.11) can be interpreted in terms of a truncation of the gener-
ating function for Bernoulli numbers, specifically

1

w
−

∑
n≥0

(−1)n Bn+1(0)

(n + 1)! wn = 1

w

∑
n≥0

Bn(0)

n! (−w)n = 1

1 − e−w
.

From this we see that (3.11) is valid with w → 0 along any path, as w
1−e−w is analytic

in |w| < 2π
That the asymptotic expansionofTheorem1.2 is valid for general paths to 0 for some

functions and not others should come as no surprise. The series
∑

m≥0 f (w(m + a))

defines a holomorphic function in the right half-plane and the series diverges atw = 0.
The analytic behavior of such a function can be anything from a simple pole at w = 0
to the imaginary axis being a natural boundary in the sense that the singularities are
dense along the axis.
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4 Ingham’s Tauberian theorem and the proof of Theorem 1.1

In this section we discuss Ingham’s Tauberian theorem and use it to prove Theorem
1.1.We start by recalling the following theorem, which is due to Ingham [13, Theorem
1].

Theorem 4.1 Let D be a connected open subset of C that contains (0, h] (for some
h ∈ R

+). For t ∈ (0, h], we let δ(t) denote the distance from t to the complement of
D. Suppose that ϕ and χ are functions on D that satisfy the following conditions:

(a) ϕ and χ are holomorphic on D, and are positive on (0, h];
(b) −tϕ′(t) → ∞ as t → 0+;
(c) −δ(t)ϕ′(t)

t
√

ϕ′′(t)
→ ∞ as t → 0+, and

(d) ϕ′′(t + z) = O
(
ϕ′′(t)

)
and χ(t + z) = O (χ(t)) uniformly in z for |z| < δ(t) as

t → 0+.

Let A : [0,∞) → R be a weakly increasing function with A(0) = 0. Set

f (z) :=
∫ ∞

0
e−zudA(u),

and assume that f (z) exists for Re(z) > 0. Suppose that the following conditions
hold:

(i) f (z) ∼ χ(z)eϕ(z) as z → 0 with z in D;
(ii) for each fixed � > 0, f (z) = O(χ(|z|)eϕ(|z|)) as z → 0 where | Im(z)| ≤

�Re(z).

Then

A(x) ∼ χ(ψ(x))eϕ(ψ(x))+xψ(x)

ψ(x)
√
2πϕ′′(ψ(x))

as x → ∞,

where ψ is the inverse function of −ϕ′.

Ingham also discussed a special case that eliminates the need for calculating an
exact asymptotic formula for f throughout the complex domain D (although it is still
necessary to bound the asymptotic order of f as in condition (ii)). The following result
is [13, Theorem 1′].

Theorem 4.2 Suppose that conditions (a), (b), (c), and (d) of Theorem 4.1 are satisfied,
and additionally, −tkϕ′(t) decreases to 0 for some fixed k ∈ R. Then condition (i)
may be replaced by

(i′) f (t) ∼ χ(t)eϕ(t) as t → 0+.

We are now ready to prove Theorem 1.1.
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Proof of Theorem 1.1 We first show that (1.4) follows from (1.3) applied to the series
C(q) := (1 − q)B(q). The monotonicity of bn implies that C(q) has non-negative
coefficients. Furthermore, as z → 0 we have

C
(
e−z) = (

1 − e−z) B (
e−z) ∼ zB

(
e−z) .

The theorem is trivially true for λ = 0, so we assume λ > 0. To prove (1.3), we
apply Theorems 4.1 and 4.2 with

ϕ(z) := γ

z
, χ(z) := λLog

(
1

z

)α

zβ, A(x) :=
∑
n<x

bn .

We let D consist of those points z which satisfy |Arg(z)| < π
4 . In particular, in

this region δ(t) = t√
2
; this follows from applying the Law of Sines to calculate the

distance from t to the ray along Arg(z) = π
4 . To verify that the conditions on ϕ and χ

are satisfied, we differentiate

ϕ′(z) = − γ

z2
, ϕ′′(z) = 2γ

z3
, −δ(t)ϕ′(t)

t
√

ϕ′′(t)
=

√
γ

2t
1
2

.

It is then obvious that conditions (a), (b), and (c) hold, as well as the extra growth
condition from Theorem 4.2. If |z| < t√

2
then (1− 1√

2
)t < |z + t | < (1+ 1√

2
)t , and

and thus as t → 0+ we have ϕ′′(z + t) = O(ϕ′′(t)) uniformly in z. Furthermore,

∣∣∣∣Log
(

1

z + t

)∣∣∣∣ =
∣∣∣∣log

(
1

|z + t |
)

+ iArg(z + t)

∣∣∣∣ ∼
∣∣∣∣log

(
1

|z + t |
)∣∣∣∣ ∼

∣∣∣∣log
(
1

t

)∣∣∣∣ ,

and thus condition (d) of Theorem 4.1 holds.
By the definition of the Riemann–Stieltjes integral, we have

f (z) =
∫ ∞

0
e−zudA(u) =

∑
n≥0

bne
−zn = B(e−z).

By the assumptions on B in Theorem 1.1, f (z) exists for Re(z) > 0 and conditions
(ii) of Theorem 4.1 and (i’) of Theorem 4.2 are satisfied. Thus all the hypotheses of

Theorem 4.1 are satisfied. We note that ψ(x) =
√

γ
x , and thus we have

A(x) =
∑
n<x

bn ∼ λγ
β
2 − 1

4 log (x)α

2α+1
√

πx
β
2 + 1

4

e2
√

γ x .

A short calculation using the expression on the right-hand side shows that A(N +1) ∼
A(N ), which implies (1.3) on plugging in x = N + 1 to the left-hand side. ��
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5 The Euler–Maclaurin summation formula and the proofs of
Theorems 1.2, 1.3, and 1.4

5.1 The one-dimensional case

In this sub-section, we prove Theorems 1.2 and 1.3. We make use of Taylor’s theorem
in the following form: Suppose that f is holomorphic in a neighborhood containing
CR(0), the circle of radius R centered at the origin. If |z| < R, then

f (z) =
N−1∑
k=0

f (k)(0)

k! zk + zN

2π i

∫

CR(0)

f (w)

wN (w − z)
dw. (5.1)

In particular, for z sufficiently small,

∑
k≥N

f (k)(0)

k! zk � zN max|w|=R
| f (w)| . (5.2)

We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2 The assumption that f has sufficient decay ensures that the sum
converges, and also implies that w f (w) → 0 uniformly as |w| → ∞ in Dθ . Finally,
if n ∈ N0 is fixed and |α| ≤ θ , then we have

∫ (cos(α)+i sin(α))∞

0

∣∣∣ f (n)(z)
∣∣∣ dz = On(1) uniformly in α, (5.3)

where throughout the proof, all integrals are taken along straight lines. The claim in
(5.3) follows by splitting the integral as

∫ (cos(α)+i sin(α))C1(n)

0

∣∣∣ f (n)(z)
∣∣∣ dz +

∫ (cos(α)+i sin(α))∞

(cos(α)+i sin(α))C1(n)

∣∣∣ f (n)(z)
∣∣∣ dz,

where C1(n) is a constant such that |w| ≥ C1(n) implies that | f (n)(w)| ≤
C2(n)|w|−1−εn for some C2(n). The second piece is then clearly uniformly bounded,
and the first piece is as well, due to the fact that the region |Arg(w)| ≤ θ and
|w| ≤ C1(n) is compact (and f (n)(w) is continuous).

We now present the fundamental identities that underlie Euler–Maclaurin summa-
tion, which follow from integration by parts and properties of Bernoulli polynomials.
Throughout, supposing that μ ∈ R is fixed, we take w sufficiently small so that f
is holomorphic in a region containing the line segment [w(μ − 1), 0]. We use (2.2),
(2.3), and the fact that B0(x) = 1 to obtain

∫ 1

0
f (w(x + μ − 1))dx = 1

2
( f (wμ) + f (w(μ − 1)))
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− w

∫ 1

0
f ′(w(x + μ − 1))B1(x)dx .

Next, for n ≥ 1, we use (2.1) and (2.3) to conclude that

∫ 1

0

f (n)(w(x + μ − 1))Bn(x)

n! dx

= Bn+1

(n + 1)!
(
f (n)(wμ) − f (n)(w(μ − 1))

)

− w

∫ 1

0

f (n+1)(w(x + μ − 1))Bn+1(x)

(n + 1)! dx .

Using induction on N ∈ N, one may then show that

∫ 1

0
f (w(x + μ − 1))dx

= 1

2
( f (wμ) + f (w(μ − 1)))

+
N−1∑
n=1

(−1)n Bn+1

(n + 1)!
(
f (n)(wμ) − f (n)(w(μ − 1))

)
wn

+ (−1)NwN
∫ 1

0

f (N )(w(x + μ − 1))BN (x)

N ! dx . (5.4)

We take w sufficiently small, so that f is holomorphic in a region containing the
line segment [wa, 0]. Summing (5.4) with μ = m + a, for m ∈ {1, 2, . . . , M}, gives
that

∫ M+a

a
f (wx)dx = 1

2

M∑
m=1

( f (w(m + a)) + f (w(m + a − 1)))

+
N−1∑
n=1

(−1)n Bn+1

(n + 1)!

×
M∑

m=1

(
f (n)(w(m + a)) − f (n)(w(m + a − 1))

)
wn

+ (−1)NwN
M∑

m=1

∫ 1

0

f (N )(w(x + m + a − 1))BN (x)

N ! dx

= 1

2
( f (wa) + f (w(M + a))) +

M−1∑
m=1

f (w(m + a))

+
N−1∑
n=1

(−1)n Bn+1

(n + 1)!
(
f (n)(w(M + a)) − f (n)(wa)

)
wn
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+ (−1)NwN
∫ M+a

a

f (N )(wx)B̃N (x − a)

N ! dx,

where the N-th periodic Bernoulli polynomial is defined by B̃N (x) := BN (x − �x�).
Substituting z = wx in the integrals, we obtain

1

w

∫ w(M+a)

wa
f (z)dz =

M−1∑
m=0

f (w(m + a))

+
N−1∑
n=0

Bn+1(0)
(
f (n)(wa) − f (n)(w(M + a))

)

(n + 1)! wn

+ (−1)NwN−1
∫ w(M+a)

wa

f (N )(z)B̃N
( z

w
− a

)

N ! dz,

which in the limit M → ∞ becomes

∑
m≥0

f (w(m + a)) = 1

w

∫ w∞

wa
f (z)dz −

N−1∑
n=0

Bn+1(0) f (n)(wa)

(n + 1)! wn

− (−1)NwN−1
∫ w∞

wa

f (N )(z)B̃N
( z

w
− a

)

N ! dz. (5.5)

We now claim that
∫ w∞

0
f (z)dz =

∫ ∞

0
f (x)dx . (5.6)

In particular, since f has no poles in Dθ , the Residue theorem implies that for r > 0
we have (writing α := Arg(w))

∫ r cos(α)

0
f (x)dx +

∫ r(cos(α)+i sin(α))

r cos(α)

f (z)dz =
∫ wr

0
f (z)dz.

The second integral vanishes as r → ∞, since

∫ r(cos(α)+i sin(α)

r cos(α)

f (z)dz � r sin(|α|) max|c|≤r sin(|α|) | f (r cos(α) + ci)|
≤ r sin(θ) max|c|≤r sin(θ)

| f (r cos(α) + ci)| → 0.

This yields (5.6).
Moreover, for w sufficiently small, we have that

∫ wa

0
f (z)dz =

∫ wa

0

∑
k≥0

f (k)(0)

k! zkdz =
∑
k≥0

f (k)(0)ak+1

(k + 1)! wk+1.
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Thus (5.5) becomes

∑
m≥0

f (w(m + a)) = 1

w

∫ ∞

0
f (x)dx −

∑
k≥0

f (k)(0)ak+1

(k + 1)! wk

−
N−1∑
n=0

Bn+1(0) f (n)(wa)

(n + 1)! wn

− (−1)NwN−1
∫ w∞

wa

f (N )(z)B̃N
( z

w
− a

)

N ! dz. (5.7)

In order to obtain the desired expression, we plug (5.1) into the second sum (5.7),
finding that

N−1∑
n=0

Bn+1(0) f (n)(wa)

(n + 1)! wn

=
N−1∑
n=0

Bn+1(0)wn

(n + 1)!

(
N−n−1∑
m=0

f (n+m)(0)(wa)m

m!

+ (wa)N−n

2π i

∫

CR(0)

f (n)(z)

zN−n(z − wa)
dz

)

=
N−1∑
k=0

f (k)(0)wk

(k + 1)!
k∑

n=0

(
k + 1

n + 1

)
Bn+1(0)a

k−n

+ wN

2π i

N−1∑
n=0

Bn+1(0)aN−n

(n + 1)!
∫

CR(0)

f (n)(z)

zN−n(z − wa)
dz.

Here, R is chosen such that CR(0) is contained in the domain in which f is holo-
morphic. The first sum above is then further simplified using (2.4), as this implies
that

k∑
n=0

(
k + 1

n + 1

)
Bn+1(0)a

k−n = −ak+1 +
k+1∑
n=0

(
k + 1

n

)
Bn(0)a

k+1−n

= −ak+1 + Bk+1(a).

Thus (5.7) becomes

∑
m≥0

f (w(m + a)) = 1

w

∫ ∞

0
f (x)dx −

N−1∑
n=0

Bn+1(a) f (n)(0)

(n + 1)! wn

−
∑
k≥N

f (k)(0)ak+1

(k + 1)! wk
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− wN

2π i

N−1∑
n=0

Bn+1(0)aN−n

(n + 1)!
∫

CR(0)

f (n)(z)

zN−n(z − wa)
dz

− (−1)NwN−1
∫ w∞

wa

f (N )(z)B̃N
( z

w
− a

)

N ! dz. (5.8)

We now claim that all terms except the first and the second on the right-hand side are
O(wN ). For the third term, we use (5.2) to find that

∑
k≥N

f (k)(0)ak+1

(k + 1)! wk = 1

w

∫ wa

0

∑
k≥N

f (k)(0)zk

k! dz � wN max|z|=R
| f (z)| � wN .

For the fourth term, we only need to show that the integral is uniformly bounded as
w → 0 in Dθ . Since f is holomorphic on CR(0), f (n)(z) is uniformly bounded, and
| 1
zN−n | = 1

RN−n . Furthermore, 1
z−wa is uniformly bounded on |aw| < R

2 . This yields
the claim for the fourth term.

Finally, the fact that B̃N (x) is periodic implies that B̃N ( z
w

− a) is bounded on the
ray from the origin through w. We therefore have the following bound on the fifth
term,

(−1)NwN−1
∫ w∞

wa

f (N )(z)B̃N
( z

w
− a

)

N ! dz � wN−1
∫ w∞

0

∣∣∣ f (N )(z)
∣∣∣ dz � wN−1,

where the final bound follows from (5.3). This completes the proof. ��
We record one particularly useful corollary to Theorem 1.2 that allows for alternat-

ing signs.

Corollary 5.1 Suppose that 0 ≤ θ < π
2 . Let f : C → C be holomorphic in a domain

containing Dθ , and assume that f and all of its derivatives are of sufficient decay as
|w| → ∞ in Dθ . Then for a ∈ R and N ∈ N0,

∑
m≥0

(−1)m f (w(m + a)) = 1

2

N−1∑
n=0

En(a) f (n)(0)

n! wn + ON

(
wN

)
,

uniformly, as w → 0 in Dθ . Recall that the Euler polynomials are defined in (2.5).

Proof We write

∑
m≥0

(−1)m f (w(m + a)) =
∑

r∈{0,1}
(−1)r

∑
m≥0

f
(
2w

(
m + a

2
+ r

2

))
,

and thus we may apply Theorem 1.2 with w �→ 2w and a �→ a
2 + r

2 . This yields

∑
m≥0

(−1)m f (w(m + a)) = −
N−1∑
n=0

(
Bn+1

( a
2

) − Bn+1
( a
2 + 1

2

))
f (n)(0)

(n + 1)! (2w)n
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+ ON

(
wN

)

= 1

2

N−1∑
n=0

En(a) f (n)(0)

n! wn + ON

(
wN

)
,

where in the second equality we use (2.6).

Remark The expansion in Corollary 5.1 can alternatively be proven using the Euler–
Boole summation formula (see [4, Eq. (5)]), namely

M−1∑
m=0

(−1)m f (m + a) = 1

2

N−1∑
n=0

En(a)

n!
(
f (n)(0) + (−1)M−1 f (n)(M)

)

+ 1

2(N − 1)!
∫ M

0
f (N )(x)ẼN−1(a − x)dx,

where 0 ≤ a < 1 and Ẽn(x) are the periodic Euler functions defined through the Euler
polynomials by Ẽn(x) := En(x) for 0 ≤ x < 1, and Ẽn(x + 1) := −Ẽn(x).

More generally, one sees that the method used in the proof of Corollary 5.1 applies
to sums of the form

∑
m χ(m) f (wm), where χ is periodic. Of specific interest are the

cases when the average of χ is zero, such as with non-principal Dirichlet characters,
as the integral terms of Theorem 1.2 then cancel, leaving an asymptotic expansion that
converges at w = 0.

In the case that there is a simple pole at zero, the main new ingredient in the proof
is the use of series representations for the complex logarithm digamma function in
order to identify the asymptotic contribution of the pole, as we use Theorem 1.2 to
obtain the remainder of the asymptotic expansion.

Proof of Theorem 1.3 Set

g(w) := b−1e−w

w
, h(w) := f (w) − g(w).

Using the series expansion of the exponential function, we obtain that

g(w) = b−1

∑
n≥−1

(−1)n+1wn

(n + 1)! .

In particular, g has a simple pole at the origin with residue b−1, and thus h is holo-
morphic at the origin. By Theorem 1.2, we have that

∑
m≥0

h(w(m + a)) = 1

w

∫ ∞

0

(
f (x) − b−1e−x

x

)
dx

−
N−1∑
n=0

Bn+1(a)

n + 1

(
bn + b−1(−1)n

(n + 1)!
)

wn + ON

(
wN

)
.
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The claim follows once we show that for Re(w) > 0,

−b−1

∑
n≥0

Bn+1(a)

(n + 1)(n + 1)! (−w)n = b−1
Log

( 1
w

)

w
−

∑
m≥0

g(w(m + a)) + b−1Ca

w
.

(5.9)

Since for Re(w) > 0, we have

∑
m≥0

g(w(m + a)) = b−1

w

∑
m≥0

e−w(m+a)

m + a
,

we may instead prove the equivalent identity,

Log

(
1

w

)
−

∑
m≥0

e−w(m+a)

m + a
+ Ca =

∑
n≥0

Bn+1(a)(−w)n+1

(n + 1)(n + 1)! . (5.10)

To see (5.10), we first note that

d

dw

∑
n≥0

Bn+1(a)(−w)n+1

(n + 1)(n + 1)! = −
∑
n≥0

Bn+1(a)(−w)n

(n + 1)!

= − 1

w
+ 1

w

∑
n≥0

Bn(a)(−w)n

n!

= − 1

w
− e−wa

e−w − 1
= − 1

w
+

∑
m≥0

e−(m+a)w

= d

dw

⎛
⎝Log

(
1

w

)
−

∑
m≥0

e−(m+a)w

m + a

⎞
⎠ .

Thus we have

∑
n≥0

Bn+1(a)(−w)n+1

(n + 1)(n + 1)! = Log

(
1

w

)
−

∑
m≥0

e−(m+a)w

m + a
+ C,

for some constant C , and we see that the left hand-side provides an analytic continu-
ation of the right hand-side in a neighborhood of w = 0. However, the left hand-side
is clearly zero when w = 0. To evaluate the limit of the right hand-side, as w → 0
with Re(w) > 0, we first note that

Log

(
1

w

)
−

∑
m≥0

e−w(m+a)

m + a
= Log

(
1

w

)
− e−wa

∑
m≥0

e−mw

m + 1
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− e−aw
∑
m≥0

e−mw

(
1

m + a
− 1

m + 1

)

= Log

(
1

w

)
+ e(1−a)w Log

(
1 − e−w

)

− e−aw(1 − a)
∑
m≥0

e−mw

(m + a)(m + 1)

= Log

(
1

w

) (
1 − e(1−a)w

)
+ e(1−a)w Log

(
1 − e−w

w

)

− e−aw(1 − a)
∑
m≥0

e−mw

(m + a)(m + 1)
, (5.11)

where in the final equality we use that

Log
(
1 − e−w

) = Log

(
1 − e−w

w

)
− Log

(
1

w

)

for Re(w) > 0, since both 1−e−w and 1
w
lie in the right half-plane. A short calculation

with l’Hospital’s rule shows that the first two terms in (5.11) tend to zero (asw → 0+),
and since the convergence of the series is uniform in w, for Re(w) > 0, we have

lim
w→0

⎛
⎝Log

(
1

w

)
−

∑
m≥0

e−w(m+a)

m + a

⎞
⎠ = −(1 − a)

∑
m≥0

1

(m + a)(m + 1)
= −Ca .

Therefore (5.10), and as such (5.9), holds. ��

5.2 Themultivariable Euler–Maclaurin summation formula

Wenow turn to themultivariable version of the Euler–Maclaurin asymptotic expansion
stated in Theorem 1.4. The following proposition is a refined version that enables a
proof by induction.

Proposition 5.2 Suppose that 0 ≤ θ j < π
2 for 1 ≤ j ≤ s, and that f : Cs → C is

holomorphic in a domain containing Dθ . If f and all of its derivatives are of sufficient
decay in Dθ , then for 1 ≤ r < s, a ∈ R

s and N ∈ N0, we have

1

wr

∫

[0,∞)r
f (x)dx1 · · · dxr

=
∑
m∈N

r
0

f (w(m + a), xr+1,s)

− (−1)r
∑
n∈N r

N

f (n,0s−r )(0r , xr+1,s)
∏

1≤ j≤r

Bn j+1(a j )

(n j + 1)! wn j
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−
∑

∅�S�{1,...,r}

(−1)|S |

wr−|S |

×
∑

n j∈NN
j∈S

∫

[0,∞)r−|S |

⎡
⎣ ∏

j∈S

∂n j

∂x
n j
j

f (x)

⎤
⎦
x j=0
j∈S

∏
1≤k≤r
k /∈S

dxk
∏
j∈S

Bn j+1(a j )

(n j + 1)! wn j

+ wN−r gr ,w(xr+1,s), (5.12)

where x ∈ R
s , xr+1,s := (xr+1, . . . , xs), 0 j is the zero vector of length j , and

gr ,w : Cs−r → C is such that gr ,w(xr+1,s) � 1 uniformly in xr+1,s as w → 0 in
Dθ1∩ · · · ∩ Dθr and

∫

[0,∞) j
|gr ,w(xr+1,s)|dxr+1 · · · dxr+ j � 1,

uniformly in w and (xr+ j+1, . . . , xs) for 1 ≤ j ≤ s − r . When r = s, (5.12) holds
with xr+1,s being the empty vector and gs,w a function of w such that gs,w � 1 as
w → 0 in Dθ1∩ · · · ∩ Dθr .

Proof Throughout the proof s ∈ N is fixed, and we proceed by induction on r . At
various points in the proof, we consider f (n1,...,ns ), with each nk ≤ N , and restrict this
derivative to a function of the single variable x j (with all other variables held fixed).
We choose R > 0 such that all such functions are holomorphic in a neighborhood
containing CR(0). This is possible because the decay assumption implies that R can
be chosen uniformly for each individual function, and there are finitely many in total.

The base case of r = 1 is (5.8) with f (x) �→ f (x, x2,s) and the resulting g1,w(x2,s)
is

g1,w(x2,s) := w1−N
∑
k1≥N

f (k1,0s−1)(0, x2,s)a
k1+1
1

(k1 + 1)! wk1

+ w

2π i

∑
n1∈NN

Bn1+1(0)a
N−n1
1

(n1 + 1)!
∫

CR(0)

f (n1,0s−1)(z1, x2,s)

zN−n1
1 (z1 − wa1)

dz1

+ (−1)Nw

∫ ∞

a1

f (N ,0s−1)(wx1, x2,s)B̃N (x1 − a1)

N ! dx1,

where R > 0 is sufficiently small. Due to the assumption of sufficient decay, the
integrals converge uniformly in x2,s and thus we see that the second and third terms
above meet the conditions required of g1,w. For the first term, (5.2) gives

w1−N
∑
k1≥N

f (k1,0s−1)(0, x2,s)a
k1+1
1

(k1 + 1)! wk1 � w max|z1|=R
| f (z1, x2,s)|,
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which also meets the conditions required of g1,w due to the assumption of sufficient
decay.

We now fix r with 2 ≤ r ≤ s, assume that (5.12) is true for r − 1, and verify
that it holds for r . We let xr−1 := (x1, . . . , xr−1) and ar−1 := (a1, . . . , ar−1). By
assumption, we can take (5.12) with r − 1 and integrate with respect to xr , and also
divide by w, which yields

1

wr

∫

[0,∞)r
f (x)dx1 · · · dxr

= 1

w

∑

m∈N
r−1
0

∫ ∞

0
f (w(m + ar−1), xr , xr+1,s)dxr

+ (−1)r

w

∑

n∈N r−1
N

∫ ∞

0
f (n,0s−r+1)(0r−1, xr , xr+1,s)dxr

×
∏

1≤ j≤r−1

Bn j+1(a j )

(n j + 1)! wn j −
∑

∅�S�{1,...,r−1}

(−1)|S |

wr−|S |

×
∑

n j∈NN
j∈S

∫

[0,∞)r−|S |

⎡
⎣ ∏

j∈S

∂n j

∂x
n j
j

f (x)

⎤
⎦
x j=0
j∈S

∏
1≤k≤r
k /∈S

dxk
∏
j∈S

Bn j+1(a j )

(n j + 1)! wn j

+ wN−r h1,w(xr+1,s), (5.13)

where

h1,w(xr+1,s) :=
∫ ∞

0
gr−1,w(xr , xr+1,s)dxr .

The restrictions on gr−1,w give that h1,w(xr+1,s) satisfies the conditions required of
gr ,w.

However, for fixed m ∈ N
r−1
0 , by (5.8) we have

1

w

∫ ∞

0
f (w(m + ar−1), xr , xr+1,s)dxr

=
∑
mr≥0

f (w(m + ar−1), w(mr + ar ), xr+1,s)

+
∑

nr∈NN

Bnr+1(ar ) f (0r−1,nr ,0s−r )(w(m + ar−1), 0, xr+1,s)

(nr + 1)! wnr

+
∑
kr≥N

f (0r−1,kr ,0s−r )(w(m + ar−1), 0, xr+1,s)a
kr+1
r

(kr + 1)! wkr

+ wN

2π i

∑
nr∈NN

Bnr+1(0)a
N−nr
r

(nr + 1)!
∫

CR(0)
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× f (0r−1,nr ,0s−r )(w(m + ar−1), zr , xr+1,s)

zN−nr
r (zr − war )

dzr + (−1)NwN
∫ ∞

ar

× f (0r−1,N ,0s−r )(w(m + ar−1), wxr , xr+1,s)B̃N (xr − ar )

N ! dxr .

This yields that

1

w

∑

m∈N
r−1
0

∫ ∞

0
f (w(m + ar−1), xr , xr+1,s)dxr

=
∑
m∈N

r
0

f (w(m + a), xr+1,s) + wN−r h2,w(xr+1,s)

+
∑

nr∈NN

Bnr+1(ar )

(nr + 1)! wnr
∑

m∈N
r−1
0

f (0r−1,nr ,0s−r )(w(m + ar−1), 0, xr+1,s),

(5.14)

where

h2,w(xr+1,s) := wr−N
∑

m∈N
r−1
0

∑
kr≥N

f (0r−1,kr ,0s−r )(w(m + ar−1), 0, xr+1,s)a
kr+1
r

(kr + 1)! wkr

+ wr

2π i

∑

m∈N
r−1
0

∑
nr∈NN

Bnr+1(0)a
N−nr
r

(nr + 1)!

×
∫

CR (0)

f (0r−1,nr ,0s−r )(w(m + ar−1), zr , xr+1,s)

zN−nr
r (zr − war )

dzr

+ (−1)Nwr
∑

m∈N
r−1
0

∫ ∞

ar

f (0r−1,N ,0s−r )(w(m + ar−1), wxr , xr+1,s)B̃N (xr − ar )

N ! dxr .

We find that h2,w satisfies the conditions of gr ,w by reasoning similar to that used for
h1,w.

For fixed nr , applying (5.12) with r − 1 gives

∑

m∈N
r−1
0

f (0r−1,nr ,0s−r )(w(m + ar−1), 0, xr+1,s)

= 1

wr−1

∫

[0,∞)r−1
f (0r−1,nr ,0s−r )(xr−1, 0, xr+1,s)dx1 · · · dxr−1

− (−1)r
∑

n∈N r−1
N

f (n,nr ,0s−r )(0r−1, 0, xr+1,s)
∏

1≤ j<r

Bn j+1(a j )

(n j + 1)! wn j

+
∑

∅�S�{1,...,r−1}

(−1)|S |

wr−1−|S |
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×
∑

n j∈NN
j∈S

∫

[0,∞)r−1−|S |

⎡
⎣ ∏

j∈S

∂n j

∂x
n j
j

f (0r−1,nr ,0s−r )(x)

⎤
⎦

xr=0
x j=0
j∈S

∏
1≤k<r
k /∈S

dxk

×
∏
j∈S

Bn j+1(a j )

(n j + 1)! wn j + wN−r+1gnr ,r−1,w(xr+1,s),

where each gnr ,r−1,w(xr+1,s) satisfies the conditions of gr ,w. Plugging this back into
(5.14) yields

1

w

∑

m∈N
r−1
0

∫ ∞

0
f (w(m + ar−1), xr , xr+1,s)dxr

=
∑
m∈N

r
0

f (w(m + a), xr+1,s)

+ 1

wr−1

∑
nr∈NN

Bnr+1(ar )

(nr + 1)! wnr

×
∫

[0,∞)r−1
f (0r−1,nr ,0s−r ) (xr−1, 0, xr+1,s)dx1 · · · dxr−1

− (−1)r
∑
n∈N r

N

f (n,0s−r )(0, xr+1,s)
∏

1≤ j≤r

Bn j+1(a j )

(n j + 1)! wn j

+
∑

∅�S�{1,...,r−1}

(−1)|S |

wr−1−|S |

×
∑

n j∈NN
j∈S∪{r}

∫

[0,∞)r−1−|S |

⎡
⎣ ∏

j∈S ∪{r}

∂n j

∂x
n j
j

f (x)

⎤
⎦

x j=0
j∈S∪{r}

∏
1≤k<r
k /∈S

dxk

×
∏

j∈S ∪{r}

Bn j+1(a j )

(n j + 1)! wn j + wN−r h3,w(xr+1,s), (5.15)

where h3,w(xr+1,s) satisfies the conditions required of gr ,w, since it is the sum of h2,w
and the finitely many gnr ,r−1,w.

We insert (5.15) back into (5.13) to find that

1

wr

∫

[0,∞)r
f (x)dx1 · · · dxr

=
∑
m∈N

r
0

f (w(m + a), xr+1,s)

− (−1)r
∑
n∈N r

N

f (n,0s−r )(0r , xr+1,s)
∏

1≤ j≤r

Bn j+1(a j )

(n j + 1)! wn j
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+ 1

wr−1

∑
nr∈NN

Bnr+1(ar )

(nr + 1)! wnr

×
∫

[0,∞)r−1
f (0r−1,nr ,0s−r )(xr−1, 0, xr+1,s)dx1 · · · dxr−1

+
∑

∅�S�{1,...,r−1}

(−1)|S |

wr−1−|S |

×
∑

n j∈NN
j∈S∪{r}

∫

[0,∞)r−1−|S |

⎡
⎣ ∏

j∈S ∪{r}

∂n j

∂x
n j
j

f (x)

⎤
⎦

x j=0
j∈S ∪{r}

∏
1≤k<r
k /∈S

dxk

×
∏

j∈S ∪{r}

Bn j+1(a j )

(n j + 1)! wn j

+ (−1)r

w

∑

n∈N r−1
N

∫ ∞

0
f (n,0s−r+1)(0r−1, xr , xr+1,s)dxr

∏
1≤ j<r

Bn j+1(a j )

(n j + 1)! wn j

−
∑

∅�S�{1,...,r−1}

(−1)|S |

wr−|S |

×
∑

n j∈NN
j∈S

∫

[0,∞)r−|S |

⎡
⎣ ∏

j∈S

∂n j

∂x
n j
j

f (x)

⎤
⎦
x j=0
j∈S

∏
1≤k≤r
k /∈S

dxk
∏
j∈S

Bn j+1(a j )

(n j + 1)! wn j

+ wN−r h4,w(xr+1,s),

where gr ,w(xr+1,s) := h1,w(xr+1,s) + h3,w(xr+1,s). Upon inspection, we find that
the third, fourth, fifth, and sixth terms in the right hand-side combine exactly as stated
in (5.12), so that the proof is complete. ��

6 Concluding remarks

There is another variant of the Circle Method due to Wright that is closely related
to Ingham’s Tauberian theorem. Recall that in Theorem 1.1, the analytic behavior of
B(q) in a small region near q = 1 is sufficient to determine the asymptotic main terms
of the coefficients bn . In particular, for a small, fixed t > 0, the conditions in (1.2)
require an asymptotic formula for B(e−t ), and uniform bounds for B(q) along a small
arc of radius e−t .

In contrast, Wright’s Circle Method requires an asymptotic formula for B(q) near
q = 1 (the “Major arc”), as well as bounds along the remainder of the circle of
radius e−t (the “Minor arc”). However, the conclusion is also stronger, as one obtains
an asymptotic expansion for the coefficients bn , so long as one has an asymptotic
expansion for B(e−t ). Wright first introduced this approach in [19], and applied it to
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another example in [20]; in the latter case, he also used Euler–Maclaurin summation
to derive the asymptotic expansion for B.

In their comprehensive article [15], Ngo and Rhoades gave a generalized version
of Wright’s Circle Method. Specifically, Proposition 1.8 in [15] requires that

B
(
e−z) = zβe

γ
z

(
N−1∑
s=0

αs z
s + O

(
zN

))

in the restricted angle y ≤ �|x |, as well as

B
(
e−z) � B

(
e−x) e− d

x

for some d > 0 in the remainder of the circle |z| = e−x . In that case, the resulting
asymptotic expansion for the coefficients is

bn = e2γ
√
n

2
√

πn
β
2 + 3

4

(
N−1∑
s=0

(
s∑

r=0

αrβs,r−s

)
n− s

2 + O
(
n− N

2

))
, (6.1)

where βs,r are certain combinatorial coefficients. Furthermore, they showed that this
result applies to a wide class of functions following essentially the same arguments we
discussed in Sect. 4. In particular, they proved that (6.1) holds if B(q) = L(q)ξ(q),
where ξ(q) essentially behaves like a modular form, and L(q) has an asymptotic
expansion that is derived using Euler–Maclaurin summation.
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