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Abstract
This paper presents a full generalization of Bohr’s equivalence theorem for the case of
almost periodic functions, which improves a recent result that was uniquely formulated
in the case of existence of an integral basis for the set of exponents of the associated
Dirichlet series.
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1 Introduction

In the beginnings of the 20th century, the Danish mathematician Bohr gave important
steps in the understanding of general Dirichlet series, which consist of those exponen-
tial sums that take the form

∑

n≥1

ane
−λns, an ∈ C, s = σ + i t,

where {λn} is a strictly increasing sequence of positive numbers tending to infinity. As
a result of his investigations on these functions, he introduced an equivalence relation
among them that led to the so-called Bohr’s equivalence theorem, which shows that
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equivalent Dirichlet series take the same values in certain vertical lines or strips in the
complex plane (e.g. see [1,4,10,14]).

On the other hand, Bohr also developed during the 1920s the theory of almost
periodic functions, which opened a way to study a wide class of trigonometric series
of the general type and even exponential series (see for example [3,5–8]). The space
of almost periodic functions in a vertical strip U ⊂ C, which will be denoted in this
paper as AP(U ,C), coincides with the set of the functions that can be approximated
uniformly in every reduced strip of U by exponential polynomials a1eλ1s + a2eλ2s +
. . . + aneλns with complex coefficients a j and real exponents λ j (see for example
[7, Theorem 3.18]). These approximating finite exponential sums can be found by
Bochner–Fejér’s summation (see, in this regard, [3, Chap. 1, Sect. 9]).

Concerning this subject we recall that exponential polynomials and general Dirich-
let series constitute a particular family of exponential sums or, in other words,
expressions of the type

P1(p)e
λ1 p + · · · + Pj (p)e

λ j p + · · · ,

where the λ j ’s are complex numbers and the Pj (p)’s are polynomials in the parameter
p. In this respect, we established in [13, Definition 2] (see also [11, Definition 3]) a
generalization of Bohr’s equivalence relation on the classes SΛ (which we will refer
to as Bohr-equivalence) consisting of exponential sums of the form

∑

j≥1

a j e
λ j p, a j ∈ C, λ j ∈ Λ, (1)

where Λ = {λ1, λ2, . . . , λ j , . . .} is an arbitrary countable set of distinct real numbers
(not necessarily unbounded) that are called exponents or frequencies. Based on this
equivalence relation, and under the assumption of existence of an integral basis for the
set of exponents (whose condition is defined in Sect. 2), we proved in [13, Theorem 18]
that two Bohr-equivalent almost periodic functions, whose associated Dirichlet series
could be assumed to have the same set of exponents, take the same values on every
open vertical strip included in their strip of almost periodicity U , which constituted a
first extension of Bohr’s equivalence theorem for this case of functions.

In this paper, wewill consider a new approach to the question of proving that a result
analogous to that of Bohr’s equivalence theorem holds in the case of almost periodic
functions in AP(U ,C), not only for thosewhose set of exponents has an integral basis.
The main ingredient is the equivalence relation introduced in Definition 2, denoted as
∗∼ (and which wewill refer to as ∗-equivalence), on the classes SΛ of exponential sums
of type (1) and later adapted to the case of the almost periodic functions in AP(U ,C).
Based on this equivalence relation, which is less restrictive than Bohr-equivalence, we

will show that every equivalence class in AP(U ,C)/
∗∼ is connected with a certain

auxiliary function that generates all the sets of values taken by any almost periodic
function in the equivalence class along a given vertical line included in the strip of
almost periodicity (see Proposition 4 in this paper). This improves [13, Propositions
12 and 13] whose condition of existence of an integral basis was really necessary (see
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[13, Remark 14]), and it leads us to formulate and prove Theorem 1 (and Corollary 2
for the Bohr-equivalence), which is the main result of this paper and constitutes a full
generalization of Bohr’s equivalence theorem for the case of almost periodic functions.
Hence with our new equivalence relation it is possible to overcome the restriction of
the integral basis (which is not merely a technical difficulty but it is inherently a limit
of Bohr’s definition) and to obtain a more general result.

2 Definitions and preliminary results

We first recall the following equivalence relation, inspired by that of [1, p.173] for the
case of general Dirichlet series, which was already defined in [11, Definition 1] and
[13, Definition 1].

Definition 1 LetΛ be an arbitrary countable subset of distinct real numbers, spanQ(Λ)

the Q-vector space generated by Λ, and F the C-vector space of arbitrary functions
Λ → C. We define a relation ∼ on F by a ∼ b if there exists a Q-linear map
ψ : spanQ(Λ) → R such that

b(λ) = a(λ)eiψ(λ) (λ ∈ Λ).

Concerning the classes SΛ of exponential sums of type (1), consider the following
equivalence relation, which was already introduced in [11, Definition 3′ (mod.)] and
[12, Definition 2], and is defined in terms of the equivalence relation above. From now
on, we will denote as �A the cardinal of a set A.

Definition 2 Given Λ = {λ1, λ2, . . . , λ j , . . .} a set of exponents, consider A1(p)
and A2(p) two exponential sums in the class SΛ, say A1(p) = ∑

j≥1 a j eλ j p and

A2(p) = ∑
j≥1 b j eλ j p.Wewill say that A1 is ∗-equivalent to A2, and itwill be denoted

as A1
∗∼ A2, if for each integer value n ≥ 1, with n ≤ �Λ, it is satisfied a∗

n ∼ b∗
n ,

where a∗
n , b

∗
n : {λ1, λ2, . . . , λn} → C are the functions given by a∗

n(λ j ) := a j and
b∗
n(λ j ) := b j , j = 1, 2, . . . , n and ∼ is in Definition 1.

That is, we will write A1
∗∼ A2 if for each integer value n ≥ 1, with n ≤ �Λ, there

exists a Q-linear map ψn : spanQ({λ1, . . . , λn}) → R such that

b j = a j e
iψn(λ j ), j = 1, . . . , n.

It is clear that the relation defined in the foregoing definition is an equivalence
relation.

Remark 1 It is worth noting that the equivalence relation that was used in [13, Defini-
tion 2] is different from the ∗-equivalence (i.e. that ofDefinition 2 of this paper). In fact,
fixed Λ = {λ1, λ2, . . . , λ j , . . .} a set of exponents, and given A1(p) = ∑

j≥1 a j eλ j p

and A2(p) = ∑
j≥1 b j eλ j p two exponential sums in the class SΛ, [13, Definition 2]
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consists of defining A1 ∼ A2 (we will say in this paper that A1 is Bohr-equivalent to
A2) if there exists a Q-linear map ψ : spanQ(Λ) → R such that

b j = a j e
iψ(λ j ), j = 1, 2, . . .

As an immediate consequence of this definition, we have that if two exponential sums
are Bohr-equivalent then they also are ∗-equivalent (according to Definition 2).

Now, let GΛ = {g1, g2, . . . , gk, . . .} be a basis of the Q-vector space generated by
a set Λ = {λ1, λ2, . . .} of exponents (by abuse of notation, we will say that GΛ is a
basis for Λ), which yields that GΛ is linearly independent over the rational numbers
and each λ j is expressible as a finite linear combination of terms of GΛ, say

λ j =
i j∑

k=1

r j,kgk for some r j,k ∈ Q, i j ∈ N. (2)

We will say that GΛ is an integral basis for Λ when r j,k ∈ Z for each j, k, i.e.
Λ ⊂ spanZ(GΛ). Moreover, we will say that GΛ is the natural basis for Λ, and we
will denote it as G∗

Λ, when it is constituted by elements in Λ as follows. Firstly, if
λ1 
= 0, then g1 := λ1 ∈ G∗

Λ. Secondly, if {λ1, λ2} areQ-rationally independent, then
g2 := λ2 ∈ G∗

Λ. Otherwise, if {λ1, λ3} areQ-rationally independent, then g2 := λ3 ∈
G∗

Λ, and so on. In this way, if λ j ∈ G∗
Λ, then r j,m j = 1 and r j,k = 0 for k 
= m j , where

m j is such that gm j = λ j . In fact, each element in G∗
Λ is of the form gm j for j such

that λ j is Q-linear independent of the previous elements in the basis. Furthermore, if

λ j /∈ G∗
Λ, then λ j = ∑i j

k=1 r j,kgk , where {g1, g2, . . . , gi j } ⊂ {λ1, λ2, . . . , λ j−1}.
In terms of a prefixed basis for the set of exponents Λ, we next quote a first char-

acterization of the ∗-equivalence of two exponential sums in SΛ (see [11, Proposition
1’ (mod.)] or [12, Proposition 1]).

Proposition 1 Given Λ = {λ1, λ2, . . . , λ j , . . .} a set of exponents, consider A1(p)
and A2(p) two exponential sums in the class SΛ, say A1(p) = ∑

j≥1 a j eλ j p and

A2(p) = ∑
j≥1 b j eλ j p. Fixed a basis GΛ for Λ, for each j = 1, 2, . . . let r j ∈

R
�GΛ be the vector of rational components verifying (2). Then A1

∗∼ A2 if and
only if for each integer value n ≥ 1, with n ≤ �Λ, there exists a vector xn =
(xn,1, xn,2, . . . , xn,k, . . .) ∈ R

�GΛ such that b j = a j e<r j ,xn>i for j = 1, 2, . . . , n.
Furthermore, if GΛ is an integral basis for Λ, then the following three statements are
equivalent:

(i) A1
∗∼ A2;

(ii) A1 ∼ A2;
(iii) There exists x0 = (x0,1, x0,2, . . . , x0,k, . . .) ∈ R

�GΛ such that b j = a j e〈r j ,x0〉i
for each j ≥ 1.

From Proposition 1, it is now clear that Definition 2 and the definition of Bohr-
equivalence (see Remark 1) are equivalent in the case that it is feasible to obtain an
integral basis for the set of exponents Λ.
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In terms of the natural basis for a set of exponents Λ, we next provide a second
characterization of the ∗-equivalence of two exponential sums in SΛ.

Proposition 2 Given Λ = {λ1, λ2, . . . , λ j , . . .} a set of exponents, consider A1(p)
and A2(p) two exponential sums in the class SΛ, say A1(p) = ∑

j≥1 a j eλ j p and

A2(p) = ∑
j≥1 b j eλ j p. Fixed the natural basis G∗

Λ = {g1, g2, . . . , gk, . . .} forΛ, for

each j = 1, 2, . . . let r j ∈ R
�G∗

Λ be the vector of rational components verifying (2).

Then A1
∗∼ A2 if and only if there exists x0 = (x0,1, x0,2, . . . , x0,k, . . .) ∈ [0, 2π)�G

∗
Λ

such that for each j = 1, 2, . . . it is satisfied

b j = a j e
〈r j ,x0+p j 〉i

for some p j = (2πn j,1, 2πn j,2, . . .) ∈ R
�G∗

Λ , with n j,k ∈ Z.

Proof Suppose that A1
∗∼ A2. Consider I = {1, 2, . . . , k, . . . : λk ∈ G∗

Λ} and
In = {1, 2, . . . , k, . . . , n : λk ∈ G∗

Λ}. Let j ∈ I , then r j,m j = 1 and r j,k = 0
for k 
= m j , where m j is such that gm j = λ j . Thus, by Proposition 1, let x j =
(x j,1, x j,2, . . .) ∈ R

�G∗
Λ be a vector such that

b j = a j e
i〈r j ,x j 〉 = a j e

i
∑i j

k=1 r j,k x j,k = a j e
ir j,m j x j,m j = a j e

ix j,m j . (3)

Define x0 = (x0,1, x0,2, . . .) ∈ R
�G∗

Λ = R
�I as x0,m j := x j,m j for j ∈ I . Thus, by

taking p j = (0, 0, . . .), the result trivially holds for those j’s such that λ j ∈ G∗
Λ,

i.e. for j ∈ I . Now, let j be such that λ j /∈ G∗
Λ, i.e. j /∈ I . By Proposition 1, let

x j = (x j,1, x j,2, . . .) ∈ R
�G∗

Λ be a vector such that

bp = ape
i〈rp,x j 〉 = ape

i
∑i j

k=1 rp,k x j,k , p = 1, 2, . . . , j .

Note that if p = 1, 2, . . . , j is such that λp ∈ G∗
Λ, then

bp = ape
irp,mp x j,mp = ape

ix j,mp ,

which necessarily implies, by (3), that x j,mp = xp,mp + 2πn j,p for some n j,p ∈ Z.
Hence

b j = a j e
i〈r j ,x j 〉 = a j e

i
∑i j

k=1 r j,k x j,k = a j e
i
∑

p∈I j−1
r j,mp x j,mp

= a j e
i
∑

p∈I j−1
r j,mp (xp,mp+2πn j,p) = a j e

i〈r j ,x0+p j 〉,

where p j = (2πn j,1, 2πn j,2, . . . , 0, 0, . . .). Moreover, by changing conveniently the
vectors p j , we can take x0 ∈ [0, 2π)�G

∗
Λ without loss of generality.

Conversely, suppose the existence of x0 = (x0,1, x0,2, . . . , x0,k, . . .) ∈ R
�G∗

Λ sat-
isfying b j = a j e〈r j ,x0+p j 〉i for some p j = (2πn j,1, 2πn j,2, . . .) ∈ R

�G∗
Λ , with

n j,k ∈ Z. Let r j,k = p j,k
q j,k

with p j,k and q j,k coprime integer numbers, and define

123



92 J. M. Sepulcre, T. Vidal

qn,k := lcm(q1,k, q2,k, . . . , qn,k) for each k = 1, 2, . . .. Thus, for each integer num-
ber n ≥ 1, take xn = x0 + mn , where mn,k = 2π p1,k p2,k · · · pn,kqn,k , k = 1, 2, . . ..
Therefore, it is satisfied b j = a j e〈r j ,xn〉i for each j = 1, 2, . . . , n, which yields that

A1
∗∼ A2.

We next study the case where the chosen basis is not the natural one. Fixed a
set Λ = {λ1, λ2, . . .} of exponents, let G∗

Λ be the natural basis for Λ and GΛ be an
arbitrary basis forΛ. For each j ≥ 1 let r j and s j be the vectors of rational components
so that λ j = 〈r j , g〉 and λ j = 〈s j ,h〉, with g and h the vectors associated with the
basis G∗

Λ and GΛ, respectively. Finally, for each k ≥ 1, let tk be the vector so that
hk = 〈tk, g〉, i.e.

T =

⎛

⎜⎜⎜⎜⎜⎜⎝

t1,1 t1,2 · · · t1, j · · ·
t2,1 t2,2 · · · t2, j · · ·
... . . .

. . .
... · · ·

tk,1 tk,2 · · · tk, j · · ·
... . . .

. . .
... · · ·

⎞

⎟⎟⎟⎟⎟⎟⎠
(4)

is the change of basis matrix. Thus, for any x0 ∈ R
�GΛ , we have

〈r j , x0〉 = 〈s j , x1〉,

where x1 is defined as x1,k = 〈tk, x0〉 for each k ≥ 1. Indeed,

〈s j , x1〉 =
∑

k

s j,k x1,k =
∑

k

s j,k〈tk, x0〉 =
∑

k

s j,k
∑

m

tk,mx0,m

=
∑

m

x0,m
∑

k

s j,k tk,m =
∑

m

r j,mx0,m = 〈r j , x0〉

because r j,m = ∑
k s j,k tk,m . Consequently, for each j and

p j = (2πn j,1, 2πn j,2, . . .) ∈ R
�GΛwith n j,k ∈ Z, (5)

we have

〈r j , x0 + p j 〉 = 〈r j , x0〉 + 〈r j ,p j 〉 = 〈s j , x1〉 + 〈s j ,q j 〉 = 〈s j , x1 + q j 〉,

where q j is defined as q1,k = 〈tk,p j 〉 for each k ≥ 1, i.e. q j is obtained from T · ptj .
In this way, we have proved the following result.

Corollary 1 Given Λ = {λ1, λ2, . . . , λ j , . . .} a set of exponents, consider A1(p) and
A2(p) two exponential sums in the classSΛ, say A1(p) = ∑

j≥1 a j eλ j p and A2(p) =∑
j≥1 b j eλ j p. Fixed a basis GΛ = {g1, g2, . . . , gk, . . .} for Λ, for each j = 1, 2, . . .

let r j ∈ R
�GΛ be the vector of rational components verifying (2). Then A1

∗∼ A2
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if and only if there exists x0 = (x0,1, x0,2, . . . , x0,k, . . .) ∈ [0, 2π)�GΛ such that for
each j = 1, 2, . . . it is satisfied

b j = a j e
〈r j ,x0+q j 〉i

for some q j ∈ R
�GΛ that is of the form q j = p j · T t , where T t is the transpose of the

change of basis matrix (4) and p j is of the form (5).

We next construct a generating expression for all exponential polynomials in a

class G ∈ SΛ/
∗∼. Let 2πZm = {(c1, c2, . . . , cm) ∈ R

m : ck = 2πnk,with nk ∈
Z, k = 1, 2, . . . ,m}. From Proposition 2, it is clear that the set of all exponential

sums A(p) in an equivalence class G in SΛ/
∗∼ can be determined by a function

EG : [0, 2π)�G
∗
Λ × ∏

j≥1 2πZ
�G∗

Λ → SΛ of the form

EG(x,p1,p2, . . .) :=
∑

j≥1

a j e
〈r j ,x+p j 〉i eλ j p, x ∈ [0, 2π)�G

∗
Λ, p j ∈ 2πZ�G∗

Λ, (6)

where a1, a2, . . . , a j , . . . are the coefficients of an exponential sum in G and the r j ’s
are the vectors of rational components associated with the natural basis G∗

Λ for Λ.
We recommend the reader compare the definition of the function EG with that of [13,
Expression (2.2)].

In particular, in this paper we are going to use Definition 2 for the case of exponen-
tial sums in SΛ of a complex variable s = σ + i t . Precisely, when the formal series
in SΛ are handled as exponential sums of a complex variable on which we fix a sum-
mation procedure, from equivalence class generating expression (6) we can consider
an auxiliary function as follows (compare with [13, Definition 3]).

Definition 3 Fixed Λ = {λ1, λ2, . . . , λ j , . . .} a set of frequencies or exponents, let

G be an equivalence class in SΛ/
∗∼ and a1, a2, . . . , a j , . . . be the coefficients of an

exponential sum inG. For each j = 1, 2, . . . let r j be the vector of rational components
satisfying λ j = 〈r j , g〉 = ∑q j

k=1 r j,kgk , where g := (g1, . . . , gk, . . .) is the vector
formed by the elements of the natural basis G∗

Λ for Λ. Suppose that some elements
in G, handled as exponential sums of a complex variable s = σ + i t , are summable
on at least a certain set P ⊂ R by some prefixed summation method. Then we define
the auxiliary function FG : P × [0, 2π)�G

∗
Λ × ∏

j≥1 2πZ
�G∗

Λ → C associated with
G, relative to the basis G∗

Λ, as

FG(σ, x,p1,p2, . . .) :=
∑

j≥1

a j e
〈r j ,x+p j 〉i eλ jσ , (7)

where σ ∈ P, x ∈ [0, 2π)�G
∗
Λ , pk ∈ 2πZ�G∗

Λ, and the series in (7) is summed by the
prefixed summation method, applied at t = 0 to the exponential sum obtained from
the generating expression (6) with p = σ + i t .

This auxiliary function can be immediately adapted to the case of almost periodic
functions AP(U ,C) with the Bochner–Fejér summation method. In this case, the
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94 J. M. Sepulcre, T. Vidal

set P above is formed by the real projection of the strip of almost periodicity of the
corresponding exponential sums (see Definition 5). In this theoretical framework, we
will show later the strong link among the sets of values in the complex plane taken by
a function in AP(U ,C), its Dirichlet series and its associated auxiliary function.

Definition 4 Consider Λ = {λ1, λ2, . . . , λ j , . . .} a countable set of distinct real num-
bers. We will say that a function f : U ⊂ C → C is in the class DΛ if it is almost
periodic (in the set AP(U ,C)) and its associated Dirichlet series is of the form

∑

j≥1

a j e
λ j s, a j ∈ C, λ j ∈ Λ, (8)

where U is a strip of the type {s ∈ C : α < Re s < β}, with −∞ ≤ α < β ≤ ∞.

Every almost periodic function in AP(U ,C) is determined by its Dirichlet series,
which is of type (8). In fact it is convenient to remark that, even in the case that the
sequence of the partial sums of its Dirichlet series does not converge uniformly, there
exists a sequence of finite exponential sums, the Bochner–Fejér polynomials, of the
type Pk(s) = ∑

j≥1 p j,ka j eλ j s where for each k only a finite number of the factors
p j,k differ from zero, which converges uniformly to f in every reduced strip in U
and converges formally to the Dirichlet series [3, Polynomial approximation theorem,
pgs. 50,148].

Moreover, the equivalence relation of Definition 2 can be immediately adapted to
the case of the functions (or classes of functions) which are identifiable by their also
called Dirichlet series, in particular to the classesDΛ. More specifically, see [11, Sect.
4, Definition 5′ (mod.)] referred to the Besicovitch space which contains the classes
of functions which are associated with Fourier or Dirichlet series and for which the
extension of our equivalence relation makes sense.

3 The auxiliary functions

If we take Definition 3 as a reference to be applied to our particular case of almost
periodic functions with the Bochner–Fejér summation method, notice that to every
function f ∈ DΛ, with Λ an arbitrary set of exponents, we can associate an auxiliary
function Ff of countably many real variables as follows.

Definition 5 Given Λ = {λ1, λ2, . . . , λ j , . . .} a set of exponents, let f (s) ∈ DΛ be
an almost periodic function in the vertical strip {s ∈ C : α < Re s < β}, −∞ ≤
α < β ≤ ∞, whose Dirichlet series is given by

∑
j≥1 a j eλ j s . For each j = 1, 2, . . .

let r j be the vector of rational components satisfying the equality λ j = 〈r j , g〉 =∑q j
k=1 r j,kgk , where g := (g1, . . . , gk, . . .) is the vector formed by the elements of the

natural basis G∗
Λ for Λ. We define the auxiliary function Ff : (α, β) × [0, 2π)�G

∗
Λ ×∏

j≥1 2πZ
�G∗

Λ → C associated with f , relative to the basis G∗
Λ, as

Ff (σ, x,p1,p2, . . .) :=
∑

j≥1

a j e
λ jσ e〈r j ,x+p j 〉i , (9)
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Sets of values of equivalent almost periodic functions 95

where σ ∈ (α, β), x ∈ [0, 2π)�G
∗
Λ, p j ∈ 2πZ�G∗

Λ and the series in (9) is summed by
Bochner–Fejér procedure, applied at t = 0 to the sum

∑
j≥1 a j e〈r j ,x+p j 〉i eλ j s .

Given f ∈ AP(U ,C), it was proved in [11, Lemma 3] that every function in
its equivalence class is also included in AP(U ,C). What is more, if

∑
j≥1 a j eλ j s

is the Dirichlet series of f (s) ∈ AP(U ,C), we first note that, for every choice of
x ∈ [0, 2π)�GΛ and p j ∈ 2πZ�GΛ with j = 1, 2, . . ., the sum

∑
j≥1 a j e〈r j ,x+p j 〉i eλ j s

represents the Dirichlet series of an almost periodic function. We second note that
if the Dirichlet series of f (s) ∈ AP(U ,C) converges uniformly on U = {s ∈ C :
α < Re s < β}, then f (s) coincides with its Dirichlet series and (9) can be viewed as
summation by partial sums or ordinary summation.

In addition to this, we third note that the Dirichlet series
∑

j≥1 a j eλ j s , associated
with a certain function f ∈ DΛ, arises from its auxiliary function Ff by a special
choice of its variables, that is Ff (σ, tg, 0, 0, . . .) = ∑

j≥1 a j eλ j (σ+i t).
In this respect, under the assumption that the natural basis for the set of the

exponents is also an integral basis, it is clear that the vectors p j do not play
any role and hence the auxiliary function Ff , associated with f , can be taken as
Ff (σ, x) := ∑

j≥1 a j eλ jσ e〈r j ,x〉i , σ ∈ (α, β), x ∈ [0, 2π)�G
∗
Λ .

In general, by taking into account Corollary 1, Definition 5 can be adapted to the
case of an arbitrary basis for the set of exponents. For this purpose, given a basis GΛ

for Λ, let T be the change of basis matrix (4), with respect to the natural basis, and let

ST = {q ∈ R
�GΛ : q = p · T t , with p of the form (5)}.

Definition 6 Given Λ = {λ1, λ2, . . . , λ j , . . .} a set of exponents, let f (s) ∈ DΛ be
an almost periodic function in {s ∈ C : α < Re s < β}, −∞ ≤ α < β ≤ ∞,
whose Dirichlet series is given by

∑
j≥1 a j eλ j s . For each j ≥ 1 let s j be the vector

of rational components satisfying the equality λ j = 〈s j , g〉 = ∑q j
k=1 s j,kgk , where

g := (g1, . . . , gk, . . .) is the vector of the elements of an arbitrary basis GΛ for Λ.
Then we define the auxiliary function FGΛ

f : (α, β) × [0, 2π)�GΛ × ∏
j≥1 ST → C

associated with f , relative to the basis GΛ, as

FGΛ

f (σ, x,q1,q2, . . .) :=
∑

j≥1

a j e
λ jσ e〈s j ,x+q j 〉i , (10)

where σ ∈ (α, β), x ∈ [0, 2π)�GΛ , q j ∈ ST , and the series in (10) is summed by
Bochner–Fejér procedure, applied at t = 0 to the sum

∑
j≥1 a j e〈r j ,x〉i eλ j s .

If we take the natural basis, it is obvious that the auxiliary functions Ff and F
G∗

Λ

f
of the respective Definitions 5 and 6 coincide.

We next show a characterization of the property of ∗-equivalence of functions in
the classes DΛ in terms of the auxiliary function relative to the natural basis.

Proposition 3 Given Λ = {λ1, λ2, . . . , λ j , . . .} a set of exponents, let f1 and f2 be
two almost periodic functions in the class DΛ. Let g := (g1, g2, . . . , gk, . . .) be the
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vector of the elements of the natural basis G∗
Λ for Λ. Then f1 is ∗-equivalent to f2 if

and only if there exist some y ∈ R
�G∗

Λ and p j ∈ 2πZ�G∗
Λ , j = 1, 2, . . ., such that

f2(σ + i t) = Ff1(σ, y + tg,p1,p2, . . .) for all σ + i t ∈ U .

Proof Let
∑

j≥1 a j eλ j s and
∑

j≥1 b j eλ j s be the Dirichlet series associated with f1
and f2, respectively. Let U be an open vertical strip such that f2 ∈ AP(U ,C). If

f1
∗∼ f2, then Proposition 2 assures the existence of x0 ∈ [0, 2π)�G

∗
Λ such that

for each j = 1, 2, . . . it is satisfied b j = a j e
〈r j ,x0+p′

j 〉i for some p′
j ∈ 2πZ�G∗

Λ .

Now, let Pk(s) = ∑
j≥1 p j,kb j eλ j s , k = 1, 2, . . ., be the Bochner–Fejér polynomials

associated with f2 (recall that they converge uniformly to f2 in every reduced strip in
U , which yields p j,k → 1 as k goes to ∞). Thus, given s = σ + i t ∈ U , we have

f2(σ + i t) = lim
k→∞ Pk(σ + i t) = lim

k→∞
∑

j≥1

p j,kb j e
λ j (σ+i t)

= lim
k→∞

∑

j≥1

p j,ka j e
i〈r j ,x0+p′

j 〉eλ jσ eiλ j t

= lim
k→∞

∑

j≥1

p j,ka j e
λ jσ ei〈r j ,x0+p′

j 〉eit〈r j ,g〉

= lim
k→∞

∑

j≥1

p j,ka j e
λ jσ ei〈r j ,x0+p′

j+tg〉

= Ff1(σ, y0 + tg,p1,p2, . . .),

where y0 ∈ R
�G∗

Λ and p j ∈ 2πZ�G∗
Λ are chosen so that x0 + tg+ p′

j = y0 + tg+ p j ,

with y0 + tg ∈ [0, 2π)�G
∗
Λ .

Conversely, suppose the existence of y0 ∈ R
�GΛ and p j ∈ 2πZ�G∗

Λ , for j =
1, 2, . . ., such that f2(σ + i t) = Ff1(σ, y0 + tg,p1,p2, . . .) for any σ + i t ∈ U .
Hence

lim
k→∞

∑

j≥1

p j,kb j e
λ j (σ+i t) = Ff1(σ, y0 + tg,p1,p2, . . .)

=
∑

j≥1

a j e
i〈r j ,y0+p j 〉eλ j (σ+i t) ∀σ + i t ∈ U .

Now, by the uniqueness of the coefficients of an exponential sum in DΛ, it is clear

that b j = a j e<r j ,y0+p j>i for each j ≥ 1, which shows that f1
∗∼ f2.

We next define the following set which will be widely used from now on.

Definition 7 Given Λ = {λ1, λ2, . . . , λ j , . . .} a set of exponents, let f (s) ∈ DΛ

be an almost periodic function in an open vertical strip U , and σ0 = Re s0 with

s0 ∈ U .We define Img
(
FGΛ

f (σ0, x,q1,q2, . . .)
)
to be the set of values in the complex
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plane taken on by the auxiliary function FGΛ

f (σ, x,q1,q2, . . .), relative to a prefixed

basis GΛ, when σ = σ0; that is Img
(
FGΛ

f (σ0, x,q1,q2, . . .)
)

= {s ∈ C : ∃x ∈
[0, 2π)�G

∗
Λ and q j ∈ ST such that s = FGΛ

f (σ0, x,q1,q2, . . .)}.
We next prove that the sets of values taken on by the auxiliary function

FGΛ

f (σ, x,q1,q2, . . .) are independent of the basis GΛ. The proof is similar to that of
Corollary 1.

Lemma 1 GivenΛ a set of exponents and GΛ an arbitrary basis forΛ, let f (s) ∈ DΛ

be an almost periodic function in an open vertical strip U, and σ0 = Re s0 with
s0 ∈ U. Then

Img
(
FGΛ

f (σ0, x,q1,q2, . . .)
)

= Img
(
F
G∗

Λ

f (σ0, x,p1,p2, . . .)
)

.

Proof Let
∑

j≥1 a j eλ j s be the Dirichlet series associated with f (s) ∈ DΛ, and G∗
Λ

and GΛ be the natural and an arbitrary basis for Λ, respectively. For each j ≥ 1
let r j and s j be the vector of integer components so that λ j = 〈r j , g〉 and λ j =
〈s j ,h〉, with g and h the vectors associated with the basis G∗

Λ and GΛ, respectively.
Finally, for each integer k ≥ 1, let tk be the vector given by hk = 〈tk, g〉. Take w1 ∈
Img

(
F
G∗

Λ

f (σ0, x,p1,p2, . . .)
)
, then there exists x1 ∈ [0, 2π)�GΛ and p j ∈ 2πZ�G∗

Λ ,

j = 1, 2, . . ., such that w1 = F
G∗

Λ

f (σ0, x1,p1,p2, . . .). Hence

w1 = F
G∗

Λ

f (σ0, x1,p1,p2, . . .) =
∑

j≥1

a j e
λ jσ0e〈r j ,x1+p j 〉i

=
∑

j≥1

a j e
λ jσ0e〈s j ,x2+q j 〉i ,

where q j is defined as q1,k =< tk,p j > for each k ≥ 1, and x2 is defined as

x2,k =< tk, x1 > for each k ≥ 1. Therefore, w1 = FGΛ

f (σ0, x2,q1,q2, . . .) and

w1 ∈ Img
(
FGΛ

f (σ0, x,q1,q2, . . .)
)
, which gives

Img
(
F
G∗

Λ

f (σ0, x,p1,p2, . . .)
)

⊆ Img
(
FGΛ

f (σ0, x,q1,q2, . . .)
)

.

An analogous argument shows that the set Img
(
FGΛ

f (σ0, x,q1,q2, . . .)
)
is included

in the set Img
(
F
G∗

Λ

f (σ0, x,p1,p2, . . .)
)
, which proves the result.

Consequently, from now on we will use the notation Img
(
Ff (σ0, x,p1,p2, . . .)

)

for the set of values taken on by the auxiliary function associated with a function
f (s) ∈ DΛ. In this respect, without loss of generality, we can use the natural basis for
the set of exponents Λ. Moreover, under the assumption of existence of an integral
basis, we will use the notation Img

(
Ff (σ0, x)

)
for the set above. In fact, in this case
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Img
(
Ff (σ0, x)

)
is the same as that of [13, Definition 5] and all the results of [13]

concerning integral basis are also valid for our case (see also [12, Remark 2]).

4 Main results

Given a function f (s), take the notation

Img ( f (σ0 + i t)) = {w ∈ C : ∃t ∈ R such that s = f (σ0 + i t)}.

We next show the first important result in this paper concerning the connection
between our equivalence relation and the set of values in the complex plane taken on
by the auxiliary function (compare with [13, Lemma 9, Propositions 12 and 13]).

Proposition 4 Given Λ a set of exponents, let f (s) ∈ DΛ be an almost periodic
function in an open vertical strip U, and σ0 = Re s0 with s0 ∈ U.

(i) If f1
∗∼ f , then Img ( f1(σ0 + i t)) ⊂ Img ( f (σ0 + i t)) and

Img ( f (σ0 + i t)) = Img ( f1(σ0 + i t)).

(ii) Img
(
Ff (σ0, x,p1,p2, . . .)

) = ⋃
fk

∗∼ f
Img ( fk(σ0 + i t)) .

(iii) Img
(
Ff (σ0, x,p1,p2, . . .)

)
is a closed set.

(iv) Img
(
Ff (σ0, x,p1,p2, . . .)

) = Img ( f1(σ0 + i t)) for every f1
∗∼ f .

Proof (i) Note that [11, Theorem 4] shows that the functions in the same equivalence
class are obtained as limit points of T f = { fτ (s) := f (s + iτ) : τ ∈ R}, that is,
every function f1

∗∼ f is the limit (in the sense of the uniform convergence on
every reduced strip of U ) of a sequence { fτn (s)} with fτn (s) := f (s + iτn). Take
w1 ∈ Img ( f1(σ0 + i t)), then there exists t1 ∈ R such that w1 = f1(σ0 + i t1). Now,
given ε > 0 there exists τ > 0 such that | f1(σ0 + i t1) − fτ (σ0 + i t1)| < ε, which
means that

|w1 − f (σ0 + i(t1 + τ))| < ε.

Now it is immediate that w1 ∈ Img ( f (σ0 + i t)) and consequently

Img ( f1(σ0 + i t)) ⊂ Img ( f (σ0 + i t)).

Analogously, by symmetry we have Img ( f (σ0 + i t)) ⊂ Img ( f1(σ0 + i t)), which
yields that

Img ( f (σ0 + i t)) = Img ( f1(σ0 + i t)).
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(ii) Take w0 ∈ ⋃
fk

∗∼ f
Img ( fk(σ0 + i t)), then w0 ∈ Img ( fk(σ0 + i t)) for some

fk
∗∼ f , which means that there exists t0 ∈ R such that

w0 = fk(σ0 + i t0).

Note that Proposition 3 assures the existence of a vector y0 ∈ R
�G∗

Λ and p j ∈
2πZ�G∗

Λ , j = 1, 2, . . ., such that w0 = Ff (σ, y0 + t0g,p1,p2, . . .). Hence
w0 = Ff (σ0, x0,p1,p2, . . .), with x0 = y0 + t0g ∈ [0, 2π)�G

∗
Λ , which means that

w0 ∈ Img
(
Ff (σ0, x,p1,p2, . . .)

)
. Conversely, if w0 ∈ Img

(
Ff (σ0, x,p1,p2, . . .)

)
,

then w0 = Ff (σ0, y0,p1,p2, . . .) for some y0 ∈ [0, 2π)�GΛ and p j ∈ 2πZ�G∗
Λ . Take

t0 ∈ R. Since y0 = x0 + t0g, with x0 := y0 − t0g, then

w0 = Ff (σ0, x0 + t0g,p1,p2, . . .) =
∑

j≥1

a j e
λ jσ0e〈r j ,x0+t0g+p j 〉i

=
∑

j≥1

a j e
λ j (σ0+i t0)e〈r j ,x0+p j 〉i .

Hence
∑

j≥1 a j e〈r j ,x0+p j 〉i eλ j s is the Dirichlet series associated with an almost peri-

odic function h(s) ∈ AP(U ,C) such that h
∗∼ f (see [11, Lemma 3]) and

hence we have that w0 = h(σ0 + i t0) (see also [13, Remark 11]), which shows
that w0 ∈ ⋃

fk
∗∼ f

Img ( fk(σ0 + i t)) .

(iii) Letw1, w2, . . . , w j , . . . be a sequence of points in Img
(
Ff (σ0, x,p1,p2, . . .)

)

tending to w0. We next prove that w0 ∈ Img
(
Ff (σ0, x,p1,p2, . . .)

)
. Indeed, for each

w j , we deduce from (ii) the existence of f j
∗∼ f such that w j ∈ Img

(
f j (σ0 + i t)

)
.

Now, since that { f j (σ0 + i t)} is a sequence in the same equivalence class, [11, Propo-
sition 3] assures the existence of a subsequence { f jk } which converges to a certain

function h
∗∼ f . Consequently, {w jk } tends to w0 ∈ Img (h(σ0 + i t)). Finally, again

by (ii), we conclude that

w0 ∈ Img
(
Ff (σ0, x,p1,p2, . . .)

)
.

(iv) Let g be the vector associated with the natural basis G∗
Λ. Since the Fourier

series of fσ0(t) := f (σ0 + i t) can be obtained as Ff (σ0, tg, 0, 0, . . .), with t ∈ R, it
is clear that Img ( f (σ0 + i t)) ⊂ Img

(
Ff (σ0, x,p1,p2, . . .)

)
. On the other hand, we

deduce from (i) and (ii) that

Img ( f (σ0 + i t)) ⊂ Img
(
Ff (σ0, x,p1,p2, . . .)

)

=
⋃

fk
∗∼ f

Img ( fk(σ0 + i t)) ⊂ Img ( f (σ0 + i t)).

Finally, by taking the closure and property (iii), we conclude that

Img
(
Ff (σ0, x,p1,p2, . . .)

) = Img ( f (σ0 + i t)).
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Now, the result follows from property (i).

Remark 2 GivenΛ a set of exponents, let f (s) ∈ DΛ be an almost periodic function in
an open vertical stripU , and σ0 = Re s0 with s0 ∈ U . As a consequence of Proposition
4, one gets that

Img ( f (σ0 + i t)) =
⋃

fk
∗∼ f

Img ( fk(σ0 + i t)) .

If we changed ∗-equivalence (that of Definition 2) by Bohr-equivalence (that of [13,
Definition 2]) and Λ did not have an integral basis, this result would be false as [13,
Remark 14] shows.

At this point we will demonstrate a result like Bohr’s equivalence theorem [1, Sect.
8.11]. Given Λ an arbitrary set of exponents, let f1, f2 ∈ DΛ be two ∗-equivalent
almost periodic functions.We next show that, in every open half-plane or open vertical
strip included in their region of almost periodicity, the functions f1 and f2 take the
same set of values. In this sense, this result improves that of [13, Theorem 1] which
was proved uniquely for almost periodic functions associated with sets of exponents
which have an integral basis.

Theorem 1 Fixed Λ a set of exponents, let f1, f2 ∈ DΛ be two ∗-equivalent almost
periodic functions in a strip {σ + i t ∈ C : α < σ < β}, and consider E an open set
of real numbers included in (α, β). Then

⋃

σ∈E
Img ( f1(σ + i t)) =

⋃

σ∈E
Img ( f2(σ + i t)) .

That is, the functions f1 and f2 take the same set of values on the region {s = σ + i t ∈
C : σ ∈ E}.
Proof Without loss of generality, suppose that f1 and f2 are not constant functions (oth-
erwise it is trivial). Take w0 ∈ ⋃

σ∈E Img ( f1(σ + i t)), then w0 ∈ Img ( f1(σ0 + i t))
for some σ0 ∈ E and hence w0 = f1(σ0 + i t0) for some t0 ∈ R. Furthermore, by
Proposition 4, we get w0 ∈ Img ( f1(σ0 + i t)) = Img ( f2(σ0 + i t)), which yields the
existence of a sequence {tn} of real numbers such that

w0 = lim
n→∞ f2(σ0 + i tn).

Take hn(s) := f2(s + i tn), n ∈ N. By [11, Proposition 4], there exists a subsequence
{hnk }k ⊂ {hn}n which converges uniformly on compact subsets to a function h(s),

with h
∗∼ f2. Observe that

lim
k→∞ hnk (σ0) = h(σ0) = w0.

Therefore, by Hurwitz’s theorem [2, Sect. 5.1.3], there is a positive integer k0 such
that for k > k0 the functions h∗

nk (s) := hnk (s)−w0 have at least one zero in D(σ0, ε)
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for any ε > 0 sufficiently small. This means that for k > k0 the functions hnk (s) =
f2(s + i tnk ), and hence the function f2(s), take the value w0 on the region {s =
σ + i t : σ0 − ε < σ < σ0 + ε} for any ε > 0 sufficiently small (recall that E is an
open set). Consequently, w0 ∈ ⋃

σ∈E Img ( f2(σ + i t)). We analogously prove that⋃
σ∈E Img ( f2(σ + i t)) ⊂ ⋃

σ∈E Img ( f1(σ + i t)).

It is worth noting that [13, Example 2] also shows that a converse to Theorem
1 cannot hold by fixing an open set E in (α, β). However, we are considering the
existence of a certain converse statement of this present generalization (see the arXiv
paper [9]).

Finally, from Remark 1 and Proposition 1, we know that Definition 2 and the
definition of Bohr-equivalence are equivalent under the condition of existence of an
integral basis for the set of exponents Λ, which means that all the results of this
paper which can be formulated in terms of an integral basis are also valid under
Bohr-equivalence. In fact, if two exponential sums or almost periodic functions are
Bohr-equivalent, it is clear that they also are ∗-equivalent (according to Definition 2).
Consequently, we can deduce immediately from our main result (Theorem 1) that two
Bohr-equivalent almost periodic functions take the same values on every open vertical
strip included in their strip of almost periodicityU , i.e. [13, Theorem 18] is also true if
the condition of existence of an integral basis is omitted. This constitutes an extension
of Bohr’s equivalence theorem.

Corollary 2 FixedΛ a set of exponents, let f1, f2 ∈ DΛ be twoBohr-equivalent almost
periodic functions in a strip {σ + i t ∈ C : α < σ < β}, and consider E an open set
of real numbers included in (α, β). Then

⋃

σ∈E
Img ( f1(σ + i t)) =

⋃

σ∈E
Img ( f2(σ + i t)) .

That is, the functions f1 and f2 take the same set of values on the region {s = σ + i t ∈
C : σ ∈ E}.

For the case of Bohr’s equivalence relation, we would like to point out that the
existence of a converse statement of the above result will be possible only assuming
the existence of an integral basis (see [9]).
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