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Abstract
Onpage 237–238 of his second notebook, Ramanujan recorded fivemodular equations
of composite degree 25. Berndt proved all these using the method of parametrization.
He also expressed that his proofs undoubtedly often stray from the path followed
by Ramanujan. The purpose of this paper is to give direct proofs to four of the five
modular equations using the identities known to Ramanujan.
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1 Introduction

Let a be a complex number. In what follows, we employ the usual notation

(a)0 = 1,

(a)n = a(a + 1) · · · (a + n − 1), n ≥ 1.

Gauss hypergeometric series 2F1(a, b; c; z) is defined by

2F1(a, b; c; z) =
∞∑

n=0

(a)n(b)n
(c)nn! zn, |z| < 1.
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The complete elliptic integral of first kind is denoted by K (k) and is defined as

K (k) =
π
2∫

0

dφ√
1 − k2 sin2 φ

, |k| < 1.

k and k′ = √
1 − k2 are called modulus and complementary modulus of K (k),

respectively. This complete elliptic integral of first kind is related to the Gaussian
hypergeometric series by the following equation

K (k) =
π
2∫

0

dφ√
1 − k2 sin2 φ

= π

2
2F1

(
1

2
,
1

2
; 1; k2

)
.

Set α = k2, β = l21 , γ = l22 and δ = l23 . Let k
′ = √

1 − k2, l ′1 =
√
1 − l21 ,

l ′2 =
√
1 − l22 and l ′3 =

√
1 − l23 . Suppose that the equality

n
K (k′)
K (k)

= K (l ′1)
K (l1)

holds for some positive integer n. Any relation between α and β induced by the above
is a called modular equation of degree n. We also say β has degree n over α. Also
suppose that the equalities

m
K (k′)
K (k)

= K (l ′1)
K (l)

, n
K (k′)
K (k)

= K (l ′2)
K (l2)

and mn
K (k′)
K (k)

= K (l ′3)
K (l3)

hold for positive integers m and n. Then any relation induced among α, β γ and δ by
the above is called a modular equation of composite degree mn.
If β has degree n over α and if α = k2 and β = l2, then the multiplier connecting α

and β, denoted by m, is defined as

m = K (k)

K (l)
.

On page 237–238 of his second notebook [5], Ramanujan recorded five modular
equations of composite degree 25. In fact, these are the first set of modular equations
of odd composite degree recorded by Ramanujan in his second note book. Modular
equations of other composite degrees are recorded inChapter 20 and in the unorganized
portions. Following are the five modular equations of composite degree 25 recorded
by Ramanujan:

Theorem 1.1 Let α, β and γ be of first, fifth and twenty-fifth degrees respectively. Let
m denote the multiplier connecting α and β and m′ be the multiplier connecting β
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and γ . Then

(γ

α

) 1
8 +

(1 − γ

1 − α

) 1
8 −

(γ (1 − γ )

α(1 − α)

) 1
8 − 2

(γ (1 − γ )

α(1 − α)

) 1
12 = (mm′)

1
2 , (1.1)

(α

γ

) 1
8 +

(1 − α

1 − γ

) 1
8 −

( α(1 − α)

γ (1 − γ )

) 1
8 − 2

( α(1 − α)

γ (1 − γ )

) 1
12 = 5

(mm′) 1
2

, (1.2)

(αγ

β2

) 1
8 +

( (1 − α)(1 − γ )

(1 − β)2

) 1
8 +

(αγ (1 − α)(1 − γ )

β2(1 − β)2

) 1
8 =

√
m′
m

, (1.3)

( β2

αγ

) 1
4 +

( (1 − β)2

(1 − α)(1 − γ )

) 1
4 +

( β2(1 − β)2

αγ (1 − α)(1 − γ )

) 1
4

−2
( β2(1 − β2)

αγ (1 − α)(1 − γ )

) 1
8
{
1 +

( β2

αγ

) 1
8 +

( (1 − β)2

(1 − α)(1 − γ )

) 1
8
}

= 5
m

m′ ,

(1.4)

and

1 + 4
1
3

(
β10(1−β)10

αγ (1−α)(1−γ )

) 1
24

1 + 4
1
3

(
α5γ 5(1−α)5(1−γ )5

β2(1−β)2

) 1
24

= m

m′ . (1.5)

Berndt [2] proved all these by the method of parametrization. While proving (1.4),
Berndt [2, p. 294] remarked that “formula(1.4) appears to be more recondite than the
preceding three formulas and it is not obvious how it can be deduced from them in any
simple manner.“ Motivated by this remark, in this paper we give direct proofs of (1.1)
to (1.4) using certain Ramanujan theta function identities which are easily deducible
from the famous Ramanujan’s 1ψ1 summation formula. We are unable to prove (1.5)
by the techniques used to prove (1.1)–(1.4).
In Sect. 2 of this paper, we recall certain facts and theta function identities which are
required to prove (1.1)–(1.4). In Sect. 3, we prove (1.1)–(1.4).

2 Preliminary results

For complex numbers a and q with |q| < 1, (a; q)∞ is defined as

(a; q)∞ =
∞∏

k=0

(1 − aqk).

Ramanujan’s theta function f (−a,−b) is defined as
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f (−a, −b) =
∞∑

n=−∞
(−1)na

n(n+1)
2 b

n(n−1)
2 = (a; ab)∞(b; ab)∞(ab, ab)∞, |ab| < 1.

(2.1)

Ramanujan also defines special cases of f (−a,−b) by

φ(q) = f (q, q) =
∞∑

n=−∞
qn

2 = (−q; q2)2∞(q2; q2)∞, (2.2)

ψ(q) = f (q, q3) =
∞∑

n=0

q
n(n+1)

2 = (q2; q2)∞
(q; q2)∞ , (2.3)

and

f (−q) = f (−q,−q2) =
∞∑

n=−∞
(−1)nq

n(3n+1)
2 = (q; q)∞. (2.4)

He also defines

χ(−q) = (q; q2)∞. (2.5)

We use the following theorem due to Ramanujan [5, p. 211] [2, p. 124] in our proofs,
to transform the theta function identities into modular equations.

Theorem 2.1 If y = π
2F1(

1
2 , 12 ;1;1−x).

2F1(
1
2 , 12 ;1;x). , q = e−y , and z = φ2(q), where 0 < x < 1,

then

f (−q) = √
z2

−1
6 (1 − x)

1
6

{
x

q

} 1
24

,

f (−q2) = √
z2

−1
3

{
x(1 − x)

q

} 1
12

,

and

f (−q4) = √
z4

−1
3 (1 − x)

1
24

{
x

q

} 1
6

.

We require the following two theorems to prove (1.1)–(1.4).

Theorem 2.2 If P(m,n) = 1

q
n−m
24

f (−qm )
f (−qn) , then

P(1,5)P(2,10) + 5

P(1,5)P(2,10)
=

(
P(2,10)

P(1,5)

)3

+
(

P(1,5)

P(2,10)

)3

, (2.6)
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(
P(1,2)P(5,10)

)2 + 4
(
P(1,2)P(5,10)

)2 =
(
P(5,10)

P(1,2)

)3

−
(

P(1,2)

P(5,10)

)3

, (2.7)

P(2,5)P(1,10) − 5

P(2,5)P(1,10)
=

(
P(1,10)

P(2,5)

)2

− 4

(
P(2,5)

P(1,10)

)2

, (2.8)

and

(
P(1,25)P(2,50)

)2 + 5
(
P(1,25)P(2,50)

)2

= P3
(1,25) − 2P2

(1,25)P(2,50) − 2P(1,25)P
2
(2,50) + P3

(2,50). (2.9)

Ramanujan recorded identities (2.6), (2.8) and (2.9) on pages 325 and 327 of his second
note book [5] and (2.7) on page 55 of his lost note book [6]. Berndt proved them in
[3]. Recently Bhargava et al. [4] deduced Theorem 2.1 from the famous Ramanujan’s
1ψ1 summation formula. In his Ph.D thesis, Khaled Abed Azez Alloush [1] deduced
the theta function identity

P(10,50)P(5,25)

P(1,5)P(2,10)
− 1 =

(
P(1,5)P(5,25)

P(10,50)P(2,10)

)2

+
(
P(10,50)P(2,10)

P(1,5)P(5,25)

)2

−
(

P(1,5)P(5,25)

P(10,50)P(2,10)
+ P(10,50)P(2,10)

P(1,5)P(5,25)

)
, (2.10)

by employing (2.6)–(2.8).

Theorem 2.3 Let P(m,n) be as in the Theorem 2.1. Then

P6 − 2P4Q − 5P4Q4 − 2P3Q3 + P2Q2 − 2PQ4 + Q6 = 0, (2.11)

where P = P(1,5)
P(5,25)

and Q = P(2,10)
P(10,50)

.

Proof Replacing q by q5 in (2.6) and thenmultiplying the resulting identity with (2.6),
we find that
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P(1,5)P(2,10)P(5,25)P(10,50) + 25

P(1,5)P(2,10)P(5,25)P(10,50)
+ 5

(
PQ + 1

PQ

)

=
(
P(2,10)P(10,50)

P(1,5)P(5,25)

)3

+
(

P(1,5)P(5,25)

P(2,10)P(10,50)

)3

+
(
Q

P

)3

+
(
Q

P

)3

. (2.12)

Replacing q by q5 in (2.7) and then multiplying the resulting identity with (2.7), we
find that

(
P(1,2)P(5,10)P(5,10)P(25,50)

)2 +
(

4

P(1,2)P(5,10)P(5,10)P(25,50)

)2

+4

((
P(2,10)P(10,50)

P(1,5)P(5,25)

)2

+
(

P(1,5)P(5,25)

P(2,10)P(10,50)

)2)

=
(
P(5,10)P(25,50)

P(1,2)P(5,10)

)3

+
(

P(1,2)P(5,10)

P(5,10)P(25,50)

)3

−
(
Q

P

)3

−
(
P

Q

)3

. (2.13)

Replacing q by q5 in (2.8) and multiplying the resulting identity with (2.8), we find
that

P(1,5)P(2,10)P(5,25)P(10,50) + 25

P(1,5)P(2,10)P(5,25)P(10,50)
− 5

(
PQ + 1

PQ

)

=
(
P(1,2)P(5,10)P(5,10)P(25,50)

)2 +
(

4

P(1,2)P(5,10)P(5,10)P(25,50)

)2

−4

((
P(5,10)P(25,50)

P(1,2)P(5,10)

)2

+
(

P(1,2)P(5,10)

P(5,10)P(25,50)

)2)
. (2.14)

Eliminating
(
P(1,2)P(5,10)P(5,10)P(25,50)

)2+
(

4
P(1,2)P(5,10)P(5,10)P(25,50)

)2

between (2.13)

and (2.14), we obtain

4

((
P(2,10)P(10,50)

P(1,5)P(5,25)

)2

+
(

P(1,5)P(5,25)

P(2,10)P(10,50)

)2

+
(
P(5,10)P(25,50)

P(1,2)P(5,10)

)2

+
(

P(1,2)P(5,10)

P(5,10)P(25,50)

)2)

=
(
P(5,10)P(25,50)

P(1,2)P(5,10)

)3

+
(

P(1,2)P(5,10)

P(5,10)P(25,50)

)3

−
(
Q

P

)3

−
(
P

Q

)3

−P(1,5)P(2,10)P(5,25)P(10,50) − 25

P(1,5)P(2,10)P(5,25)P(10,50)

+5
(
PQ + 1

PQ

)
. (2.15)
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Noticing that P(5,10)P(25,50)
P(1,2)P(5,10)

+ P(1,2)P(5,10)
P(5,10)P(25,50)

= P(2,10)P(10,50)
P(1,5)P(5,25)

+ P(1,5)P(5,25)
P(2,10)P(10,50)

and eliminating

P(1,5)P(2,10)P(5,25)P(10,50) + 25
P(1,5)P(2,10)P(5,25)P(10,50)

between (2.15) and (2.12), we find
that

5
(
PQ + 1

PQ

)
= 4

{(
P(5,10)P(25,50)

P(1,2)P(5,10)

)2

+
(

P(1,2)P(5,10)

P(5,10)P(25,50)

)2}

+
(
Q

P

)3

+
(
P

Q

)3

. (2.16)

Set x = P(5,10)P(25,50)
P(1,2)P(5,10)

+ P(1,2)P(5,10)
P(5,10)P(25,50)

. We can now write (2.16) and (2.10) as

4x2 − 8 +
(
Q

P

)3

+
(
P

Q

)3

− 5
(
PQ + 1

PQ

)
= 0 (2.17)

and

x2 − x − 1

PQ
− 1 = 0, (2.18)

respectively. Eliminating x between (2.17) and (2.18), we obtain

(
R − P

)(
P6 + P2Q2 − 2P3Q3 − 5P4Q4 − 2QP4 − 2PQ4 + Q6

)

×
(
P6 + P2Q2 − 2P3Q3 − 5P4Q4 + 2QP4 + 2PQ4 + Q6

)
= 0.

(2.19)

By definition, R − P �= 0. Observe that

P6 + P2Q2 − 2P3Q3 − 5P4Q4 + 2QP4 + 2PQ4 + Q6

= (P3 − Q3)2 − 5P4Q4 + 2QP4 + 2PQ4 + P2Q2. (2.20)

By definition,

P = q
2
3
f (−q) f (−q25)

f 2−q5
and Q = q

4
3
f (−q2) f (−q50)

f 2(−q10)
.

f (−qn) is analytic in the disc |q| < 1 and tends to 1 as q → 0+. Thus, P → 0
and Q → 0 as q → 0+. Thus in some neighborhood H of zero, 0 < P < 1 and
0 < Q < 1. Hence in H , QP4 > P4Q4, PQ4 > P4Q4 and P2Q2 > P4Q4. Using
these in (2.20) we can conclude that −5P4Q4 + 2QP4 + 2PQ4 + P2Q2 > 0 in H .
That is P6 + P2Q2 − 2P3Q3 − 5P4Q4 + 2QP4 + 2PQ4 + Q6 �= 0 in H . Applying
now identity theorem for holomorphic functions to (2.19), we obtain (2.11). �	
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3 Proof of Theorem 1.1

In this section, we prove (1.1) to (1.4) of Theorem 1.1.

Proofs of (1.1) and (1.2) Let P = P(1,25), Q = P(2,50) and R = P(4,100). Then from
(2.9)

(PQ)2 + 5PQ − P3 + 2P2Q + 2PQ2 − Q3 = 0 (3.1)

and

(RQ)2 + 5RQ − R3 + 2R2Q + 2RQ2 − Q3 = 0. (3.2)

Equation (3.2) is obtained by replacing q by q2 in (2.9). Multiplying (3.1) by R and
then subtracting the identity obtained by multiplying (3.7) with P , we arrive at

(R − P)(P2R + PR2 − Q3 − 2PQR − PRQ2) = 0. (3.3)

Since R − P �= 0, we obtain

P2R + PR2 − Q3 − 2PQR − PRQ2 = 0. (3.4)

Transcribing (3.4) into modular equation by using Theorem 2.1, we obtain (1.1).
Multiplying now (3.1) by R2 and then subtracting the identity obtained by multiplying
(3.2) with P2, we arrive at

(R − P)(Q3P + Q3R − P2R2 − 2PRQ2 − 5PQR) = 0. (3.5)

Since R − P �= 0, we obtain

Q3P + Q3R − P2R2 − 2PRQ2 − 5PQR = 0. (3.6)

Transcribing (3.6) into modular equation by using Theorem 2.1 we obtain (1.2). �	
Proof of (1.3) If P = P(1,5)

P(5,25)
, Q = P(2,10)

P(10,50)
and R = P(4,20)

P(20,100)
, then

P6 − 2P4Q − 5P4Q4 − 2P3Q3 + P2Q2 − 2PQ4 + Q6 = 0.

The above is nothing but (2.11). Changing q to q2 in the above, we find that

R6 − 2R4Q − 5R4Q4 − 2R3Q3 + R2Q2 − 2RQ4 + Q6 = 0. (3.7)

Multiplying (2.11) by R4 and then subtracting the identity obtained by multiplying
(3.7) with P4, we arrive at

(P − R)(R2P3 + P2R3 + QP2R − Q3P2 + R2QP − R2Q3)
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×(P2R2 + PQ3 − PQR + Q3R) = 0. (3.8)

P − R �= 0. Let

C(P, Q, R) D(P, Q, R) = 0,

where

C(P, Q, R) = R2P3 + P2R3 + QP2R − Q3P2 + R2QP − R2Q3. (3.9)

and

D(P, Q, R) = P2R2 + PQ3 − PQR + Q3. (3.10)

By definition

P = q
2
3 − q

5
3 − q

8
3 + 3q

17
3 − 2q

20
3 − q

23
3 + · · · (3.11)

Changing q to q2 and changing q to q4 in the above, we obtain

Q = q
4
3 − q

10
3 − q

16
3 + 3q

34
3 − 2q

40
3 − q

46
3 + · · · (3.12)

and

R = q
8
3 − q

20
3 − q

32
3 + 3q

68
3 − 2q

80
3 − q

92
3 + · · · , (3.13)

respectively Using these in (3.9) and (3.10), we obtain

C(P, Q, R) = 4q
22
3 − 8q

25
3 − 6q

28
3 + 12q

31
3 − 2q

34
3 + · · · (3.14)

and

D(P, Q, R) = 4q
83
3 − 40q

86
3 − 28q

89
3 − 20q

95
3 + 300q

98
3 + · · · . (3.15)

As q → 0, q− 22
3 C(P, Q, R) �→ to 0, where as q− 22

3 D(P, Q, R) → 0. This implies
that C(P, Q, R) �= 0 in some neighborhood of 0+. Therefore by identity theorem,
D(P, Q, R) = 0 in some neighborhood of zero. By analytic continuation we can
conclude that

P2R2 + PQ3 − PQR + Q3R = 0, (3.16)

in the respective domain of q. Transcribing the above into modular equation by The-
orem 2.1, we obtain (1.3). �	
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Proof of (1.4) Multiplying (2.6) with R3 and then subtracting the identity obtained by
multiplying (3.7) with P3, we arrive at

(−R + P)(R3P5 + R4P4 − 5P3R3Q4 − 2P3R3Q + R5P3 − R2P2Q2

+2P2RQ4 − P2Q6 + 2R2PQ4 − PRQ6 − R2Q6) = 0. (3.17)

(P − R) �= 0. Therefore

R3P5 + R4P4 − 5P3R3Q4 − 2P3R3Q + R5P3 − R2P2Q2 + 2P2RQ4

−P2Q6 + 2R2PQ4 − PRQ6 − R2Q6 = 0. (3.18)

Add and subtract 2P3R3Q and R2P2Q2 to (3.18). Using (3.16) repeatedly in (3.18)
(Grouping the terms 2P3R3Q + 2P2RQ4 + 2R2PQ4 − 2R2P2Q2 and replacing
(PR)4 by (PQR−PQ3−Q3R)2 and then again using (3.16) in the resulting identity),
we arrive at

P4R2 + P2R4 + Q6 − 5P2R2Q4 − 2P2R2Q2 = 0. (3.19)

Finally, using Q = Q3

P + Q3

R + PR (from 3.16) in the last term of (3.19), we arrive at

P4R2 + P2R4 + Q6 − 2(P3R3 + Q3P2R + Q3PR2) = 5Q4P2R2. (3.20)

Transcribing the above theta function identity into a modular equation by using The-
orem 2.1, we obtain (1.4). �	
Acknowledgements The authors would like to thank the anonymous referee for many invaluable sugges-
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