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Abstract
Let N be a sufficiently large integer. In this paper, it is proved that, with at most
O(N 7/18+ε) exceptions, all even positive integers up to N can be represented in the
form p21 + p22 + p33 + p34 + p45 + p46, where p1, p2, p3, p4, p5, p6 are prime numbers,
which constitutes an improvement over some previous work.
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1 Introduction andmain result

Let N , k1, k2, . . . , ks be natural numbers such that 2 ≤ k1 ≤ k2 ≤ · · · ≤ ks, N > s.
Waring’s problem of mixed powers concerns the representation of N as the form

N = xk11 + xk22 + · · · + xkss .

Not very much is known about results of this kind. For historical literature the reader
should consult section P12 of LeVeque’s Reviews in number theory and the bibliog-
raphy of Vaughan [9].
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In 1970, Vaughan [8] obtained the asymptotic formula for the number of represen-
tations of a number as the sum of two squares, two cubes and two biquadrates. He
proved that, for any sufficiently large integer N , there holds
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In view of Vaughan’s result, it is reasonable to conjecture that, for every sufficiently
large even integer N , the following Diophantine equation

N = p21 + p22 + p33 + p34 + p45 + p46 (1.1)

is solvable. Here and below the letter p, with or without subscript, always stands for
a prime number. However, many authors approach this conjecture in different ways.
For instance, in 2015, Lü [4] proved that for every sufficiently large even integer N ,
the following equation

N = x2 + p22 + p33 + p34 + p45 + p46 (1.2)

is solvable with x being an almost-prime P6 and the p j ( j = 2, 3, 4, 5, 6) primes,
where Pr denotes an almost-prime with at most r prime factors, counted according to
multiplicity. Afterwards, Liu [3] enhanced the result of Lü [4] and showed that (1.2) is
solvable with x being an almost-prime P4 and the p j ’s primes. On the other hand, in
2019, Lü [5] proved that every sufficiently large even integer N can be represented as
two squares of primes, two cubes of primes, two biquadrates of primes and 24 powers
of 2, i.e.

N = p21 + p22 + p33 + p34 + p45 + p46 + 2v1 + 2v2 + · · · + 2v24 .

In 2018, Zhang and Li [11] establish the exceptional set of the problem (1.1). They
proved that E(N ) � N 13/16+ε, where E(N ) denotes the number of positive even
integers n up to N , which cannot be represented as p21 + p22 + p33 + p34 + p45 + p46.

In this paper, we shall continue to consider the exceptional set of the problem (1.1)
and improve the previous result.

Theorem 1.1 Let E(N ) denote the number of positive even integers n up to N, which
cannot be represented as

n = p21 + p22 + p33 + p34 + p45 + p46. (1.3)
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Then, for any ε > 0, we have

E(N ) � N
7
18+ε.

We will establish Theorem 1.1 by using a pruning process into the Hardy–
Littlewood circle method. In the treatment of the integrals over minor arcs, we will
employ the methods, which is developed by Wooley in [10], combining with the new
estimates for exponential sum over cubes of primes developed by Zhao [12]. For the
treatment of the integrals on the major arcs, we shall prune the major arcs further
and deal with them, respectively. The full details will be explained in the following
relevant sections.

Notation Throughout this paper, ε always denotes a sufficiently small positive con-
stant, which may not be the same at different occurrences. As usual, we use ϕ(n) to
denote the Euler’s function. e(x) = e2π i x ; f (x) � g(x)means that f (x) = O(g(x));
f (x) � g(x) means that f (x) � g(x) � f (x). N is a sufficiently large integer and
n ∈ (N/2, N ], and thus log N � log n. The letter c, with or without subscripts or
superscripts, always denote a positive constant, which may not be the same at differ-
ent occurrences.

2 Outline of the proof of Theorem 1.1

Let N be a sufficiently large positive integer. By a splitting argument, it is sufficient to
consider the even integers n ∈ (N/2, N ]. For the application of the Hardy–Littlewood
method, we need to define the Farey dissection. For this object, we set

A = 100100, Q0 = logA N , Q1 = N
1
6 , Q2 = N

5
6 , I0 =

[
− 1

Q2
, 1 − 1

Q2

]
.

By Dirichlet’s lemma on rational approximation (for instance, see Lemma 12 on p.
104 of Pan and Pan [6]), each α ∈ [−1/Q2, 1 − 1/Q2] can be written as the form
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q
+ λ, |λ| ≤ 1

qQ2
(2.1)

for some integers a, q with 1 ≤ a ≤ q ≤ Q2 and (a, q) = 1. Define
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Then we obtain the Farey dissection

I0 = M0 ∪ m1 ∪ m2. (2.2)

For k = 2, 3, 4, we define

fk(α) =
∑
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e(pkα),

where Xk = (N/16)
1
k . Let
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From (2.2), one has
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In order to prove Theorem 1.1, we need the two following propositions:
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where S(n) is the singular series defined by
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which is absolutely convergent and satisfies

0 < c∗ ≤ S(n) � 1 (2.4)

for any integer n satisfying n ≡ 0 (mod2) and some fixed constant c∗ > 0.
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Exceptional set for sums... 135

The proof of (2.3) in Proposition 2.1 follows from the well-known standard tech-
nique in the Hardy–Littlewood method. For more information, one can see pp. 90–99
of Hua [2], so we omit the details herein. For the property (2.4) of singular series, one
can see Section 5 of Zhang and Li [11].

Proposition 2.2 Let Z(N ) denote the number of integers n ∈ [N/2, N ] satisfying
n ≡ 0 (mod2) such that
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Then we have
Z(N ) � N

7
18+ε.

The proof of Proposition 2.2 will be given in Sect. 4. The remaining part of this
section is devoted to establishing Theorem 1.1 by using Propositions 2.1 and 2.2.

Proof of Theorem1.1. From Proposition 2.2, we deduce that, with at most O
(
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)

exceptions, all even integers n ∈ [N/2, N ] satisfy
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fromwhich and Proposition 2.1, we conclude that, with at most O
(
N

7
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)
exceptions,

all even integers n ∈ [N/2, N ] can be represented in the form p21 + p22 + p33 + p34 +
p45 + p46, where p1, p2, p3, p4, p5, p6 are prime numbers. By a splitting argument,
we get
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This completes the proof of Theorem 1.1. ��

3 Some auxiliary Lemmas

Lemma 3.1 Let 2 ≤ k1 ≤ k2 ≤ · · · ≤ ks be natural numbers such that
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Proof See Lemma 1 of Brüdern [1]. ��
Lemma 3.2 Suppose thatα is a real number, and that |α−a/q| ≤ q−2 with (a, q) = 1.
Let β = α − a/q. Then we have

fk(α) � dδk (q)(log x)c
(
X1/2
k

√
q(1 + N |β|) + X4/5

k + Xk√
q(1 + N |β|)

)
,

where δk = 1
2 + log k

log 2 and c is a constant.

Proof See Theorem 1.1 of Ren [7]. ��
Lemma 3.3 Suppose that α is a real number, and that there exist a ∈ Z and q ∈ N

with
(a, q) = 1, 1 ≤ q ≤ Q and |qα − a| ≤ Q−1.
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Proof See Lemma 8.5 of Zhao [12]. ��
Lemma 3.4 For α ∈ m1, we have

f3(α) � N
11
36+ε.

Proof ByDirichlet’s rational approximation (2.1), forα ∈ m1,we have Q1 ≤ q ≤ Q2.
From Lemma 3.3 we obtain
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3 + X1+ε
3 Q
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6
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This completes the proof of Lemma 3.4. ��
For 1 ≤ a ≤ q with (a, q) = 1, set
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For α ∈ m2, by Lemma 3.2, we have
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say. Then we obtain the following lemma.
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Lemma 3.5 We have

∫
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This completes the proof of Lemma 3.5. ��

4 Proof of Proposition 2.2

In this section, we shall give the proof of Proposition 2.2. We denote by Z j (N ) the
set of integers n satisfying n ∈ [N/2, N ] and n ≡ 0 (mod 2) for which the following
estimate ∣∣∣∣
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7
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holds. For convenience, we useZ j to denote the cardinality ofZ j (N ) for abbreviation.
Also, we define the complex number ξ j (n) by taking ξ j (n) = 0 for n /∈ Z j (N ), and
when n ∈ Z j (N ) by means of the equation
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where the exponential sum K j (α) is defined by

K j (α) =
∑

n∈Z j (N )

ξ j (n)e(−nα).

For j = 1, 2, set

I j =
∫
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From (4.1)–(4.3), we derive that
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By Lemma 2.1 of Wooley [10] with k = 2, we know that, for j = 1, 2, there holds
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It follows from Cauchy’s inequality, Lemmas 3.1, 3.4 and (4.5) that

I1 � sup
α∈m1

| f3(α)|2 ×
( ∫ 1

0
| f2(α) f 24 (α)|2dα

) 1
2
( ∫ 1

0
| f2(α)K1(α)|2dα

) 1
2

� (
N

11
36+ε

)2 · (
N 1+ε

) 1
2 ·

(
N ε

(Z1N
1
2 + Z2

1

)) 1
2

� N
10
9 +ε

(
Z

1
2
1 N

1
4 + Z1

)
� Z

1
2
1 N

49
36+ε + Z1N

10
9 +ε. (4.6)

Combining (4.4) and (4.6), we get
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7
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1
2
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which implies
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7
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Next, we give the upper bound for Z2. By (3.2), we obtain
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∫
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= I21 + I22, (4.8)
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say. For α ∈ m2, we have either Q100
0 < q < Q1 or Q100

0 < N |qα − a| < NQ−1
2 =

Q1. Therefore, by Lemma 3.2, we get

sup
α∈m2

∣∣ f4(α)
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1
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log40A N
. (4.9)

In view of the fact that m2 ⊆ I, where I is defined by (3.1), Cauchy’s inequality, the
trivial estimate K2(α) � Z2 and Theorem 4 of Hua (See [2, p. 19]), we obtain

I21 �Z2 · sup
α∈m2

| f4(α)|2 ×
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Moreover, it follows from Cauchy’s inequality, (4.5) and Lemma 3.1 that
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Combining (4.4), (4.8), (4.10) and (4.11), we deduce that

Z2N
7
6

log7 N
� I2 = I21 + I22 � Z2N

7
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+ Z

1
2
2 N
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which implies

Z2 � N
7
30+ε. (4.12)

From (4.7) and (4.12), we have

Z(N ) � Z1 + Z2 � N
7
18+ε.

This completes the proof of Proposition 2.2.
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