

The 2-Sylow subgroup of K_2O_F for certain quadratic number fields

Xia Wu¹

Received: 13 April 2019 / Accepted: 17 January 2020 / Published online: 17 July 2020 © Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract

In this paper, we apply Qin's theorem for the 4-rank of K_2O_F to establish the relation between the 4-rank of the ideal class group of $F = \mathbb{Q}(\sqrt{d})$ and the 4-rank of K_2O_F provided that all odd prime factors of *d* are congruent to 1 mod 8. As an application, we give a concise and unified proof of two conjectures proposed by Conner and Hurrelbrink (Acta Arith 73:59–65, 1995).

Keywords Tame kernel · Ideal class group · Quadratic number field

Mathematics Subject Classification $11R70 \cdot 19F15 \cdot 11R29 \cdot 11R11$

1 Introduction

Let *F* be a number field, O_F the ring of integers in *F*. Let K_2O_F denote the Milnor group of O_F , which coincides with the tame kernel of *F*. As a finite abelian group, K_2O_F contains rich arithmetical information. In particular, the Birch–Tate conjecture and the Lichtenbaum conjecture establish a relation between the order of K_2O_F and the value $\zeta_F^*(-1)$, where $\zeta_F(\cdot)$ is the Dedekind zeta-function of *F*. To understand K_2O_F , we need to know the p^n -rank of K_2O_F for any prime *p* and any positive integer *n*. If *F* contains a primitive p^n -th root of unity, the p^n -rank of K_2O_F formula is given by Tate [13], in particular, the 2-rank of K_2O_F formula is given for any number field. See also Keune [6].

When $F = \mathbb{Q}(\sqrt{d})$ is a quadratic field, Browkin and Schinzel [3] give an explicit formula for the 2-rank of $K_2 O_F$. Qin [9–11] obtains formulas for the 4-rank of $K_2 O_F$ and the 8-rank of $K_2 O_F$. See also [8,12]. In this paper, we apply Qin's theorem for

This work was supported by the National Natural Science Foundation of China (Grant No. 11971102).

[⊠] Xia Wu wuxia80@seu.edu.cn

¹ School of Mathematics, Southeast University, Nanjing 210096, China

the 4-rank of K_2O_F to establish a relation between the 4-rank of ideal class group and the 4-rank of K_2O_F provided that all odd prime factors of *d* are congruent to 1 mod 8. As an application, we give a concise and unified proof of two conjectures proposed by Conner and Hurrelbrink in [4]. Both conjectures are proved by Vazzana [14,15], but the proofs, which use graph theory, are somewhat involved.

2 Statement of main theorems

We first state main theorems of this paper. For any abelian group A, let $r_4(A)$ denote the 4-rank of A.

Theorem 2.1 Let $E = \mathbb{Q}(\sqrt{d})$, where $d = p_1 \dots p_k$ with $p_i \equiv 1 \pmod{8}$ and let C(E) be the class group of E. Assume that

- (i) the norm of the fundamental unit of E is -1, and
- (ii) an odd number of the primes p_1, \ldots, p_k fail to be represented over \mathbb{Z} by the quadratic form $x^2 + 32y^2$. Then

$$r_4(K_2O_E) = r_4(C(E)).$$

Theorem 2.2 Let $F = \mathbb{Q}(\sqrt{2d})$ and $E = \mathbb{Q}(\sqrt{d})$, where $d = p_1 \dots p_k$ with $p_i \equiv 1 \pmod{8}$ and let C(E) be the class group of E. Assume that

- (i) the norm of the fundamental unit of E is -1, and
- (ii) an odd number of the primes p_1, \ldots, p_k fail to be represented over \mathbb{Z} by the quadratic form $x^2 + 64y^2$. Then

$$r_4(K_2O_F) = r_4(C(E)).$$

Theorem 2.3 Let $F = \mathbb{Q}(\sqrt{2d})$, where $d = p_1 \dots p_k$ with $p_i \equiv 1 \pmod{8}$ and let C(F) be the class group of F. Assume that

- (i) the norm of the fundamental unit of F is -1, and
- (ii) an odd number of the primes p_1, \ldots, p_k fail to be represented over \mathbb{Z} by the quadratic form $x^2 + 64y^2$. Then

$$r_4(K_2O_F) = r_4(C(F)) - 1.$$

As corollaries of Theorems 2.1 and 2.2, we have the following two theorems.

Theorem 2.4 The 2-primary part of $K_2(\mathcal{O}_E)$ is elementary abelian if and only if

- (i) the 2-primary part of the ideal class group C(E) is elementary abelian and the norm of the fundamental unit of E is -1, and
- (ii) an odd number of the primes p_1, \ldots, p_k fail to be represented over \mathbb{Z} by the quadratic form $x^2 + 32y^2$.

464

Theorem 2.4 gives an explicit set of conditions under which the 2-primary part of $K_2(\mathcal{O}_E)$ is elementary abelian. A similar theorem for the field $F = \mathbb{Q}(\sqrt{2d})$ is as follows.

Theorem 2.5 *The* 2-*primary part of* $K_2(\mathcal{O}_F)$ *is elementary abelian if and only if*

- (i) the 2-primary part of the ideal class group C(E) is elementary abelian and the norm of the fundamental unit of E is -1, and
- (ii) an odd number of the primes p_1, \ldots, p_k fail to be represented over \mathbb{Z} by the quadratic form $x^2 + 64y^2$.

Both of these two theorems were conjectured by Conner and Hurrelbrink in [4]. Vazzana proved the two theorems in [14] and [15], respectively. In particular, his proof for Theorem 2.5 is complicated. He made use of a graph associated with the primes p_1, \ldots, p_k and studied its relationship to a new graph associated with the primes lying over p_1, \ldots, p_k in $\mathbb{Q}(\sqrt{-2})$. Our alternative proof is not only unified but also very concise.

3 Prelimilary results

In this section, we review some known results which are useful in this paper. The following result is classical. One can find a proof in [5].

Lemma 3.1 (Legendre's Theorem) Suppose that a, b, c are square-free,

$$(a, b) = (a, c) = (b, c) = 1$$

and a, b, c do not have the same sign. Then the Diophantine equation

$$aX^2 + bY^2 + cZ^2 = 0$$

has nontrivial solutions if and only if for every odd prime $p|abc, say, p|a, \left(\frac{-bc}{p}\right) = 1$.

We adopt the notation from [11]. Let $d \neq 0$ be an integer. Put

$$S(d) = \begin{cases} \{\pm 1, \pm 2\} \text{ if } d > 0, \\ \{1, 2\} \text{ if } d < 0. \end{cases}$$
(1)

For any abelian group A, set

$${}_{2}A = \{ x \in A | x^{2} = 1 \}.$$

For a number field *F*, we use *NF* for the set of norms from *F* over \mathbb{Q} .

Let *F* be a number field with r_2 complex places. By Tate [13], every element of order two in K_2F is of the form $\{-1, a\}$, where $a \in F^*$. Let Δ denote the Tate kernel

of *F*, i.e., the group of elements $x \in F^*$ such that $\{-1, x\} = 1$. If $\sqrt{2} \notin F$, then by [13],

$$(\Delta : (F^*)^2) = 2^{r_2 + 1}.$$

In particular, if $F \neq \mathbb{Q}(\sqrt{2})$ is a real quadratic field, then $\Delta = F^* \cup 2F^*$.

Theorem 3.2 (Browkin and Schinzel) Let $F = \mathbb{Q}(\sqrt{d}), d \in \mathbb{Z}$ square-free. Then $_2K_2(O_F)$ can be generated by

$$\{-1, m\}, m|d,$$

together with

$$\{-1, u_i + \sqrt{d}\},\$$

if $\{-1, \pm 2\} \cap NF \neq \emptyset$, where $u_i \in \mathbb{Z}$ is such that $u_i^2 - d = c_i w_i^2$ for some $w_i \in \mathbb{Z}$ and $c_i \in \{-1, \pm 2\} \cap NF$.

Remark The general $r_2(K_2O_F)$ formula for an arbitrary number field F is given by Tate [13].

For any integer *n*, put $\nabla^n = \{ \alpha \in K_2 O_F | \alpha = \beta^n \text{ for some } \beta \in K_2 O_F \}.$

Our main tool is the following theorem of Qin, which completely determines the 4-rank of K_2O_F for any quadratic field (see [9,10]).

Theorem 3.3 (Qin) Let $F = \mathbb{Q}(\sqrt{d})$, $d \in \mathbb{Z}$ square-free. Suppose that m|d (m > 0 if d > 0, ,but m also takes on negative values if d < 0) and write $d = u^2 - 2w^2$ with $u, w \in \mathbb{Z}$ if $2 \in NF$. Then $\{-1, m\} \in \nabla^2$ if and only if one can find an $\epsilon \in S(d)$ such that

- (i) $\left(\frac{d}{m}\right) = \left(\frac{\epsilon}{p}\right)$ for every odd prime p|m; (ii) $\left(\frac{m}{p}\right) = \left(\frac{\epsilon}{p}\right)$ for every odd prime
- (ii) $\left(\frac{m}{p}\right) = \left(\frac{\epsilon}{p}\right)$ for every odd prime $p|\frac{d}{m}$; and $\{-1, m(u + \sqrt{d})\} \in \nabla^2$ if and only if one can find an $\epsilon \in S(d)$ such that (iii) $\left(\frac{d}{m}{p}\right) = \left(\frac{\epsilon(u+w)}{p}\right)$ for every odd prime p|m;
- (iv) $\left(\frac{m}{p}\right) = \left(\frac{\epsilon(u+w)}{p}\right)$ for every odd prime $p|\frac{d}{m}$.

Corollary 3.4 Let $d = p_1 \dots p_k$ be a product of different primes congruent to 1 mod 8, and let $F = \mathbb{Q}(\sqrt{d})$ or $F = \mathbb{Q}(\sqrt{2d})$. If $m \mid d$, then $\{-1, m\} \in \nabla^2$ if and only if

$$Z^2 = mX^2 + \frac{d}{m}Y^2$$

is solvable in \mathbb{Z} ; $\{-1, m(u + \sqrt{d})\} \in \nabla^2$ if and only if

$$(u+w)Z^2 = mX^2 + \frac{d}{m}Y^2$$

is solvable in \mathbb{Z} .

🖉 Springer

Proof Since for every odd prime *p* dividing d, $\left(\frac{\pm 1}{p}\right) = \left(\frac{\pm 2}{p}\right) = 1$, the result follows from Theorem 3.3 and Lemma 3.1.

4 Proofs of main results

Lemma 4.1 Let $d = p_1 \dots p_k$ be a product of rational primes congruent to 1 mod 8. Assume that $d = u^2 - 2w^2$, v = u + w(u > 0). Then $v \equiv 3 \pmod{4}$ if and only if an odd number of the primes p_1, \dots, p_k fail to be represented over \mathbb{Z} by the quadratic form $x^2 + 32y^2$.

Proof First we assume that k = 1. There exist two integers u, w such that $p = u^2 - 2w^2$. Assume that u > 0 and write v = u + w. Since $u^2 - 2w^2 = (3u + 4w)^2 - 2(2u + 3w)^2$ and $p \equiv 1 \pmod{8}$, by a suitable choice of u, w, we can write $p = u^2 - 2(4w')^2$. Hence $v = u + 4w' \equiv u \pmod{4}$. By [1], we have that $v \equiv 1 \pmod{4}$ if and only if $p = x^2 + 32y^2$, equivalently, $v \equiv 3 \pmod{4}$ if and only if $p \neq x^2 + 32y^2$.

We consider now the general case. Assume that $d_1 = u_1^2 - 2w_1^2$, $d_2 = u_2^2 - 2w_2^2$ and $d_1d_2 = u^2 - 2w^2$. Then $d_1d_2 = (u_1u_2 + 2w_1w_2)^2 - 2(u_1w_2 + u_2w_1)^2$. If we assume further that $d_1 \equiv d_2 \equiv 1 \pmod{4}$, then both w_1 and w_2 are even. We have

$$(u_1u_2 + 2w_1w_2) + (u_1w_2 + u_2w_1) \equiv (u_1 + w_1)(u_2 + w_2) \pmod{4}, \qquad (2)$$

i.e., $v = u + w \equiv v_1 v_2 \pmod{4}$, where $v_1 = u_1 + w_1$, $v_2 = u_2 + w_2$. Now suppose that $p_1 \dots p_k = u^2 - 2w^2$, v = u + w(u > 0). For any $1 \le i \le k$, assume that $p_i = u_i^2 - 2w_i^2 (u_i > 0)$ and write $v_i = u_i + w_i$. By induction,

$$v \equiv v_1 \dots v_k \pmod{4}$$
.

Note that $v_i \equiv 1$ or 3 (mod 4) and $v_i \equiv 1$ (mod 4) if and only if $p_i = x^2 + 32y^2$. Therefore, $v \equiv 3 \pmod{4}$ if and only if an odd number of the primes p_1, \ldots, p_k fail to be represented over \mathbb{Z} by the quadratic form $x^2 + 32y^2$.

Lemma 4.2 Let p_1, \ldots, p_k be rational primes congruent to 1 mod 8. Let $d = p_1 \ldots p_k$ or $2p_1 \ldots p_k$, let $E = \mathbb{Q}(\sqrt{d})$, and let C(E) be the class group of E. Write ε for the fundamental unit of $E = \mathbb{Q}(\sqrt{d})$. Then

(i) Nε = 1 if and only if the following Diophantine equation is solvable for some m | d, m ≠ ±1 or ±d,

$$mX^2 - \frac{d}{m}Y^2 = \pm 1.$$
 (3)

(ii) if $N\varepsilon = -1$ then ${}_2C(E)$ can be generated by the ideals \wp_1, \ldots, \wp_k , where for any $i, \wp_i^2 = p_i$.

Proof

(i) We apply the result on the Tate kernel of real quadratic fields to show that the norm of the fundamental unit of $E = \mathbb{Q}(\sqrt{d})$ is 1 if and only if

$$mX^2 - \frac{d}{m}Y^2 = \pm 1$$

is solvable for some $m \mid d, m \neq \pm 1, \pm d$. In fact, since $\{-1, \varepsilon\} \in {}_{2}K_{2}(O_{E})$, by Theorem 3.2, there exists some $m \mid d, m \neq \pm 1, \pm d$ such that $\{-1, \varepsilon\} = \{-1, m\}$ or $\{-1, \varepsilon\} = \{-1, m(u + \sqrt{d})\}$. It is straightforward to see that

$$\varepsilon m(u + \sqrt{d}) \notin E^{*2} \cup 2E^{*2}$$

Clearly, we have $\varepsilon m \notin 2E^{*2}$. Hence, $\varepsilon m \in E^{*2}$. Therefore, $m^2 = \varepsilon m \overline{\varepsilon} m = (X^2 - dY^2)^2$ for some integers X, Y, so we obtain $\pm m = X^2 - dY^2$, i.e., (3) holds.

Conversely, if $\pm m = X^2 - dY^2$, $m \neq \pm 1, \pm d$, we put

$$\varepsilon = \frac{X + \sqrt{dY}}{X - \sqrt{dY}}$$

It is obvious that (m, Y) = 1. Hence, for any finite prime P of E, if $P \mid m$, then $v_P(X + \sqrt{dY}) = v_P(X - \sqrt{dY}) = 1$; if $P \nmid m$, then $v_P(X + \sqrt{dY}) = v_P(X - \sqrt{dY}) = 0$. Therefore, ε is an algebraic integer. Moreover, ε is not a square, since $\varepsilon(X - \sqrt{dY})^2 = X^2 - dY^2 = \pm m$, $m \neq \pm 1, \pm d$, is not a square.

(ii) By genus theory, the 2-rank of C(E) is k - 1 if $E = \mathbb{Q}(\sqrt{p_1 \dots p_k})$, and k if $E = \mathbb{Q}(\sqrt{2p_1 \dots p_k})$. For any $m \mid d$, the ideal (m, \sqrt{d}) satisfies that $(m, \sqrt{d})^2 = (m)$. Moreover, (m, \sqrt{d}) is principal in C(E) if and only if

$$\pm m = X^2 - dY^2 \tag{4}$$

is solvable over \mathbb{Z} .

But the assumption that $N\varepsilon = -1$ implies that for any $m \mid d, m \neq \pm 1, \pm d$, (4) has no integer solution. Therefore, the ideals \wp_1, \ldots, \wp_k generate ${}_2C(E)$.

Proof of Theorem 2.1 We apply Theorem 3.3 to compute $r_4(K_2O_E)$.

We first show that the assumption (ii) implies $\{-1, m(u + \sqrt{d})\} \notin \nabla^2$.

Recall that in our case, all prime factors are congruent to 1 mod 8. By Corollary 3.4 to theorem of Qin, the condition that $\{-1, m(u + \sqrt{d})\} \in \nabla^2$ is equivalent to the fact that there exists a positive factor *m* of *d*, so that

$$vmZ^2 = X^2 + dY^2 \tag{5}$$

is solvable in \mathbb{Z} . Since $d \equiv 1 \pmod{8}$, $m \mid d$, $X^2 + dY^2 \equiv 0, 1, 2 \pmod{4}$. Now the assumption (ii) and Lemma 4.1 imply that $v \equiv 3 \pmod{4}$. Hence, $vmZ^2 \equiv 0, 3 \pmod{4}$ and so (5) has no solution with (X, Y, Z) = 1.

Therefore, in $_2K_2O_E$ only $\{-1, m\}$ could belong to ∇^2 . By sending $\{-1, m\}$ to the ideal $\mathfrak{M}(\mathfrak{M}^2 = m)$, we obtain a bijection from the set $\{\{-1, m\}, m \mid d\} \subseteq _2K_2O_E$ to $_2C(E)$.

By [7], we see that \mathfrak{M} is a square in C(E) if and only if

$$mZ^2 = X^2 - dY^2 \tag{6}$$

is solvable in \mathbb{Z} . Furthermore, $\{-1, m\}$ is a square in $K_2 O_E$, i.e., $\{-1, m\} \in \nabla^2$ if and only if

$$mZ^2 = X^2 + dY^2 (7)$$

is solvable in \mathbb{Z} . As (6) and (7) have the same solvability,

$$r_4(K_2O_F) = r_4(C(F))$$

holds.

To prove Theorem 2.2, we need the following Lemma 4.5, which is an analog of Lemma 4.1. First we have

Lemma 4.3 Let $\alpha = 2^{\frac{1}{4}}$ and $L = \mathbb{Q}(\alpha)$. Then $\mathbb{Z}[\alpha]$ is the ring of algebraic integers of *L*. The class number of *L* is 1.

Proof This can be done by the GP calculator.

Lemma 4.4 Let $p \equiv 1 \pmod{8}$ be a prime. Assume that $p = u^2 - 2w^2$ with u > 0. Then $p = x^2 + 64y^2$ if and only if $u \equiv 1, 3 \pmod{8}$.

Proof We need the following result: Let $p \equiv 1 \pmod{8}$ be a prime. Then $\gamma^4 \equiv 2 \pmod{p}$ is solvable if and only if $p = x^2 + 64y^2$. See, for example, Theorem 7.5.2 in [2]. Hence, for a prime $p = x^2 + 64y^2$, $\gamma^4 \equiv 2 \pmod{p}$ has four distinct solutions. It follows that p splits completely in L. Hence, there are integers a, b, c, d such that

$$p = N_{L/\mathbb{Q}}(a + b\alpha + c\alpha^2 + d\alpha^3) = (a^2 + 2c^2 - 4bd)^2 - 2(b^2 + 2d^2 - 2ac)^2$$

Since $p \equiv 1 \pmod{8}$, we see that *a* is odd and $2 \mid b$. Hence we have $u = a^2 + 2c^2 - 4bd \equiv 1, 3 \pmod{8}$.

Conversely, if $p = u^2 - 2w^2$ with $|u| \equiv 1, 3 \pmod{8}$ and w even, then $p = x^2 + 64y^2$. In fact, we may write $u = t^2u'$, $w = 2^es^2w'$, where u', w' are square-free odd and positive integers. For any prime $l \mid w', (\frac{p}{l}) = 1$, hence, $w \equiv \alpha^2 \pmod{p}$ since 2 is a square (mod p). On the other hand, for any prime $l \mid u', (\frac{-2p}{l}) = 1$, hence, $|u| \equiv 1, 3 \pmod{8}$ implies that $u \equiv \alpha^2 \pmod{p}$. Therefore, $\gamma^4 \equiv 2 \pmod{p}$ is solvable and so $p = x^2 + 64y^2$.

Lemma 4.5 Let $d = 2p_1 \dots p_k$ with $p_1 \equiv \dots \equiv p_k \equiv 1 \pmod{8}$. Assume that $p_i = u_i^2 - 2w_i^2$, $v_i = u_i + w_i(u_i > 0)$. If we write $p_1 \dots p_k = u^2 - 2w^2$, and

🖄 Springer

 $2p_1 \dots p_k = U^2 - 2W^2$, U > 0, then $u \equiv u_1 \dots u_k \pmod{8}$ and $U + W \equiv u$ or $3u \pmod{8}$. Moreover, $U + W \equiv 5$, or $7 \pmod{8}$ if and only if an odd number of the primes p_1, \dots, p_k fail to be represented over \mathbb{Z} by the quadratic form $x^2 + 64y^2$.

Proof Assume that $a = u^2 - 2w^2$ and $b = \mu^2 - 2\omega^2$. Then we have

$$ab = (u\mu + 2w\omega)^2 - 2(u\omega + \mu w)^2.$$
 (8)

Note that if both $a, b \equiv 1 \pmod{8}$, it is easy to see w and ω are even, so $u\mu + 2w\omega \equiv u\mu \pmod{8}$. By induction, we have $u \equiv u_1 \dots u_k \pmod{8}$. Observe that

$$2a = (2u + 2w)^2 - 2(u + 2w)^2.$$
(9)

Since (2u + 2w) + (-u - 2w) = u and $(2u + 2w) + (u + 2w) = 3u + 4w \equiv 3u \pmod{8}$, $U + W \equiv u$ or $3u \pmod{8}$.

If k = 1 and $d = 2p_1 = U^2 - 2W^2$, by Lemma 4.4, $p_1 \neq x^2 + 64y^2$ if and only if $U + W \equiv 5, 7 \pmod{8}$. Observe that if $u_1 \equiv 1, 3 \pmod{8}, u_2 \equiv 1, 3 \pmod{8}$ or $u_1 \equiv 5, 7 \pmod{8}, u_2 \equiv 5, 7 \pmod{8}$, then $u_1u_2 \equiv 1, 3 \pmod{8}$, and if $u_1 \equiv 1, 3$ (mod 8), $u_2 \equiv 5, 7 \pmod{8}$, then $u_1u_2 \equiv 5, 7 \pmod{8}$. Therefore, by (8) and (9), if an odd number of the primes p_1, \ldots, p_k fail to be represented by $x^2 + 64y^2$, then $U + W \equiv 5, \text{ or } 7 \pmod{8}$, and vice versa.

Proof of Theorem 2.2 As in the proof of Theorem 2.1, we apply again Theorem 3.3 to compute $r_4(K_2O_F)$.

Write $2d = u^2 - 2w^2$, u > 0, v = u + w. We claim that for any $m \mid 2d$, $\{-1, m(u + \sqrt{2d})\} \notin \nabla^2$.

Indeed, by Theorem 3.3 and Lemma 3.1, if for some positive factor *m* of 2*d*, $\{-1, m(u + \sqrt{2d})\} \in \nabla^2$, then

$$vmZ^2 = X^2 + 2dY^2$$
(10)

is solvable in \mathbb{Z} . By Lemma 3.1, we can assume that *m* is odd. Since $2d \equiv 2 \pmod{8}$, one has $X^2 + 2dY^2 \equiv 1, 2, 3, 6 \pmod{8}$ if (X, Y) = 1. It follows from Lemma 4.5 that the assumption (ii) implies that $v \equiv 5, 7 \pmod{4}$. Hence, $vmZ^2 \equiv 0, 4, 5, 7 \pmod{8}$ and so (10) has no solution with (X, Y, Z) = 1.

Note that $\{-1, 2m\} = \{-1, m\}$. Therefore, the same discussion as in the proof of Theorem 2.1 shows that

$$r_4(K_2O_F) = r_4(C(E)).$$

Proof of Theorem 2.3 The assumption that the norm of the fundamental unit of *F* is -1 implies that there is an ideal \wp of *F*, which is non-principal with $\wp^2 = (2)$. But in $K_2 O_F$, $\{-1, 2\} = 1$. Then the proof is analogous to that of Theorem 2.2.

We turn to prove Theorems 2.4 and 2.5. Let $m \mid d$. We introduce the following notation.

$$V(m, p_1, \ldots, p_k) = (\epsilon_1, \ldots, \epsilon_k),$$

where

$$\epsilon_{i} = \begin{cases} \left(\frac{d}{m} \\ p_{i}\right) \text{ if } p_{i} \mid m, \\ \left(\frac{m}{p_{i}}\right) \text{ if } p_{i} \nmid m. \end{cases}$$
(11)

It is easy to check that $\sqcap_{i=1}^{k} \epsilon_i = 1$. Similarly, we put

$$V(m(u + \sqrt{d}), p_1, \dots, p_k) = (\epsilon_1, \dots, \epsilon_k),$$

where

$$\epsilon_{i} = \begin{cases} \left(\frac{\frac{vd}{m}}{p_{i}}\right) \text{ if } p_{i} \mid m, \\ \left(\frac{vm}{p_{i}}\right) \text{ if } p_{i} \nmid m. \end{cases}$$
(12)

By Theorem 3.3, $\{-1, m\} \in \nabla^2$ if and only if $V(m, p_1, ..., p_k) = (1, ..., 1)$. If $m, n \mid d$ and (m, n) = t, we write $V(mn, p_1, ..., p_k) = V(mn/t^2, p_1, ..., p_k)$. Moreover, if $V(m, p_1, ..., p_k) = (\epsilon_1, ..., \epsilon_k)$ and $V(n, p_1, ..., p_k) = (\delta_1, ..., \delta_k)$, then $V(mn, p_1, ..., p_k) = (\epsilon_1 \delta_1, ..., \epsilon_k \delta_k)$. Similarly, $V(m(u+\sqrt{d}), p_1, ..., p_k) = (\epsilon_1, ..., \epsilon_k)$, and $V(n, p_1, ..., p_k) = (\delta_1, ..., \delta_k)$, then $V(mn(u+\sqrt{d}), p_1, ..., p_k) = (\epsilon_1 \delta_1, ..., \epsilon_k \delta_k)$.

Proof of Theorem 2.4 If both (i) and (ii) are satisfied, then by Theorem 2.1, we have $r_4(K_2(\mathcal{O}_E)) = 0$, i.e., the 2-primary part of $K_2(\mathcal{O}_E)$ is elementary abelian.

Conversely, if the 2-primary part of $K_2(\mathcal{O}_E)$ is elementary abelian, then by Lemma 4.2, Lemma 3.1 and Theorem 3.3, we see that the norm of the fundamental unit of *E* is -1. We show that $\{-1, m(u + \sqrt{d})\} \notin \nabla^2$ implies condition (ii), which in turn shows that $v \equiv 3 \pmod{4}$ as we can see from Lemma 4.1.

Since $r_4(K_2O_E) = 0$, for any $m \mid d$,

$$mZ^2 = X^2 + dY^2$$

and equivalently,

$$mZ^2 = X^2 - dY^2$$

has no integer solutions. Hence, we have proved that $r_4(C(E)) = 0$.

Since $r_4(K_2O_E) = 0$, for any $m \mid d, m \neq \pm 1, \pm d, V(m, p_1, \dots, p_k) \neq (1, \dots, 1)$. By a suitable choice of integers m_i dividing d, we may assume that

 $\{-1, -1\}, \{-1, m_1\}, \dots, \{-1, m_{k-1}\}, \{-1, u + \sqrt{d}\}, \{-1, u_{-1} + \sqrt{d}\}$ generate ${}_{2}K_2O_E$, where $u_{-1}^2 - d = -w_{-1}^2$, and the $m'_{j}s$ are chosen in such a way that, for $1 \le i \le k - 1, \epsilon_k = \epsilon_i = -1$ and for $j \ne i, k, \epsilon_j = 1$.

Suppose that $v \equiv 1 \pmod{4}$. We have $(u + w)(u - w) - w^2 = d$ since $u^2 - 2w^2 = d$, hence $\left(\frac{-d}{v}\right) = 1$ and so $\left(\frac{v}{d}\right) = 1$. On the other hand, if $m \mid d$ with $m \equiv 1 \pmod{8}$, then $\left(\frac{d}{m}\right)\left(\frac{m}{d}\right) = 1$. For any odd and positive $m \mid d$, assuming that $V(m(u + \sqrt{d}), p_1, \dots, p_k) = (\epsilon_1, \dots, \epsilon_k)$, we have $\prod_{i=1}^k \epsilon_i = \left(\frac{vd}{m}\right)\left(\frac{vm}{d}\right) = \left(\frac{v}{d}\right)\left(\frac{d}{m}\right)\left(\frac{m}{d}\right) = \left(\frac{v}{d}\right) = 1$. Therefore, there exists $n \mid d$ such that $V(n(u + \sqrt{d}), p_1, \dots, p_k) = (1, \dots, 1)$. This contradicts the assumption that $r_4(K_2O_E) = 0$. Hence, $v \equiv 3 \pmod{4}$, and so we have (ii).

Proof of Theorem 2.5 The proof is analogous to that of Theorem 2.4.

Applying Theorem 2.2, we see that (i) and (ii) imply that $r_4(K_2(\mathcal{O}_F)) = 0$.

Conversely, the assumption that $r_4(K_2(\mathcal{O}_F)) = 0$ implies that $r_4(C(E)) = 0$ and the norm of the fundamental unit of *E* is -1, i.e., (i) holds. To prove (ii), by Lemma 4.5, it is sufficient for us to show that $V = U + W \equiv 5$, 7 (mod 8).

Since $U^2 - 2W^2 = 2d$, $\left(\frac{-2d}{V}\right) = 1$. Hence, $\left(\frac{V}{d}\right) = 1$ if and only if $V \equiv 1, 3$ (mod 8). If $V \equiv 1, 3$ (mod 8), then for any odd and positive $m \mid d$, assuming that $V(m(U + \sqrt{d}), p_1, \dots, p_k) = (\epsilon_1, \dots, \epsilon_k)$, we have $\sqcap_{i=1}^k \epsilon_i = \left(\frac{V}{d}\right) = 1$. Therefore, one can find $n \mid d$ such that $V(n(U + \sqrt{d}), p_1, \dots, p_k) = (1, \dots, 1)$, i.e., $r_4(K_2(\mathcal{O}_F)) > 0$, a contradiction!

This completes the proof.

Acknowledgements The author would like to thank the referee for insightful and useful suggestions that improved the presentation of this paper.

References

- Barrucand, P., Cohn, H.: Note on primes of type x² + 32y², class number, and residuacity. J. Reine Angew. Math. 238, 67–70 (1969)
- 2. Berndt, B.C., Evans, R.J., Williams, K.S.: Gauss and Jacobi Sums. Wiley, New York (1998)
- 3. Browkin, J., Schinzel, A.: On Sylow 2-subgroups of $K_2\mathcal{O}_F$ for quadratic number fields *F*. J. Reine Angew. Math. **331**, 104–113 (1982)
- Conner, P.E., Hurrelbrink, J.: On elementary abelian 2-Sylow K₂ of rings of integers of certain quadratic number fields. Acta Arith. 73, 59–65 (1995)
- Ireland, K., Rosen, M.: A Classical Introduction To Modern number Theory. Graduate Texts in Mathematics, vol. 84. Springer, New York (1972)
- 6. Keune, F.: On the structure of K_2 of the ring of integers in a number field. K-theory **2**, 625–645 (1989)
- Kolster, M.: The 2-part of the narrow class group of a quadratic number field. Ann. Sci. Math. Que. 29, 73–96 (2005)
- 8. Qin, H.R.: 2-Sylow subgroup of $K_2\mathcal{O}_F$ for real quadratic fields F. Sci. China **37**, 1302–1313 (1994)
- Qin, H.R.: The 2-Sylow subgroups of the tame kernel of imaginary quadratic fields. Acta Arith. 69, 153–169 (1995)
- 10. Qin, H.R.: The 4-rank of $K_2(\mathcal{O})$ for real quadratic fields F. Acta Arith. 72, 323–333 (1995)
- Qin, H.R.: Tame kernels and Tate kernels of quadratic number fields. J. Reine Angew. Math. 530, 105–144 (2001)

- 12. Qin, H.R.: The structure of the tame kernels of quadratic number fields(I). Acta Arith. **113**, 203–240 (2004)
- 13. Tate, J.: Relations between K₂ and Galois Cohomology. Invent. Math. 36, 257–274 (1976)
- Vazzana, A.: On the 2-primary part of K₂ of rings of integers in certain quadratic number fields. Acta Arith. 80, 225–235 (1997)
- 15. Vazzana, A.: Elementary abelian 2-primary parts of $K_2\mathcal{O}$ and related graphs in certain quadratic number fields. Acta Arith. 81, 253–264 (1997)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.