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Abstract

In this paper, we apply Qin’s theorem for the 4-rank of K5 OF to establish the relation
between the 4-rank of the ideal class group of F = Q(\/c_i ) and the 4-rank of K> Of
provided that all odd prime factors of d are congruent to 1 mod 8. As an application,

we give a concise and unified proof of two conjectures proposed by Conner and
Hurrelbrink (Acta Arith 73:59-65, 1995).
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1 Introduction

Let F be a number field, OF the ring of integers in F. Let K, O denote the Milnor
group of OF, which coincides with the tame kernel of F. As a finite abelian group,
K> OF contains rich arithmetical information. In particular, the Birch—Tate conjecture
and the Lichtenbaum conjecture establish a relation between the order of K> Or and
the value g;ﬁ(—l), where ¢r(-) is the Dedekind zeta-function of F. To understand
K>OF, we need to know the p"-rank of K>Op for any prime p and any positive
integer n. If F' contains a primitive p”-th root of unity, the p”-rank of K, O formula
is given by Tate [13], in particular, the 2-rank of K, Of formula is given for any
number field. See also Keune [6].

When F = (@(\/3 ) is a quadratic field, Browkin and Schinzel [3] give an explicit
formula for the 2-rank of K7 Of. Qin [9-11] obtains formulas for the 4-rank of K» O
and the 8-rank of K> OF. See also [8,12]. In this paper, we apply Qin’s theorem for
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the 4-rank of K, OF to establish a relation between the 4-rank of ideal class group and
the 4-rank of K> O provided that all odd prime factors of d are congruent to 1 mod
8. As an application, we give a concise and unified proof of two conjectures proposed
by Conner and Hurrelbrink in [4]. Both conjectures are proved by Vazzana [14,15],
but the proofs, which use graph theory, are somewhat involved.

2 Statement of main theorems

We first state main theorems of this paper. For any abelian group A, let r4(A) denote
the 4-rank of A.

Theorem 2.1 Let E = Q(+/d), where d = pi ... px with p; = 1 (mod 8) and let
C(E) be the class group of E. Assume that

(1) the norm of the fundamental unit of E is —1, and
(i) an odd number of the primes pi, ..., px fail to be represented over Z by the
quadratic form x* + 32y>. Then

r4(K20g) = r4(C(E)).
Theorem 2.2 Let F = Q(+/2d) and E = Q(/d), where d = p; ... px with p; = 1

(mod 8) and let C(E) be the class group of E. Assume that

(1) the norm of the fundamental unit of E is —1, and
(ii) an odd number of the primes pi, ..., px fail to be represented over 7 by the
quadratic form x* + 64y>. Then

ra(K20F) = r4(C(E)).
Theorem 2.3 Let F = Q(v/2d), where d = py ... px with p; = 1 (mod 8) and let

C(F) be the class group of F. Assume that

(1) the norm of the fundamental unit of F is —1, and
(ii) an odd number of the primes pi, ..., px fail to be represented over 7 by the
quadratic form x* + 64y?. Then

r4(K20F) = rq(C(F)) — 1.

As corollaries of Theorems 2.1 and 2.2, we have the following two theorems.

Theorem 2.4 The 2-primary part of K2(OEg) is elementary abelian if and only if

(i) the 2-primary part of the ideal class group C(E) is elementary abelian and the
norm of the fundamental unit of E is —1, and

(ii) an odd number of the primes pi, ..., px fail to be represented over 7 by the
quadratic form x* + 32y2.

@ Springer



The 2-Sylow subgroup of K, Of for certain quadratic number fields 465

Theorem 2.4 gives an explicit set of conditions under which the 2-primary part of
K>(OF) is elementary abelian. A similar theorem for the field F = Q(+/2d) is as
follows.

Theorem 2.5 The 2-primary part of K2(OF) is elementary abelian if and only if

(i) the 2-primary part of the ideal class group C(E) is elementary abelian and the
norm of the fundamental unit of E is —1, and

(i) an odd number of the primes p1, ..., px fail to be represented over 7. by the
quadratic form x* + 64y?2.

Both of these two theorems were conjectured by Conner and Hurrelbrink in [4]. Vaz-
zana proved the two theorems in [14] and [15], respectively. In particular, his proof
for Theorem 2.5 is complicated. He made use of a graph associated with the primes

P1, - .., pr and studied its relationship to a new graph associated with the primes lying
over pi, ..., pr in Q(+/—2). Our alternative proof is not only unified but also very
concise.

3 Prelimilary results

In this section, we review some known results which are useful in this paper. The
following result is classical. One can find a proof in [5].

Lemma 3.1 (Legendre’s Theorem) Suppose that a, b, c are square-free,
(a, by=(a, c)=(b, ¢c)=1
and a, b, ¢ do not have the same sign. Then the Diophantine equation
aX? +bY? +c¢Z2> =0

has nontrivial solutions if and only if for every odd prime plabc, say, pla, (’Tb‘) =1.

We adopt the notation from [11]. Let d # O be an integer. Put

_[{£1, 42} if d > 0,
S(d)_{{l,Z} if d <O0. M

For any abelian group A, set
2A = {x € Alx? =1}

For a number field F, we use N F for the set of norms from F over Q.
Let F be a number field with r, complex places. By Tate [13], every element of
order two in K5 F' is of the form {—1, a}, where a € F*. Let A denote the Tate kernel
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of F, i.e., the group of elements x € F* such that {—1, x} = 1. If /2 ¢ F, then by
[13],

(A : (F%)%) =272t

In particular, if F # Q(+/2) is a real quadratic field, then A = F* U2F*.

Theorem 3.2 (Browkin and Schinzel) Let F = Q(v/d),d € 7 square-free. Then
2K>(OF) can be generated by

{_lv m}v mldv

together with

{_lvui +ﬁ}v
if{—1,£2} N NF # @, where u; € 7 is such that ul.2 —d = ciwizfor some w; € Z
andc; € {—1,£2} N NF.

Remark The general (K> OF) formula for an arbitrary number field F is given by
Tate [13].

For any integer n, put V"' = {o« € K»,Of|a = " for some € K2 OF}.

Our main tool is the following theorem of Qin, which completely determines the
4-rank of K, OF for any quadratic field (see [9,10]).

Theorem 3.3 (Qin) Let F = Q(v/d),d € Z square-free. Suppose that m|d (m >
0if d > 0,,but m also takes on negative values if d < 0) and write d = u* — 2w?
withu, w € Zif2 € NF. Then {—1, m} € V? ifand only if one can find an € € S(d)
such that

d
1) (%) = (%)for every odd prime p|m;
(i1) %) = (%) for every odd prime plﬁ;
{—1,m(u + \/3)} e V2 if and only if one can find an € € S(d) such that
(iii) (j) = (e(”’%w))for every odd prime p|m;

: — (utw) . d
@iv) (%) = (%)for every odd prime p|...
Corollary 3.4 Let d = pi ... px be a product of different primes congruent to 1 mod
8, and let F = Q(\/d) or F = Q(v2d). If m | d, then {—1, m} € VZ if and only if
d
7> =mX?* + —Y1?
m
is solvable in Z.; {—1, m(u + ~/d)} € V? if and only if
2 2 d 2
(u+w)Z-=mX*+ —Y
m

is solvable in 7.
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Proof Since for every odd prime p dividing d, (%) = (ﬁ> = 1, the result follows

from Theorem 3.3 and Lemma 3.1. |

4 Proofs of main results

Lemma4.1 Letd = p; ... px be a product of rational primes congruent to 1 mod 8.
Assume thatd = u* —2w?, v =u~+wu > 0). Thenv =3 (mod 4) if and only if an
odd number of the primes pi, ..., pi fail to be represented over 7 by the quadratic
form x* + 32y2.

Proof First we assume that k = 1. There exist two integers u, w such that p =
u? — 2w?. Assume that u > 0 and write v = u + w. Since u? — 2w? = Gu +
4w)? —22u +3w)? and p = 1 (mod 8), by a suitable choice of u, w, we can write
p = u®> —2(4w’)?. Hence v = u + 4w’ = u (mod 4). By [1], we have that v = 1
(mod 4) if and only if p = x? 4 32y?, equivalently, v = 3 (mod 4) if and only if
p # x* +32y%

We consider now the general case. Assume that d; = u% — Zw%, dr = u% — Zw%
and did> = u®> — 2w?. Then di1d> = (uiuz + 2wiwr)? — 2(uiwar + urwi)?. If we
assume further that d; = d, = 1 (mod 4), then both w; and w, are even. We have

(wiup +2wiwz) + (uwa + uowy) = (u1 +wi)(uz +wz) (mod 4),  (2)
ie,v=u+w=vivy (mod 4), where vi = uj + wi, v2 = uz + wy. Now suppose
that py...pr = u? — 2w2, v =u+ w(u > 0). Forany 1 < i < k, assume that
pi = ”12 — 2wl.2 (u; > 0) and write v; = u; + w;. By induction,

v=v;...vr (mod 4).

Note that v; = 1 or 3 (mod 4) and v; = 1 (mod 4) if and only if p; = x% + 32y2.

Therefore, v = 3 (mod 4) if and only if an odd number of the primes p1, ..., px fail
to be represented over Z by the quadratic form x? 4 32y?. O
Lemma4.2 Let p1, ..., pi be rational primes congruentto 1 mod 8. Letd = p1 ... pi

or2p1...pu let E = Q(/d), and let C(E) be the class group of E. Write € for the
fundamental unit of E = Q(~/d). Then

(i) Ne = 1 if and only if the following Diophantine equation is solvable for some
m|d, m+#=+xlor&d,

d
mX? — =y? = +1. (3)
m

(ii) if Ne = —1thenC(E) can be generated by the ideals 1, . . ., 9k, where for any
)
L, & = Di-
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Proof

®

(ii)

We apply the result on the Tate kernel of real quadratic fields to show that the norm
of the fundamental unit of E = Q(+/d) is 1 if and only if

d
mX?* — Zy? =41
m

is solvable for some m | d, m # %1, d. In fact, since {—1, ¢} € 2K2(OE), by
Theorem 3.2, there exists some m | d, m # %1, £d such that {—1, ¢} = {—1, m}
or {—1, e} = {—1, m(u 4+ +/d)}. It is straightforward to see that

em@u +vd) ¢ EX> U2E*2,

Clearly, we have em ¢ 2E*2. Hence, em € E*2. Therefore, m?> = emém =

(X? — dY?)? for some integers X, Y, so we obtain £m = X? — dY?, ie., (3)
holds.
Conversely, if m = X2 —dy% m # +1, £d, we put

X ++/dY
E= —m.
X —J/dY

It is obvious that (m, Y) = 1. Hence, for any finite prime P of E, if P | m,
then vp(X 4+ VdY) = vp(X — /dY) = 1;if P { m, then vp(X + +/dY) =
vp(X — Jd Y) = 0. Therefore, ¢ is an algebraic integer. Moreover, € is not a
square, since (X — \/d_Y)2 =X2_dY?=4m, m # £1, £d, is not a square.
By genus theory, the 2-rank of C(E)isk — 1if E = Q(/p1... pr), andkif E =
Q(2p1 ... pr). Forany m | d, the ideal (m, v/d) satisfies that (m, v/d)*> = (m).
Moreover, (m, /d) is principal in C(E) if and only if

+m=X*>—dy? 4)

is solvable over Z.
But the assumption that Ne = —1 implies that for any m | d, m # £1, +d, (4)
has no integer solution. Therefore, the ideals gy, ..., g generate ,C(E).

m}

Proof of Theorem 2.1 We apply Theorem 3.3 to compute r4 (K2 Of).

We first show that the assumption (ii) implies {—1, m(u + Jd)} ¢ V2.
Recall that in our case, all prime factors are congruent to 1 mod 8. By Corollary

3.4 to theorem of Qin, the condition that {—1, m(u + +/d} € V? is equivalent to the
fact that there exists a positive factor m of d, so that

vmZ? = X* +dY? (5)

is solvable in Z. Since d = 1 (mod 8),m | d, X> +dY? = 0, 1,2 (mod 4). Now
the assumption (ii) and Lemma 4.1 imply that v = 3 (mod 4). Hence, vmZ? = 0, 3
(mod 4) and so (5) has no solution with (X, Y, Z) = 1.
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Therefore, in K> O only {—1, m} could belong to V2. By sending {—1, m} to the
ideal (I = m), we obtain a bijection from the set {{—1,m}, m | d} € 2K>OF to
2C(E).

By [7], we see that 971 is a square in C (E) if and only if

mZ?* = X? —dy? (6)

is solvable in Z. Furthermore, {—1, m} is a square in K, O, i.e., {—1,m} € V2 if and
only if

mZz* = X* +dy? (7
is solvable in Z. As (6) and (7) have the same solvability,
r4(K20F) = r4(C(F))

holds. O

To prove Theorem 2.2, we need the following Lemma 4.5, which is an analog of
Lemma 4.1. First we have

Lemma4.3 Lera =27 and L = Q(). Then Z[«a] is the ring of algebraic integers of
L. The class number of L is 1.

Proof This can be done by the GP calculator. O

Lemma4.4 Let p = 1 (mod 8) be a prime. Assume that p = u”> — 2w? with u > 0.
Then p = x* + 64y% if and only ifu = 1,3 (mod 8).

Proof We need the following result: Let p = 1 (mod 8) be a prime. Then y* =

(mod p) is solvable if and only if p = x? + 64y?. See, for example, Theorem 7.5.2 in
[2]. Hence, for a prime p = x* + 64y2, y* =2 (mod p) has four distinct solutions.
It follows that p splits completely in L. Hence, there are integers a, b, ¢, d such that

p = Npjgla +ba + ca® + da®) = (a* + 2¢* — 4bd)* — 2(b* + 2d* — 2ac)*.

Since p = 1 (mod 8), we see that a is odd and 2 | b. Hence we have u = a® +2¢% —
4bd = 1,3 (mod 8).

Conversely, if p = u? — 2w? with lul = 1,3 (mod 8) and w even, then p =
x2 + 64y2. In fact, we may write u = t2u’, w = 2°s%w’, where u’, w’ are square-free
odd and positive integers. For any prime [ | w’, (?) = 1, hence, w = a? (mod p)
since2isasquare (mod p).On the other hand, for any prime! | u’ ,(_72”) = 1, hence,
lu] = 1,3 (mod 8) implies that u = o? (mod p). Therefore, y* = 2 (mod p) is
solvable and so p = x2 + 64y2. O

Lemmad4.5 Letd = 2p;...pr with p1 = --- = pr = 1 (mod 8). Assume that
pi = ul2 — 2wi2, vi = uj +wi(u; > 0). If we write p1...px = u? — 2w?, and
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2p1...pk = U?2—2W2, U >0, thenu=uj ...ux (mod 8) and U + W = u or 3u
(mod 8). Moreover, U + W =5, or 7 (mod 8) if and only if an odd number of the
primes p1, ..., px fail to be represented over 7. by the quadratic form x> + 64y?.

Proof Assume that a = u? — 2w? and b = u? — 2w?. Then we have
ab = (up + 2ww)? — 2(uw + pw)?. ®)

Note thatif botha, b = 1 (mod 8), itis easy to see w and w are even, SO up +2ww =
up (mod 8). By induction, we have u = u; ...u; (mod 8). Observe that

2a = Qu 4 2w)? = 2(u + 2w)>. 9)

Since Qu + 2w) + (—u — 2w) = u and Qu + 2w) + (u + 2w) = 3u + 4w = 3u
(mod 8), U + W = u or 3u (mod 8).

Ifk=1andd = 2p; = U?> —2W?, by Lemma 4.4, p; # x? + 64y? if and only
ifU+W =5,7 (mod 8). Observe thatifu; = 1,3 (mod 8), u» = 1,3 (mod 8) or
uy =5,7 (mod 8),upr =5,7 (mod 8), then ujur = 1,3 (mod 8),andifu; =1,3
(mod 8),u> = 5,7 (mod 8), then ujuy = 5,7 (mod 8). Therefore, by (8) and (9),
if an odd number of the primes p1, ..., px fail to be represented by x? + 64y?, then
U+ W =5,o0r7 (mod 8), and vice versa. O

Proof of Theorem 2.2 As in the proof of Theorem 2.1, we apply again Theorem 3.3 to
compute r4(K2OF).

Write 2d = u? — 2w?, u > 0, v = u + w. We claim that for any m | 2d,
(=1, m(u + v2d)} ¢ V2.

Indeed, by Theorem 3.3 and Lemma 3.1, if for some positive factor m of 2d,
(=1, m@u + +/2d)} € V2, then

vmZ* = X% +2dY? (10)

is solvable in Z. By Lemma 3.1, we can assume that m is odd. Since 2d = 2 (mod 8),
one has X2 4+ 2dY? = 1,2, 3,6 (mod 8) if (X, Y) = 1. It follows from Lemma 4.5
that the assumption (ii) implies that v = 5,7 (mod 4). Hence, wvmZ? = 0,4,5,7
(mod 8) and so (10) has no solution with (X, Y, Z) = 1.

Note that {—1, 2m} = {—1, m}. Therefore, the same discussion as in the proof of
Theorem 2.1 shows that

r4(K20F) = r4(C(E)).
O
Proof of Theorem 2.3 The assumption that the norm of the fundamental unit of F is

—1 implies that there is an ideal p of F, which is non-principal with g = (2). But
in K> Op, {—1, 2} = 1. Then the proof is analogous to that of Theorem 2.2. O
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We turn to prove Theorems 2.4 and 2.5. Let m | d. We introduce the following
notation.

V(m9p]7'-'5pk)=(617~"a€k)7
where
(#)
o) if p; | m,
a=4\") " (1
(%) if p; tm.

It is easy to check that I‘Ilee,- = 1. Similarly, we put

V(im@ +~d), pr, ..., pr) = (€1, ..., €,

where

vd
(ﬁ) if pi | m,
€ = 1 (12)
(l;—’l”) if pi 1 m.

By Theorem 3.3, {—1,m} € V2 if and only if V(m, p1,...,pr) = (1,...,1).
If m,n | dand (m,n) = t, we write V(mn, p1,..., pr) = V(mn/tz, Pls s Pk)-
Moreover, if V(m, p1, ..., pr) = (€1,...,€)and V(n, p1,..., pr) = (51, ..., 8k),
then V(mn, pi, ..., pr) = (€181, ..., xdx). Similarly, V (m(u+~/d), pi. ..., pr) =
(€1, ...,e),and V(n, pi,.... pr) = 51, ..., 8), then V(mn(u+~/d), p1, ..., px) =
(€161, ..., €xdy).

Proof of Theorem 2.4 If both (i) and (ii) are satisfied, then by Theorem 2.1, we have
r4(K2(Og)) = 0, i.e., the 2-primary part of K»(OF) is elementary abelian.
Conversely, if the 2-primary part of K2(OF) is elementary abelian, then by Lemma
4.2, Lemma 3.1 and Theorem 3.3, we see that the norm of the fundamental unit of
E is —1. We show that {—1, m(u + v/d)} ¢ V2 implies condition (ii), which in turn
shows that v = 3 (mod 4) as we can see from Lemma 4.1.
Since r4(K,Of) = 0, for any m | d,

mz* = X* +dy?
and equivalently,
mZ? = X* —dy*
has no integer solutions. Hence, we have proved that 74(C(E)) = 0.

Since r4(K2Ofp) = 0, forany m | d, m # =£1,%d, V(m,p1,...,pr) #
(1,...,1). By a suitable choice of integers m; dividing d, we may assume that
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(=1, =1}, {=1,m1}, ..., (=1, ma} {=1,u + d},{=1,u_y + /d} generate
2 K> Of, where uz_l —d = —w%l, and the m’/.s are chosen in such a way that, for
l<i<k—-1l,¢ =¢=—landforj #1i,k,¢e; =1

Suppose that v = 1 (mod 4). We have (¥ + w)(u — w) — w? = d since
u? — 2w? = d, hence (_Td) = 1 and so (5) = 1. On the other hand, if

d
m | d with m = 1 (mod 8), then (%) (%) = 1. For any odd and posi-

m

tive m | d, assuming that V(m(u + \/c_z’), Pls--.,Pr) = (€1,...,€k), we have

vd d
I‘Ii.‘:]e,- = (%) (%) = (5) (%) <%) = (5) = 1. Therefore, there exists n | d

such that V (n(u + ~/d), p1, ..., pr) = (1,...,1). This contradicts the assumption
that r4(K> O) = 0. Hence, v = 3 (mod 4), and so we have (ii). O

Proof of Theorem 2.5 The proof is analogous to that of Theorem 2.4.

Applying Theorem 2.2, we see that (i) and (ii) imply that r4(K2(OF)) = 0.

Conversely, the assumption that r4(K7(OF)) = 0 implies that r4(C(E)) = 0 and
the norm of the fundamental unit of E is —1, i.e., (i) holds. To prove (ii), by Lemma
4.5, it is sufficient for us to show that V. = U + W =5, 7 (mod 8).

Since U% — 2W? = 2d, (_Tzd) = 1. Hence, (%) = lifandonlyif V =1, 3
(mod 8). If V = 1, 3 (mod 8), then for any odd and positive m | d, assuming
that V(im((U + ﬁ),m,...,pk) = (e1,...,€), we have l‘li.‘:le,- = (%) = 1.
Therefore, one can find n | d such that V(n(U + «/3), Ply-->pe) = (1,..., 1),
i.e., r4(K>(OF)) > 0, a contradiction!

This completes the proof. O
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