

The 2-Sylow subg[r](http://crossmark.crossref.org/dialog/?doi=10.1007/s11139-020-00251-4&domain=pdf)oup of K_2O_F for certain quadratic number **fields**

Xia Wu[1](http://orcid.org/0000-0001-8640-6156)

Received: 13 April 2019 / Accepted: 17 January 2020 / Published online: 17 July 2020 © Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract

In this paper, we apply Qin's theorem for the 4-rank of K_2O_F to establish the relation between the 4-rank of the ideal class group of $F = \mathbb{Q}(\sqrt{d})$ and the 4-rank of K_2O_F provided that all odd prime factors of *d* are congruent to 1 mod 8. As an application, we give a concise and unified proof of two conjectures proposed by Conner and Hurrelbrink (Acta Arith 73:59–65, 1995).

Keywords Tame kernel · Ideal class group · Quadratic number field

Mathematics Subject Classification 11R70 · 19F15 · 11R29 · 11R11

1 Introduction

Let *F* be a number field, O_F the ring of integers in *F*. Let K_2O_F denote the Milnor group of O_F , which coincides with the tame kernel of *F*. As a finite abelian group, K_2O_F contains rich arithmetical information. In particular, the Birch–Tate conjecture and the Lichtenbaum conjecture establish a relation between the order of K_2O_F and the value $\zeta_F^*(-1)$, where $\zeta_F(\cdot)$ is the Dedekind zeta-function of *F*. To understand K_2O_F , we need to know the p^n -rank of K_2O_F for any prime p and any positive integer *n*. If *F* contains a primitive p^n -th root of unity, the p^n -rank of K_2O_F formula is given by Tate $[13]$ $[13]$, in particular, the 2-rank of K_2O_F formula is given for any number field. See also Keune [\[6](#page-9-0)].

When $F = \mathbb{Q}(\sqrt{d})$ is a quadratic field, Browkin and Schinzel [\[3\]](#page-9-1) give an explicit formula for the 2-rank of K_2O_F . Qin [\[9](#page-9-2)[–11\]](#page-9-3) obtains formulas for the 4-rank of K_2O_F and the 8-rank of K_2O_F . See also [\[8](#page-9-4)[,12](#page-10-1)]. In this paper, we apply Qin's theorem for

This work was supported by the National Natural Science Foundation of China (Grant No. 11971102).

 \boxtimes Xia Wu wuxia80@seu.edu.cn

¹ School of Mathematics, Southeast University, Nanjing 210096, China

the 4-rank of K_2O_F to establish a relation between the 4-rank of ideal class group and the 4-rank of K_2O_F provided that all odd prime factors of *d* are congruent to 1 mod 8. As an application, we give a concise and unified proof of two conjectures proposed by Conner and Hurrelbrink in [\[4](#page-9-5)]. Both conjectures are proved by Vazzana [\[14](#page-10-2)[,15](#page-10-3)], but the proofs, which use graph theory, are somewhat involved.

2 Statement of main theorems

We first state main theorems of this paper. For any abelian group A, let $r_4(A)$ denote the 4-rank of *A*.

Theorem 2.1 *Let* $E = \mathbb{Q}(\sqrt{d})$ *, where* $d = p_1 \dots p_k$ *with* $p_i \equiv 1 \pmod{8}$ *and let C*(*E*) *be the class group of E*. *Assume that*

- (i) *the norm of the fundamental unit of E is* -1 *, and*
- (ii) an odd number of the primes p_1, \ldots, p_k fail to be represented over $\mathbb Z$ by the *guadratic form* $x^2 + 32y^2$. *Then*

$$
r_4(K_2O_E)=r_4(C(E)).
$$

Theorem 2.2 *Let* $F = \mathbb{Q}(\sqrt{2d})$ *and* $E = \mathbb{Q}(\sqrt{d})$ *, where* $d = p_1 \dots p_k$ *with* $p_i \equiv 1$ (mod 8) *and let C*(*E*) *be the class group of E*. *Assume that*

- (i) *the norm of the fundamental unit of E is* −1, *and*
- (ii) an odd number of the primes p_1, \ldots, p_k fail to be represented over $\mathbb Z$ by the *guadratic form* $x^2 + 64y^2$. *Then*

$$
r_4(K_2O_F)=r_4(C(E)).
$$

Theorem 2.3 *Let* $F = \mathbb{Q}(\sqrt{2d})$ *, where* $d = p_1 \dots p_k$ *with* $p_i \equiv 1 \pmod{8}$ *and let C*(*F*) *be the class group of F*. *Assume that*

- (i) *the norm of the fundamental unit of F is* −1, *and*
- (ii) an odd number of the primes p_1, \ldots, p_k fail to be represented over $\mathbb Z$ by the *quadratic form* $x^2 + 64y^2$. *Then*

$$
r_4(K_2O_F) = r_4(C(F)) - 1.
$$

As corollaries of Theorems [2.1](#page-1-0) and [2.2,](#page-1-1) we have the following two theorems.

Theorem 2.4 *The* 2-primary part of $K_2(\mathcal{O}_E)$ is elementary abelian if and only if

- (i) *the* 2*-primary part of the ideal class group C*(*E*) *is elementary abelian and the norm of the fundamental unit of E is* −1, *and*
- (ii) an odd number of the primes p_1, \ldots, p_k fail to be represented over $\mathbb Z$ by the *guadratic form* $x^2 + 32y^2$.

Theorem [2.4](#page-1-2) gives an explicit set of conditions under which the 2-primary part of *K*₂(O_E) is elementary abelian. A similar theorem for the field $F = \mathbb{Q}(\sqrt{2d})$ is as follows.

Theorem 2.5 *The* 2-primary part of $K_2(\mathcal{O}_F)$ is elementary abelian if and only if

- (i) *the* 2*-primary part of the ideal class group C*(*E*) *is elementary abelian and the norm of the fundamental unit of E is* −1, *and*
- (ii) an odd number of the primes p_1, \ldots, p_k fail to be represented over $\mathbb Z$ by the *guadratic form* $x^2 + 64y^2$.

Both of these two theorems were conjectured by Conner and Hurrelbrink in [\[4\]](#page-9-5). Vazzana proved the two theorems in [\[14\]](#page-10-2) and [\[15\]](#page-10-3), respectively. In particular, his proof for Theorem [2.5](#page-2-0) is complicated. He made use of a graph associated with the primes p_1, \ldots, p_k and studied its relationship to a new graph associated with the primes lying over p_1, \ldots, p_k in $\mathbb{Q}(\sqrt{-2})$. Our alternative proof is not only unified but also very concise.

3 Prelimilary results

In this section, we review some known results which are useful in this paper. The following result is classical. One can find a proof in [\[5](#page-9-6)].

Lemma 3.1 (Legendre's Theorem) *Suppose that a*, *b*, *c are square-free,*

$$
(a, b) = (a, c) = (b, c) = 1
$$

and a, *b*, *c do not have the same sign. Then the Diophantine equation*

$$
aX^2 + bY^2 + cZ^2 = 0
$$

has nontrivial solutions if and only if for every odd prime p|abc, say, p|a, $\left(\frac{-bc}{p}\right)=1.$

We adopt the notation from [\[11\]](#page-9-3). Let $d \neq 0$ be an integer. Put

$$
S(d) = \begin{cases} \{\pm 1, \pm 2\} & \text{if } d > 0, \\ \{1, 2\} & \text{if } d < 0. \end{cases}
$$
 (1)

For any abelian group *A*, set

$$
{}_2A = \{ x \in A | x^2 = 1 \}.
$$

For a number field *F*, we use *N F* for the set of norms from *F* over Q.

Let *F* be a number field with r_2 complex places. By Tate [\[13](#page-10-0)], every element of order two in K_2F is of the form $\{-1, a\}$, where $a \in F^*$. Let ∆ denote the Tate kernel

of *F*, i.e., the group of elements $x \in F^*$ such that $\{-1, x\} = 1$. If $\sqrt{2} \notin F$, then by [\[13](#page-10-0)],

$$
(\Delta : (F^*)^2) = 2^{r_2+1}.
$$

In particular, if $F \neq \mathbb{Q}(\sqrt{2})$ is a real quadratic field, then $\Delta = F^* \cup 2F^*$.

Theorem 3.2 (Browkin and Schinzel) *Let* $F = \mathbb{Q}(\sqrt{d})$, $d \in \mathbb{Z}$ *square-free. Then* $2K_2(O_F)$ *can be generated by*

$$
\{-1, m\}, m|d,
$$

together with

$$
\{-1, u_i + \sqrt{d}\},\
$$

if $\{-1, \pm 2\}$ ∩ *N F* $\neq \emptyset$, *where* $u_i \in \mathbb{Z}$ *is such that* $u_i^2 - d = c_i w_i^2$ *for some* $w_i \in \mathbb{Z}$ *and* c_i ∈ {-1, ±2} ∩ *NF*.

Remark The general $r_2(K_2O_F)$ formula for an arbitrary number field *F* is given by Tate [\[13](#page-10-0)].

For any integer *n*, put $\nabla^n = {\alpha \in K_2O_F | \alpha = \beta^n}$ for some $\beta \in K_2O_F$.

Our main tool is the following theorem of Qin, which completely determines the 4-rank of K_2O_F for any quadratic field (see [\[9](#page-9-2)[,10](#page-9-7)]).

Theorem 3.3 (Qin) Let $F = \mathbb{Q}(\sqrt{d})$, $d \in \mathbb{Z}$ square-free. Suppose that $m|d \nvert (m >$ 0 *if* $d > 0$, *but m also takes on negative values if* $d < 0$ *and write* $d = u^2 - 2w^2$ *with* $u, w \in \mathbb{Z}$ *if* $2 \in NF$. *Then* $\{-1, m\} \in \nabla^2$ *if and only if one can find an* $\epsilon \in S(d)$ *such that*

- (i) $\left(\frac{\frac{d}{m}}{p}\right)$ \setminus $=\left(\frac{\epsilon}{p}\right)$ for every odd prime p|m; (ii) $\left(\frac{m}{p}\right)$ = $\left(\frac{\epsilon}{p}\right)$ for every odd prime $p\left|\frac{d}{n}\right|$
- $p\left|\frac{d}{m}\right|$; \overline{a} \overline (iii) $\left(\frac{\frac{d}{m}}{p}\right)$ \setminus $=\left(\frac{\epsilon(u+w)}{p}\right)$ for every odd prime p|m;
- $\lim_{p \to \infty} \left(\frac{m}{p} \right) = \left(\frac{\epsilon(u+w)}{p} \right)$ for every odd prime $p \mid \frac{d}{m}$.

Corollary 3.4 *Let* $d = p_1 \nldots p_k$ *be a product of different primes congruent to* 1 *mod* 8, and let $F = \mathbb{Q}(\sqrt{d})$ or $F = \mathbb{Q}(\sqrt{2d})$. If m | *d*, then $\{-1, m\} \in \nabla^2$ if and only if

$$
Z^2 = mX^2 + \frac{d}{m}Y^2
$$

is solvable in \mathbb{Z} *;* $\{-1, m(u + \sqrt{d})\} \in \nabla^2$ *if and only if*

$$
(u+w)Z^2 = mX^2 + \frac{d}{m}Y^2
$$

is solvable in Z.

 \mathcal{L} Springer

Proof Since for every odd prime *p* dividing *d*, $\left(\frac{\pm 1}{p}\right) = \left(\frac{\pm 2}{p}\right) = 1$, the result follows from Theorem [3.3](#page-3-0) and Lemma [3.1.](#page-2-1)

4 Proofs of main results

Lemma 4.1 *Let* $d = p_1 \nldots p_k$ *be a product of rational primes congruent to* 1 *mod* 8. *Assume that* $d = u^2 - 2w^2$ *,* $v = u + w(u > 0)$ *. Then* $v \equiv 3 \pmod{4}$ *if and only if an odd number of the primes* p_1, \ldots, p_k *fail to be represented over* $\mathbb Z$ *by the quadratic form* $x^2 + 32y^2$.

Proof First we assume that $k = 1$. There exist two integers *u*, *w* such that $p =$ $u^{2} - 2w^{2}$. Assume that $u > 0$ and write $v = u + w$. Since $u^{2} - 2w^{2} = (3u +$ $(4w)^2 - 2(2u + 3w)^2$ and $p \equiv 1 \pmod{8}$, by a suitable choice of *u*, *w*, we can write $p = u^2 - 2(4w')^2$. Hence $v = u + 4w' \equiv u \pmod{4}$. By [\[1\]](#page-9-8), we have that $v \equiv 1$ (mod 4) if and only if $p = x^2 + 32y^2$, equivalently, $v \equiv 3 \pmod{4}$ if and only if $p \neq x^2 + 32y^2$.

We consider now the general case. Assume that $d_1 = u_1^2 - 2w_1^2$, $d_2 = u_2^2 - 2w_2^2$ and $d_1d_2 = u^2 - 2w^2$. Then $d_1d_2 = (u_1u_2 + 2w_1w_2)^2 - 2(u_1w_2 + u_2w_1)^2$. If we assume further that $d_1 \equiv d_2 \equiv 1 \pmod{4}$, then both w_1 and w_2 are even. We have

$$
(u_1u_2 + 2w_1w_2) + (u_1w_2 + u_2w_1) \equiv (u_1 + w_1)(u_2 + w_2) \pmod{4},\qquad(2)
$$

i.e., $v = u + w \equiv v_1v_2 \pmod{4}$, where $v_1 = u_1 + w_1$, $v_2 = u_2 + w_2$. Now suppose that $p_1 \, \ldots \, p_k = u^2 - 2w^2, v = u + w(u > 0)$. For any $1 \le i \le k$, assume that $p_i = u_i^2 - 2w_i^2$ ($u_i > 0$) and write $v_i = u_i + w_i$. By induction,

$$
v \equiv v_1 \dots v_k \pmod{4}.
$$

Note that $v_i \equiv 1$ or 3 (mod 4) and $v_i \equiv 1 \pmod{4}$ if and only if $p_i = x^2 + 32y^2$. Therefore, $v \equiv 3 \pmod{4}$ if and only if an odd number of the primes p_1, \ldots, p_k fail to be represented over $\mathbb Z$ by the quadratic form $x^2 + 32y^2$. to be represented over \mathbb{Z} by the quadratic form $x^2 + 32y^2$.

Lemma 4.2 *Let* p_1, \ldots, p_k *be rational primes congruent to* 1 *mod* 8. *Let* $d = p_1 \ldots p_k$ α *or* $2p_1 \ldots p_k$, let $E = \mathbb{Q}(\sqrt{d})$, *and let* $C(E)$ *be the class group of E*. *Write s for the fundamental unit of* $E = \mathbb{Q}(\sqrt{d})$. Then

(i) $N\varepsilon = 1$ *if and only if the following Diophantine equation is solvable for some* $m \mid d, m \neq \pm 1 \text{ or } \pm d,$

$$
mX^2 - \frac{d}{m}Y^2 = \pm 1.
$$
 (3)

(ii) *if* $N\varepsilon = -1$ *then* ${}_{2}C(E)$ *can be generated by the ideals* \wp_{1}, \ldots, \wp_{k} *, where for any* $i, \, \wp_i^2 = p_i.$

Proof

(i) We apply the result on the Tate kernel of real quadratic fields to show that the norm of the fundamental unit of $E = \mathbb{Q}(\sqrt{d})$ is 1 if and only if

$$
mX^2 - \frac{d}{m}Y^2 = \pm 1
$$

is solvable for some $m \mid d$, $m \neq \pm 1, \pm d$. In fact, since $\{-1, \varepsilon\} \in {}_2K_2(O_F)$, by Theorem [3.2,](#page-3-1) there exists some $m \mid d, m \neq \pm 1, \pm d$ such that $\{-1, \varepsilon\} = \{-1, m\}$ or $\{-1, \varepsilon\} = \{-1, m(u + \sqrt{d})\}$. It is straightforward to see that

$$
\varepsilon m(u+\sqrt{d}) \notin E^{*2} \cup 2E^{*2}.
$$

Clearly, we have $\varepsilon m \notin 2E^{*2}$. Hence, $\varepsilon m \in E^{*2}$. Therefore, $m^2 = \varepsilon m \overline{\varepsilon} m =$ $(X^2 - dY^2)^2$ for some integers *X*, *Y*, so we obtain $\pm m = X^2 - dY^2$, i.e., [\(3\)](#page-4-0) holds.

Conversely, if $\pm m = X^2 - dY^2$, $m \neq \pm 1, \pm d$, we put

$$
\varepsilon = \frac{X + \sqrt{d}Y}{X - \sqrt{d}Y}.
$$

It is obvious that $(m, Y) = 1$. Hence, for any finite prime P of E, if P | m, then $v_P(X + \sqrt{d}Y) = v_P(X - \sqrt{d}Y) = 1$; if $P \nmid m$, then $v_P(X + \sqrt{d}Y) = 1$ $v_P(X - \sqrt{d}Y) = 0$. Therefore, ε is an algebraic integer. Moreover, ε is not a square, since $\varepsilon (X - \sqrt{d}Y)^2 = X^2 - dY^2 = \pm m$, $m \neq \pm 1, \pm d$, is not a square.

(ii) By genus theory, the 2-rank of $C(E)$ is $k - 1$ if $E = \mathbb{Q}(\sqrt{p_1 \dots p_k})$, and k if $E =$ $\mathbb{Q}(\sqrt{2p_1 \dots p_k})$. For any *m* | *d*, the ideal (m, \sqrt{d}) satisfies that $(m, \sqrt{d})^2 = (m)$. Moreover, (m, \sqrt{d}) is principal in $C(E)$ if and only if

$$
\pm m = X^2 - dY^2 \tag{4}
$$

is solvable over \mathbb{Z} .

But the assumption that $N\varepsilon = -1$ implies that for any $m \mid d, m \neq \pm 1, \pm d, (4)$ $m \mid d, m \neq \pm 1, \pm d, (4)$ has no integer solution. Therefore, the ideals \wp_1, \ldots, \wp_k generate $\gamma C(E)$.

 \Box

Proof of Theorem [2.1](#page-1-0) We apply Theorem [3.3](#page-3-0) to compute $r_4(K_2O_E)$.

We first show that the assumption (ii) implies $\{-1, m(u + \sqrt{d})\} \notin \nabla^2$.

Recall that in our case, all prime factors are congruent to 1 mod 8. By Corollary [3.4](#page-3-2) to theorem of Oin, the condition that $\{-1, m(u + \sqrt{d}\}\in \nabla^2$ is equivalent to the fact that there exists a positive factor *m* of *d*, so that

$$
vmZ^2 = X^2 + dY^2 \tag{5}
$$

is solvable in \mathbb{Z} . Since *d* ≡ 1 (mod 8), *m* | *d*, $X^2 + dY^2 \equiv 0, 1, 2 \pmod{4}$. Now the assumption (ii) and Lemma 4.1 imply that $v \equiv 3 \pmod{4}$. Hence, $v \equiv Z^2 \equiv 0, 3$ (mod 4) and so [\(5\)](#page-5-1) has no solution with $(X, Y, Z) = 1$.

Therefore, in $2K_2O_F$ only $\{-1, m\}$ could belong to ∇^2 . By sending $\{-1, m\}$ to the ideal $\mathfrak{M}(\mathfrak{M}^2 = m)$, we obtain a bijection from the set $\{-1, m\}$, $m | d \} \subseteq {}_2K_2O_F$ to $2^{\mathbb{C}}(E)$.

By [\[7](#page-9-9)], we see that \mathfrak{M} is a square in $C(E)$ if and only if

$$
mZ^2 = X^2 - dY^2 \tag{6}
$$

is solvable in Z. Furthermore, $\{-1, m\}$ is a square in K_2O_E , i.e., $\{-1, m\} \in \nabla^2$ if and only if

$$
mZ^2 = X^2 + dY^2\tag{7}
$$

is solvable in \mathbb{Z} . As [\(6\)](#page-6-0) and [\(7\)](#page-6-1) have the same solvability,

$$
r_4(K_2O_F)=r_4(C(F))
$$

 \Box holds.

To prove Theorem [2.2,](#page-1-1) we need the following Lemma [4.5,](#page-6-2) which is an analog of Lemma [4.1.](#page-4-1) First we have

Lemma 4.3 *Let* $\alpha = 2^{\frac{1}{4}}$ *and* $L = \mathbb{Q}(\alpha)$ *. Then* $\mathbb{Z}[\alpha]$ *is the ring of algebraic integers of L. The class number of L is* 1*.*

Proof This can be done by the GP calculator.

Lemma 4.4 *Let* $p \equiv 1 \pmod{8}$ *be a prime. Assume that* $p = u^2 - 2w^2$ *with* $u > 0$. *Then* $p = x^2 + 64y^2$ *if and only if* $u \equiv 1, 3 \pmod{8}$.

Proof We need the following result: Let $p \equiv 1 \pmod{8}$ be a prime. Then $\gamma^4 \equiv 2$ (mod *p*) is solvable if and only if $p = x^2 + 64y^2$. See, for example, Theorem 7.5.2 in [\[2](#page-9-10)]. Hence, for a prime $p = x^2 + 64y^2$, $\gamma^4 \equiv 2 \pmod{p}$ has four distinct solutions. It follows that p splits completely in L . Hence, there are integers a, b, c, d such that

$$
p = N_{L/\mathbb{Q}}(a + b\alpha + c\alpha^2 + d\alpha^3) = (a^2 + 2c^2 - 4bd)^2 - 2(b^2 + 2d^2 - 2ac)^2.
$$

Since $p \equiv 1 \pmod{8}$, we see that *a* is odd and 2 | *b*. Hence we have $u = a^2 + 2c^2$ − $4bd \equiv 1, 3 \pmod{8}$.

Conversely, if $p = u^2 - 2w^2$ with $|u| \equiv 1, 3 \pmod{8}$ and w even, then $p =$ $x^2 + 64y^2$. In fact, we may write $u = t^2u'$, $w = 2^e s^2w'$, where *u'*, *w'* are square-free odd and positive integers. For any prime $l \mid w'$, $(\frac{p}{l}) = 1$, hence, $w \equiv \alpha^2 \pmod{p}$ since 2 is a square (mod *p*). On the other hand, for any prime $l \mid u', \left(\frac{-2p}{l}\right) = 1$, hence, $|u| \equiv 1, 3 \pmod{8}$ implies that $u \equiv \alpha^2 \pmod{p}$. Therefore, $\gamma^4 \equiv 2 \pmod{p}$ is solvable and so $p = x^2 + 64y^2$.

Lemma 4.5 *Let* $d = 2p_1 \t ... p_k$ *with* $p_1 \equiv ... \equiv p_k \equiv 1 \pmod{8}$. *Assume that* $p_i = u_i^2 - 2w_i^2$, $v_i = u_i + w_i(u_i > 0)$. *If we write* $p_1 \ldots p_k = u^2 - 2w^2$, and

 \mathcal{D} Springer

$$
\overline{a}
$$

 $2p_1 \ldots p_k = U^2 - 2W^2$, $U > 0$, then $u \equiv u_1 \ldots u_k \pmod{8}$ and $U + W \equiv u$ or 3*u* (mod 8)*. Moreover,* $U + W \equiv 5$ *, or* 7 (mod 8) *if and only if an odd number of the primes* p_1, \ldots, p_k *fail to be represented over* \mathbb{Z} *by the quadratic form* $x^2 + 64y^2$.

Proof Assume that $a = u^2 - 2w^2$ and $b = u^2 - 2w^2$. Then we have

$$
ab = (u\mu + 2w\omega)^{2} - 2(u\omega + \mu w)^{2}.
$$
 (8)

Note that if both $a, b \equiv 1 \pmod{8}$, it is easy to see w and ω are even, so $u\mu + 2w\omega \equiv$ $u\mu$ (mod 8). By induction, we have $u \equiv u_1 \dots u_k$ (mod 8). Observe that

$$
2a = (2u + 2w)^2 - 2(u + 2w)^2.
$$
 (9)

Since $(2u + 2w) + (-u - 2w) = u$ and $(2u + 2w) + (u + 2w) = 3u + 4w \equiv 3u$ $(mod 8)$, $U + W \equiv u$ or $3u \pmod{8}$.

If $k = 1$ and $d = 2p_1 = U^2 - 2W^2$, by Lemma 4.4, $p_1 \neq x^2 + 64y^2$ if and only if *U* + *W* ≡ 5, 7 (mod 8). Observe that if u_1 ≡ 1, 3 (mod 8), u_2 ≡ 1, 3 (mod 8) or $u_1 \equiv 5, 7 \pmod{8}, u_2 \equiv 5, 7 \pmod{8}, \text{ then } u_1 u_2 \equiv 1, 3 \pmod{8}, \text{ and if } u_1 \equiv 1, 3$ (mod 8), $u_2 \equiv 5, 7 \pmod{8}$, then $u_1u_2 \equiv 5, 7 \pmod{8}$. Therefore, by [\(8\)](#page-7-0) and [\(9\)](#page-7-1), if an odd number of the primes p_1, \ldots, p_k fail to be represented by $x^2 + 64y^2$, then $U + W \equiv 5$, or 7 (mod 8), and vice versa.

Proof of Theorem [2.2](#page-1-1) As in the proof of Theorem [2.1,](#page-1-0) we apply again Theorem [3.3](#page-3-0) to compute $r_4(K_2O_F)$.

Write $2d = u^2 - 2w^2$, $u > 0$, $v = u + w$. We claim that for any $m \neq 2d$, $\{-1, m(u + \sqrt{2d})\} \notin \nabla^2$.

Indeed, by Theorem [3.3](#page-3-0) and Lemma [3.1,](#page-2-1) if for some positive factor *m* of 2*d*, $\{-1, m(u + \sqrt{2d})\} \in \nabla^2$, then

$$
vmZ^2 = X^2 + 2dY^2 \tag{10}
$$

is solvable in \mathbb{Z} . By Lemma [3.1,](#page-2-1) we can assume that *m* is odd. Since $2d \equiv 2 \pmod{8}$, one has $X^2 + 2dY^2 \equiv 1, 2, 3, 6 \pmod{8}$ if $(X, Y) = 1$. It follows from Lemma [4.5](#page-6-2) that the assumption (ii) implies that $v \equiv 5, 7 \pmod{4}$. Hence, $vmZ^2 \equiv 0, 4, 5, 7$ (mod 8) and so [\(10\)](#page-7-2) has no solution with $(X, Y, Z) = 1$.

Note that $\{-1, 2m\} = \{-1, m\}$. Therefore, the same discussion as in the proof of Theorem [2.1](#page-1-0) shows that

$$
r_4(K_2O_F)=r_4(C(E)).
$$

 \Box

Proof of Theorem [2.3](#page-1-3) The assumption that the norm of the fundamental unit of *F* is -1 implies that there is an ideal \wp of *F*, which is non-principal with $\wp^2 = (2)$. But in K_2O_F , {-1, 2} = 1. Then the proof is analogous to that of Theorem [2.2.](#page-1-1) □

We turn to prove Theorems [2.4](#page-1-2) and [2.5.](#page-2-0) Let $m \mid d$. We introduce the following notation.

$$
V(m, p_1, \ldots, p_k) = (\epsilon_1, \ldots, \epsilon_k),
$$

where

$$
\epsilon_i = \begin{cases} \left(\frac{\frac{d}{m}}{p_i}\right) \text{ if } p_i \mid m, \\ \left(\frac{m}{p_i}\right) \text{ if } p_i \nmid m. \end{cases} \tag{11}
$$

It is easy to check that $\bigcap_{i=1}^{k} \epsilon_i = 1$. Similarly, we put

$$
V(m(u+\sqrt{d}), p_1,\ldots, p_k)=(\epsilon_1,\ldots,\epsilon_k),
$$

where

$$
\epsilon_{i} = \begin{cases} \left(\frac{vd}{m}\right) & \text{if } p_{i} \mid m, \\ \left(\frac{vm}{p_{i}}\right) & \text{if } p_{i} \nmid m. \end{cases}
$$
 (12)

By Theorem [3.3,](#page-3-0) $\{-1, m\} \in \nabla^2$ if and only if $V(m, p_1, \ldots, p_k) = (1, \ldots, 1).$ If *m*, *n* | *d* and $(m, n) = t$, we write $V(mn, p_1, ..., p_k) = V(mn/t^2, p_1, ..., p_k)$. Moreover, if $V(m, p_1, \ldots, p_k) = (\epsilon_1, \ldots, \epsilon_k)$ and $V(n, p_1, \ldots, p_k) = (\delta_1, \ldots, \delta_k)$, then $V(mn, p_1, ..., p_k) = (\epsilon_1 \delta_1, ..., \epsilon_k \delta_k)$. Similarly, $V(m(u + \sqrt{d}), p_1, ..., p_k) =$ ($\epsilon_1, \ldots, \epsilon_k$), and $V(n, p_1, \ldots, p_k) = (\delta_1, \ldots, \delta_k)$, then $V(mn(u+\sqrt{d}), p_1, \ldots, p_k) = (\delta_1, \ldots, \delta_k)$ $(\epsilon_1\delta_1,\ldots,\epsilon_k\delta_k).$

Proof of Theorem [2.4](#page-1-2) If both (i) and (ii) are satisfied, then by Theorem [2.1,](#page-1-0) we have $r_4(K_2(\mathcal{O}_E)) = 0$, i.e., the 2-primary part of $K_2(\mathcal{O}_E)$ is elementary abelian.

Conversely, if the 2-primary part of $K_2(\mathcal{O}_E)$ is elementary abelian, then by Lemma [4.2,](#page-4-2) Lemma [3.1](#page-2-1) and Theorem [3.3,](#page-3-0) we see that the norm of the fundamental unit of *E* is −1. We show that $\{-1, m(u + \sqrt{d})\}\notin \nabla^2$ implies condition (ii), which in turn shows that $v \equiv 3 \pmod{4}$ as we can see from Lemma [4.1.](#page-4-1)

Since $r_4(K_2O_F) = 0$, for any $m \mid d$,

$$
mZ^2 = X^2 + dY^2
$$

and equivalently,

$$
mZ^2 = X^2 - dY^2
$$

has no integer solutions. Hence, we have proved that $r_4(C(E)) = 0$.

Since $r_4(K_2O_E) = 0$, for any $m \mid d, m \neq \pm 1, \pm d, V(m, p_1, ..., p_k) \neq 0$ $(1, \ldots, 1)$. By a suitable choice of integers m_i dividing d, we may assume that ${-1, -1}, {-1, m_1}, \ldots, {-1, m_{k-1}}, {-1, u + \sqrt{d}, {-1, u_{-1} + \sqrt{d}}$ generate $2K_2O_E$, where $u_{-1}^2 - d = -w_{-1}^2$, and the $m'_j s$ are chosen in such a way that, for $1 \leq i \leq k-1$, $\epsilon_k = \epsilon_i = -1$ and for $j \neq i, k, \epsilon_j = 1$.

Suppose that $v \equiv 1 \pmod{4}$. We have $(u + w)(u - w) - w^2 = d$ since $u^2 - 2w^2 = d$, hence $\left(\frac{-d}{v}\right) = 1$ and so $\left(\frac{v}{d}\right) = 1$. On the other hand, if *m* | *d* with $m \equiv 1 \pmod{8}$, then $\left(\frac{\frac{d}{m}}{m}\right)\left(\frac{m}{\frac{d}{m}}\right)$ $= 1.$ For any odd and positive *m* | *d*, assuming that $V(m(u + \sqrt{d}), p_1, \ldots, p_k) = (\epsilon_1, \ldots, \epsilon_k)$, we have $\Box_{i=1}^k \epsilon_i = \left(\frac{\frac{vd}{m}}{m}\right) \left(\frac{vm}{\frac{d}{m}}\right)$ $\left(\frac{v}{d}\right)\left(\frac{\frac{d}{m}}{m}\right)\left(\frac{m}{\frac{d}{m}}\right)$ $\left(\frac{v}{d}\right) = 1$. Therefore, there exists *n* | *d* such that $V(n(u + \sqrt{d}), p_1, \ldots, p_k) = (1, \ldots, 1)$. This contradicts the assumption that $r_4(K_2O_E) = 0$. Hence, $v \equiv 3 \pmod{4}$, and so we have (ii).

Proof of Theorem [2.5](#page-2-0) The proof is analogous to that of Theorem [2.4.](#page-1-2)

Applying Theorem [2.2,](#page-1-1) we see that (i) and (ii) imply that $r_4(K_2(\mathcal{O}_F)) = 0$.

Conversely, the assumption that $r_4(K_2(\mathcal{O}_F)) = 0$ implies that $r_4(C(E)) = 0$ and the norm of the fundamental unit of E is -1 , i.e., (i) holds. To prove (ii), by Lemma [4.5,](#page-6-2) it is sufficient for us to show that $V = U + W \equiv 5$, 7 (mod 8).

Since $U^2 - 2W^2 = 2d$, $\left(\frac{-2d}{V}\right) = 1$. Hence, $\left(\frac{V}{d}\right) = 1$ if and only if $V = 1, 3$ (mod 8). If $V \equiv 1$, 3 (mod 8), then for any odd and positive $m \mid d$, assuming that $V(m(U + \sqrt{d}), p_1, ..., p_k) = (\epsilon_1, ..., \epsilon_k)$, we have $\prod_{i=1}^k \epsilon_i = \left(\frac{V}{d}\right) = 1$. Therefore, one can find $n | d$ such that $V(n(U + \sqrt{d}), p_1, \ldots, p_k) = (1, \ldots, 1)$, i.e., $r_4(K_2(\mathcal{O}_F)) > 0$, a contradiction!

This completes the proof.

Acknowledgements The author would like to thank the referee for insightful and useful suggestions that improved the presentation of this paper.

References

- 1. Barrucand, P., Cohn, H.: Note on primes of type $x^2 + 32y^2$, class number, and residuacity. J. Reine Angew. Math. **238**, 67–70 (1969)
- 2. Berndt, B.C., Evans, R.J., Williams, K.S.: Gauss and Jacobi Sums. Wiley, New York (1998)
- 3. Browkin, J., Schinzel, A.: On Sylow 2-subgroups of $K_2\mathcal{O}_F$ for quadratic number fields *F*. J. Reine Angew. Math. **331**, 104–113 (1982)
- 4. Conner, P.E., Hurrelbrink, J.: On elementary abelian 2-Sylow *K*2 of rings of integers of certain quadratic number fields. Acta Arith. **73**, 59–65 (1995)
- 5. Ireland, K., Rosen, M.: A Classical Introduction To Modern number Theory. Graduate Texts in Mathematics, vol. 84. Springer, New York (1972)
- 6. Keune, F.: On the structure of K_2 of the ring of integers in a number field. K-theory 2, 625–645 (1989)
- 7. Kolster, M.: The 2-part of the narrow class group of a quadratic number field. Ann. Sci. Math. Que. **29**, 73–96 (2005)
- 8. Qin, H.R.: 2-Sylow subgroup of *K*2*O^F* for real quadratic fields *F*. Sci. China **37**, 1302–1313 (1994)
- 9. Qin, H.R.: The 2-Sylow subgroups of the tame kernel of imaginary quadratic fields. Acta Arith. **69**, 153–169 (1995)
- 10. Qin, H.R.: The 4-rank of *K*2(*O*) for real quadratic fields *F*. Acta Arith. **72**, 323–333 (1995)
- 11. Qin, H.R.: Tame kernels and Tate kernels of quadratic number fields. J. Reine Angew. Math. **530**, 105–144 (2001)
- 12. Qin, H.R.: The structure of the tame kernels of quadratic number fields(I). Acta Arith. **113**, 203–240 (2004)
- 13. Tate, J.: Relations between *K*2 and Galois Cohomology. Invent. Math. **36**, 257–274 (1976)
- 14. Vazzana, A.: On the 2-primary part of *K*2 of rings of integers in certain quadratic number fields. Acta Arith. **80**, 225–235 (1997)
- 15. Vazzana, A.: Elementary abelian 2-primary parts of *K*2*O* and related graphs in certain quadratic number fields. Acta Arith. **81**, 253–264 (1997)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.