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Abstract
In this paper, we apply Qin’s theorem for the 4-rank of K2OF to establish the relation
between the 4-rank of the ideal class group of F = Q(

√
d) and the 4-rank of K2OF

provided that all odd prime factors of d are congruent to 1 mod 8. As an application,
we give a concise and unified proof of two conjectures proposed by Conner and
Hurrelbrink (Acta Arith 73:59–65, 1995).
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1 Introduction

Let F be a number field, OF the ring of integers in F . Let K2OF denote the Milnor
group of OF , which coincides with the tame kernel of F . As a finite abelian group,
K2OF contains rich arithmetical information. In particular, the Birch–Tate conjecture
and the Lichtenbaum conjecture establish a relation between the order of K2OF and
the value ζ ∗

F (−1), where ζF (·) is the Dedekind zeta-function of F . To understand
K2OF , we need to know the pn-rank of K2OF for any prime p and any positive
integer n. If F contains a primitive pn-th root of unity, the pn-rank of K2OF formula
is given by Tate [13], in particular, the 2-rank of K2OF formula is given for any
number field. See also Keune [6].

When F = Q(
√
d) is a quadratic field, Browkin and Schinzel [3] give an explicit

formula for the 2-rank of K2OF . Qin [9–11] obtains formulas for the 4-rank of K2OF

and the 8-rank of K2OF . See also [8,12]. In this paper, we apply Qin’s theorem for
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the 4-rank of K2OF to establish a relation between the 4-rank of ideal class group and
the 4-rank of K2OF provided that all odd prime factors of d are congruent to 1 mod
8. As an application, we give a concise and unified proof of two conjectures proposed
by Conner and Hurrelbrink in [4]. Both conjectures are proved by Vazzana [14,15],
but the proofs, which use graph theory, are somewhat involved.

2 Statement of main theorems

We first state main theorems of this paper. For any abelian group A, let r4(A) denote
the 4-rank of A.

Theorem 2.1 Let E = Q(
√
d), where d = p1 . . . pk with pi ≡ 1 (mod 8) and let

C(E) be the class group of E . Assume that

(i) the norm of the fundamental unit of E is −1, and
(ii) an odd number of the primes p1, . . . , pk fail to be represented over Z by the

quadratic form x2 + 32y2. Then

r4(K2OE ) = r4(C(E)).

Theorem 2.2 Let F = Q(
√
2d) and E = Q(

√
d), where d = p1 . . . pk with pi ≡ 1

(mod 8) and let C(E) be the class group of E . Assume that

(i) the norm of the fundamental unit of E is −1, and
(ii) an odd number of the primes p1, . . . , pk fail to be represented over Z by the

quadratic form x2 + 64y2. Then

r4(K2OF ) = r4(C(E)).

Theorem 2.3 Let F = Q(
√
2d), where d = p1 . . . pk with pi ≡ 1 (mod 8) and let

C(F) be the class group of F . Assume that

(i) the norm of the fundamental unit of F is −1, and
(ii) an odd number of the primes p1, . . . , pk fail to be represented over Z by the

quadratic form x2 + 64y2. Then

r4(K2OF ) = r4(C(F)) − 1.

As corollaries of Theorems 2.1 and 2.2, we have the following two theorems.

Theorem 2.4 The 2-primary part of K2(OE ) is elementary abelian if and only if

(i) the 2-primary part of the ideal class group C(E) is elementary abelian and the
norm of the fundamental unit of E is −1, and

(ii) an odd number of the primes p1, . . . , pk fail to be represented over Z by the
quadratic form x2 + 32y2.
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The 2-Sylow subgroup of K2OF for certain quadratic number fields 465

Theorem 2.4 gives an explicit set of conditions under which the 2-primary part of
K2(OE ) is elementary abelian. A similar theorem for the field F = Q(

√
2d) is as

follows.

Theorem 2.5 The 2-primary part of K2(OF ) is elementary abelian if and only if

(i) the 2-primary part of the ideal class group C(E) is elementary abelian and the
norm of the fundamental unit of E is −1, and

(ii) an odd number of the primes p1, . . . , pk fail to be represented over Z by the
quadratic form x2 + 64y2.

Both of these two theorems were conjectured by Conner and Hurrelbrink in [4]. Vaz-
zana proved the two theorems in [14] and [15], respectively. In particular, his proof
for Theorem 2.5 is complicated. He made use of a graph associated with the primes
p1, . . . , pk and studied its relationship to a new graph associated with the primes lying
over p1, . . . , pk in Q(

√−2). Our alternative proof is not only unified but also very
concise.

3 Prelimilary results

In this section, we review some known results which are useful in this paper. The
following result is classical. One can find a proof in [5].

Lemma 3.1 (Legendre’s Theorem) Suppose that a, b, c are square-free,

(a, b) = (a, c) = (b, c) = 1

and a, b, c do not have the same sign. Then the Diophantine equation

aX2 + bY 2 + cZ2 = 0

has nontrivial solutions if and only if for every odd prime p|abc, say, p|a,
(−bc

p

)
= 1.

We adopt the notation from [11]. Let d �= 0 be an integer. Put

S(d) =
{ {±1,±2} if d > 0,

{1, 2} if d < 0.
(1)

For any abelian group A, set

2A = {x ∈ A|x2 = 1}.

For a number field F, we use NF for the set of norms from F over Q.

Let F be a number field with r2 complex places. By Tate [13], every element of
order two in K2F is of the form {−1, a}, where a ∈ F∗. Let � denote the Tate kernel
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466 X. Wu

of F , i.e., the group of elements x ∈ F∗ such that {−1, x} = 1. If
√
2 /∈ F , then by

[13],

(� : (F∗)2) = 2r2+1.

In particular, if F �= Q(
√
2) is a real quadratic field, then � = F∗ ∪ 2F∗.

Theorem 3.2 (Browkin and Schinzel) Let F = Q(
√
d), d ∈ Z square-free. Then

2K2(OF ) can be generated by

{−1,m}, m|d,

together with

{−1, ui + √
d},

if {−1,±2} ∩ NF �= ∅, where ui ∈ Z is such that u2i − d = ciw2
i for some wi ∈ Z

and ci ∈ {−1,±2} ∩ NF .

Remark The general r2(K2OF ) formula for an arbitrary number field F is given by
Tate [13].

For any integer n, put ∇n = {α ∈ K2OF |α = βn for some β ∈ K2OF }.
Our main tool is the following theorem of Qin, which completely determines the

4-rank of K2OF for any quadratic field (see [9,10]).

Theorem 3.3 (Qin) Let F = Q(
√
d), d ∈ Z square-free. Suppose that m|d (m >

0 i f d > 0, ,but m also takes on negative values if d < 0) and write d = u2 − 2w2

with u, w ∈ Z if 2 ∈ NF . Then {−1,m} ∈ ∇2 if and only if one can find an ε ∈ S(d)

such that

(i)

(
d
m
p

)
=

(
ε
p

)
for every odd prime p|m;

(ii)
(
m
p

)
=

(
ε
p

)
for every odd prime p| dm ;

and {−1,m(u + √
d)} ∈ ∇2 if and only if one can find an ε ∈ S(d) such that

(iii)

(
d
m
p

)
=

(
ε(u+w)

p

)
for every odd prime p|m;

(iv)
(
m
p

)
=

(
ε(u+w)

p

)
for every odd prime p| dm .

Corollary 3.4 Let d = p1 . . . pk be a product of different primes congruent to 1 mod
8, and let F = Q(

√
d) or F = Q(

√
2d). If m | d, then {−1,m} ∈ ∇2 if and only if

Z2 = mX2 + d

m
Y 2

is solvable in Z; {−1,m(u + √
d)} ∈ ∇2 if and only if

(u + w)Z2 = mX2 + d

m
Y 2

is solvable in Z.
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The 2-Sylow subgroup of K2OF for certain quadratic number fields 467

Proof Since for every odd prime p dividing d,
(±1

p

)
=

(±2
p

)
= 1, the result follows

from Theorem 3.3 and Lemma 3.1. ��

4 Proofs of main results

Lemma 4.1 Let d = p1 . . . pk be a product of rational primes congruent to 1 mod 8.
Assume that d = u2 −2w2, v = u+w(u > 0). Then v ≡ 3 (mod 4) if and only if an
odd number of the primes p1, . . . , pk fail to be represented over Z by the quadratic
form x2 + 32y2.

Proof First we assume that k = 1. There exist two integers u, w such that p =
u2 − 2w2. Assume that u > 0 and write v = u + w. Since u2 − 2w2 = (3u +
4w)2 − 2(2u + 3w)2 and p ≡ 1 (mod 8), by a suitable choice of u, w, we can write
p = u2 − 2(4w′)2. Hence v = u + 4w′ ≡ u (mod 4). By [1], we have that v ≡ 1
(mod 4) if and only if p = x2 + 32y2, equivalently, v ≡ 3 (mod 4) if and only if
p �= x2 + 32y2.

We consider now the general case. Assume that d1 = u21 − 2w2
1, d2 = u22 − 2w2

2
and d1d2 = u2 − 2w2. Then d1d2 = (u1u2 + 2w1w2)

2 − 2(u1w2 + u2w1)
2. If we

assume further that d1 ≡ d2 ≡ 1 (mod 4), then both w1 and w2 are even. We have

(u1u2 + 2w1w2) + (u1w2 + u2w1) ≡ (u1 + w1)(u2 + w2) (mod 4), (2)

i.e., v = u + w ≡ v1v2 (mod 4), where v1 = u1 + w1, v2 = u2 + w2. Now suppose
that p1 . . . pk = u2 − 2w2, v = u + w(u > 0). For any 1 ≤ i ≤ k, assume that
pi = u2i − 2w2

i (ui > 0) and write vi = ui + wi . By induction,

v ≡ v1 . . . vk (mod 4).

Note that vi ≡ 1 or 3 (mod 4) and vi ≡ 1 (mod 4) if and only if pi = x2 + 32y2.
Therefore, v ≡ 3 (mod 4) if and only if an odd number of the primes p1, . . . , pk fail
to be represented over Z by the quadratic form x2 + 32y2. ��
Lemma 4.2 Let p1, . . . , pk be rational primes congruent to 1mod 8.Let d = p1 . . . pk
or 2p1 . . . pk, let E = Q(

√
d), and let C(E) be the class group of E . Write ε for the

fundamental unit of E = Q(
√
d). Then

(i) Nε = 1 if and only if the following Diophantine equation is solvable for some
m | d, m �= ±1 or ±d,

mX2 − d

m
Y 2 = ±1. (3)

(ii) if Nε = −1 then 2C(E) can be generated by the ideals ℘1, . . . , ℘k , where for any
i , ℘2

i = pi .
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Proof
(i) We apply the result on the Tate kernel of real quadratic fields to show that the norm

of the fundamental unit of E = Q(
√
d) is 1 if and only if

mX2 − d

m
Y 2 = ±1

is solvable for some m | d, m �= ±1,±d. In fact, since {−1, ε} ∈ 2K2(OE ), by
Theorem 3.2, there exists some m | d, m �= ±1,±d such that {−1, ε} = {−1,m}
or {−1, ε} = {−1,m(u + √

d)}. It is straightforward to see that
εm(u + √

d) /∈ E∗2 ∪ 2E∗2.

Clearly, we have εm /∈ 2E∗2. Hence, εm ∈ E∗2. Therefore, m2 = εmε̄m =
(X2 − dY 2)2 for some integers X ,Y , so we obtain ±m = X2 − dY 2, i.e., (3)
holds.
Conversely, if ±m = X2 − dY 2, m �= ±1,±d, we put

ε = X + √
dY

X − √
dY

.

It is obvious that (m,Y ) = 1. Hence, for any finite prime P of E , if P | m,
then vP (X + √

dY ) = vP (X − √
dY ) = 1; if P � m, then vP (X + √

dY ) =
vP (X − √

dY ) = 0. Therefore, ε is an algebraic integer. Moreover, ε is not a
square, since ε(X − √

dY )2 = X2 − dY 2 = ±m, m �= ±1,±d, is not a square.
(ii) By genus theory, the 2-rank of C(E) is k − 1 if E = Q(

√
p1 . . . pk), and k if E =

Q(
√
2p1 . . . pk). For any m | d, the ideal (m,

√
d) satisfies that (m,

√
d)2 = (m).

Moreover, (m,
√
d) is principal in C(E) if and only if

± m = X2 − dY 2 (4)

is solvable over Z.
But the assumption that Nε = −1 implies that for any m | d, m �= ±1,±d, (4)
has no integer solution. Therefore, the ideals ℘1, . . . , ℘k generate 2C(E).

��
Proof of Theorem 2.1 We apply Theorem 3.3 to compute r4(K2OE ).

We first show that the assumption (ii) implies {−1,m(u + √
d)} /∈ ∇2.

Recall that in our case, all prime factors are congruent to 1 mod 8. By Corollary
3.4 to theorem of Qin, the condition that {−1,m(u + √

d} ∈ ∇2 is equivalent to the
fact that there exists a positive factor m of d, so that

vmZ2 = X2 + dY 2 (5)

is solvable in Z. Since d ≡ 1 (mod 8),m | d, X2 + dY 2 ≡ 0, 1, 2 (mod 4). Now
the assumption (ii) and Lemma 4.1 imply that v ≡ 3 (mod 4). Hence, vmZ2 ≡ 0, 3
(mod 4) and so (5) has no solution with (X ,Y , Z) = 1.
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Therefore, in 2K2OE only {−1,m} could belong to ∇2. By sending {−1,m} to the
idealM(M2 = m), we obtain a bijection from the set {{−1,m},m | d} ⊆ 2K2OE to
2C(E).

By [7], we see that M is a square in C(E) if and only if

mZ2 = X2 − dY 2 (6)

is solvable in Z. Furthermore, {−1,m} is a square in K2OE , i.e., {−1,m} ∈ ∇2 if and
only if

mZ2 = X2 + dY 2 (7)

is solvable in Z. As (6) and (7) have the same solvability,

r4(K2OF ) = r4(C(F))

holds. ��
To prove Theorem 2.2, we need the following Lemma 4.5, which is an analog of

Lemma 4.1. First we have

Lemma 4.3 Let α = 2
1
4 and L = Q(α). Then Z[α] is the ring of algebraic integers of

L. The class number of L is 1.

Proof This can be done by the GP calculator. ��
Lemma 4.4 Let p ≡ 1 (mod 8) be a prime. Assume that p = u2 − 2w2 with u > 0.
Then p = x2 + 64y2 if and only if u ≡ 1, 3 (mod 8).

Proof We need the following result: Let p ≡ 1 (mod 8) be a prime. Then γ 4 ≡ 2
(mod p) is solvable if and only if p = x2 +64y2. See, for example, Theorem 7.5.2 in
[2]. Hence, for a prime p = x2 + 64y2, γ 4 ≡ 2 (mod p) has four distinct solutions.
It follows that p splits completely in L . Hence, there are integers a, b, c, d such that

p = NL/Q(a + bα + cα2 + dα3) = (a2 + 2c2 − 4bd)2 − 2(b2 + 2d2 − 2ac)2.

Since p ≡ 1 (mod 8), we see that a is odd and 2 | b. Hence we have u = a2 + 2c2 −
4bd ≡ 1, 3 (mod 8).

Conversely, if p = u2 − 2w2 with |u| ≡ 1, 3 (mod 8) and w even, then p =
x2 + 64y2. In fact, we may write u = t2u′, w = 2es2w′, where u′, w′ are square-free
odd and positive integers. For any prime l | w′, (

p
l ) = 1, hence, w ≡ α2 (mod p)

since 2 is a square (mod p). On the other hand, for any prime l | u′, (−2p
l ) = 1, hence,

|u| ≡ 1, 3 (mod 8) implies that u ≡ α2 (mod p). Therefore, γ 4 ≡ 2 (mod p) is
solvable and so p = x2 + 64y2. ��
Lemma 4.5 Let d = 2p1 . . . pk with p1 ≡ · · · ≡ pk ≡ 1 (mod 8). Assume that
pi = u2i − 2w2

i , vi = ui + wi (ui > 0). If we write p1 . . . pk = u2 − 2w2, and
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2p1 . . . pk = U 2 − 2W 2,U > 0, then u ≡ u1 . . . uk (mod 8) and U + W ≡ u or 3u
(mod 8). Moreover, U + W ≡ 5, or 7 (mod 8) if and only if an odd number of the
primes p1, . . . , pk fail to be represented over Z by the quadratic form x2 + 64y2.

Proof Assume that a = u2 − 2w2 and b = μ2 − 2ω2. Then we have

ab = (uμ + 2wω)2 − 2(uω + μw)2. (8)

Note that if both a, b ≡ 1 (mod 8), it is easy to seew and ω are even, so uμ+2wω ≡
uμ (mod 8). By induction, we have u ≡ u1 . . . uk (mod 8). Observe that

2a = (2u + 2w)2 − 2(u + 2w)2. (9)

Since (2u + 2w) + (−u − 2w) = u and (2u + 2w) + (u + 2w) = 3u + 4w ≡ 3u
(mod 8), U + W ≡ u or 3u (mod 8).

If k = 1 and d = 2p1 = U 2 − 2W 2, by Lemma 4.4, p1 �= x2 + 64y2 if and only
ifU +W ≡ 5, 7 (mod 8). Observe that if u1 ≡ 1, 3 (mod 8), u2 ≡ 1, 3 (mod 8) or
u1 ≡ 5, 7 (mod 8), u2 ≡ 5, 7 (mod 8), then u1u2 ≡ 1, 3 (mod 8), and if u1 ≡ 1, 3
(mod 8), u2 ≡ 5, 7 (mod 8), then u1u2 ≡ 5, 7 (mod 8). Therefore, by (8) and (9),
if an odd number of the primes p1, . . . , pk fail to be represented by x2 + 64y2, then
U + W ≡ 5, or 7 (mod 8), and vice versa. ��
Proof of Theorem 2.2 As in the proof of Theorem 2.1, we apply again Theorem 3.3 to
compute r4(K2OF ).

Write 2d = u2 − 2w2, u > 0, v = u + w. We claim that for any m | 2d,
{−1,m(u + √

2d)} /∈ ∇2.

Indeed, by Theorem 3.3 and Lemma 3.1, if for some positive factor m of 2d,
{−1,m(u + √

2d)} ∈ ∇2, then

vmZ2 = X2 + 2dY 2 (10)

is solvable inZ. By Lemma 3.1, we can assume thatm is odd. Since 2d ≡ 2 (mod 8),
one has X2 + 2dY 2 ≡ 1, 2, 3, 6 (mod 8) if (X ,Y ) = 1. It follows from Lemma 4.5
that the assumption (ii) implies that v ≡ 5, 7 (mod 4). Hence, vmZ2 ≡ 0, 4, 5, 7
(mod 8) and so (10) has no solution with (X ,Y , Z) = 1.

Note that {−1, 2m} = {−1,m}. Therefore, the same discussion as in the proof of
Theorem 2.1 shows that

r4(K2OF ) = r4(C(E)).

��
Proof of Theorem 2.3 The assumption that the norm of the fundamental unit of F is
−1 implies that there is an ideal ℘ of F , which is non-principal with ℘2 = (2). But
in K2OF , {−1, 2} = 1. Then the proof is analogous to that of Theorem 2.2. ��
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We turn to prove Theorems 2.4 and 2.5. Let m | d. We introduce the following
notation.

V (m, p1, . . . , pk) = (ε1, . . . , εk),

where

εi =

⎧
⎪⎨
⎪⎩

(
d
m
pi

)
if pi | m,

(
m
pi

)
if pi � m.

(11)

It is easy to check that �k
i=1εi = 1. Similarly, we put

V (m(u + √
d), p1, . . . , pk) = (ε1, . . . , εk),

where

εi =

⎧
⎪⎨
⎪⎩

(
vd
m
pi

)
if pi | m,

(
vm
pi

)
if pi � m.

(12)

By Theorem 3.3, {−1,m} ∈ ∇2 if and only if V (m, p1, . . . , pk) = (1, . . . , 1).
If m, n | d and (m, n) = t , we write V (mn, p1, . . . , pk) = V (mn/t2, p1, . . . , pk).
Moreover, if V (m, p1, . . . , pk) = (ε1, . . . , εk) and V (n, p1, . . . , pk) = (δ1, . . . , δk),

thenV (mn, p1, . . . , pk) = (ε1δ1, . . . , εkδk).Similarly, V (m(u+√
d), p1, . . . , pk) =

(ε1, . . . , εk), andV (n, p1, . . . , pk) = (δ1, . . . , δk), thenV (mn(u+√
d), p1, . . . , pk) =

(ε1δ1, . . . , εkδk).

Proof of Theorem 2.4 If both (i) and (ii) are satisfied, then by Theorem 2.1, we have
r4(K2(OE )) = 0, i.e., the 2-primary part of K2(OE ) is elementary abelian.

Conversely, if the 2-primary part of K2(OE ) is elementary abelian, then by Lemma
4.2, Lemma 3.1 and Theorem 3.3, we see that the norm of the fundamental unit of
E is −1. We show that {−1,m(u + √

d)} /∈ ∇2 implies condition (ii), which in turn
shows that v ≡ 3 (mod 4) as we can see from Lemma 4.1.

Since r4(K2OE ) = 0, for any m | d,

mZ2 = X2 + dY 2

and equivalently,

mZ2 = X2 − dY 2

has no integer solutions. Hence, we have proved that r4(C(E)) = 0.
Since r4(K2OE ) = 0, for any m | d, m �= ±1,±d, V (m, p1, . . . , pk) �=

(1, . . . , 1). By a suitable choice of integers mi dividing d, we may assume that
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472 X. Wu

{−1,−1}, {−1,m1}, . . . , {−1,mk−1}, {−1, u + √
d}, {−1, u−1 + √

d} generate
2K2OE , where u2−1 − d = −w2−1, and the m′

j s are chosen in such a way that, for
1 ≤ i ≤ k − 1, εk = εi = −1 and for j �= i, k, ε j = 1.

Suppose that v ≡ 1 (mod 4). We have (u + w)(u − w) − w2 = d since
u2 − 2w2 = d, hence

(−d
v

) = 1 and so
(

v
d

) = 1. On the other hand, if

m | d with m ≡ 1 (mod 8), then

(
d
m
m

) (
m
d
m

)
= 1. For any odd and posi-

tive m | d, assuming that V (m(u + √
d), p1, . . . , pk) = (ε1, . . . , εk), we have

�k
i=1εi =

(
vd
m
m

)(
vm
d
m

)
= (

v
d

) (
d
m
m

)(
m
d
m

)
= (

v
d

) = 1. Therefore, there exists n | d
such that V (n(u + √

d), p1, . . . , pk) = (1, . . . , 1). This contradicts the assumption
that r4(K2OE ) = 0. Hence, v ≡ 3 (mod 4), and so we have (ii). ��

Proof of Theorem 2.5 The proof is analogous to that of Theorem 2.4.
Applying Theorem 2.2, we see that (i) and (ii) imply that r4(K2(OF )) = 0.
Conversely, the assumption that r4(K2(OF )) = 0 implies that r4(C(E)) = 0 and

the norm of the fundamental unit of E is −1, i.e., (i) holds. To prove (ii), by Lemma
4.5, it is sufficient for us to show that V = U + W ≡ 5, 7 (mod 8).

Since U 2 − 2W 2 = 2d,
(−2d

V

) = 1. Hence,
( V
d

) = 1 if and only if V ≡ 1, 3
(mod 8). If V ≡ 1, 3 (mod 8), then for any odd and positive m | d, assuming
that V (m(U + √

d), p1, . . . , pk) = (ε1, . . . , εk), we have �k
i=1εi = ( V

d

) = 1.
Therefore, one can find n | d such that V (n(U + √

d), p1, . . . , pk) = (1, . . . , 1),
i.e., r4(K2(OF )) > 0, a contradiction!

This completes the proof. ��
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