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Abstract
Assuming the Riemann hypothesis, we prove that

Nk(T ) = T

2π
log

T

4πe
+ Ok

(
log T

log log T

)
,

where Nk(T ) is the number of zeros of ζ (k)(s) in the region 0 < �s ≤ T . We further
apply our method and obtain a zero counting formula for the derivative of Selberg zeta
functions, improving earlier work of Luo (Am J Math 127(5):1141–1151, 2005).
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1 Introduction

Let ζ(s) be the Riemann zeta function, and let

N (T ) :=
∑

0<γ≤T
β>0
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be the zero counting function for ζ(s). Here and throughout, ρ = β + iγ is a generic
zero of ζ(s). It is known that

N (T ) = T

2π
log

T

2πe
+ E0(T ),

where

E0(T ) =

⎧⎪⎨
⎪⎩

O(log T ), unconditionally,

O
(

log T
log log T

)
, assuming the Riemann hypothesis (RH).

(1)

The unconditional bound is known as the Riemann–von Mangoldt formula (see [17,
Theorem 9.4]), and the conditional bound is due to Littlewood [9].

There has also been considerable interest in zeros of derivatives of ζ(s). Let ζ (k)(s)
be the k-th derivative of the Riemann zeta function, and let

Nk(T ) :=
∑

0<γk≤T
βk>0

1

be the zero counting function for ζ (k)(s). Here and throughout, ρk = βk + iγk is a
generic zero of ζ (k)(s). In [2] B. C. Berndt proved that

Nk(T ) = T

2π
log

T

4πe
+ Ek(T ),

where

Ek(T ) = Ok(log T ).

This should be compared to the Riemann–von Mangoldt formula. In view of (1) one
may expect to prove that, assuming RH,

Ek(T ) = Ok

(
log T

log log T

)
(2)

for all positive integers k. The first result in this direction is due to Akatsuka [1], who
showed that if RH is true then

E1(T ) = O

(
log T√
log log T

)
.

Yet this bound is weaker than (2). The second author [15] extended this estimate to
higher derivatives and showed that on RH

Ek(T ) = Ok

(
log T√
log log T

)

123



Note on the number of zeros of ζ (k)(s) 663

for all positive integers k.
Recently, the first author [5] was able to prove (2) for k = 1, namely,

E1(T ) = O

(
log T

log log T

)
.

A key ingredient in his proof is an upper bound for the number of zeros of ζ ′(s) close
to the critical line, and the idea there has its origin in Zhang’s work [18]. However, the
method for k = 1 is not readily applicable for larger k. The purpose of this note is to
modify the method in [5] and show that the estimate (2) holds for all positive integers
k.

Theorem 1 Assume RH. Then we have

Nk(T ) = T

2π
log

T

4πe
+ Ok

(
log T

log log T

)

as T → ∞.

We remark that Littlewood’s conditional bound

E0(T ) = O

(
log T

log log T

)
(3)

was first proved in 1924. Later in 1944 Selberg [11] gave a different proof for this
result. In 2007, Goldston and Gonek [7] showed that we can take the implied constant
to be 1/2. The current best known constant is 1/4, and this is due to Carneiro et al.
[3] who proved it using two different methods in 2013. It seems difficult to reduce the
size of the bound (3), and this suggests that the bounds in Theorem 1 might be best
possible within current knowledge.

On the other hand, using interesting heuristic arguments Farmer et al. [4] have
conjectured that E0(T ) = O(

√
log T log log T ). This raises the question of what

bounds one should expect for Ek(T ). We have the following

Theorem 2 Assume RH and suppose that E0(T ) = O(�(T )) for some increasing
function log log T � �(T ) � log T . Then we have

Nk(T ) = T

2π
log

T

4πe
+ Ok

(
max

{
�(2T ),

√
log T log log T

})
.

Clearly Theorem 1 is a consequence of Theorem 2, so we shall only prove the latter.
We also remark that our method works well for some other zeta and L-functions in
the T -aspect. In Sect. 4 we give a brief discussion on this. In particular, we prove an
analogue of Weyl’s law for the derivative of Selberg zeta functions.
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2 Lemmas

Throughout, let�(T ) be an increasing function satisfying log log T � �(T ) � log T
and assume that E0(T ) � �(T ). Further, we use the variables k and � to denote orders
of differentiation, where they are always positive integers.

We first express the error term of Nk(T ) in terms of arguments of certain functions.

Lemma 3 Assume RH. Let k ≥ 2 be an integer. For T ≥ 2 satisfying ζ(σ + iT ) 
= 0
and Gk(σ + iT ) 
= 0 for all σ ∈ R, we have

Nk(T ) = T

2π
log

T

4πe
+ 1

2π
argGk(1/2 + iT ) + 1

2π
arg ζ(1/2 + iT ) + Ok(1),

where

Gk(s) = 2s(−1)k

(log 2)k
ζ (k)(s),

and the argument is defined by continuous variation from +∞, with the argument at
+∞ being 0.

Proof This is standard. Apply the argument principle to Gk
Gk−1

(s) on the rectangular
region with vertices 1/4 + i, σk + i, σk + iT , 1/4 + iT , where σk is large so that Gk

is dominated by 1 to the right of σk . See also [15, Proposition 3.1] for an alternative
proof. �
Lemma 4 Assume RH and let � ≥ 1 be an integer. Then for 1/2+ (log log T )2

log T < σ < 1,
we have

argG�(σ + iT ) �� �(T ) + log log T

σ − 1
2

.

Proof This is follows from [15, Lemma 2.3] by taking ε0 = (4 log T )−1 there. �
Lemma 5 Let � ≥ 1 be an integer. For all t sufficiently large we have

G ′
�

G�

(s) =
∑

|γ�−t |<1

1

s − ρ�

+ O�(log t),

uniformly for 1/2 ≤ σ ≤ 1.

Proof This can be proved in a standard way. See Theorem 9.6 (A) in [17] for example.
�

Lemma 6 Assume RH and let � ≥ 1 be an integer. Then

� ζ (�)

ζ (�−1)
(σ + i t) < 0

123



Note on the number of zeros of ζ (k)(s) 665

holds for 0 < σ ≤ 1/2 and sufficiently large t whenever ζ (�−1)(σ + i t) 
= 0.

Proof Put

ξ�(s) := �
( s
2

)
ζ (�)(s).

Then we have

ξ ′
�−1

ξ�−1
(s) = 1

2

�′

�

( s
2

)
+ ζ (�)

ζ (�−1)
(s).

Using Hadamard factorization we easily see that for large t ,

1

2

�′

�

( s
2

)
=

∞∑
n=1

(
1

2n
− 1

s + 2n

)
+ O(1)

and

ζ (�)

ζ (�−1)
(s) =

∑
ρ�−1

(
1

s − ρ�−1
+ 1

ρ�−1

)
+ O(1),

where ρ�−1 runs over all zeros of ζ (�−1)(s). We can rewrite the latter as

ζ (�)

ζ (�−1)
(s) =

⎛
⎜⎜⎝

∑
β�−1≥1/2

+
∑

β�−1<1/2,
γ�−1 
=0

+
∑

γ�−1=0

⎞
⎟⎟⎠

(
1

s − ρ�−1
+ 1

ρ�−1

)
+ O(1).

By [8, Corollary of Theorem 7], RH implies that ζ (�)(s) has at most finitely many
non-real zeros in �(s) < 1/2. This implies that the second sum is O(1). Meanwhile
[14] shows that

∑
γ�−1=0

(
1

s − ρ�−1
+ 1

ρ�−1

)
=

∞∑
j=1

(
1

s − (−2 j + O(1))
+ 1

−2 j + O(1)

)
.

Thus

ξ ′
�−1

ξ�−1
(s) = 1

2

�′

�

( s
2

)
+ ζ (�)

ζ (�−1)
(s)

=
∞∑
n=1

(
1

2n
− 1

s + 2n

)
+ O(1)

+
∑

β�−1≥1/2

(
1

s − ρ�−1
+ 1

ρ�−1

)
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+
∞∑
j=1

(
1

s − (−2 j + O(1))
+ 1

−2 j + O(1)

)
+ O(1)

=
∑

β�−1≥1/2

(
1

s − ρ�−1
+ 1

ρ�−1

)
+ O(1)

when t is large.
Taking the real part, we have

�ξ ′
�−1

ξ�−1
(s) =

∑
β�−1≥1/2

σ − β�−1

|s − ρ�−1|2 + O(1).

Hence using Stirling’s formula for the Gamma function, we have

� ζ (�)

ζ (�−1)
(σ + i t) = �ξ ′

�−1

ξ�−1
(σ + i t) − 1

2
��′

�

(
σ + i t

2

)

=
∑

β�−1≥1/2

σ − β�−1

|s − ρ�−1|2 − 1

2
log t + O(1), (4)

which is negative for σ ≤ 1/2 and t large. �
Lemma 7 Assume RH. Let Z� = {zi }i be the collection of distinct ordinates of zeros
of ζ, ζ ′, ..., ζ (�) on �(s) = 1/2. For large T and Y ≤ T , we have

∑
T<z≤T+Y , z∈Z�

1 � �(2T ) + Y log T .

Proof It follows from Lemma 6 that for all j ∈ N, zeros of ζ ( j) on the critical line at
large heights can only occur at zeros of ζ ( j−1). Therefore, for sufficiently large T ,

∑
T<z≤T+Y , z∈Z�

1 ≤
∑

T<γ≤T+Y

1 � �(2T ) + Y log T .

�
Write D = D(T ) for the region {w : �w ≥ 1/2, |�w − T | ≤ 1}. Divide D into

N parts, as follows. Let Bj = {w : 1/2 ≤ �w ≤ 1/2 + Y j , |�w − T | ≤ Y j } where
Y j = 2 j X and X = (log T )−1/2. We can write D = ∪N

j=1R j where R1 = B1 and

R j = (Bj − Bj−1) ∩ D for j ≥ 2. Note that 2N X ≈ 1.
A key ingredient in [5] is an upper bound for the number of zeros of ζ ′(s) in regions

like R j ’s. To prove our Theorem 2 we need such bounds for higher derivatives, and
the following result provides us the desired estimates.

Lemma 8 Let Nk(R j ) be the number of zeros of ζ (k) in R j . Then Nk(R j ) �k

Y j log T + �(2T ).
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Proof Let R∗
j be R j without the left side boundary on the critical line. In view of

Lemma 7 it suffices to prove Nk(R∗
j ) �k Y j log T + �(2T ). Denote by (ρk; 1/2+

i(T + Y j ), 1/2 + i(T − Y j )) ∈ (0, π) the argument of the angle at ρk with two rays
through 1/2+ i(T −Y j ) and 1/2+ i(T +Y j ). Note that(ρk; 1/2+ i(T +Y j ), 1/2+
i(T − Y j )) � 1 if ρk ∈ R∗

j . Thus

Nk(R
∗
j ) �

∑
ρk∈R∗

j

(ρk; 1/2 + i(T + Y j ), 1/2 + i(T − Y j ))

=
∑

ρk∈R∗
j

∫ T+Y j

T−Y j

βk − 1/2

(βk − 1/2)2 + (γk − t)2
dt

=
∫ T+Y j

T−Y j

∑
ρk∈R∗

j

βk − 1/2

(βk − 1/2)2 + (γk − t)2
dt

≤
∫ T+Y j

T−Y j

∑
βk>1/2

βk − 1/2

(βk − 1/2)2 + (γk − t)2
dt

≤
∑

T−Y j≤zi≤T+Y j ,

zi∈Zk

∫ zi+1

zi

∑
βk>1/2

βk − 1/2

(βk − 1/2)2 + (γk − t)2
dt . (5)

Write

Fk(t) =
∑

βk>1/2

βk − 1/2

(βk − 1/2)2 + (γk − t)2
.

Recall (4) that

Fk(t) = −�ζ (k+1)

ζ (k)
(1/2 + i t) + O(log t).

We claim that

∫ zi+1

zi
Fk(t)dt � 1 + log T · (zi+1 − zi ).

To prove this, note that for t on the segment (zi , zi+1) we can write

ζ (k)(1/2 + i t) =
(
hζ · ζ ′

ζ
· ζ ′′

ζ ′ · · · ζ (k)

ζ (k−1)
· 1
h

)
(1/2 + i t)
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where h(s) = π−s/2�(s/2). Thus, by using the temporary notation � arg to denote
the argument change along the segment (zi , zi+1), we have

∫ zi+1

zi
Fk(t)dt =

∫ zi+1

zi

(
−�ζ (k+1)

ζ (k)
(1/2 + i t) + O(log t)

)
dt

=
∣∣∣� arg ζ (k)(1/2 + i t)

∣∣∣ + O ((zi+1 − zi ) log t)

=
∣∣∣∣� arg(h(1/2 + i t)ζ(1/2 + i t)) + � arg

ζ ′

ζ
(1/2 + i t) + · · ·

+ � arg
ζ (k)

ζ (k−1)
(1/2 + i t)

+ � arg
1

h(1/2 + i t)

∣∣∣∣ + ((zi+1 − zi ) log t)

≤ |� arg(h(1/2 + i t)ζ(1/2 + i t))| +
k∑

l=1

∣∣∣∣∣� arg
ζ (l)

ζ (l−1)
(1/2 + i t)

∣∣∣∣∣
+

∣∣∣∣� arg
1

h(1/2 + i t)

∣∣∣∣ + ((zi+1 − zi ) log t) .

It follows from the well-known functional equation for h(s)ζ(s) that

� arg(h(1/2 + i t)ζ(1/2 + i t)) = 0.

From Lemma 6, we have

� arg
ζ (l)

ζ (l−1)
(1/2 + i t) � 1

for l = 1, 2, . . . , k and t ∈ (zi , zi+1). Moreover, by Stirling’s formula we obtain

∣∣∣∣� arg
1

h(1/2 + i t)

∣∣∣∣ �
∫ z j+1

z j

∣∣∣∣h
′

h
(1/2 + i t)

∣∣∣∣ dt
� (z j+1 − z j ) log T .

Thus
∫ zi+1

zi
Fk(t)dt �k 1 + (zi+1 − zi ) log T ,

as claimed.
It then follows from (5) and Lemma 7 that

Nk(R
∗
j ) �k

∑
T−Y j≤zi≤T+Y j ,

zi∈Zk

(1 + (zi+1 − zi ) log T )
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�
∑

T−Y j≤zi≤T+Y j ,

zi∈Zk

1 + (log T ) ·
∑

T−Y j≤zi≤T+Y j ,

zi∈Zk

(zi+1 − zi )

� Y j log T + �(2T ). �

3 Proof of Theorem 2

Applying Lemma 3, we only need to show that

argGk(1/2 + iT ) �k �(2T ) + √
log T log log T

holds for all k ∈ N.
Let X = 1/

√
log T as defined in the paragraph precedingLemma8. FromLemma4,

we see that

argGk(1/2 + X + iT ) �k �(T ) + √
log T log log T .

It remains to show

� := argGk(1/2 + iT ) − argGk(1/2 + X + iT ) � �(2T ) + √
log T log log T .

(6)

From Lemma 5, we have

|�| =
∣∣∣∣�

∫ 1/2+X

1/2

G ′
k

Gk
(σ + iT )dσ

∣∣∣∣
�

∑
|γk−T |<1

(ρk; 1/2 + iT , 1/2 + X + iT ) + X log T , (7)

where (a; b, c) is the (positive) angle at a in the triangle abc. Hence, it suffices to
show that

∑
|γk−T |<1

(ρk; 1/2 + iT , 1/2 + X + iT ) � �(2T ) + √
log T log log T .

From [8, Corollary of Theorem 7], RH implies that for sufficiently large T , ζ (k)

has no zeros in the left half of the critical strip above T − 1. Hence we may assume
that

∑
|γk−T |<1

(ρk; 1/2 + iT , 1/2 + X + iT ) =
∑

ρk∈D
(ρk; 1/2 + iT , 1/2 + X + iT )
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whereD is the region defined in the paragraph preceding Lemma 8. Using the expres-
sion D = ∪N

j=1R j and Lemma 8 we have

∑
ρk∈D

(ρk; 1/2 + iT , 1/2 + X + iT ) =
N∑
j=1

∑
ρk∈R j

(ρk; 1/2 + iT , 1/2 + X + iT )

�
N∑
j=1

Nk(R j )
X

Y j

�k

N∑
j=1

(2 j X log T + �(2T ))
1

2 j

� �(2T ) + XN log T .

Recall that X = 1√
log T

and N �k log(1/X) �k log log T . Thus the above bound is

�k �(2T ) + √
log T log log T

as desired. �

4 Other zeta and L-functions

Our method works well for some other zeta and L-functions in the T -aspect. Below
we give two examples of the first derivative of Selberg zeta functions and Dirichlet
L-functions, respectively. Dealing with higher derivatives of these functions would
require information about the “trivial” zeros of those derivatives, which is not the
purpose of this paper.

First, let us consider the Selberg zeta functions on cocompact hyperbolic surfaces.
Precisely, let X be a compact Riemann surface of genus g ≥ 2, and let ZX (s) be
the associated Selberg zeta function. Denote by N (T ) and N1(T ) the zero counting
functions for ZX (s) and Z ′

X (s), respectively; so N (T ) is the number of nontrivial
zeros of ZX (s) up to height T , and similarly for N1(T ). Weyl’s law tells us that

N (T ) = CXT
2 + O

(
T

log T

)
,

where CX is a specific constant depending on X . In [10] Luo proved that

N1(T ) = CXT
2 + O(T ).

Following our method in an identical manner, we can prove that

N1(T ) = CXT
2 + DXT + O

(
T

log T

)
, (8)
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where DX is a specific constant depending on X . Thus (8) improves Luo’s result.
(Precisely, CX = g− 1 and DX = − log N (P00)/2π where N (P00) = minP0 N (P0);
see page 1143 in [10] for more explanation of the notation.) The estimate (8) was
proved by the first author (unpublished) using a different method, but our method here
is simpler.

As another example, let L(s, χ) be the Dirichlet L-function where χ is a primi-
tive Dirichlet character to the modulus q. Let N (T , χ) be the number of nontrivial
zeros of L(s, χ) with heights between −T and T . Define N1(T , χ) similarly as the
zero counting function for L ′(s, χ). It follows from Selberg’s work [12] that on the
generalized Riemann hypothesis (GRH)

N (T , χ) = T

π
log

qT

2πe
+ O

(
log qT

log log qT

)
. (9)

As for L ′(s, χ), recently the first author [6] proved that on GRH we have

N1(T , χ) = T

π
log

qT

2mπe
+ O

(
log qT

log log qT
+ √

m log 2m log qT

)
, (10)

where m is the smallest prime number not dividing q. This improves earlier work of
the second author [16]. Our method here should give analogues of (10) for higher
derivatives of L(s, χ) once some standard information on trivial zeros of these deriva-
tives is gathered. As a final remark, we note that in the T -aspect the error term in (10)
is as good as that in (9). However, in the q-aspect

√
m log 2m log qT might sometimes

be larger than log qT
log log qT . In fact, simple calculation shows that

√
m log 2m log qT � log qT

log log qT

when m is no greater than log qT /(log log qT )3, while the largest possible value for
m is about log q. It would be of interest to see if one can remove the second term in
the error of (10).

Acknowledgements This project was started when the first author was a postdoc fellow at the University of
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