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Abstract
We prove that given any ε > 0 and a primitive adelic Hilbert cusp form f of weight
k = (k1, k2, . . . , kn) ∈ (2Z)n and full level, there exists an integral ideal m with
N (m) �ε Q9/20+ε

f such that the m-th Fourier coefficient of C f (m) of f is negative.
Here n is the degree of the associated number field, N (m) is the norm of integral ideal
m and Q f is the analytic conductor of f . In the case of arbitrary weights, we show

that there is an integral ideal m with N (m) �ε Q1/2+ε
f such that C f (m) < 0. We

also prove that when k = (k1, k2, . . . , kn) ∈ (2Z)n , asymptotically half of the Fourier
coefficients are positive while half are negative.

Keywords Hilbert modular forms · First sign change · Fourier coefficients ·
Distribution of eigenvalues

Mathematics Subject Classification 11F30 · 11F41

1 Introduction

This paper is concerned with a quantitative result on the study of signs of Fourier
coefficients of Hilbert cusp forms. This theme of research has seen a lot of activity
in the recent past; here we just recall the landmark result of Matomäki for elliptic
Hecke cusp forms, which also sets the ground of our results to follow. Let Q f � k2N
be the analytic conductor of an elliptic newform f of level N and weight k. Then it
was proved in [8] that the first negative eigenvalue of f occurs at some n0 ≥ 1 with
n0 � Q3/8

f . The method in [8] is based on further refinement of that in [5] wherein a
variety of results on statistical distribution of signs of Fourier coefficients of newforms
were studied.

In the case of Hilbert newforms of arbitrary weight and level, the only known result
seems to be the work of Meher and Tanabe (see [10, Theorems 1.1, 1.2]). To describe
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their result let us introduce the following notation. Let F be a totally real number
field of degree n associated with the adelic Hilbert newform f . Let {C(m)}m denote
the Fourier coefficients of f , indexed by the integral ideals m, and Q f denote the
analytic conductor of f (see next section for the definition). Then in [10] it is shown
that the sequence {C(m)}m changes sign infinitely often and more quantitatively the
main result of [10] states that there exists an integral ideal m with

N (m) �n,ε Q1+ε
f

such that C(m) < 0, where N (m) is the norm of integral ideal m. One of the aims of
this paper is to improve upon this result. Our main result is the following.

Theorem 1.1 Let f be a Hilbert newform of weight k = (k1, k2, . . . , kn) and full level.
Let C(m) denote the Fourier coefficient of f at the ideal m. Then for any arbitrary
ε > 0,

(i) when k1, k2, . . . , kn are all even, we have C(m) < 0 for some ideal m with

N (m) �n,ε Q
9
20+ε

f ;

(ii) otherwise we have C(m) < 0 for some ideal m with

N (m) �n,ε Q
1
2+ε

f .

The bound in the case (i) is stronger as the Ramanujan conjecture is known in this
case but it does not seem to be so in case (ii).

The main difference in our approach with that in [10] is that instead of using the
bound |˜C(p)| + |˜C(p2)| ≥ 1/2 (see [10, Prop 4.5]) for certain ‘good’ primes p, we
work directly with the Hecke relation ˜C(p)2 − ˜C(p2) = 1 (see [16, 2.23]), where

˜C(m) := C(m)

N (m)
k0−1
2

and k0 := max{k1, k2, . . . , kn}.

Like other results available in the topic, we consider upper and lower bounds of a
suitable weighted partial sum of normalized Fourier coefficients ˜C(m):

S( f , x) :=
∑

N (m)≤x

˜C(m) log

(

x

N (m)

)

. (1.1)

Using the convexity principle for automorphic L-functions and Perron’s formula (see
e.g. [4, Chapter 5]) we get an upper bound of S( f , x) in terms of Q f and x . For the
lower bound of S( f , x) in the first case of Theorem 1.1, we adopt a method similar in
the spirit of [5, Theorem 1]. The introduction of the weighted log in (1.1) is necessary
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On the signs of Fourier coefficients of Hilbert cusp forms 469

to deal with convergence issues while working with the Perron’s formula, unlike the
case in [5]. To find a lower bound, we work with

T ( f , x) :=
∑

N (m)≤x

˜C(m)

and recover a corresponding lower bound of S( f , x) by partial summation.
In the second result of this paper, we extend Theorem 1.1 of [9] to the case of

primitive Hilbert cusp forms. The method used here relies upon that in [9, Theorem
1.1].

Theorem 1.2 Let k1, k2, . . . , kn be all even and f be an adelic Hilbert newform of
weight k = (k1, k2, . . . , kn) and full level. Then one has

lim
x→∞

|{m|N (m) ≤ x,C(m) > 0}|
|{m|N (m) ≤ x}| = lim

x→∞
|{m|N (m) ≤ x,C(m) < 0}|

|{m|N (m) ≤ x}| = 1

2
.

The restriction of the weight in Theorem 1.2 is due to the use of Sato–Tate Theorem
[1, pp. 1–6], which is available in the case when all of k1, k2, . . . , kn are even. We also
make a note of the fact that our proofs of both Theorems 1.1 and 1.2 can be generalized
to an arbitrary fixed level n and would get the same result. For simplicity we restrict
ourselves to the case of full level.

2 Notation and preliminaries

The setting of the paper is as follows (see [16] for detailed discussion): let F be a totally
real number field of degree n and OF be the ring of integers of F . Throughout this
paper, the integral ideals and prime ideals of F will be denoted by gothic symbols like
m and p, respectively. We will denote the set of all integral ideals and prime ideals of
F by I andP , respectively. Let h be the narrow class number of F and {cν := tνOF }h1
be the complete set of representatives of the narrow class group, with tν being finite
ideles. LetDF be the different ideal of F . For each cν consider the following subgroup
of GL2(F):

�(cνDF ,OF ) =
{(

a b
c d

)

| a, d ∈ OF , c ∈ cνDF , b ∈ c−1
ν D−1

F , ad − bc ∈ O∗
F

}

.

A classical Hilbert cusp form fν of weight (k1, k2, . . . , kn) on �(cνDF ,OF ) has the
following Fourier expansion:

fν(z) =
∑

0�η∈cν
aν(η) exp(Tr(ηz)).

To talk about newforms, following [16], we associate an h-tuple ( f1, f2, . . . , fh) to
an adelic Hilbert cusp form f . Recall that f is associated with an automorphic form
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470 R. Pal

on GL2(AF ), where AF is the adele ring of F and the Fourier coefficients {C(m)}m
of f are given by the following relation (see [16, Eqs. 2.17, 2.22])

C(m) = aν(η)η−k0/2N (m)k0/2,

where m = ηc−1
ν for a unique ν and some totally positive element η in F . The Hecke

theory for adelic Hilbert newforms (sometimes referred to as primitive forms) was
established by Shimura in [16]. When f is an adelic Hilbert newform, usually one has
the normalization C(OF ) = 1 (see [16, p. 650]), which we would assume throughout
this paper.

2.1 General notation

Suppose h(x) > 0 is defined on a subset B of R and let g(x) be such that g(x) : B 
→
R. Whenever we write g(x) � h(x) or g(x) = O(h(x)) or g(x) �ε h(x), it will
always mean that

|g(x)| ≤ M · h(x), for all x ∈ B and for some M > 0,

in the last case M may depend on ε. Let u(x), v(x) : B 
→ R, where B is a subset of
R. The notations u(x) = o(v(x)) or u(x) ∼ v(x), respectively, mean that

lim
x→∞(u(x)/v(x)) = 0 or lim

x→∞(u(x)/v(x)) = 1.

Whenever we use
∑#, it will always signify that the summation is restricted to square-

free integral ideals.

2.2 L-function of an adelic Hilbert newform

Let f be an adelic Hilbert newform of weight (k1, k2, . . . , kn) and full level. Let
{C(m)}m denote its Fourier coefficients. Then the normalized L-function attached to
f is an absolutely convergent Dirichlet series for �s > 1 (see [14, Sect. 4.4] for the
details of this subsection), given by

L(s, f ) :=
∑

m∈I

˜C(m)

N (m)s
,

where I and ˜C(m) are same as defined before. It is well known that L(s, f ) admits
an Euler product:

L(s, f ) =
∏

p∈P

(

1 − ˜C(p)N (p)−s + N (p)−2s
)−1

123



On the signs of Fourier coefficients of Hilbert cusp forms 471

and it can be analytically continued to the whole complex plane C. Let us put

L∞(s, f ) := N
(

D2
F

) s
2

n
∏

j=1

(2π)
−

(

s+ k j−1
2

)

�

(

s + k j − 1

2

)

.

The completed L-function � is then defined by

�(s, f ) = L(s, f )L∞(s, f ),

which satisfies the functional equation

�(s, f ) = i
∑

j k j �(1 − s, f ).

2.3 Analytic conductor

With the given data in the previous subsection we define the analytic conductor at
s = 1/2 (here we follow [4, Chapter 5], where these objects are defined for a more
general L-function) Q f of L( f , s) (or f for brevity) as

Q f := N (D2
F )

n
∏

j=1

(

k j + 5

2

) (

k j + 7

2

)

�
⎛

⎝

n
∏

j=1

k j

⎞

⎠

2

N
(

D2
F

)

.

3 Proof of Theorem 1.1

Let f be as in Theorem 1.1. Let y > 0 be such that for all m ∈ I with N (m) ≤ y
we have C(m) ≥ 0. We will estimate y in terms of Q f with an implied absolute
constant (hence we may assume y to be bigger than some absolute constant at some
appropriate place) from the comparison of upper and lower bounds of the sum (for a
suitable x = yθ for some θ to be specified later)

S( f , x) :=
∑

N (m)≤x

˜C(m) log

(

x

N (m)

)

.

3.1 Upper bound

First let us recall a convexity bound result (see [13, Lemma 3.7]): let ε > 0 be arbitrary
and 0 < σ < 1, where s = σ + i t . Then we have

L(σ + i t, f ) �ε

(

(1 + |t |)2n+1Q f
) 1−σ

2 +ε
. (3.1)
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From Perron’s formula we get

S( f , x) =
∑

N (m)≤x

˜C(m) log

(

x

N (m)

)

= 1

2π i

∫

(2)
L(s, f )

xs

s2
ds.

Here (2) in the limit of the integral means the contour of the integral is �s = 2. Using
(3.1) it is clear that the integral is absolutely convergent for �s ≥ 2n

2n+1 . So we shift

the line of integration to σ = 2n
2n+1 (horizontal integrals do not contribute owing to

(3.1)). Further using (3.1) we obtain the estimate

S( f , x) �ε Q
1

2(2n+1) +ε

f x
2n

2n+1 . (3.2)

3.2 Lower bound

Let us recall the function T ( f , x) defined in the introduction:

T ( f , x) :=
∑

N (m)≤x

˜C(m). (3.3)

In this subsection we will find a lower bound of T ( f , x) for some suitable x . At this
point let us recall the following result about the coefficients ˜C(m) (see [16, Eq. 2.23]):
for any unramified prime ideal p (i.e. p � DF ), one has the Hecke relation

˜C(p)2 = 1 + ˜C(p2). (3.4)

Hence for all unramified primes p satisfying N (p) ≤ y
1
2 , we have ˜C(p) ≥ 1. Following

[5] let us introduce an auxiliary multiplicative function h ≡ hy : I → R defined by

hy(p) =

⎧

⎪

⎨

⎪

⎩

1 if N (p) ≤ y
1
2 ;

0 if y
1
2 < N (p) ≤ y;

−2 if N (p) > y

(3.5)

and hy(p
v) = 0 for v ≥ 2. Recall that for adelic Hilbert newforms of weight

(k1, k2, ..., kn) ∈ (2Z)n , by the Ramanujan–Petersson bound one has |˜C(p)| ≤ 2
(see [2, Theorem 1]). We will now prove the following lemma for further use (see [5,
Lemma 2.1] for the case when F = Q).

Lemma 3.1 For any ε > 0, we have

∑

N (m)≤yu
hy (m) = cF

ζF (2)
yu (ρ(2u) − 2 log u)

{

1 + O

(

1

log y

)}

(3.6)
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On the signs of Fourier coefficients of Hilbert cusp forms 473

uniformly for 1 ≤ u ≤ 3
2 , where ζF is the Dedekind zeta function, cF is the residue ζF

at the pole s = 1 and ρ(u) is the Dickman function, defined as the unique continuous
solution of the difference-differential equation

uρ′(u) + ρ(u − 1) = 0 (u > 1), ρ(u) = 1 (0 < u ≤ 1).

Proof For m ∈ I define

P(m) := max{N (p)|p ∈ P, p|m}.

We also define

ψ(x, y) := |{m : N (m) ≤ x, P(m) ≤ y}|.

For 1 ≤ u ≤ 3/2, from the definition of hy we get,

∑

N (m)≤yu
hy(m) = ψ#(yu, y

1
2 ) − 2

∑

y≤N (p)≤yu

∑#

N (l)≤ yu
N (p)

1. (3.7)

Here the sign # signifies that the sum is taken over squarefree integral ideals. Let us
first estimate the second term of (3.7). We state the following result whose proof is
given after this lemma.

∑#

N (l)≤x

1 = cF
ζF (2)

x + O

(

x

log x

)

, (3.8)

where cF is the residue of the Dedekind zeta function ζF at the pole s = 1. For the
second term of the right-hand side of (3.7), arguing exactly as in [5, pp. 8–9] gives an
upper bound

∑

y≤N (p)≤yu

∑#

N (l)≤ yu
N (p)

1 = cF
ζF (2)

yu log u + O

(

yu

log y

)

. (3.9)

For (3.9) we have also used the fact (see [6, Proposition 2]) that

∑

N (p)≤x

1

N (p)
= log log x + B + o(1), (3.10)

where B is a constant depending only on F .
The first term in (3.7) is given by the following (the proof is given after this lemma):

ψ#(yu, y
1
2 ) = cF

ζF (2)
· ρ(2u)yu + O

(

yu

log y

)

. (3.11)

Thus the Lemma 3.1 follows from (3.9) and (3.11). ��
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474 R. Pal

The proofs of the two results that we used in Lemma 3.1 are verbatim with the case
of integers (i.e. OF = Z). However for convenience we will give the proofs here.

Proposition 3.2 With the notations as given above, one has

∑#

N (l)≤x

1 = cF
ζF (2)

x + O

(

x

log x

)

.

Proof The Möbius function μ : I 
→ {1, 0,−1} is defined by μ(p) = −1, μ(pv) = 0
for v ≥ 2 on P and extended multiplicatively to I. It satisfies the usual properties

μ2(m) =
∑

l2|m
μ(l) and

∑

m∈I

μ(m)

N (m)2
= 1

ζF (2)
, (3.12)

where ζF is the Dedekind zeta function. From [12, Theorem 11.1.5] we write (please
see the remark after this proof)

∑

N (l)≤x

1 = cF
ζF (2)

x + O

(

x

log x

)

.

Now we calculate

∑#

N (l)≤x

1 =
∑

N (l)≤x

μ2(l) =
∑

N (l)≤x

∑

t2|l
μ(t)

=
∑

N (t2)≤x

μ(t)

⎛

⎜

⎝

∑

N (s)≤ x
N (t)2

1

⎞

⎟

⎠

=
∑

N (t2)≤x

μ(t)

⎛

⎝cF
x

N (t2)
+ O

⎛

⎝

x
N (t2)

log
(

x
N (t2)

)

⎞

⎠

⎞

⎠

= cF x ·
∑

N (t2)≤x

μ(t)

N (t2)
+

∑

N (t2)≤x

μ(t)

N (t2)
O

(

x

log x

)

= cF
ζF (2)

x + O

(

x

log x

)

.

For the last equation we have used the fact that

∑

N (t2)≤x

μ(t)

N (t2)
= 1

ζF (2)
+ O(x

−1
2 ).

��
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On the signs of Fourier coefficients of Hilbert cusp forms 475

Remark The error term above is actually of the magnitude x1− 1
n (for e.g. see [12,

Theorem 11.1.5]). However this error term bound will not benefit us because of the
error term in the next result is of the magnitude x

log x .

Proposition 3.3 With the notations as given above, one has

ψ#(yu, y
1
2 ) = cF

ζF (2)
· ρ(2u)yu + O

(

yu

log y

)

.

Proof From [11, Lemma 4.1], for 0 < δ < 1 one has

ψ(x, xδ) = cF · ρ

(

1

δ

)

x + O

(

x

log x

)

. (3.13)

Now arguing as in the previous proposition we get

ψ(yu, y
1
2 )# =

∑

N (l)≤yu ,P(l)≤y
1
2

μ2(l) =
∑

N (t2)≤yu ,P(t)≤y
1
2

μ(t)ψ

(

yu

N (t2)
, y

1
2

)

.

Nowwe put the estimate of (3.13) in the right-hand side of the last equation and the rest
of the proof would follow exactly same as in [3, pp. 190–191] where he has proved the
same result in the case of integers (i.e.OF = Z). From here [3] used certain properties
of the Dickman function ρ and μ function, which are same as in this case (including
the μ function). ��

It is clear fromLemma 3.1 that whenever ρ(2u)−2 log u > 0 and y is large enough,
one has

∑

N (m)≤yu hy(m) > 0. It is known from [5] that ρ(2u) − 2 log u > 0 for all

u < κ , where κ is the solution of the equation ρ(2u) = 2 log u and κ > 10
9 .

Lemma 3.4 Let f be a primitive form of weight (k1, k2, . . . , kn) ∈ (2Z)n. Then for
any fixed u with 1 ≤ u < κ , we have

T ( f , yu) ≥
∑

N (m)≤yu
hy(m) �u yu .

Proof Let gy : I → R be the multiplicative function defined by the Dirichlet convo-
lution identity

˜C(m) = (gy ∗ hy)(m).

Hence for any prime ideal p, from the definition of hy we have

gy(p) = ˜C(p) − hy(p) ≥ 0.
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476 R. Pal

By multiplicativity gy(m) ≥ 0 for any squarefree integral ideal m. Hence for u < κ

(so that by the discussion after Lemma 3.1, one has
∑

N (m)≤yu hy(m) > 0), we have

T ( f , yu) ≥
∑#

N (m)≤yu

˜C(m) =
∑#

N (d)≤yu
gy(d)

∑

N (l)≤ yu
N (d)

hy(l) ≥
∑

N (l)≤yu
hy(l).

The last inequality follows from the fact that every term on the left-hand side of the
inequality is positive and gy(OF ) = 1. ��
Lemma 3.5 Let f be a primitive form of weight (k1, k2, . . . , kn) ∈ (2Z)n. Then for
any fixed u, with 1 ≤ u < κ , one has

S( f , yu) �u yu .

Proof We have

S( f , yu) =
∑

N (m)≤yu

˜C(m) log yu −
∑

N (m)≤yu

˜C(m) log N (m)

=T ( f , yu) log yu −
∑

n≤yu
a(n) log n,

where a(n) := ∑

N (m)=n
˜C(m). Now using the Abel-summation formula one has

T ( f , yu) log yu −
∑

n≤yu
a(n) log n =

∫ yu

1

T ( f , t)

t
dt .

Now using Lemma 3.4 and the fact that T ( f , t) ≥ 0 for 1 ≤ t ≤ y, the lemma follows
immediately. ��

3.3 Proof of Theorem 1.1

(i) When (k1, k2, . . . , kn) ∈ (2Z)n , putting u = 10
9 , i.e. x = y

10
9 and using the com-

parison of the upper and the lower bounds of S( f , y
10
9 ) from (3.2) and Lemma 3.5,

we have

y �n,ε Q
9
20+ε

f .

(ii) For any other weight, note that for x ≤ y, one has

S( f , x) =
∑

N (m)≤x

˜C(m) log(
x

N (m)
) �

∑

N (m)≤ x
2

˜C(m).
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On the signs of Fourier coefficients of Hilbert cusp forms 477

We put x = y. Now for N (p) ≤ y1/2, one has ˜C(p) ≥ 1. It implies that

∑

N (m)≤ y
2

˜C(m) �
∑#

N (m)≤ y
2

˜C(m) = ψ#
(

y

2
,
( y

2

) 1
2
)

� y,

where the last inequality follows from (3.11). Now comparing the upper and the
lower bounds of S( f , y), we get

y �n,ε Q
1
2+ε

f .

4 Proof of Theorem 1.2

The idea of the proof of Theorem 1.2 is based on the work ofMatomäki and Radziwiłł,
who proved the result in the case of elliptic newforms of full level and weight (see
[9]). The following lemma will be useful to prove Theorem 1.2.

Lemma 4.1 Let K , L : R
+ → R

+ be such that K (x) → 0 and L(x) → ∞ for
x → ∞. Let g : I → {−1, 0, 1} be a multiplicative function such that for every
x ≥ 2 and p ∈ P ,

∑

N (p)≥x, g(p)=0

1

N (p)
≤ K (x) and

∑

N (p)≤x, g(p)=−1

1

N (p)
≥ L(x).

Then one has

|{m ∈ I|N (m) ≤ x : g(m) = 1}|
= (1 + o(1))|{m ∈ I|N (m) ≤ x : g(m) = −1}|

=
(

1

2
+ o(1)

)

cF x
∏

p∈P

(

1 − 1

N (p)

) (

1 + |g(p)|
N (p)

+ |g(p2)|
N (p)2

+ · · ·
)

,

where cF is residue of ζF at the pole s = 1.

To prove Lemma 4.1 we need two other lemmas about the mean value of the function
g, which is defined by

M(g) := lim
x→∞

1

N (x;OF )

∑

N (m)≤x

g(m),

where N (x;OF ) is the cardinality of integral ideals with norm less than or equals to
x . Those two lemmas (i.e. Lemmas 4.4, 4.5) are immediate consequences of certain
results proved in [7] on the topic of arithmetic semigroups (an example is the set of
integral ideals I ). For the convenience of reading let us rewrite those results by taking
the semigroup to be I (see [7, Corollary 4.4, Theorem 6.3]). These results would be
used further.
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Theorem 4.2 Let h : I → R be a multiplicative function bounded by 1. Then the
mean value M(h) exists. In particular if the series

∑

p∈P

|1 − h(p)|
N (p)

diverges, then M(h) vanishes to zero.

Theorem 4.3 Let h : I → C be a multiplicative function bounded by 1. Further
assume that

∑

p∈P

|1 − h(p)|
N (p)

< ∞.

Then M(h) exists and

M(h) =
∏

p∈P

(

1 − 1

N (p)

) (

1 + |h(p)|
N (p)

+ |h(p2)|
N (p)2

+ · · ·
)

.

Theorems 4.2 and 4.3 follows from [7, Theorem 6.3], [7, Corollary 4.4], respectively.

Lemma 4.4 When g is as given in Lemma 4.1, M(g) exists and is equal to zero.

Proof From the hypothesis of Lemma 4.1, we note that
∑

p∈P
1−g(p)
N (p)

diverges. It
follows from the fact that

∑

p∈P

1 − g(p)

N (p)
≥

∑

p∈P,g(p)=−1

2

N (p)
.

Now the lemma immediately follows directly from Theorem 4.2. ��

The next lemma concerns about the mean value of a non-negative multiplicative func-
tion on I. It is an obvious consequence of Theorem 4.3. We omit the proof.

Lemma 4.5 Let l : I → [0, 1] be a multiplicative function such that
∑

p∈P
1−l(p)
N (p)

converges. Then M(l) = ∏

p∈P (1 − 1
N (p)

)(1 + |l(p)|
N (p)

+ |l(p2)|
N (p)2

+ · · · ) exists.

Proof of Lemma 4.1 Recall that N (x;OF ) ∼ cF x (see [12, Theorem 11.1.5]). From
Lemma 4.4 we get

∑

N (m)≤x

g(m) = o(N (x;OF )) = o(x). (4.1)
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Note that from the hypothesis of Lemma 4.1, |g| satisfies the conditions of Lemma 4.5.
It follows from the fact that

∑

p∈P

1 − |g(p)|
N (p)

=
∑

p∈P,g(p)=0

1

N (p)
.

So putting l(m) = |g(m)| we get from Lemma 4.5 that

∑

N (m)≤x

|g(m)| = (1 + o(1))cF x
∏

p∈P

(

1 − 1

N (p)

) (

1 + |g(p)|
N (p)

+ |g(p2)|
N (p)2

+ · · ·
)

.

(4.2)

Now since g takes only three values {−1, 0, 1}, one has
∑

N (m)≤x

g(m) =
∑

m∈I,g(m)=1
N (m)≤x

1 −
∑

m∈I,g(m)=−1
N (m)≤x

1

and

∑

N (m)≤x

|g(m)| =
∑

m∈I,g(m)=1
N (m)≤x

1 +
∑

m∈I,g(m)=−1
N (m)≤x

1.

Hence the Lemma 4.1 follows from (4.1) and (4.2). ��
Lemma 4.1 leads us to the following result.

Lemma 4.6 Let K , L : R
+ → R

+ be such that K (x) → 0 and L(x) → ∞ for
x → ∞. Let j : I → R be a multiplicative function such that for every x ≥ 2 and
p ∈ P ,

∑

N (p)≥x, j(p)=0

1

N (p)
≤ K (x) and

∑

N (p)≤x, j(p)<0

1

N (p)
≥ L(x).

Then one has

|{m ∈ I|N (m) ≤ x : j(m) > 0}|
= (1 + o(1))|{m ∈ I|N (m) ≤ x : j(m) < 0}|

=
(

1

2
+ o(1)

)

cF x
∏

p∈P

(

1 − 1

N (p)

) (

1 + s(p)

N (p)
+ s(p2)

N (p)2
+ · · ·

)

,

where s(m) is 0 or 1 according as j(m) = 0 or j(m) �= 0.

Proof This is obvious by applying Lemma 4.1 to the multiplicative function which
takes value 0 when j is 0 and takes value j(m)

| j(m)| otherwise. ��
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We would need the following lemma to apply Lemma 4.6 to prove Theorem 1.2.

Lemma 4.7 Let f be a primitive adelic Hilbert cusp form of weight (k1, k2, . . . , kn) ∈
(2Z)n and full level. Let C(m) denote its Fourier coefficients. Then one has

∑

N (p)≥x,C(p)=0

1

N (p)
= o(1) and

∑

C(p)<0

1

N (p)

diverges.

Proof The first result follows immediately from [15, pp. 162–163]. For the second
case, from the Sato–Tate theorem one has C(p) < 0 for a positive proportion of prime
ideals in P , when they are counted according to their norms (see [1, pp. 1–6]). We
recall from (3.10) that

∑

N (p)≤x

1

N (p)
= log log x + B + o(1).

The right-hand side diverges. To prove the theorem consider the sum

∑

x≤N (p)≤ex

1

N (p)
= log x − log log x + o(1).

Now the term 1
N (p)

is decreasing in the sense that the norms are increasing. So if we
consider any set positive proportion of primes with their norms within [x, ex ] and
restrict the above sum in this set, the right-hand side would still diverge. Hence the
second result follows. ��
Proof of Theorem 1.2 Lemma 4.7 implies that we can put j(m) = C(m) in Lemma 4.6
and hence the theorem follows. ��
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