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Abstract We extend the results of Kaneko—Zagier and Baba—Granath on relations of
supersingular polynomials and solutions of certain second-order modular differential
equations.
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1 Introduction

An elliptic curve E over a field K of characteristic p > 0 is called supersingular if it
has no p-torsion over K. This condition depends only on the j-invariant of E, and it is
known that there are only finitely many supersingular j-invariants, all being contained
inF > . We define the supersingular polynomial s s, (X) as the monic polynomial whose
roots are exactly all the supersingular j-invariants:

ssp(X) = ]‘[ (X — j(EB)).
E/F,
E:supersingular

Because the set of supersingular j-invariants in characteristic p is stable under the
conjugation over IF,, we have ss,(X) € F,[X].
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Various lifts of ss,(X) to characteristic 0 are reviewed and studied in Kaneko and
Zagier [1]. In particular, they constructed a lift by using a certain differential operator
on the space of modular forms. Baba and Granath [2] extended this construction by
introducing new differential operators.

In this paper, we unify and generalize these results, by considering a differen-
tial operator arising from a product of Eisenstein series E4, Eg, and the discriminant
function A. With this operator we construct a second-order differential operator which
gives rise to an endomorphism of M. We write an eigenform of this operator explic-
itly in terms of hypergeometric series. For k = p — 1, we show that the associated
polynomial F of this eigenform F satisfies

ssp(X) = X (X —1728)° F(X) mod p,

with suitable §, ¢ € {0, 1}.

2 Modular forms and supersingular polynomials

For positive even integer k, we denote by M the space of holomorphic modular forms
of weight k on I" = PSL,(Z). Let Ex(7) be the Eisenstein series of weight k on I
defined by

o]

2k .
Er(m)=1- 2 Z(Zd“)q” (q =),

n=1 “din
where 7 is a variable in the Poincaré upper half-plane $) and Bj the kth Bernoulli

number. For even k > 4, we have Ex(t) € M. We also define the discriminant
function A(t) € M, and the elliptic modular function j (t), respectively, by

E4(1)® — Eo(7)?

A(T) =
® 1728
o0
=4 H(l — g™ =g —24¢° +252¢° — 1472¢* + - -
n=1
and
. Ei(x)® 1 )
j@®= = — + 744 + 196884g + 21493760g> + - - - .
A(T) q

The Gauss hypergeometric series is defined by

o (@)n (B x"
2Fi(e Bryix) =) — (x| < D),
=0 Y)n n!
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where (¢)g = 1 and (@), = a(x+1)--- (¢ +n—1) (n > 1). We note that the series
2 Fi(a, B; v; x) becomes a polynomial when « or § is a negative integer and y is not
a negative integer.

For even k > 4, we can write k uniquely in the form

k=12m 445+ 6¢ with m € Z>o, 6 € {0, 1,2}, ¢ € {0, 1}. (1)

Under this notation, any modular form f(t) € M} can be written uniquely as
F@) = Ea(0)’ Es()* A@" [ (j (©), &)
where f is a polynomial of degree less than or equal to m. We call fthe associated

polynomial of f.
The following representation of ss,(X) is essentially due to Deuring [3].

Lemma 1 Let p > 5beaprime number andwrite p—1 inthe form 12m+46+6¢ (m €
Z=o, 86 €{0,1,2}, € € {0, 1}). Then

s . 5 28—3ec _ 1728
s5p(X) = X" X —1728)°2 Fy ( —m, 5 = =1 L=~ ) mod p. ()

Proof We define the monic polynomial U (X) of degree n > 0 by
1 5.1.1728 0 1
X" 2 Fy (‘2 b T) U,)(X) + 0 (x).
XX —1728) 2 F (G, B LB = Ul (X) + 0 (1)

By [1, Proposition 5], we have ss,(X) = er6+E(X) mod p. The first two param-
eters of the hypergeometric series in (3) reduce modulo p to

(5. 3) (mod p) ifp=1 (mod 12),
5 28-3¢\ |(5.7y) (modp) ifp=5 (mod 12),
<_m’ 2 6 > &) (mod p) ifp=7 (mod 12),
(13, ) (mod p) if p=11 (mod 12).
Since 7 Fi(a, b; c; x) = 2F1(b, a; c; x), we see that U€+8+€(X) is congruent to the
left-hand side of (3) modulo p. O

3 Construction of the endomorphism
In this section, we construct an endomorphism ¢, ; of M. Letr, s, t be integers, not

all zero, and k be an even integer greater than or equal to 4. Then, for the meromorphic
modular form g(t) = E4(1)" E¢(1)* A(t)" # 0 of weight u := 4r + 6s + 12t and
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f € My, we define the differential operator d, by

kg 1 d d
g (1) = gk ()(1) = (1) — ;gg((;)f(r) (/ = 5ride = 61%> ,

and for m € Z>g, 6 € {0, 1,2}, and ¢ € {0, 1} with k = 12m + 45 + 6¢, define the
operator ¢, i by

: 2k (k +2)
¢g,k(f) = E_4 !(3g,k+2 o ag,k)(f) - u—2E4f
—g(Sk—uf)(Sk—ueer+2s+3,))@f
u 5
+1u9_22(rk_”8)(rk_”8+6(7+S+2t))%f ' @
4

Note that the function g(t) is not always a holomorphic modular form. Except for
the case of (7, 5, 1) = (0, 0, 1), the image of f € M, under 9, ; is not holomorphic in
general.

Theorem 1 The differential operator ¢g i is an endomorphism of M.
To prove the theorem, we need two lemmas.

Lemma 2 The operator 9, is written as

E Es
)

4r 65 12 k (, Es , . Ej
0g(f) = —0g,(f) + —0g,(f) + —0a(f) =0a(f) + —|(2r— +3s— ] f.
u u u 6u 4

Proof This is easily computed by using the well-known relation (due to Ramanujan)

E) = ©)

Lemma 3 Putv = (sk — ue)/2 and w = (rk — ua)/3. Then

udg k(E{E¢AS) = UEZ+2EZ—1AC n UJEZ_lEg“A”,
u? (g k12 © Dg 1) (ESEEAC) = 1728v(v 4 2(r + 25 + 3t))EZ+1 Eg*ZAc-H
+ @+ w)v+w—20)E{T EEA°
— 1728w (w +2(r +s + ZI))EZ_ZEEA”H_ %)
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Proof One can easily see that the operator d, satisfies the Leibniz rule:
02,k+1(FG) = 0a k(F)G + Foa,1(G)

for F € My and G € M;. Hence we can prove the lemma by direct calculation using
(5) and the following relations:

1 1
IA(Ey) = ~3Fs, 9r(Eg) = —EEf, 9a(A) =0, E;— E}=1728A.

]

Proof of Theorem 1 For even k > 4, write k in the form k = 12m + 45 + 6¢ as before
and assume the numbers a, ¢ satisfya =6 mod 3 (0 <a <3m+6), 0 <c <m,
and k = 4a + 6¢ + 12c¢, so that the forms EZ EgA" constitute basis elements of M.
We now compute ¢ 1 (Ef E¢ A°).

Since (v + w)(v + w — 2¢) = 12k(k + 2) — 2t (k + Duc + u?c?, we can obtain
from (7) the following equation:

u? (g k42 0 dg k)(ESEEAS) — t%k(k 4 2)Eq - E§ EEAC
= 1728v(v + 2(r + 25 + 30) ES T EE2 ACT!
+ulefe =2tk + 1) /u} ESTVEEAC — 1728w(w + 2(r + 5 + 20) E§ 2 EE AT

Furthermore, by using 1728v(v + 2(r + 25 + 3t)) = 432(sk — ue)(sk —ue +4(r +
25 + 3t)), we have

u? (3g k42 0 g k) (ESEEA) — 1%k (k + 2) Ey - E{EEA°

Eq A
—432(sk —ue)(sk —ue + 4@ + 25 + 3t)) 2 Ej E6AC
6
2t(k+1
=u’c {c - g} EZ“EEAC
u
— 1728w (w + 2(r + s + 20) E{ 2 EE AT,

We define A(x) = ll%z(rk —ux)(rk —ux 4+ 6(r + s + 2t)), then 1728w (w + 2(r +

s +21)) = ur(a). Adding uzk(S)EZ_zEgA"+1 to both sides of the above equation
and dividing them by u? E4, we get

1 12k(k 4 2)
bk (ESEEAT) = — {(ag k42 0 dg k) (ESEEAT) — —E4 EYEEA°
432 EsA
— —(sk—ue)(sk—u8+4(r+2s+3t)) E4E6AC
6

2(rk—148)(;"lc—u8—f-6(r—i—s—}-2t)) E4E6A‘}
4
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=c {c - @} ESEAC — (Ma) — M) E{ P EEATL. (8)

The right-hand side is an element of My if a > 3. If a < 3, we have a = § (because
a =6 (mod 3)) and the coefficient A(a) — A(§) of Ej_3 EgAC"’1 vanishes, hence the
right-hand side is in M. Thus ¢,  is an endomorphism of M. O

4 Modular solutions of ¢, ;(f) = 0 and supersingular polynomials

Throughout this section, we assume 2¢(k + 1) # cu (1 < ¢ < m) for given r, s, t,
and k = 12m + 46 + 6¢. By Eq.(8), we see that the matrix representation of ¢g «
in the ordered base {Ei”"H E¢ ..., Eﬁ EgA’"} is a triangular matrix and obtain the

eigenvalues c(c — W), 0 < ¢ < m of ¢4 1 as diagonal elements. Hence, under
the assumption, all eigenvalues of endomorphism ¢, ; are different.

Theorem 2 (i) The following modular form Fg () = 14 O(q) is the unique eigen-
vector of ¢g i with eigenvalue 0:

Fo (1) = E4(1)" P Eg(1)*
i+ @Qr—3s—6nk+1) 28-—3¢ - 2t(k+1) 1728)
12 6u 6 u i)
©9)

X 2 F1 (—m,

(ii) Let k = p — 1 where p > 5 is prime and assume that u # 0 (mod p). Then the
associated polynomial Fy ,_1(X) of Fg ,—1(1) has p-integral coefficients and

55,(X) = X*(X — 1728)°Fy p—1(X) mod p.

Proof (i) By using (5) and (6) to expand the differential equation ¢ ;(f) = 0, we
obtain

")+ A(D) f'(r) + B(x) f(x) =0,

k+1 k+1 E2 E
A(r) = — ki E2+L<3s—4+2r—6>,

6 3u Eg E4
k(k + 1 k(k+1) 9sE,E> + 4rELE
B(‘E): (+)Eé_ (+)-S44+766
12 36u E4Eq

E} — E? {ss(k+1)E B 2r5(k+1)—u5(5—1)E§}_ (10)

3
E% Eg 2u 4 9u

This is a special case of modular differential equations with regular singularities at
elliptic points for SL,(Z) treated in [4]. More explicitly, the differential equation (10)
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is expressed as follows using the symbol in [4, Theorem B]:

D stk+1) 2rtk+1) setk+1) 2rék+1) —ud(—1)
k u ’ 3u ’ 2u ’ u '

Applying [4, Theorem C] to this parameters, we get the hypergeometric representation
of Fg 1 (7). We note that the exponent of Eg(7) is a solution of the following quadratic
equation:

2s(k + 1 2se(k + 1
x2_<ﬁ+1)x+M=0
u u

Since ¢ € {0, 1}, we have e(e — 1) = 0 and thus the left-hand side of the above equation
factors into (x — &)(x — 2s(k + 1)/u + ¢ — 1). As pointed out in [4, Remark 4], we
can choose ¢ as exponent of E¢(7). (ii) For k = p — 1, by (2) and the hypergeometric
formula (9), the associated polynomial Fy ,,_1(X) of F, ,_1(7) is as follows:

~ 5 2r —3s—6t)p 256 —3¢ 2tp 1728
Fop1(X)=X"F | —m, — - 3 l——; —
zp=1(X) 2‘(’”12Jr 6u 6 u X
5 25-3 1728
=X"F | —-m, — — 8; ; — mod p.
12 6 X

Hence X%(X — 1728)8Fg,p_1(X) is congruent to ss5,(X) modulo p by Lemma 1. O

Remark 1 The case of (r, s, 1) = (0, 0, 1) was studied in the paper [1] by Kaneko and
Zagier. The corresponding operator

k
Iax (@) = f'(x) = EEz(f)f(T) P My — My

is called the Ramanujan—Serre derivative. We note that the logarithmic derivative of
A(r)isequalto Ex(t). If k %5 2 (mod 3), the function Fx x(7) coincides with Fi(t)
in [1, Sect. 8] up to a constant multiple. Moreover, Baba and Granath studied the cases
of (r,s,t) = (1,0,0) and (0, 1, 0) in [2]. The corresponding operators are given,
respectively, by

5 _ k E(t) 5 o k E{(t)
Ek(N)(T) = f(7) — me(f), Ee.k(/)(T) = f(7) — gmf(f).

Hence, the differential equations ¢, «(f) = 0 and ¢g, 1 (f) = O coincide with
[2, Eq. (5)] and [2, Eq. (8)], respectively. Consequently, the symbols Fg, x(t) and
Fgq k() we use are same as theirs, but the definition of our operator ¢, ; and their
operator ¢ are slightly different.
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