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Abstract We extend the results of Kaneko–Zagier and Baba–Granath on relations of
supersingular polynomials and solutions of certain second-order modular differential
equations.
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1 Introduction

An elliptic curve E over a field K of characteristic p > 0 is called supersingular if it
has no p-torsion over K . This condition depends only on the j-invariant of E , and it is
known that there are only finitely many supersingular j-invariants, all being contained
inFp2 .Wedefine the supersingular polynomial ssp(X) as themonic polynomialwhose
roots are exactly all the supersingular j-invariants:

ssp(X) =
∏

E/Fp
E :supersingular

(
X − j (E)

)
.

Because the set of supersingular j-invariants in characteristic p is stable under the
conjugation over Fp, we have ssp(X) ∈ Fp[X ].
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Various lifts of ssp(X) to characteristic 0 are reviewed and studied in Kaneko and
Zagier [1]. In particular, they constructed a lift by using a certain differential operator
on the space of modular forms. Baba and Granath [2] extended this construction by
introducing new differential operators.

In this paper, we unify and generalize these results, by considering a differen-
tial operator arising from a product of Eisenstein series E4, E6, and the discriminant
functionΔ. With this operator we construct a second-order differential operator which
gives rise to an endomorphism of Mk . We write an eigenform of this operator explic-
itly in terms of hypergeometric series. For k = p − 1, we show that the associated
polynomial F̃ of this eigenform F satisfies

ssp(X) = X δ(X − 1728)ε F̃(X) mod p,

with suitable δ, ε ∈ {0, 1}.

2 Modular forms and supersingular polynomials

For positive even integer k, we denote by Mk the space of holomorphic modular forms
of weight k on Γ = PSL2(Z). Let Ek(τ ) be the Eisenstein series of weight k on Γ

defined by

Ek(τ ) = 1 − 2k

Bk

∞∑

n=1

(∑

d|n
dk−1

)
qn (q = e2π iτ ),

where τ is a variable in the Poincaré upper half-plane H and Bk the kth Bernoulli
number. For even k ≥ 4, we have Ek(τ ) ∈ Mk . We also define the discriminant
function Δ(τ) ∈ M12 and the elliptic modular function j (τ ), respectively, by

Δ(τ) = E4(τ )3 − E6(τ )2

1728

= q
∞∏

n=1

(1 − qn)24 = q − 24q2 + 252q3 − 1472q4 + · · ·

and

j (τ ) = E4(τ )3

Δ(τ)
= 1

q
+ 744 + 196884q + 21493760q2 + · · · .

The Gauss hypergeometric series is defined by

2F1(α, β; γ ; x) =
∞∑

n=0

(α)n(β)n

(γ )n

xn

n! (|x | < 1),
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where (α)0 = 1 and (α)n = α(α +1) · · · (α +n−1) (n ≥ 1). We note that the series
2F1(α, β; γ ; x) becomes a polynomial when α or β is a negative integer and γ is not
a negative integer.

For even k ≥ 4, we can write k uniquely in the form

k = 12m + 4δ + 6ε with m ∈ Z≥0, δ ∈ {0, 1, 2}, ε ∈ {0, 1}. (1)

Under this notation, any modular form f (τ ) ∈ Mk can be written uniquely as

f (τ ) = E4(τ )δE6(τ )εΔ(τ)m f̃
(
j (τ )

)
, (2)

where f̃ is a polynomial of degree less than or equal to m. We call f̃ the associated
polynomial of f .

The following representation of ssp(X) is essentially due to Deuring [3].

Lemma 1 Let p ≥ 5beaprimenumber andwrite p−1 in the form12m+4δ+6ε (m ∈
Z≥0, δ ∈ {0, 1, 2}, ε ∈ {0, 1}). Then

ssp(X) = Xm+δ(X − 1728)ε2F1

(
−m,

5

12
− 2δ − 3ε

6
; 1; 1728

X

)
mod p. (3)

Proof We define the monic polynomial U ε
n (X) of degree n ≥ 0 by

Xn
2F1

(
1
12 ,

5
12 ; 1; 1728

X

)
= U 0

n (X) + O
( 1
X

)
,

Xn−1(X − 1728) 2F1
( 7
12 ,

11
12 ; 1; 1728

X

) = U 1
n (X) + O

( 1
X

)
.

By [1, Proposition 5], we have ssp(X) = U ε
m+δ+ε(X) mod p. The first two param-

eters of the hypergeometric series in (3) reduce modulo p to

(
−m,

5

12
− 2δ − 3ε

6

)
≡

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

( 1
12 ,

5
12 ) (mod p) if p ≡ 1 (mod 12),

( 5
12 ,

1
12 ) (mod p) if p ≡ 5 (mod 12),

( 7
12 ,

11
12 ) (mod p) if p ≡ 7 (mod 12),

( 1112 ,
7
12 ) (mod p) if p ≡ 11 (mod 12).

Since 2F1(a, b; c; x) = 2F1(b, a; c; x), we see that U ε
m+δ+ε(X) is congruent to the

left-hand side of (3) modulo p. ��

3 Construction of the endomorphism

In this section, we construct an endomorphism φg,k of Mk . Let r, s, t be integers, not
all zero, and k be an even integer greater than or equal to 4. Then, for the meromorphic
modular form g(τ ) = E4(τ )r E6(τ )sΔ(τ)t �≡ 0 of weight u := 4r + 6s + 12t and
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f ∈ Mk , we define the differential operator ∂g by

∂g( f )(τ ) = ∂g,k( f )(τ ) = f ′(τ ) − k

u

g′(τ )

g(τ )
f (τ )

(
′ = 1

2π i

d

dτ
= q

d

dq

)
,

and for m ∈ Z≥0, δ ∈ {0, 1, 2}, and ε ∈ {0, 1} with k = 12m + 4δ + 6ε, define the
operator φg,k by

φg,k( f ) = 1

E4

{
(∂g,k+2 ◦ ∂g,k)( f ) − t2k(k + 2)

u2
E4 f

− 432

u2
(sk − uε)(sk − uε + 4(r + 2s + 3t))

E4Δ

E2
6

f

+192

u2
(rk − uδ)

(
rk − uδ + 6(r + s + 2t)

) Δ

E2
4

f

}
. (4)

Note that the function g(τ ) is not always a holomorphic modular form. Except for
the case of (r, s, t) = (0, 0, 1), the image of f ∈ Mk under ∂g,k is not holomorphic in
general.

Theorem 1 The differential operator φg,k is an endomorphism of Mk.

To prove the theorem, we need two lemmas.

Lemma 2 The operator ∂g is written as

∂g( f ) = 4r

u
∂E4( f ) + 6s

u
∂E6( f ) + 12t

u
∂Δ( f ) = ∂Δ( f ) + k

6u

(
2r

E6

E4
+ 3s

E2
4

E6

)
f.

(5)

Proof This is easily computed by using the well-known relation (due to Ramanujan)

E ′
2 = E2

2 − E4

12
, E ′

4 = E2E4 − E6

3
, E ′

6 = E2E6 − E2
4

2
. (6)

��

Lemma 3 Put v = (sk − uε)/2 and w = (rk − ua)/3. Then

u ∂g,k(E
a
4 E

ε
6Δ

c) = vEa+2
4 Eε−1

6 Δc + wEa−1
4 Eε+1

6 Δc,

u2 (∂g,k+2 ◦ ∂g,k)(E
a
4 E

ε
6Δ

c) = 1728v(v + 2(r + 2s + 3t))Ea+1
4 Eε−2

6 Δc+1

+ (v + w)(v + w − 2t)Ea+1
4 Eε

6Δ
c

− 1728w(w + 2(r + s + 2t))Ea−2
4 Eε

6Δ
c+1. (7)
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Proof One can easily see that the operator ∂Δ satisfies the Leibniz rule:

∂Δ,k+l(FG) = ∂Δ,k(F)G + F∂Δ,l(G)

for F ∈ Mk and G ∈ Ml . Hence we can prove the lemma by direct calculation using
(5) and the following relations:

∂Δ(E4) = −1

3
E6, ∂Δ(E6) = −1

2
E2
4 , ∂Δ(Δ) = 0, E3

4 − E2
6 = 1728Δ.

��
Proof of Theorem 1 For even k ≥ 4, write k in the form k = 12m + 4δ + 6ε as before
and assume the numbers a, c satisfy a ≡ δ mod 3 (0 ≤ a ≤ 3m + δ), 0 ≤ c ≤ m,
and k = 4a + 6ε + 12c, so that the forms Ea

4 E
ε
6Δ

c constitute basis elements of Mk .
We now compute φg,k(Ea

4 E
ε
6Δ

c).
Since (v + w)(v + w − 2t) = t2k(k + 2) − 2t (k + 1)uc + u2c2, we can obtain

from (7) the following equation:

u2 (∂g,k+2 ◦ ∂g,k)(E
a
4 E

ε
6Δ

c) − t2k(k + 2)E4 · Ea
4 E

ε
6Δ

c

= 1728v(v + 2(r + 2s + 3t))Ea+1
4 Eε−2

6 Δc+1

+ u2c{c − 2t (k + 1)/u}Ea+1
4 Eε

6Δ
c − 1728w(w + 2(r + s + 2t))Ea−2

4 Eε
6Δ

c+1.

Furthermore, by using 1728v(v + 2(r + 2s + 3t)) = 432(sk − uε)(sk − uε + 4(r +
2s + 3t)), we have

u2 (∂g,k+2 ◦ ∂g,k)(E
a
4 E

ε
6Δ

c) − t2k(k + 2)E4 · Ea
4 E

ε
6Δ

c

− 432(sk − uε)(sk − uε + 4(r + 2s + 3t))
E4Δ

E2
6

Ea
4 E

ε
6Δ

c

= u2c

{
c − 2t (k + 1)

u

}
Ea+1
4 Eε

6Δ
c

− 1728w(w + 2(r + s + 2t))Ea−2
4 Eε

6Δ
c+1.

We define λ(x) = 192
u2

(rk − ux)(rk − ux + 6(r + s + 2t)), then 1728w(w + 2(r +
s + 2t)) = u2λ(a). Adding u2λ(δ)Ea−2

4 Eε
6Δ

c+1 to both sides of the above equation
and dividing them by u2E4, we get

φg,k(E
a
4 E

ε
6Δ

c) = 1

E4

{
(∂g,k+2 ◦ ∂g,k)(E

a
4 E

ε
6Δ

c) − t2k(k + 2)

u2
E4 · Ea

4 E
ε
6Δ

c

− 432

u2
(sk − uε)(sk − uε + 4(r + 2s + 3t))

E4Δ

E2
6

Ea
4 E

ε
6Δ

c

+48

u2
(rk − uδ)(rk − uδ + 6(r + s + 2t))

Δ

E2
4

Ea
4 E

ε
6Δ

c

}
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18 T. Nakaya

= c

{
c − 2t (k + 1)

u

}
Ea
4 E

ε
6Δ

c − (λ(a) − λ(δ))Ea−3
4 Eε

6Δ
c+1. (8)

The right-hand side is an element of Mk if a ≥ 3. If a < 3, we have a = δ (because
a ≡ δ (mod 3)) and the coefficient λ(a) − λ(δ) of Ea−3

4 Eε
6Δ

c+1 vanishes, hence the
right-hand side is in Mk . Thus φg,k is an endomorphism of Mk . ��

4 Modular solutions of φg,k( f ) = 0 and supersingular polynomials

Throughout this section, we assume 2t (k + 1) �= cu (1 ≤ c ≤ m) for given r, s, t ,
and k = 12m + 4δ + 6ε. By Eq. (8), we see that the matrix representation of φg,k

in the ordered base {E3m+δ
4 Eε

6, . . . , E
δ
4E

ε
6Δ

m} is a triangular matrix and obtain the
eigenvalues c(c − 2t (k+1)

u ), 0 ≤ c ≤ m of φg,k as diagonal elements. Hence, under
the assumption, all eigenvalues of endomorphism φg,k are different.

Theorem 2 (i) The following modular form Fg,k(τ ) = 1+ O(q) is the unique eigen-
vector of φg,k with eigenvalue 0:

Fg,k(τ ) = E4(τ )3m+δE6(τ )ε

× 2F1

(
−m,

5

12
+ (2r − 3s − 6t)(k + 1)

6u
− 2δ − 3ε

6
; 1 − 2t (k + 1)

u
; 1728
j (τ )

)
.

(9)

(ii) Let k = p − 1 where p ≥ 5 is prime and assume that u �≡ 0 (mod p). Then the
associated polynomial F̃g,p−1(X) of Fg,p−1(τ ) has p-integral coefficients and

ssp(X) = X δ(X − 1728)ε F̃g,p−1(X) mod p.

Proof (i) By using (5) and (6) to expand the differential equation φg,k( f ) = 0, we
obtain

f ′′(τ ) + A(τ ) f ′(τ ) + B(τ ) f (τ ) = 0,

A(τ ) = −k + 1

6
E2 + k + 1

3u

(
3s

E2
4

E6
+ 2r

E6

E4

)
,

B(τ ) = k(k + 1)

12
E ′
2 − k(k + 1)

36u
· 9sE

′
4E

2
4 + 4r E ′

6E6

E4E6

+ E3
4 − E2

6

E2
4E

2
6

{
sε(k + 1)

2u
E3
4 − 2rδ(k + 1) − uδ(δ − 1)

9u
E2
6

}
. (10)

This is a special case of modular differential equations with regular singularities at
elliptic points for SL2(Z) treated in [4]. More explicitly, the differential equation (10)
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On modular solutions of certain modular differential... 19

is expressed as follows using the symbol in [4, Theorem B]:

Dk

(
s(k + 1)

u
,
2r(k + 1)

3u
,
sε(k + 1)

2u
,
2rδ(k + 1) − uδ(δ − 1)

9u

)
.

Applying [4, TheoremC] to this parameters, we get the hypergeometric representation
of Fg,k(τ ). We note that the exponent of E6(τ ) is a solution of the following quadratic
equation:

x2 −
(
2s(k + 1)

u
+ 1

)
x + 2sε(k + 1)

u
= 0.

Since ε ∈ {0, 1}, we have ε(ε−1) = 0 and thus the left-hand side of the above equation
factors into (x − ε)(x − 2s(k + 1)/u + ε − 1). As pointed out in [4, Remark 4], we
can choose ε as exponent of E6(τ ). (ii) For k = p− 1, by (2) and the hypergeometric
formula (9), the associated polynomial F̃g,p−1(X) of Fg,p−1(τ ) is as follows:

F̃g,p−1(X) = Xm
2F1

(
−m,

5

12
+ (2r − 3s − 6t)p

6u
− 2δ − 3ε

6
; 1 − 2tp

u
; 1728

X

)

≡ Xm
2F1

(
−m,

5

12
− 2δ − 3ε

6
; 1; 1728

X

)
mod p.

Hence X δ(X − 1728)ε F̃g,p−1(X) is congruent to ssp(X) modulo p by Lemma 1. ��
Remark 1 The case of (r, s, t) = (0, 0, 1) was studied in the paper [1] by Kaneko and
Zagier. The corresponding operator

∂Δ,k( f )(τ ) = f ′(τ ) − k

12
E2(τ ) f (τ ) : Mk → Mk+2

is called the Ramanujan–Serre derivative. We note that the logarithmic derivative of
Δ(τ) is equal to E2(τ ). If k �≡ 2 (mod 3), the function FΔ,k(τ ) coincides with Fk(τ )

in [1, Sect. 8] up to a constant multiple. Moreover, Baba and Granath studied the cases
of (r, s, t) = (1, 0, 0) and (0, 1, 0) in [2]. The corresponding operators are given,
respectively, by

∂E4,k( f )(τ ) = f ′(τ ) − k

4

E ′
4(τ )

E4(τ )
f (τ ), ∂E6,k( f )(τ ) = f ′(τ ) − k

6

E ′
6(τ )

E6(τ )
f (τ ).

Hence, the differential equations φE4,k( f ) = 0 and φE6,k( f ) = 0 coincide with
[2, Eq. (5)] and [2, Eq. (8)], respectively. Consequently, the symbols FE4,k(τ ) and
FE6,k(τ ) we use are same as theirs, but the definition of our operator φg,k and their
operator φ are slightly different.
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