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Abstract
Wegive an explicit recursive description of theHilbert series andGröbner bases for the
family of quadratic ideals defining the jet schemes of a double point. We relate these
recursions to the Rogers–Ramanujan identity and prove a conjecture of the second
author, Oblomkov and Rasmussen.
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1 Introduction

In this paper, we study a family of quadratic ideals defining the jet schemes for the
double point D = Spec k[x]/x2. Here k is a field of characteristic zero. Recall that
the (n− 1)-jet scheme of X is defined as the space of formal maps Spec k[t]/tn → X
[11]. In the case of the double point, such a formal map is defined by a polynomial
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68 Y. Bai et al.

x(t) = x0 + x1t + · · · + xn−1t
n−1,

such that x(t)2 ≡ 0 mod tn . By expanding this equation,we get a systemof equations

f1 = x20 , f2 = 2x0x1, . . . , fn =
n−1∑

i=0

xi xn−1−i .

We denote the defining ideal of Jetn−1D ⊆ A
n by

In := 〈 f1, . . . , fn〉 ⊆ Rn := k[x0, . . . , xn−1].

The ring Rn is Z2≥0-graded by assigning the grading (i, 1) to xi . It is then clear that
the ideal In is bihomogeneous. Let

Hn(q, t) =
∑

i, j≥0

dimk(Rn/In)i, j q
i t j ∈ Z[[q, t]]

denote the bigraded Hilbert series for Rn/In . Our first main result is the following.

Theorem 1.1 The series Hn(q, t) satisfies the recursion relation

Hn(q, t) = Hn−2(q, qt) + t Hn−3(q, q2t)

1 − qn−1t

with initial conditions

H0(q, t) = 1, H1(q, t) = 1 + t, H2(q, t) = 1

1 − qt
+ t .

Using this recursion relation, we obtain explicit combinatorial formulas for
Hn(q, t):

Theorem 1.2 The Hilbert series Hn(q, t) is given by the following explicit formula:

Hn(q, t) =
∞∑

p=0

(h(n,p)+1
p

)
q

· q p(p−1)t p

(1 − qn−h(n,p)t) · · · (1 − qn−1t)
,

where h(n, p) = 
 n−p
2 �.

In the limit n → ∞, we reprove the theorem of Bruschek et al. [4], which relates the
Hilbert series of the arc space for the double point to the Rogers–Ramanujan identity.
In fact, we refine their result by considering an additional grading, see Eq. (7.1) .
Similar results for n = ∞ were obtained by Feigin–Stoyanovsky [8,9], Lepowsky et
al. [5,6], and the second author, Oblomkov and Rasmussen in [10].
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Quadratic ideals and Rogers–Ramanujan recursions 69

Remark 1.3 We note that in the Lie theoretic literature the variables of Rn are often
indexed x1, x2, . . . or x−1, x−2, . . . instead of our choice x0, x1, . . .. We feel our nor-
malization is more natural for purposes of commutative algebra.

Although our approach to the computation of the Hilbert series is inspired by [4], it
is quite different. The key result in [4] shows that for n = ∞ the polynomials fk form
a Gröbner basis of the ideal I∞. As shown below, the Gröbner basis of the ideal In
for finite n is larger and has a very subtle recursive structure. We completely describe
such a basis in Theorems 4.2 and 4.6. In particular, we prove the following.

Theorem 1.4 Let k > 2. Then the reduced Gröbner basis for In contains
(
 n−k+1

2 �
k−2

)

polynomials of degree k.

Our proof of Theorem 1.1 does not use Gröbner bases at all. First, by an explicit
inductive argument in Theorem 2.2 we give a complete description of the first syzygy
module for fi . Then, we define a “shift operator” S : Rn → Rn+1, which sends xi to
xi+1, and identify In ∩ x0Rn and In/(In ∩ x0Rn) with the images of In−3 and In−2
under appropriate powers of S. This implies the recursion relation in Theorem 1.1.

Remark 1.5 The shift operator has a left inverse given by xi → xi−1 for i ≥ 1. It
can be extended to a derivation, and in the n → ∞ limit this derivation has been
successfully used in work of Capparelli–Lepowsky–Milas as well as Kanade [5,12] to
prove results similar to ours, using a backward induction argument. This is in contrast
to our forward inductions which work for all n. We note also that in [4] a forward
induction argument is used in the n → ∞ limit. The representation-theoretic origin
of the shift operators lies in the lattice part of the affine Weyl group of type A1, but
we do not pursue this connection further.

We also observe a recursive structure in the minimal free resolution of Rn/In . In
particular, we prove the following:

Theorem 1.6 Let b(i, n) denote the rank of the i th term in the minimal free resolution
for Rn/In, in other words the i th Betti number. Then

b(i, n) = b(i, n − 1) + b(i − 1, n − 3) + b(i − 2, n − 3).

As a consequence, we can compute the projective dimension of Rn/In .

Corollary 1.7 The projective dimension of Rn/In equals � 2n
3 �.

Remark 1.8 It is easy to see that the reduced scheme (Jetn−1D)red is a linear subspace
given by the equations x0 = . . . = x
 n−1

2 � = 0 and has dimension

dim Jetn−1D = n − 1 −
⌊
n − 1

2

⌋
=

⌈
n − 1

2

⌉
.

A more careful analysis of the gradings in Theorem 1.6 implies another formula
for the series Hn(q, t) which was first conjectured in [10].
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70 Y. Bai et al.

Theorem 1.9 The Hilbert series of Rn/In has the following form:

Hn(q, t) = 1
∏n−1

i=0 (1 − qi t)

∞∑

p=0

(−1)p
p−1∏

k=0

(1 − qkt)

×
(
q

5p2−3p
2 t2p

(
n − 2p + 1

p

)

q
− q

5p2+5p
2 t2p+2

(
n − 2p − 1

p

)

q

)
.

The paper is organized as follows. In Sect. 2 we introduce the shift operator S,
describe its properties and prove Theorem 2.2 which explicitly describes all syzygies
between the fi . In Sect. 3, we use the shift operator to find a recursive relation for
the Hilbert series and to prove Theorem 1.1. In Sect. 4, we use the recursive structure
to describe a Gröbner basis for In . In Sect. 5, we give a recursive description of the
minimal free resolution of Rn/In and prove Theorem 1.6. In Sect. 6, we solve both of
the above recursions explicitly (with the given initial conditions) and give two explicit
combinatorial formulas for Hn(q, t). Finally, in Sect. 7 we briefly discuss the limit of
all these techniques at n → ∞ and the connection to the Rogers–Ramanujan identity.

2 Ideals and syzygies

2.1 Ideals

Let Rn = k[x0, . . . , xn−1] and fk = ∑k−1
i=0 xi xk−1−i . Define In ⊆ Rn to be the ideal

generated by f1, . . . , fn . Let Fn be the free Rn-module with the basis e1, . . . , en .
Consider the map φn : Fn → Rn given by the equation

φn(α1, . . . , αn) = f1α1 + . . . + fnαn .

The Rn-module Ker(φn) is called the first syzygy module of In .

Lemma 2.1 One has

n∑

i=0

(n − 3i)xi fn+1−i = 0. (2.1)

Proof Indeed,

n∑

i=0

(n − 3i)xi fn+1−i =
∑

i+k+l=n

(n − 3i)xi xk xl .

The coefficient at each monomial xi xk xl equals

(n − 3i) + (n − 3k) + (n − 3l) = 3n − 3(i + k + l) = 3n − 3n = 0.

��
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Quadratic ideals and Rogers–Ramanujan recursions 71

For 0 < k < n, define

μk := (−2kxk, (−2k + 3)xk−1, . . . , kx0, 0, . . . , 0) ∈ Fn .

By (2.1), we have φn(μk) = 0. Denote also νi j = fi e j − f j ei (for i �= j). It is clear
that φn(νi j ) = 0. The main result of this section is the following.

Theorem 2.2 The first syzygy module Ker(φn) is generated by μk and νi, j over Rn.

We prove Theorem 2.2 in Sect. 2.4.

Remark 2.3 For n = ∞ a similar result was obtained by Kanade [12], whose con-
structions are motivated by the affine Lie algebra ŝl2. In particular, the ideals In in
Kanade’s picture, as well as in, e.g., Capparelli–Lepowsky–Milas [6], correspond to
the principal subspaces of level 1 standard modules for ŝl2. See also [8,10].

2.2 The shift operator

We define a ring homomorphism S : Rn → Rn+1 by the equation S(xi ) = xi+1. Note
that S is injective and we can uniquely write any polynomial in Rn in the form

f = x0 f
′ + S( f ′′), f ′ ∈ Rn, f ′′ ∈ Rn−1.

The following equation is clear from the definition and will be very useful:

fn = 2x0xn−1 + S( fn−2). (2.2)

By abuse of notation, denote also S : Fn → Fn+2 the map which is given by

S(α1, . . . , αn) = (0, 0, S(α1), . . . , S(αn)). (2.3)

Lemma 2.4 Let α ∈ Fn. Then φn+2(S(α)) is divisible by x0 if and only if φn(α) = 0.

Proof By (2.2) we have

φn+2(S(α)) =
n∑

i=1

S(αi ) fi+2 ≡ S

(
n∑

i=1

αi fi

)
mod x0.

Therefore φn+2(S(α)) is divisible by x0 if and only if S(
∑

αi fi ) is divisible by x0.
But since no shift contains x0, this happens if and only if

S
(∑

αi fi
)

= 0 ⇔
∑

αi fi = φn(α) = 0.

��
Since φn(μk) = φn(νi j ) = 0, by Lemma 2.4 the images of S(μk) and S(νi j ) under

φn+2 are divisible by x0. The following lemma describes these images explicitly.
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72 Y. Bai et al.

Lemma 2.5 Onehasφn+2(S(μk)) = (2k+6)xk+3 f1+(2k+3)xk+2 f2−(k+3)x0 fk+4,
φn+2(S(νi j )) = 2x0x j+1 fi+2 − 2x0xi+1 f j+2.

Proof By definition,

S(μk) = (0, 0,−2kxk+1, (−2k + 3)xk, . . . , kx1, 0, . . . , 0)

= μk+3 + (2k + 6)xk+3e1 + (2k + 3)xk+2e2 − (k + 3)x0ek+4,

so

φn+2(S(μk)) = (2k + 6)xk+3 f1 + (2k + 3)xk+2 f2 − (k + 3)x0 fk+4.

Also, S(νi j ) = S( fi )e j+2 − S( f j )ei+2, so

φn+2(S(νi j )) = S( fi ) f j+2 − S( f j ) fi+2

= ( fi+2 − 2x0xi+1) f j+2 − ( f j+2 − 2x0x j+1) fi+2

= 2x0x j+1 fi+2 − 2x0xi+1 f j+2.

��
Corollary 2.6 One has

φn+2(S(μk)) = (2k + 3)xk+2 f2 − (k + 3)x0S( fk+2)

= kxk+2 f2 − (k + 3)x0S
2( fk).

Proof

φn+2(S(μk)) = (2k + 6)xk+3 f1 + (2k + 3)xk+2 f2 − (k + 3)x0 fk+4

= (2k + 6)xk+3 f1 + (2k + 3)xk+2 f2
− (k + 3)(2x20 xk+3 + 2x0x1xk+2 + x0S

2( fk))

= (2k + 3)xk+2 f2 − (k + 3)x0S( fk+2)

= kxk+2 f2 − (k + 3)x0S
2( fk).

��
Example 2.7 μ1 = (−2x1, x0), so S(μ1) = (0, 0,−2x2, x1), and

φ4(S(μ1)) = − 2x2(2x0x2 + x21 ) + x1(2x0x3 + 2x1x2)

= 2x3x0x1 − 4x0x
2
2 = x3 f2 − 4x0S

2(x20 ).

Lemma 2.8 The polynomial x1S( fn−2) can be expressed via f1, . . . , fn−1 modulo x0.

Proof We have (n − 3)x0 fn−2 + (n − 6)x1 fn−3 + · · · − 2(n − 3)xn−2 f0 = 0, so

(n − 3)x1S( fn−2) + (n − 6)x2S( fn−3) + · · · − 2(n − 3)xn−1S( f0) = 0.

It remains to notice that S( fi ) ≡ fi+2 mod x0. ��
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Quadratic ideals and Rogers–Ramanujan recursions 73

Lemma 2.9 Assume that Ker(φn−2) is generated by μk and νi, j and suppose that
φn(α) is divisible by x0. Then αn = Ax0 + Bx1 + ∑n−1

i=3 γi fi for some A, B, and γi .

Proof As stated above, we can write αi = x0α′
i + S(α′′

i−2) for i ≥ 3. Since f1 and f2
are divisible by x0, we get

φn(S(α′′)) =
n∑

i=3

S(α′′
i−2) fi ≡

n∑

i=1

αi fi ≡ 0 mod x0.

By Lemma 2.4 we get φn−2(α
′′) = 0. By the assumption, we can write

α′′ =
∑

k<n−2

βkμk +
∑

i< j≤n−2

γi, jνi j .

Therefore

α′′
n−2 = βn−1x0 +

∑

j≤n−3

γ j,n−2 f j ,

and

αn = x0α
′
n + S(α′′

n−2) = x0α
′
n + S(βn−1)x1

+
∑

j≤n−3

S(γ j,n−2)( f j+2 − 2x0x j+1).

��

2.3 Examples

Before proving Theorem 2.2, we would like to present the proof for n ≤ 4.

Example 2.10 For n = 2, we have f1 = x20 and f2 = 2x0x1, so the module of syzygies
is clearly generated by (−2x1, x0) = μ1.

Example 2.11 Let n = 3, suppose that α1 f1 + α2 f2 + α3 f3 = 0. We can write
α3 = α′

3x0 + α′′
3 , where α′′

3 does not contain x0. Since f1 and f2 are divisible by x0
and f3 = 2x0x2 + x21 , we get x

2
1α

′′
3 = 0, so α′′

3 = 0. Now α = 1
2α

′
3μ2 + γ , where γ

is a syzygy between fi with γ3 = 0. By the previous example, γ is a multiple of μ1,
so the module of syzygies is actually generated by μ1 and μ2.

Example 2.12 Let n = 4, suppose that α is a syzygy. We can write α3 = α′
3x0 + α′′

3
and α4 = α′

4x0 + α′′
4 where α′′

i do not contain x0. Similarly to the previous case, we
obtain

α′′
3 x

2
1 + α′′

4 · 2x1x2 = 0. (2.4)
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74 Y. Bai et al.

This means that there exists some β such that α′′
3 = −2x2β and α′′

4 = x1β. Now

α1x
2
0 + α2 · 2x0x1 + (α′

3x0 − 2x2β)(2x0x2 + x21 )

+ (α′
4x0 + x1β)(2x0x3 + 2x1x2) = 0.

The terms without x0 cancel, and the linear terms in x0 are the following:

x0(2α2x1 + α′
3x

2
1 − 4x22β + 2α′4x1x2 + 2βx1x3) = 0.

Note that all terms but −4x22β are divisible by x1, so β is divisible by x1, β = mx1.
Then

α4 = α′
4x0 + mx21 = (α′

4 − 2x2m)x0 + m f3.

Bysubtractingmν3,4+ 1
3 (α

′
4−2x2m)μ3 fromα,weobtain a syzygybetween f1, f2, f3,

and reduce to the previous case.

2.4 Syzygies

In this section, we prove Theorem 2.2 by induction on n. The base cases were covered
in Sect. 2.3. Suppose that α = (α1, . . . , αn) ∈ Ker(φn), i.e., is a linear relation
between f1, . . . , fn . As stated above, write αi = α′

i x0 + S(α′′
i−2) for i ≥ 3. Without

loss of generality, we can assume that α′
i do not contain x0 (otherwise we can subtract

a multiple of ν1,i ). Since

fi = 2x0xi−1 + S( fi−2),

by collecting terms without x0 we get
∑n

i=3 S(α′′
i−2)S( fi−2) = 0. This means that

φn−2(α
′′) = 0 and by the induction assumption we may then write

α′′ =
n−1∑

i=3

βi+1μi−2 +
∑

3≤ j<k≤n, j �=k

β j,kν j−2,k−2.

Because

S(ν j−2,k−2) = −S( fk−2)e j + S( f j−2)ek = ν j,k + 2x0xke j − 2x0x j ek,

without loss of generality we can assume α′′ = S(
∑n−1

i=3 βi+1μi−2). By Corollary 2.6
we get

φn(S(μi−2)) = −(i + 1)x0S( fi ) + (2i − 1)xi−1 f2,

123



Quadratic ideals and Rogers–Ramanujan recursions 75

hence

φn(α) = α1 f1 + (α2 +
n−1∑

i=3

(2i − 1)S(βi+1)xi−1) f2

+
n∑

i=3

x0α
′
i fi −

n−1∑

i=3

(i + 1)S(βi+1)x0S( fi ) = 0.

By collecting the terms linear in x0, we get

(
α2 +

n−1∑

i=3

(2i − 1)S(βi+1)xi−1

)
2x1 +

n∑

i=3

α′
i S( fi−2)

−
n−1∑

i=3

(i + 1)S(βi+1)S( fi ) = 0,

so

n∑

i=3

α′
i S( fi−2) −

n−1∑

i=3

(i + 1)S(βi+1)S( fi )

is divisible by x1, and

n∑

i=3

α′′′
i fi−2 −

n−1∑

i=3

(i + 1)βi+1 fi

is divisible by x0, where α′
i = S(α′′′

i ). By Lemma 2.9, this implies

βn = Bx0 + Cx1 +
n−2∑

i=3

γi fi

for some constants B,C . Now we can rewrite

αn = α′
nx0 + S(βnx0) = α′

nx0 + Bx21 + Cx1x2

+
n−3∑

i=3

γi x1( fi+2 − 2x0xn−1) + γn−2x1S( fn−2).

Observe that x21 = f3 − 2x0x2, x1x2 = 1
2 ( f3 − 2x0x3) and by Lemma 2.8 x1S( fn−2)

can be expressed via f1, . . . , fn−1 modulo x0. In other words,

αn = δx0 +
n−1∑

i=3

δi fi
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76 Y. Bai et al.

for some coefficients δi . Then α − 1
n−1δμn−1 − ∑n−1

i=3 δiνi, j is a syzygy between
f1, . . . , fn−1, so by the induction assumption it can be expressed as an Rn−1-linear
combination of the μi and νi, j .

Remark 2.13 The above proof shows that the syzygies ν1,k and ν2,k are not necessary,
and can be expressed as linear combinations of other syzygies. Indeed, since the
coefficients at ek are divisible by x0, one can subtract an appropriate multiple of μk−1
and get a syzygy involving e1, . . . , ek−1 only.

3 Hilbert series

In this section, we prove Theorem 3.5 by studying the relation between the ideals In
and x0Rn .

Lemma 3.1 One has

Rn/(x0Rn + In) � S(Rn−2/In−2)[xn−1]

as Rn-modules, the module structure on the right coming from S : Rn−1 → Rn.

Proof We have x0Rn + In = 〈x0, f1, . . . , fn〉 = 〈x0, S( f1), . . . , S( fn−2)〉, so

Rn/(x0Rn + In) = Rn/〈x0, S( f1), . . . , S( fn−2)〉 = S(Rn−2/In−2)[xn−1].

��
Lemma 3.2 The subspace x0S2(In−3)[xn−1] does not intersect the ideal 〈 f1, f2〉 in
Rn. Furthermore, x0S2(In−3)[xn−1] + 〈 f1, f2〉 is an ideal in Rn which is contained
in In ∩ x0Rn.

Proof Given a non-zero polynomial g ∈ In−3, the iterated shift S2(g) does not contain
x0 or x1, so that x0S2(g) is not contained in 〈 f1, f2〉. Furthermore, In−3 is stable
under multiplication by x0, . . . , xn−4, so S2(In−3) is stable under multiplication by
x2, . . . , xn−2, and x0S2(In−3)[xn−1] is stable under multiplication by x2, . . . , xn−1.
Multiplication by x0 or x1 sends the latter subspace to 〈 f1, f2〉, so x0S2(In−3)[xn−1]+
〈 f1, f2〉 is an ideal in Rn .

Finally, to prove that this ideal is contained in In , it is sufficient to prove that
x0S2( fk) ∈ In for k ≤ n − 3. On the other hand, by Corollary 2.6:

x0S
2( fk) = 1

k + 3
φn(S(μk)) mod 〈 f1, f2〉.

��
Lemma 3.3 One has

In ∩ x0Rn = x0S
2(In−3)[xn−1] + 〈 f1, f2〉.
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Quadratic ideals and Rogers–Ramanujan recursions 77

Proof By Lemma 3.2, the right-hand side is a submodule of the left-hand side, so it
remains to prove the reverse inclusion. We have

fi = 2x0xi−1 + S( fi−2) = 2x0xi−1 + 2x1xi−2 + S2( fi−4).

Suppose that
∑n

i=1 αi fi ∈ In ∩ x0Rn . Then by Lemma 2.9,

αn = Ax0 + Bx1 +
∑

j

γ j f j = A′x0 + B ′x1 +
∑

j

γ j S
2( f j−4).

Now by (2.1) and Corollary 2.6, x0 fn and x1 fn can be expressed as Rn-linear combi-
nations of f1, . . . , fn−1 and elements of x0S2(In−3)[xn−1] + 〈 f1, f2〉, so ∑n

i=1 αi fi
can be expressed as such a combination as well. Induction on n finishes the proof. ��
Corollary 3.4 One has

x0Rn/(In ∩ x0Rn) = x0S
2(Rn−3/In−3)[xn−1].

Proof We have

x0Rn/〈 f1, f2〉 = x0Rn/(x
2
0 , x0x1) = x0k[x2, . . . , xn−1] = x0S

2(Rn−3)[xn−1].

Therefore

x0Rn/(In ∩ x0Rn) = x0Rn/(x0S
2(In−3)[xn−1] + 〈 f1, f2〉)

= x0S
2(Rn−3/In−3)[xn−1].

��
Theorem 3.5 Let Hn(q, t) denote the bigraded Hilbert series of the quotient Rn/In.
Then one has the following recursion relation:

Hn(q, t) = Hn−2(q, qt) + t Hn−3(q, q2t)

1 − qn−1t
(3.1)

with initial conditions

H0(q, t) = 1, H1(q, t) = 1 + t, H2(q, t) = 1

1 − qt
+ t .

Remark 3.6 This recursion is similar, but not identical to the various recursions con-
sidered by Andrews [1–3] in his proofs of the Rogers–Ramanujan identity. It is also
similar to the recursions recently considered by Paramonov [13] in a different context.
In the n → ∞ limit, Capparelli–Lepowsky–Milas [5] use analogous exact sequences
for principal level 1 subspaces of the standard modules of ŝl2 to arrive at a similar
formula.

123



78 Y. Bai et al.

Proof We have an exact sequence

0 → x0Rn/(x0Rn ∩ In) → Rn/In → Rn/(x0Rn + In) → 0.

ByLemma3.1, theHilbert series of Rn/(x0Rn+In) equals
Hn−2(q,qt)
1−qn−1t

, and byCorollary

3.4 the Hilbert series of x0Rn/(x0Rn ∩ In) equals
t Hn−3(q,q2t)
1−qn−1t

. ��

4 Gröbner bases

We will now compute Gröbner bases for the ideals In . Recall that a Gröbner basis
for an ideal I is a subset G = {g1, . . . , gs} ⊂ I such that, for a chosen monomial
ordering <,

〈LT<(g1), . . . ,LT<(gs)〉 = LT<(I ),

where LT< denotes leading term.
Let us order the monomials in Rn in grevlex order, that is

xα < xβ

if |α| < |β| or |α| = |β| and the rightmost entry of α − β is negative.

Remark 4.1 In fact, any order refining the reverse lexicographic order will work, but
for definiteness and its popularity in computer algebra systems we shall fix grevlex
order throughout.

Theorem 4.2 Let

G1 = { f1} ⊆ R1,G2 = { f1, f2} ⊂ R2

and recursively define the sets Gn, n ≥ 3 as follows:

Gn = x0S
2(Gn−3) � { f1, f2} � S̃(Gn−2),

where S̃ is a modified shift operator as explained below. Then Gn is a Gröbner basis
for In.

Remark 4.3 The notation requires explanation. Note that any Gm is naturally a subset
of Rn , n ≥ m so we can and will identify Gm inside a larger polynomial ring without
explicit mention. Furthermore, we denote by x0S2(Gn−3) the image of Gn−3 under
S2 : Rn−2 → Rn multiplied by x0. The “operator” S̃ is defined on elements p ∈ In−2
as follows: write p = ∑n

i=1 ϕi fi , and let

S̃(p) =
n∑

i=1

S(ϕi ) fi+2.
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Note that by (2.2), we have S̃(p) = S(p) + ∑n
i=1 x0xi+2S(ϕi ) ∈ In+2. In particular,

if p �= 0 and p is homogeneous then LT<(S̃(p)) = S(LT<(p)). Therefore, the
construction of S̃(p) requires a choice if ϕi , but the leading term of the result does not
depend on this choice.

Proof We will proceed by induction. The base cases n = 1, 2 are clear because the
ideals are monomial. Consider now the ideal LT<(In) generated by all the leading
terms of elements of In . It is clear by Lemma 3.1 and the fact that S respects the
reverse lexicographic order that if g ∈ In is not divisible by x0, its leading term is the
image of a leading term in In−2 under S. Since we assumed Gn−2 to be a Gröbner
basis, we must have LT<(g) divisible by some monomial in S(LT<(Gn−2)).

Similarly, if g is divisible by x0, we know by Lemma 3.2 and order preservation
that its leading term is the image under x0S2 of a leading term in In−3 or divisible
by f1, f2. By the induction assumption LT<(g) is then divisible by an element of
x0S2(LT<(Gn−3)) � { f1, f2}. In particular, LT<(In) ⊆ 〈LT<(Gn)〉. But the reverse
inclusion is clear, so we have

LT<(In) = 〈LT<(Gn)〉

as desired, and Gn is a Gröbner basis for In . ��
Example 4.4 We have

G3 = { f1, f2, f3},
G4 = { f1, f2, f3, f4, x0x

2
2 },

G5 = { f1, f2, f3, f4, f5, x0x2x3},
G6 = { f1, . . . , f6, x0x

2
3 + 2x0x2x4, 2x1x

2
3 + 3x0x3x4 − x0x2x5}.

Note that the last polynomial in G6 can be identified with S̃(x0x22 ) ∈ S̃(G4). Indeed,

4x0x
2
2 = 2x2(2x0x2 + x21 ) − x1(2x0x3 + 2x1x2) + x3(2x0x1)

= 2x2 f3 − x1 f4 + x3 f2,

so

S̃(4x0x
2
2 ) = 2x3 f5 − x2 f6 + x4 f4

= 2x3(2x0x4 + 2x1x3 + x22 ) − x2(2x0x5 + 2x1x4 + 2x2x3)

+ x4(2x0x3 + 2x1x2)

= 4x1x
2
3 + 6x0x3x4 − 2x0x2x5.

Remark 4.5 The Gröbner basis constructed in Theorem 4.2 is far from being reduced.
The following theorem describes the reduced basis implicitly.

Since all Gn contain { f1, . . . , fn} and none of their leading terms divides one
another, we can throw away other polynomials in Gn in a controlled manner to obtain
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a minimal Gröbner basis. That is to say, if the leading terms of Gn\{g} still gen-
erate the leading ideal we are in business. Therefore after appropriate reduction [7,
Proposition 6 on p. 92] we get a reduced Gröbner basis with the same leading terms.

Let us call a monomial
∏

xaii admissible if ai + ai+1 ≤ 1 for all i , that is, it is not
divisible by x2i or by xi xi+1.

Theorem 4.6 Fix k > 2. The leading terms of (t-)degree k in a reduced Gröbner basis
for In have the form m(x)LT<( fn+k−2) where m(x) is an admissible monomial of
degree k − 2 in variables x0, . . . , x
 n+k−7

2 �. The number of degree k polynomials in

the reduced Gröbner basis equals
(
 n−k+1

2 �
k−2

)
.

Remark 4.7 It is easy to see that there are no linear polynomials in the Gröbner basis
(or in the ideal In), and f1, . . . , fn are the only quadratic polynomials in the reduced
Gröbner basis.

Proof We prove the statement by induction in n. Suppose that it is true for Gn−2 and
Gn−3. By Theorem 4.2, the leading monomials in the degree k part of Gn consist of
shifted degree k monomials in Gn−2, and twice shifted degree (k − 1) monomials in
Gn−3, multiplied by x0.

Consider first the case k = 3. We will prove that the leading terms in the reduced
Gröbner basis have the form x j LT<( fn+1) for j ≤ 
 n−4

2 �. Indeed, in the first case, we
get S(x j LT<( f(n−2)+1)) = x j+1 LT<( fn+1). In the second case, we have to consider
the polynomials x0S2( fi ) for all i ≤ n − 3. Observe that for i ≤ n − 4 we get
LT<(x0S2( fi )) = x0 LT<( fi+4) and hence divisible by the leading term of fi+4 and
can be eliminated. For i = n − 3 we get LT<(x0S2( fn−3)) = x0 LT<( fn+1).

Assume now that k > 3. In the first case, we get

S(m(x)LT<( f(n−2)+k−2)) = S(m(x))LT<( fn+k−2).

If m(x) is an admissible monomial in x j , 0 ≤ j ≤ 
 (n−2)+k−7
2 � then S(m(x)) is an

admissible monomial in x j , 1 ≤ j ≤ 
 (n−2)+k−7
2 � + 1 = 
 n+k−7

2 �.
In the second case, we get

x0S
2(m(x))LT<( f(n−3)+(k−1)−2)) = x0S

2(m(x))LT<( fn+k−2).

Now S2(m(x)) is an admissible monomial in x j , 2 ≤ j ≤ 
 (n−3)+(k−1)−7
2 � + 2 =


 n+k−7
2 �, so x0S2(m(x)) is also an admissible in a correct set of variables. In fact, all

such monomials not divisible by x0 appear from the first case, and the ones divisible
by x0 appear from the second case.

It is easy to see that none of these leading monomials are divisible by each other.
Therefore after appropriate reduction [7] we get a reduced Gröbner basis with the
same leading terms.

Finally, we can count monomials of given degree k. The number of admissible
monomials of degree l in s variables equals

(s−l+1
l

)
, so the number of polynomials in

Gn of degree k equals
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(
1 + 
 n+k−7

2 � − (k − 2) + 1

k − 2

)
=

(
 n−k+1
2 �

k − 2

)
.

��
Example 4.8 Let n = 12. The reduced Gröbner basis for I12 contains quadratic poly-
nomials f1, . . . , f12. It also contains 5 cubic polynomials with leading terms

x0x
2
6 , x1x

2
6 , x2x

2
6 , x3x

2
6 , x4x

2
6 ,

6 quartic polynomials with leading terms

x0x2x6x7, x0x3x6x7, x0x4x6x7, x1x3x6x7, x1x4x6x7, x2x4x6x7,

and 4 quintic polynomials with leading terms

x0x2x4x
2
7 , x0x2x5x

2
7 , x0x3x5x

2
7 , x1x3x5x

2
7 .

Observe that LT<( f13) = x26 ,LT<( f14) = x6x7, and LT<( f15) = x27 .

5 Minimal resolution

In this section, we describe the bigraded minimal free resolutions of In and Rn/In .
We write them as follows:

0 ← In ←− F(1, n) ←− F(2, n) ←− F(3, n) · · ·

and

0 ← Rn/In ←− Rn = F(0, n) ←− F(1, n) ←− F(2, n) ←− F(3, n) · · ·

Theorem 5.1 Let F(i, n) be the i-th term in the minimal free resolution for In. Then
there is an injection F(i, n − 1) ↪→ F(i, n), and

F(i, n)/F(i, n − 1) � S(F(i − 1, n − 3)) ⊕ x0S(F(i − 2, n − 3))

as Rn-modules, and the shift of a free Rn-module is as in (2.3). Note that the gradings
in the right-hand side are shifted by the bidegree of fn (which equals qn−1t2).

Proof Observe that the ideal generated by f1, . . . , fn−1 in Rn is isomorphic to
In−1[xn−1], so its minimal resolution over Rn is identical to the one for In−1 over
Rn−1 tensored over Rn . Moreover, since In = 〈 f1, . . . , fn〉, the minimal free Rn-
resolution of In−1[xn−1] is naturally a subcomplex of the minimal free resolution for
In . In other words, F(i, n − 1) ⊗Rn−1 Rn can be identified with a subspace in F(i, n),
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which we will by abuse of notation also denote F(i, n − 1). We have a short exact
sequence

0 → F(i, n − 1) → F(i, n) → F(i, n)/F(i, n − 1) → 0.

From the long exact sequence in cohomology, it is easy to see that F(i, n)/F(i, n−1)
is acyclic in positive degrees. Now In = 〈 f1, . . . fn〉, so F(1, n)/F(1, n − 1) ∼= Rn

is generated by a single-vector f̃n corresponding to fn . Furthermore, by Theorem 2.2
F(2, n) has generators corresponding to μ1, . . . , μn−1 and νi, j for 3 ≤ i < j ≤ n,
so F(2, n)/F(2, n − 1) ∼= Rn−2

n is spanned by the basis elements corresponding to
μn−1 and νi,n for 3 ≤ i ≤ n − 1. The differential d : F(2, n) → F(1, n) descends to
d̃ : F(2, n)/F(2, n − 1) → F(1, n)/F(1, n − 1). It sends μn−1 to x0 f̃n and νi,n to
fi · f̃n .
Therefore, the quotient complex with terms F(i, n)/F(i, n − 1) is isomorphic to

the minimal resolution of Rn/〈x0, f3, . . . , fn−1〉 = Rn/〈x0, S( f1), . . . , S( fn−3)〉.
The latter is nothing but the (shifted) minimal resolution for In−3 tensored with the

two-term complex Rn
x0←− Rn . ��

Corollary 5.2 Let b(i, n) denote the rank of F(i, n). Then

b(i, n) = b(i, n − 1) + b(i − 1, n − 3) + b(i − 2, n − 3). (5.1)

Corollary 5.3 Let Hn(q, t) denote the Hilbert series for Rn/In, and let H̃n(q, t) =
Hn(q, t)

∏n−1
i=0 (1 − qi t). Then H̃n(q, t) satisfies the following recursion relation:

H̃n(q, t) = H̃n−1(q, t) − qn−1t2(1 − t2)H̃n−3(q, qt). (5.2)

Corollary 5.4 The projective dimension of In equals � 2n
3 �−1.The projective dimension

of Rn/In equals � 2n
3 �.

Proof By definition, the projective dimension pd(In) is equal to the length of the
minimal free (or projective) resolution. By (5.1) we have pd(In) = pd(In−3)+ 2. The
minimal free resolutions for I1, I2, and I3 are easy to compute:

I1

(
f1

)

←−−− R1

I2

(
f1 f2

)

←−−−−− R2
2

(−2x1
x0

)

←−−−−− R2

I3

(
f1 f2 f3

)

←−−−−−−− R3
3

⎛

⎜⎜⎝

−2x0 −4x2
x1 −x1
0 2x0

⎞

⎟⎟⎠

←−−−−−−−−−− R2
3 .

The minimal resolution of Rn/In is one step longer than the one for In . ��
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6 Combinatorial identities

We define
(
a

b

)

q
= (1 − q) · · · (1 − qa)

(1 − q) · · · (1 − qb) · (1 − q) · · · (1 − qa−b)
.

If a < b, we set
(a
b

)
q = 0. The following lemma is well known.

Lemma 6.1 The following identities holds:

(
a

b

)

q
+ qb+1

(
a

b + 1

)

q
=

(
a + 1

b + 1

)

q
= qa−b

(
a

b

)

q
+

(
a

b + 1

)

q
.

Proof One has

(
a

b + 1

)

q
= (1 − qa−b)

(1 − qb+1)

(
a

b

)

q
,

hence

(
a

b

)

q
+ qb+1

(
a

b + 1

)

q
=

(
a

b

)

q

(
1 + qb+1 (1 − qa−b)

(1 − qb+1)

)

=
(
a

b

)

q

(1 − qa+1)

(1 − qb+1)
=

(
a + 1

b + 1

)

q
.

��
Theorem 6.2 The Hilbert series Hn(q, t) is given by the following explicit formula:

Hn(q, t) =
∞∑

p=0

(h(n,p)+1
p

)
q

· q p(p−1)t p

(1 − qn−h(n,p)t) · · · (1 − qn−1t)
, (6.1)

where h(n, p) = 
 n−p
2 �.

Proof By Theorem 3.5 it is sufficient to prove that the right-hand side of (6.1) satisfies
the recursion relation (3.1). Let us denote the p-th term in (6.1) by Hn,p(q, t) so that
Hn(q, t) = ∑

p Hn,p(q, t). We have h(n − 2, p) = h(n − 3, p − 1) = h(n, p) − 1,
so

Hn−2,p(q, qt) =
(h(n,p)

p

)
q

· q p(p−1)t p · q p

(1 − qn−h(n,p)t) · · · (1 − qn−2t)
,

Hn−3,p−1(q, q2t) =
(h(n,p)

p−1

)
q

· q(p−1)(p−2)t p−1 · q2p−2

(1 − qn−h(n,p)t) · · · (1 − qn−2t)
,
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therefore

Hn−2,p(q, qt) + t Hn−3,p−1(q, q2t)

= q p(p−1)t p

(1 − qn−h(n,p)t) · · · (1 − qn−2t)

[
q p

(
h(n, p)

p

)

q
+

(
h(n, p)

p − 1

)

q

]

= q p(p−1)t p

(1 − qn−h(n,p)t) · · · (1 − qn−2t)

(
h(n, p) + 1

p

)

q

= (1 − qn−1t)Hn,p(q, t). (6.2)

This proves (3.1), and the initial conditions are easy to check. ��
The free resolution of In gives another formula for the Hilbert series of Rn/In .

Proposition 6.3 Let b(i, n), as stated above, denote the rank of i-th module in the free
resolution of Rn/In. Then

b(i, n) =
∑

p

[(
n − 2p + 1

p

)(
p

i − p

)
+

(
n − 2p − 1

p

)(
p

i − p − 1

)]
.

Remark 6.4 The terms in the first sum are non-zero if p ≤ (n+1)/3 and i/2 ≤ p ≤ i .
The terms in the second sumare non-zero if p ≤ (n−1)/3 and (i−1)/2 ≤ p ≤ (i−1).

Proof Let

A(n, p, i) =
(
n − 2p + 1

p

)(
p

i − p

)
, B(n, p, i) =

(
n − 2p − 1

p

)(
p

i − p − 1

)
.

Then

A(n − 1, p, i) + A(n − 3, p − 1, i − 1) + A(n − 3, p − 1, i − 2)

=
(
n − 2p

p

)(
p

i − p

)
+

(
n − 2p

p − 1

)(
p − 1

i − p

)
+

(
n − 2p

p − 1

)(
p − 1

i − p − 1

)

=
(
n − 2p

p

)(
p

i − p

)
+

(
n − 2p

p − 1

)(
p

i − p

)

=
(
n − 2p + 1

p

)(
p

i − p

)
= A(n, p, i).

Similarly, B(n−1, p, i)+B(n−3, p−1, i−1)+B(n−3, p−1, i−2) = B(n, p, i),
so the right-hand side satisfies the recursion relation (5.1). It remains to check the base
cases:

f (0, n) = 1 =
(
n − 1

0

)
,

f (1, n) = n =
(
n − 1

1

)
+

(
n − 3

0

)
,
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f (2, n) = (n − 1) +
(
n − 2

2

)
=

(
n − 1

1

)
+

(
n − 3

1

)
+

(
n − 3

2

)
.

By Corollary 5.4 b(i, n) = 0 for i > 2 and n ≤ 3. ��
We have the following (q, t)-analog of Proposition 6.3.

Proposition 6.5 Let b̂(i, n) denote the bigraded Hilbert polynomial for the generating
set in F(i, n). Then

b̂(i, n) =
∑

p>0

q
5p2−3p+(i−p)(i−p−1)

2 t2p+(i−p)
(
n − 2p + 1

p

)

q

(
p

i − p

)

q

+ q
5p2+5p+(i−p)(i−p−1)

2 t2p+2+(i−p)
(
n − 2p − 1

p

)

q

(
p

i − p − 1

)

q
. (6.3)

Proof Theproof is completely analogous to the proof of Proposition 6.3, butwe include
it here for completeness. By Theorem 5.1 we have a recursion relation

b̂(i, n) = b̂(i, n − 1) + qn−1t2b̂(i − 1, n − 3)(q, qt)

+ qn−1t3b̂(i − 2, n − 3)(q, qt). (6.4)

We need to prove that the right-hand side of (6.3) satisfies (6.4). Let

Â(n, p, i) = q
5p2−3p+(i−p)(i−p−1)

2 t2p+(i−p)
(
n − 2p + 1

p

)

q

(
p

i − p

)

q
.

Then

Â(n − 3, p − 1, i − 1)(q, qt) = q
5p2−9p+4+(i−p)(i−p+1)

2 t2p−2+(i−p)

×
(
n − 2p

p − 1

)

q

(
p − 1

i − p

)

q
,

Â(n − 3, p − 1, i − 2)(q, qt) = q
5p2−9p+4+(i−p)(i−p−1)

2 t2p−2+(i−p−1)

×
(
n − 2p

p − 1

)

q

(
p − 1

i − p − 1

)

q
,

so

Â(n − 3, p − 1, i − 1)(q, qt) + t Â(n − 3, p − 1, i − 2)(q, qt)

= q
5p2−9p+4+(i−p)(i−p−1)

2 t2p−2+(i−p)
(
n − 2p

p − 1

)

q

(
p

i − p

)

q
.
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Now

Â(n − 1, p, i) + qn−1t2 Â(n − 3, p − 1, i − 1)(q, qt)

+ qn−1t3 Â(n − 3, p − 1, i − 2)(q, qt)

= q
5p2−3p+(i−p)(i−p−1)

2 t2p+(i−p)

×
[(

n − 2p

p

)

q

(
p

i − p

)

q
+ qn−3p+1

(
n − 2p

p − 1

)

q

(
p

i − p

)

q

]

= q
5p2−3p+(i−p)(i−p−1)

2 t2p+(i−p)
(
n − 2p + 1

p

)

q

(
p

i − p

)

q
= Â(n, p, i).

A similar recursion holds for B̂(n, p, i). It remains to check the initial conditions:

b̂(0, n) = 1,

b̂(1, n) = (t2 + qt2 + . . . + qn−1t2) = qt2
(
n − 1

1

)

q
+ t2

(
n − 3

0

)
,

b̂(2, n) = qt3[n − 1]q + q5t4
(
n − 2

2

)

q

= qt3
(
n − 1

1

)

q
+ q5t4

(
n − 3

1

)
+ q7t4

(
n − 3

2

)

q
.

��
The following result was conjectured by the second author, Oblomkov and Ras-

mussen in [10, Conjecture 4.1].

Theorem 6.6 The Hilbert series of Rn/In has the following form:

Hn(q, t) = 1
∏n−1

i=0 (1 − qi t)

∞∑

p=0

(−1)p
p−1∏

k=0

(1 − qkt)

×
(
q

5p2−3p
2 t2p

(
n − 2p + 1

p

)

q
− q

5p2+5p
2 t2p+2

(
n − 2p − 1

p

)

q

)
.

(6.5)

Proof It is clear that Hn(q, t) = 1∏n−1
i=0 (1−qi t)

∑∞
i=0(−1)i b̂(i, n). The latter can be

computed by (6.3), and it remains to use the identity

p−1∏

k=0

(1 − qkt) =
p∑

j=0

(−1) j q j( j−1)/2t j
(
p

j

)
.

��

123



Quadratic ideals and Rogers–Ramanujan recursions 87

7 Limit at n → ∞
In the limit n → ∞ both formulas for the Hilbert series simplify. Indeed, for fixed p
we have

lim
n→∞

(
n

p

)

q
= 1

(1 − q) · · · (1 − q p)
,

so we can take the limit of all the above results.

Proposition 7.1 The limit of the Hilbert series Hn(q, t) has the following form:

H∞(q, t) =
∞∑

p=0

q p(p−1)t p

(1 − q)(1 − q2) · · · (1 − q p)
. (7.1)

Proposition 7.2 The limit of the bigraded rank of the i th syzygy module F(i, n) equals

b̂(i,∞) =
∑

p>0

(
q

5p2−3p+(i−p)(i−p−1)
2 t2p+(i−p)

(
p

i − p

)

q

1

(1 − q) · · · (1 − q p)

+ q
5p2+5p+(i−p)(i−p−1)

2 t2p+2+(i−p)
(

p

i − p − 1

)

q

× 1

(1 − q) · · · (1 − q p)

)
. (7.2)

Proposition 7.3 The limit of the Hilbert series Hn(q, t) has the following form:

Hn(q, t) = 1∏∞
i=0(1 − qi t)

∞∑

p=0

(−1)p
p−1∏

k=0

1 − qkt

1 − qk+1

×
(
q

5p2−3p
2 t2p − q

5p2+5p
2 t2p+2

)
. (7.3)

The equality between the right-hand sides of (7.3) and (7.1) was proved in [9,
Theorem3.3.2(b)].At t = 1 and t = q, one recoversmore familiarRogers–Ramanujan
identities.

The following proposition concerning Gröbner bases in the limit was proved first
in [4], but we give an alternative proof here. In fact, [4] use a slightly different basis
of Bell polynomials. In [14, Section 17], a vertex-algebraic proof of essentially the
same fact was also obtained. Yet another proof can be obtained by taking the limit in
Theorem 4.6, as follows.

Proposition 7.4 For n → ∞, the polynomials fi form a Gröbner basis for the ideal
I∞.
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Before embarking on the proof, we record the following lemmas concerning Gröb-
ner bases here for the convenience of the reader.

Lemma 7.5 ([7] Proposition 8 on p. 106). Given (g1, . . . , gs) ∈ Fs, the S-pairs

Si j := lcm(LT<(gi ),LT<(g j ))

LT<(gi )
ei − lcm(LT<(gi ),LT<(g j ))

LT<(g j )
e j (7.4)

form a homogeneous basis for the syzygies on {LT<(g1), . . . ,LT<(gs)}.
Lemma 7.6 ([7] Proposition 9 on p. 107)Let I = 〈g1, . . . , gs〉. ThenG = {g1, . . . , gs}
is a Gröbner basis for I if and only if every element of a homogeneous basis for the
syzygies on LT<(G) reduces to zero modulo G.

Lemma 7.7 ([7] Proposition 4 on p.103) G = {g1, . . . , gs} ⊂ Rn, and suppose
gi , g j ∈ G have relatively prime leading monomials. Then the S-polynomial

S(gi , g j ) := φn(Si j ) = lcm(LT<(gi ),LT<(g j ))

LT<(gi )
g j

− lcm(LT<(gi ),LT<(g j ))

LT<(g j )
g j (7.5)

reduces to zero modulo G.

Proof of Proposition 7.4 Consider S( fi , f j ). By Lemma 7.7, gcd(LT<( fi ),
LT<( f j )) = 1 implies that S( fi , f j ) reduces to zeromodulo { fk}∞k=1.Write i = 2q+r ,
where r = 0, 1. Then LT<( fi ) = x2q if i is even and LT<( fi ) = 2xq xq+1 if i is odd.
So the only case we need to consider is j = i + 1. In this case, we have

lcm(LT<( fi ),LT<( fi+1)) =
{
2x2q xq+1, i even

2xq x2q+1, i odd.

Additionally

S( fi , fi+1) =
{
2xq+1 fi − xq fi+1, i even

xq fi − 2xq+1 fi+1, i odd.

But from (2.1) it follows that these S-pairs appear in the relations φn(μn−1) = 0 for
n � 0. Since n = ∞, we always have these relations in I∞. Additionally, moving the
S-pair to the right-hand side we reduce S( fi , fi+1) ≡ 0 modulo { fk}∞k=1. In particular,
Lemma 7.6 implies that { fk}∞k=1 is a Gröbner basis for I∞. ��
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