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Abstract
We construct polynomial solutions of the KZ differential equations over a finite field
Fp as analogs of hypergeometric solutions.
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1 Introduction

The KZ equations were discovered by physicists Vadim Knizhnik and Alexander
Zamolodchikov [6] to describe the differential equations for conformal blocks on
sphere in the Wess–Zumino–Witten model of conformal field theory. As Gelfand
said, the KZ equations are remarkable differential equations discovered by physi-
cists, defined in terms of a Lie algebra and whose monodromy is described by the
corresponding quantum group. It turned out that the KZ equations are realized as suit-
able Gauss–Manin connections and its solutions are represented by multidimensional
hypergeometric integrals, see [1,3,8–11]. The fact that certain integrals of closed dif-
ferential forms over cycles satisfy a linear differential equation follows by Stokes’
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theorem from a suitable cohomological relation, in which the result of the application
of the corresponding differential operator to the integrand of an integral equals the
differential of a form of one degree less. Such cohomological relations for the KZ
equations associated with Kac–Moody algebras were developed in [11].

The goal of this paper is to construct polynomial solutions of the KZ differential
equations over a finite field Fp with p elements, where p is a prime number, as analogs
of the hypergeometric solutions constructed in [11]. Our construction is based on the
fact that all cohomological relations described in [11] are defined over Z and can be
reduced modulo p. We learned how to construct polynomial solutions in this situation
out of hypergeometric solutions from the remarkable paper byManin [7], see a detailed
exposition of Manin’s idea in Section “Manin’s Result: The Unity of Mathematics”
in the book [2] by Clemens.

In the remainder of the introduction we consider the example of one-dimensional
hypergeometric and p-hypergeometric integrals as an illustration of our constructions
and results. The multidimensional case is considered in Sects. 2–4.

1.1 Case of fieldC

Let κ,m1, . . . ,mn be nonzero complex numbers, z = (z1, . . . , zn) ∈ C
n, t ∈ C.

Denote |m| = m1 + · · · + mn . Consider the master function

�(t, z1, . . . , zn) =
∏

1�a<b�n

(za − zb)
mamb/2κ

n∏

a=1

(t − za)
−ma/κ

and the n-vector

I (γ )(z) = (I1(z), . . . , In(z)), (1.1)

where

I j =
∫

�(t, z1, . . . , zn)
dt

t − z j
, j = 1, . . . , n. (1.2)

The integrals are over a closed (Pochhammer) curve γ in C − {z1, . . . , zn} on which
one fixes a uni-valued branch of the master function to make the integral well defined.
Starting from such a curve chosen for given {z1, . . . , zn}, the vector I (γ )(z) can be
analytically continued as a multivalued holomorphic function of z to the complement
in C

n to the union of the diagonal hyperplanes zi = z j .

Theorem 1.1 The vector I (γ )(z) satisfies the algebraic equation

m1 I1(z) + · · · + mn In(z) = 0 (1.3)
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Solutions of KZ differential equations modulo p 657

and the differential KZ equations:

∂ I

∂zi
= 1

κ

∑

j �=i

�i, j

zi − z j
I , i = 1, . . . , n, (1.4)

where

�i, j =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

...

i ...

j

i · · · (mi−2)m j
2 · · · m j · · ·
...

...

j · · · mi · · · mi (m j−2)
2 · · ·

...
...

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

all other diagonal entries are
mim j
2 and the remaining off-diagonal entries are all zero.

Remark The vector I (γ )(z) depends on the choice of the curve γ . Different curves
give different solutions of the same KZ equations and all solutions of Eqs. (1.3) and
(1.4) are obtained in this way, if κ,m1, . . . ,mn are generic.

Remark The differential equations (1.4) are the KZ differential equations with param-
eter κ associated with the Lie algebra sl2 and the singular weight subspace of weight
|m| − 2 of the tensor product of sl2-modules with highest weights m1, . . . ,mn , see
Sect. 2.

Remark The KZ equations define a flat connection over the complement in C
n to the

union of all diagonal hyperplanes,

⎡

⎣ ∂

∂zi
− 1

κ

∑

j �=i

�i, j

zi − z j
,

∂

∂zk
− 1

κ

∑

j �=k

�k, j

zk − z j

⎤

⎦ = 0 (1.5)

for all j, k.

Theorem 1.1 is a classical statement probably known in nineteenth century. Much
more general algebraic and differential equations satisfied by analogous multidimen-
sional hypergeometric integrals were considered in [11]. Theorem 1.1 is discussed as
an example in [13, Sect. 1.1].

Below we give a proof of Theorem 1.1. A modification of this proof in Sect. 1.2
will produce for us polynomial solutions of Eqs. (1.3) and (1.4) modulo a prime p.

Proof of Theorem 1.1 Equations (1.3) and (1.4) are implied by the following cohomo-
logical identities. We have

−m1

κ
�(t, z)

dt

t − z1
+ · · · + −m1

κ
�(t, z)

dt

t − zn
= dt�(t, z), (1.6)
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658 V. Schechtman, A. Varchenko

where dt denotes the differentialwith respect to the variable t . This identity and Stokes’
theorem imply equation (1.3).

Denote

V (t, x) =
(

dt

t − z1
, . . . ,

dt

t − zn

)
. (1.7)

For any i = 1, . . . , n, let Wi (t, z) be the vector of
(
0, . . . , 0, −1

t−zi
, 0, . . . , 0

)
with

nonzero element at the i th place. Then

⎛

⎝ ∂ I

∂zi
− 1

κ

∑

j �=i

�i, j

zi − z j

⎞

⎠�(t, z)V (t, x) = dt (�(t, z)Wi (t, z)). (1.8)

The proof of this identity is straightforward. For much more general identities of this
type, see [11, Lemmas 7.5.5 and 7.5.7], cf. identities in Sect. 2.4.

Identity (1.8) and Stokes’ theorem imply the KZ equation (1.4). ��
Example 1.1 Let κ = 2, n = 3, m1 = m2 = m3 = 1. Then I (γ )(z) =
(I1(z), I2(z), I3(z)), where

I j (z) =
∏

1�a<b�3

4
√
za − zb

∫

γ (z)

1√
(t − z1)(t − z2)(t − z3)

dt

t − z j
. (1.9)

In this case, the curve γ (z) may be thought of as a closed path on the elliptic curve

y2 = (t − z1)(t − z2)(t − z3).

Each of these integrals is an elliptic integral. Such an integral is a branch of analytic
continuation of a suitable Euler hypergeometric function up to change of variables.

1.2 Case of field Fp

Let κ,m1, . . . ,mn be positive integers. Let p > 2 be a prime number, p � κ . The
algebraic equation (1.3) and the differential KZ equations (1.4) are well defined when
reduced modulo p. The reduction of the KZ equations satisfies the flatness condition
(1.5).We construct solutions of Eqs. (1.3) and (1.4)with values in (Fp[z])n . Notice that
the space of such solutions is a module over the ring Fp[z p1 , . . . , z pn ] since ∂z pi

∂z j
= 0.

Choose positive integers Ma for a = 1, . . . , n and Ma,b for 1 � a < b � n such
that

Ma ≡ −ma

κ
, Ma,b ≡ mamb

2κ
(mod p).

Thatmeans thatwe projectma, κ, 2 toFp , calculate−ma
κ

,
mamb
2κ inFp, and then choose

positive integers Ma, Ma,b satisfying these equations.
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Solutions of KZ differential equations modulo p 659

Fix an integer q. Consider the master polynomial

�(p)(t, z) =
∏

1�a<b�n

(za − zb)
Ma,b

n∏

a=1

(t − za)
Ma ,

and the Taylor expansion with respect to the variable t of the vector of polynomials

�(p)(t, z)

(
1

t − z1
, . . . ,

1

t − zn

)
=

∑

i

Ī (i)(z, q) (t − q)i ,

where the Ī (i)(z, q) are n-vectors of polynomials in z with integer coefficients. Let
I (i)(z, q) ∈ (Fp[z])n be the canonical projection of Ī (i)(z, q).

Theorem 1.2 For any integer q and positive integer l, the vector of polynomials
I (lp−1)(z, q) satisfies Eqs. (1.3) and (1.4).

The parameters q and lp − 1 are analogs of cycles γ in Sect. 1.1.

Proof To prove that I (lp−1)(z, q) satisfies (1.3) and (1.4), we consider the Taylor
expansions at t = q of both sides of Eqs. (1.6) and (1.8), divide them by dt , and then
project the coefficients of (t −q)lp−1 to Fp[z]. The projections of the right-hand sides
equal zero since d(t lp)/dt = lptlp−1 ≡ 0 (mod p). ��
Example 1.2 Let κ = 2, m1 = · · · = mn = 1, cf. Example 1.1. Given p > 2 choose
the master polynomial

�(p)(t, z) =
∏

1�a<b�n

(za − zb)
(p+1)2

4

n∏

s=1

(t − zs)
p−1
2 . (1.10)

Consider the Taylor expansion

n∏

s=1

(t − zs)
p−1
2

(
1

t − z1
, . . . ,

1

t − zn

)
=
∑

i

c̄i (z)t i , (1.11)

where c̄i = (c̄i1, . . . , c̄
i
n). Let c

i be the projection of c̄i to (Fp[z])n . Then the vector of
polynomials

I (z) = (I1(z), . . . , In(z))

=
∏

1�a<b�n

(za − zb)
(p+1)2

4

(
cp−1
1 (z), . . . , cp−1

n (z)
)

(1.12)

is a solution of the KZ differential equations over Fp[z] and I1(z) + · · · + In(z) = 0.
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Example 1.3 Let κ = 2, m1 = · · · = mn = 1, p = 3. We have

�i, j (I1, . . . , In)

= 1

2
(I1, . . . , Ii−1,−Ii + 2I j , Ii+1, . . . , I j−1, 2Ii − I j , I j+1, . . . , In)

≡ (−I1, . . . ,−Ii−1, Ii + I j ,−Ii+1, . . . ,−I j−1, Ii + I j ,−I j+1, . . . ,−In)

(mod 3). Equation (1.3) has the form I1(z) + · · · + In(z) = 0. We may choose the
master polynomial

�(p=3)(t, z) =
∏

1�a<b�n

(za − zb)
n∏

s=1

(t − zs).

Choose a nonnegative integer l. Then the vector I (z, q) := I (3l−1)(z, q) = (I1(z, q),

…, In(z, q)) of Theorem 1.2 has coordinates

I j (z, q) =
⎛

⎝
∏

1�a<b�n

(za − zb)

⎞

⎠
∑

1�i1<···<in−3−3l�n,
j /∈{i1,...,in−3−3l }

n−3−3l∏

a=1

(q − zia ) (1.13)

and is a solution of (1.3) and (1.4) with values in (F3[z])n for any q = 0, 1, 2.
Expanding these solutions into polynomials homogeneous in z we obtain solutions in
homogeneous polynomials, which stabilize with respect to n as follows. The vector
I [r ](z) = (I [r ]

1 (z), . . . , I [r ]
n (z)), with coordinates

I [r ]
j (z) =

⎛

⎝
∏

1�a<b�n

(za − zb)

⎞

⎠
∑

1�i1<···<ir�n,
j /∈{i1,...,ir }

r∏

a=1

zia , (1.14)

is a solution of (1.3) and (1.4) with values in (F3[z])n if r ≡ n (mod 3) and r < n.
Thus, the vector I [0](z), with coordinates

I [0]
j (z) =

∏

1�a<b�n

(za − zb), (1.15)

is a solution with values in (F3[z])n for n ≡ 0 (mod 3); the vector I (1)(z), with
coordinates

I [1]
j (z) =

⎛

⎝
∏

1�a<b�n

(za − zb)

⎞

⎠
∑

1�i�n, i �= j

zi , (1.16)

is a solution for n ≡ 1 (mod 3) and so on. Note that the sum in (1.14) is the mth
elementary symmetric function in z1, . . . , ẑ j , . . . , zn .
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Solutions of KZ differential equations modulo p 661

Solutions provided by Theorem 1.2 depend on parameters q, lp−1. In this example
all solutions I [r ](z) can be obtained by putting q = 0 and varying lp − 1 only.

1.3 Relation of polynomial solutions to integrals over Fp

For a polynomial F(t) ∈ Fp[t] define the integral
∫

Fp

F(t) :=
∑

t∈Fp

F(t).

Recall that

the sum
∑

t∈Fp

t i equals − 1 if (p − 1)
∣∣i and equals zero otherwise. (1.17)

Theorem 1.3 Fix x1, . . . , xn, q ∈ Fp. Consider the vector of polynomials

F(t, x1, . . . , xn) := �(p)(t, x1, . . . , xn)

(
1

t − x1
, . . . ,

1

t − xn

)
∈ Fp[t]

of Sect. 1.2. Assume that degt F(t, x1, . . . , xn) < 2p − 2. Consider the polynomial
solution I (p−1)(z1, . . . , zn, q) of Eqs. (1.3) and (1.4) defined in front of Theorem 1.2.
Then

I (p−1)(x1, . . . , xn, q) = −
∫

Fp

F(t, x1, . . . , xn). (1.18)

This integral is a p-analog of the hypergeometric integral (1.2).

Proof Consider the Taylor expansion F(t, x1, . . . , xn) = ∑2p−3
i=0 I (i)(x1, . . . , xn, q)

(t−q)i . By formula (1.17),wehave
∑

t∈Fp
F(t, x1, . . . , xn)=−I (p−1)(x1, . . . , xn, q).

��

Example 1.4 Given κ , n,m1 = · · · = mn = 1, assume that n � 2κ and κ
∣∣(p−1). Then

F(t) = ∏
a<b(za−zb)Ma,b

∏n
s=1(t−xs)

p−1
κ

( 1
t−x1

, . . . , 1
t−xn

)
and degt F(t) < 2p−2.

1.4 Relation of solutions to curves over Fp

Example 1.5 Let x1, x2, x3 ∈ Fp. Let �(x1, x2, x3) be the projective closure of the
affine curve

y2 = (t − x1)(t − x2)(t − x3) (1.19)
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662 V. Schechtman, A. Varchenko

over Fp. For a rational function h : �(x1, x2, x3) → Fp define the integral

∫

�(x1,x2,x3)
h =

′∑

P∈�(x1,x2,x3)

h(P), (1.20)

as the sum over all points P ∈ �(x1, x2, x3), where h(P) is defined.

Theorem 1.4 Let p > 2 be a prime. Let
(
cp−1
1 (x1, x2, x3), c

p−1
2 (x1, x2, x3), c

p−1
3

(x1, x2, x3)
)
be the vector of polynomials appearing in the solution (1.12) of the KZ

equations of Example 1.2 for n = 3. Then

∫

�(x1,x2,x3)

1

t − x j
= − cp−1

j (x1, x2, x3), j = 1, 2, 3. (1.21)

Remark Theorems 1.2 and 1.4 say that the integrals
∫
�(x1,x2,x3)

1
t−x j

are polynomials
in x1, x2, x3 ∈ Fp and the triple of polynomials

I (x1, x2, x3)

=
∏

1�a<b�3

(xa − xb)
(p+1)2

4

(∫

�(x1,x2,x3)

1

t − x1
,

∫

�(x1,x2,x3)

1

t − x2
,

∫

�(x1,x2,x3)

1

t − x3

)

in these discrete variables satisfies the KZ differential equations! Cf. Example 1.1.

Proof of Theorem 1.4 The proof is analogous to the reasoning in [7, Sect. 2] and [2].
The value of 1/(t − x j ) at the infinite point of �(x1, x2, x3) equals zero. It is easy to
see that

∫

�(x1,x2,x3)

1

t − x j
=

∑

t∈Fp, t �=x j

1

t − x j
+

∑

t∈Fp

1

t − x j

3∏

s=1

(t − xs)
p−1
2

=
∑

t∈Fp

(t − x j )
p−2 +

∑

t∈Fp

∑

i

cij (x1, x2, x3)t
i

= −cp−1
j (x1, x2, x3),

where the last equality is by formula (1.17). ��
Remark In [7, Sect. 2] and in [2], an equation analogous to (1.21) is considered, where
the left-hand side is the number of points on �(x1, x2, x3) over Fp and the right-hand
side is the reduction modulo p of a solution of a second order Euler hypergeometric
differential equation. Notice that the number of points on �(x1, x2, x3) is the discrete
integral over �(x1, x2, x3) of the constant function h = 1. See details in Section
“Manin’s Result: The Unity of Mathematics” in [2].
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Example 1.6 This example is a variant of Example 1.5.
Let x1, x2, x3, x4 ∈ Fp. Let �(x1, x2, x3, x4) be the projective closure of the affine

curve

y2 = (t − x1)(t − x2)(t − x3)(t − x4) (1.22)

over Fp.
Let p > 3 be a prime. Let

(
cp−1
1 (x1, x2, x3, x4), c

p−1
2 (x1, x2, x3, x4), c

p−1
3 (x1, x2, x3, x4), c

p−1
4 (x1, x2, x3, x4)

)

be the vector of polynomials appearing in the solution (1.12) of the KZ equations of
Example 1.2 for n = 4. Then

∫

�(x1,x2,x3,x4)

1

t − x j
= − cp−1

j (x1, x2, x3, x4), j = 1, 2, 3, 4. (1.23)

Example 1.7 Let κ = 3, n = 3, m1 = m2 = m3 = 2. Assume that 3
∣∣(p − 1). Choose

the master polynomial

�(p)(t, z) =
∏

1�a<b�3

(za − zb)
p+2
3

3∏

s=1

(t − zs)
2 p−1

3 .

Consider the Taylor expansion

3∏

s=1

(t − zs)
2 p−1

3

( 1

t − z1
,

1

t − z2
,

1

t − z3

)
=
∑

i

c̄i (z1, z2, z3)t
i , (1.24)

where c̄i = (c̄i1, c̄
i
2, c̄

i
3). Let c

i be the projection of c̄i to (Fp[z])3. Then the vector

I (z) = (I1(z), I2(z), I3(z))

=
∏

1�a<b�3

(za − zb)
p+2
3

(
cp−1
1 (z), cp−1

2 (z), cp−1
3 (z)

)
(1.25)

is a solution of the corresponding KZ differential equations over Fp[z] and I1(z) +
I2(z) + I3(z) = 0.

For distinct x1, x2, x3 ∈ Fp let �(x1, x2, x3) be the projective closure of the affine

y3 = (t − x1)(t − x2)(t − x3) (1.26)

over Fp. The curve has 3 points at infinity.
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Theorem 1.5 Let p be a prime such that 3
∣∣(p − 1). Let

(
cp−1
1 (x1, x2, x3), c

p−1
2 (x1, x2, x3), c

p−1
3 (x1, x2, x3)

)

be the vector of polynomials appearing in the solution (1.25) of the KZ equations.
Then for j = 1, 2, 3 we have

∫

�(x1,x2,x3)

1

t − x j
= − cp−1

j (x1, x2, x3). (1.27)

Proof The value of 1/(t − x j ) at infinite points of � equals zero. It is easy to see that

∫

�(x1,x2,x3)

1

t − x j
=

∑

t∈Fp, t �=x j

1

t − x j
+

∑

t∈Fp

1

t − x j

3∏

s=1

(t − xs)
p−1
3

+
∑

t∈Fp

1

t − x j

3∏

s=1

(t − xs)
2 p−1

3

=
∑

t∈Fp

(t − x j )
p−2 +

∑

t∈Fp

∑

i

cij (x1, x2, x3)t
i

= − cp−1
j (x1, x2, x3). (1.28)

Notice that
∑

t∈Fp
1

t−x j

∏3
s=1(t − xs)

p−1
3 = 0 since the polynomial under the sum is

of degree p − 2 which is less than p − 1. The last equality in (1.28) is by formula
(1.17). ��

Example 1.8 Let κ = 3, n = 3, m1 = m2 = 1, m3 = 2. Assume that 3 divides p − 1.
Choose the master polynomial

�(p)(t, z) = (z1 − z2)
5p+1
6 (z1 − z3)

2p+1
3 (z2 − z3)

2p+1
3

×(t − z1)
p−1
3 (t − z2)

p−1
3 (t − z3)

2 p−1
3 .

Consider the Taylor expansion

(t − z1)
p−1
3 (t − z2)

p−1
3 (t − z3)

2 p−1
3

(
1

t − z1
,

1

t − z2
,

1

t − z3

)

=
∑

i

b̄i (z1, z2, z3)t
i , (1.29)

where b̄i = (b̄i1, b̄
i
2, b̄

i
3). Let b

i be the projection of b̄i to (Fp[z])3. Then the vector
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Solutions of KZ differential equations modulo p 665

I (z) = (z1 − z2)
5p+1
6 (z1 − z3)

2p+1
3 (z2 − z3)

2p+1
3

(
bp−1
1 (z), bp−1

2 (z), bp−1
3 (z)

)

(1.30)

is a solution of the corresponding KZ differential equations over Fp[z] and I1(z) +
I2(z) + 2I3(z) = 0.

Similarly let κ = 3, n = 3, m1 = m2 = 2, m3 = 1. Assume that 3 divides p − 1.
Choose the master polynomial

�(p)(t, z) = (z1 − z2)
p+2
3 (z1 − z3)

2p+1
3 (z2 − z3)

2p+1
3

× (t − z1)
2 p−1

3 (t − z2)
2 p−1

3 (t − z3)
p−1
3 .

Consider the Taylor expansion

(t − z1)
2 p−1

3 (t − z2)
2 p−1

3 (t − z3)
p−1
3

(
1

t − z1
,

1

t − z2
,

1

t − z3

)

=
∑

i

c̄i (z1, z2, z3)t
i , (1.31)

where c̄i = (c̄i1, c̄
i
2, c̄

i
3). Let c

i be the projection of c̄i to (Fp[z])3. Then the vector

I (z) = (z1 − z2)
p+2
3 (z1 − z3)

2p+1
3 (z2 − z3)

2p+1
3

(
cp−1
1 (z), cp−1

2 (z), cp−1
3 (z)

)

(1.32)

is a solution of the corresponding KZ differential equations over Fp[z] and 2I1(z) +
2I2(z) + I3(z) = 0.

For distinct x1, x2, x3 ∈ Fp let �(x1, x2, x3) be the projective closure of the affine
curve

y3 = (t − x1)(t − x2)(t − x3)
2 (1.33)

over Fp. The curve has genus 2 and one point at infinity.

Theorem 1.6 Let p be a prime such that 3 divides p − 1. Let

(
bp−1
1 (x1, x2, x3), b

p−1
2 (x1, x2, x3), b

p−1
3 (x1, x2, x3)

)

be the vector of polynomials appearing in the solution (1.30) of the KZ equations with
n = 3, κ = 3, m1 = m2 = 1, m3 = 2. Let

(
cp−1
1 (x1, x2, x3), c

p−1
2 (x1, x2, x3), c

p−1
3 (x1, x2, x3)

)
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be the vector of polynomials appearing in the solution (1.32) of the KZ equations with
n = 3, κ = 3, m1 = m2 = 2, m3 = 1. Then for j = 1, 2, 3 we have

∫

�(x1,x2,x3)

1

t − x j
= − bp−1

j (x1, x2, x3) − cp−1
j (x1, x2, x3). (1.34)

Proof The value of 1/(t − x j ) at infinite points of � equals zero. It is easy to see that

∫

�(x1,x2,x3)

1

t − x j

=
∑

t∈Fp, t �=x j

1

t − x j
+

∑

t∈Fp

1

t − x j
(t − z1)

p−1
3 (t − z2)

1 p−1
3 (t − z3)

2 p−1
3

+
∑

t∈Fp

1

t − x j
(t − z1)

2 p−1
3 (t − z2)

2 p−1
3 (t − z3)

4 p−1
3

=
∑

t∈Fp

(t − x j )
p−2 +

∑

t∈Fp

∑

i

bij (x1, x2, x3)t
i

+
∑

t∈Fp

1

t − x j
(t − z1)

2 p−1
3 (t − z2)

2 p−1
3 (t − z3)

p−1
3

= − bp−1
j (x1, x2, x3) +

∑

t∈Fp

∑

i

cij (x1, x2, x3)t
i

= −bp−1
j (x1, x2, x3) − cp−1

j (x1, x2, x3).

��

1.5 Resonances overC and Fp

Under assumptions of Sect. 1.1 assume that

m1 + · · · + mn = κ. (1.35)

Then the vector I (γ )(z), defined in (1.1), in addition to the algebraic equation (1.3)
and differential equations (1.4) satisfies the algebraic equation

z1m1 I1(z) + · · · + znmn In(z) = 0. (1.36)

Equation (1.36) follows from the cohomological relation:
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dt (t�) = �dt − �

n∑

j=1

m j

κ

t − z j + z j
t − z j

dt

=
⎛

⎝1 −
n∑

j=1

m j

κ

⎞

⎠�dt −
n∑

j=1

z j
m j

κ
�

dt

t − z j
. (1.37)

Relation (1.36) manifests resonances in conformal field theory, where solutions
of KZ equations represent conformal blocks and conformal blocks satisfy algebraic
equations analogous to (1.36), see [4,5], Sect. 3.6.2 in [13]. In conformal field theory
the numbers m1, . . . , mn, κ are natural numbers. In that case the master function
�(t, z) is an algebraic function and the hypergeometric integrals become integrals of
algebraic forms over cycles lying on suitable algebraic varieties. The monodromy of
the hypergeometric integrals I (γ )(z) in that case was studied in Sects. 13 and 14 of
[12].

Relation (1.36) has an analog over Fp.

Theorem 1.7 Under assumptions of Theorem 1.2 let I (lp−1)(z, q) ∈ Fp[z]n be the
polynomial solution of Eqs. (1.3) and (1.4) described in Theorem 1.2. Assume that

M1 + · · · + Mn ≡ −1 (mod p). (1.38)

Then

z1M1 I1(z) + · · · + znMn In(z) = 0. (1.39)

Proof The theorem follows from (1.37) similarly to the proof of Theorem 1.2.Namely,
we consider the Taylor expansions at t = q of both sides of Eq. (1.37), divide them
by dt , and then project the coefficients of (t −q)lp−1 to Fp[z]. The projection coming
from dt (t�) equals zero since d(t lp)/dt = lptlp−1 ≡ 0 (mod p). The projection
coming from

(
1−∑n

j=1
m j
κ

)
�dt equals zero by (1.38). The projection coming from

−∑n
j=1 z j

m j
κ

� dt
t−z j

gives (1.39). ��

Example 1.9 Let κ = 2, m1 = · · · = mn = 1, p = 3, M1 = · · · = Mn = 1,

�(p=3)(t, z) =
∏

1�a<b�n

(za − zb)
n∏

s=1

(t − zs)

as in Example 1.3. Let n ≡ 2 (mod 3), and then M1+· · ·+Mn ≡ −1 (mod 3). Choose
a positive integer r , such that r ≡ n (mod 3) and r < n. Then the vector I [r ](z) given
by (1.14) satisfies Eqs. (1.3), (1.4), and

z1 I
[r ]
1 (z) + · · · + zn I

[r ]
n (z) ≡ 0 (mod 3).
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1.6 Exposition of material

In Sect. 2 we describe the hypergeometric solutions of the KZ equations associated
with sl2 and explain their reduction to polynomial solutions over Fp. In Sect. 3 we
describe the resonance relations for sl2 conformal blocks and construct their reduction
over Fp. In Sect. 4 we explain how the results of Sects. 2 and 3 are extended to the
KZ equations associated with simple Lie algebras.

2 sl2 KZ equations

In this section we describe solutions of the KZ equations associated with the Lie alge-
bra sl2. The solutions to the KZ equations over C in the form of multidimensional
hypergeometric integrals are known since the end of 1980s. The polynomial solu-
tions of the KZ equations over Fp in the form of Fp-analogs of the multidimensional
hypergeometric integrals are new.

2.1 sl2 KZ equations

Let e, f , h be standard basis of the complex Lie algebra sl2 with [e, f ] = h, [h, e] =
2e, [h, f ] = −2 f . The element

� = e ⊗ f + f ⊗ e + 1

2
h ⊗ h ∈ sl2 ⊗ sl2 (2.1)

is called the Casimir element. Given n, for 1 � i < j � n let �(i, j) ∈ (U (sl2))
⊗n

be the element equal to � in the i th and j th factors and to 1 in the other factors. For
i = 1, . . . , n and distinct z1, . . . , zn ∈ C introduce

Hi (z1, . . . , zn) =
∑

j �=i

�(i, j)

zi − z j
∈ (U (sl2))

⊗n, (2.2)

the Gaudin Hamiltonians. For any κ ∈ C
× and any i, k, we have

[
∂

∂zi
− 1

κ
Hi (z1, . . . , zn),

∂

∂zk
− 1

κ
Hk(z1, . . . , zn)

]
= 0, (2.3)

and for any x ∈ sl2 and i we have

[Hi (z1, . . . , zn), x ⊗ 1 ⊗ · · · ⊗ 1 + · · · + 1 ⊗ · · · ⊗ 1 ⊗ x] = 0. (2.4)

Let⊗n
i=1Vi be a tensor product of sl2-modules. The system of differential equations
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∂ I

∂zi
= 1

κ

∑

j �=i

�(i, j)

zi − z j
I , i = 1, . . . , n, (2.5)

on a ⊗n
i=1Vi -valued function I (z1, . . . , zn) is called the KZ equations.

2.2 Irreducible sl2-modules

For a nonnegative integer i denote by Li the irreducible i+1-dimensional module with
basis vi , f vi , . . . , f ivi and action h. f kvi = (i−2k) f kvi for k = 0, . . . , i ; f . f kvi =
f k+1vi for k = 0, . . . , i − 1, f . f ivi = 0; e.vi = 0, e. f kvi = k(i − k + 1) f k−1vi
for k = 1, . . . , i .

For m = (m1, . . . ,mn) ∈ Z
n
�0, denote |m| = m1 + · · · + mn and L⊗m = Lm1 ⊗

· · · ⊗ Lmn . For J = ( j1, . . . , jn) ∈ Z
n
�0, with js � ms for s = 1, . . . , n, the vectors

f Jvm := f j1vm1 ⊗ · · · ⊗ f jnvmn (2.6)

form a basis of L⊗m . We have

f . f Jvm =
n∑

s=1

f J+1svm, h. f Jvm = (|m| − 2|J |) f Jvm,

e. f Jvm =
n∑

s=1

js(ms − js + 1) f J−1svm .

For λ ∈ Z, introduce the weight subspace L⊗m[λ] = { v ∈ L⊗m | h.v = λv} and the
singular weight subspace SingL⊗m[λ] = { v ∈ L⊗m[λ] | h.v = λv, e.v = 0}. We
have the weight decomposition L⊗m = ⊕|m|

k=0L
⊗m[|m| − 2k]. Denote

Ik = {J ∈ Z
n
�0 | |J | = k, js � ms, s = 1, . . . , n}.

The vectors ( f Jv)J∈Ik form a basis of L⊗m[|m| − 2k].
Remark The sl2-action on the sum of singular weight subspaces SingL⊗m[|m| − 2k]
generates the entire sl2-module L⊗m . If I (z1, . . . , zn) is an L⊗m-valued solution of
the KZ equations, then for any x ∈ sl2 the function x .I (z1, . . . , zn) is also a solution,
see (2.4). These observations show that in order to construct all L⊗m-valued solutions
of the KZ equations it is enough to construct all SingL⊗m[|m| − 2k]-valued solutions
for all k and then generate the other solutions by the sl2-action.

2.3 Solutions of KZ equations with values in SingL⊗m[|m| − 2k] overC

Given k, n ∈ Z>0, m = (m1, . . . ,mn) ∈ Z
n
>0, κ ∈ C

×, denote t = (t1, . . . , tk),
z = (z1, . . . , zn), define the master function
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�k,n,m(t, z) : = �k,n,m(t1, . . . , tk, z1, . . . , zn, κ)

=
∏

i< j

(zi − z j )
mim j /2κ

∏

1�i� j�k

(ti − t j )
2/κ

n∏

l=1

k∏

i=1

(ti − zl)
−ml/κ .

(2.7)

For any function or differential form F(t1, . . . , tk), denote

Symt [F(t1, . . . , tk)] =
∑

σ∈Sk
F(tσ1, . . . , tσk ),

Antt [F(t1, . . . , tk)] =
∑

σ∈Sk
(−1)|σ |F(tσ1, . . . , tσk ).

For J = ( j1, . . . , jn) ∈ Ik define the weight function

WJ (t, z) = 1

j1! . . . jn ! Symt

⎡

⎣
n∏

s=1

js∏

i=1

1

t j1+···+ js−1+i − zs

⎤

⎦ . (2.8)

For example,

W(1,0,...,0) = 1

t1 − z1
, W(2,0,...,0) = 1

t1 − z1

1

t2 − z1
,

W(1,1,0,...,0) = 1

t1 − z1

1

t2 − z2
+ 1

t2 − z1

1

t1 − z2
.

The function

Wk,n,m(t, z) =
∑

J∈Ik
WJ (t, z) f Jvm (2.9)

is the L⊗m[|m| − 2k]-valued vector weight function.
Consider the L⊗m[|m| − 2k]-valued function

I (γ )(z1, . . . , zn) =
∫

γ (z)
�k,n,m(t, z, κ)Wk,n,m(t, z)dt1 ∧ · · · ∧ dtk, (2.10)

where γ (z) in {z} × C
k
t is a horizontal family of k-dimensional cycles of the twisted

homology defined by themultivalued function�k,n,m(t, z,m), see [11–13]. The cycles
γ (z) are multidimensional analogs of Pochhammer double loops.

Theorem 2.1 The function I (γ )(z) takes values in SingL⊗m[|m| − 2k] and satisfies
the KZ equations.

This theorem and its generalizations can be found, for example, in [1,3,9–11].
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The solutions in Theorem 2.1 are called themultidimensional hypergeometric solu-
tions of the KZ equations. The coordinate functions

I (γ )

J (z1, . . . , zn) =
∫

γ

�k,n,m(t, z)WJ (t, z)dt1 ∧ · · · ∧ dtk, J ∈ Ik, (2.11)

are called the multidimensional hypergeometric functions associated with the master
function �k,n,m .

The fact that solutions in Theorem 2.1 take values in SingL⊗m[|m| − 2k] may be
reformulated as follows. For any J ∈ Ik−1, we have

n∑

s=1

( js + 1)(ms − js)I
(γ )

J+1s
(z) = 0, (2.12)

where we set I (γ )

J+1s
(z) = 0 if J + 1s /∈ Ik .

The pair consisting of the KZ equations (1.4) and hypergeometric solutions (1.2)
is identified with the pair consisting of the KZ equations (2.5) and hypergeometric
solutions (2.10) with values in SingL⊗m[|m|−2]. In this case the system of equations
in (2.12) is identified with Eq. (1.3).

2.4 Proof of Theorem 2.1

We sketch the proof following [11]. The reason to present a proof is to show later in
Sect. 2.5 how a modification of this reasoning leads to a construction of polynomial
solutions of the KZ equations over Fp.

The proof of Theorem 2.1 is a generalization of the proof of Theorem 1.1 and is
based on cohomological relations.

It is convenient to reformulate the definition of the hypergeometric integral (2.10).
Given k, n ∈ Z>0 and a multi-index J = ( j1, . . . , jn) with |J | � k, introduce a
differential form

ηJ = 1

j1! · · · jn ! Antt
[
d(t1 − z1)

t1 − z1
∧ · · · ∧ d(t j1 − z1)

t j1 − z1
∧ d(t j1+1 − z2)

t j1+1 − z2
∧ . . .

∧d(t j1+···+ jn−1+1 − zn)

t j1+···+ jn−1+1 − zn
∧ · · · ∧ d(t j1+···+ jn − zn)

t j1+···+ jn − zn

]
,

which is a logarithmic differential form on C
n × C

k with coordinates z, t . If |J | = k,
then for any z ∈ C

n we have on {z} × C
k the identity

ηJ = WJ (t, z)dt1 ∧ · · · ∧ dtk .
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Example 2.1 For k = n = 2 we have

η(2,0) = d(t1 − z1)

t1 − z1
∧ d(t2 − z1)

t2 − z1
,

η(1,1) = d(t1 − z1)

t1 − z1
∧ d(t2 − z2)

t2 − z2
− d(t2 − z1)

t2 − z1
∧ d(t1 − z2)

t1 − z2
.

The hypergeometric integrals (2.10) can be defined in terms of the differential forms
ηJ :

I (γ )(z1, . . . , zn) =
∑

J∈Ik

(∫

γ (z)
�k,n,mηJ

)
f Jvm . (2.13)

Introduce the logarithmic differential 1-forms

α =
∑

1�i< j�n

mim j

2κ

d(zi − z j )

zi − z j
+

∑

1�i< j�k

2

κ

d(ti − t j )

ti − t j
+

n∑

s=1

k∑

i=1

−ms

κ

d(ti − zs)

ti − zs
,

α′ =
∑

1�i< j�k

2

κ

d(ti − t j )

ti − t j
+

n∑

s=1

k∑

i=1

−ms

κ

d(ti − zs)

ti − zs
.

We shall use the following algebraic identities for logarithmic differential forms.

Theorem 2.2 [11] On C
n × C

k we have

α′ ∧ ηJ =
n∑

s=1

( js + 1)
ms − js

κ
ηJ+1s , (2.14)

for any J with |J | = k − 1, and

α ∧
∑

J∈Ik
ηJ f Jvm = 1

κ

∑

i< j

�(i, j) d(zi − z j )

zi − z j
∧

∑

|J |=k

ηJ f Jvm . (2.15)

Proof Identity (2.14) is the special case of Theorem 6.16.2 in [11] for the Lie alge-
bra sl2. Identity (2.15) is a special case of Theorem 7.5.2′′ in [11] for the Lie
algebra sl2. ��
Corollary 2.3 On C

n × C
k we have

∑

J∈Ik
d(�k,n,mηJ ) f Jvm = 1

κ

∑

i< j

�(i, j) d(zi − z j )

zi − z j
∧

∑

J∈Ik
(�k,n,mηJ ) f Jvm,

(2.16)

where the differential is taken with respect to variables z, t .
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Nowwededuce from identity (2.14) the following formula (2.20). Since |J | = k−1,
we can write

ηJ =
k∑

l=1

cJ ,l(t, z)dt1 ∧ · · · ∧ d̂tl ∧ · · · ∧ dtk + · · · , (2.17)

where the dots denote the terms having differentials dzi and cJ ,l(t, z) are rational
functions of the form

PJ ,l(t, z)

⎛

⎝
∏

1�i< j�n

(zi − z j )
∏

1�i< j�k

(ti − t j )
n∏

l=1

k∏

i=1

(ti − zl)

⎞

⎠
−1

, (2.18)

where PJ ,l(t, z) is a polynomial in t, z with integer coefficients. Also for any s =
1, . . . , n we have

ηJ+1s = WJ+1sdt1 ∧ · · · ∧ dtk + · · · , (2.19)

where the dots denote the terms having differentials dzi . Formula (2.14) implies that
for any J with |J | = k − 1 we have the identity

dt

(
�k,n,m

k∑

l=1

cJ ,l(t, z)dt1 ∧ · · · ∧ d̂tl ∧ · · · ∧ dtk

)

=
n∑

s=1

( js + 1)
ms − js

κ
�k,n,mWJ+1sdt1 ∧ · · · ∧ dtk, (2.20)

where dt denotes the differential with respect to the variables t .
Now we deduce from identity (2.16) the following formula (2.23). Fix i ∈

{1, . . . , n}. For any J ∈ Ik , write

�k,n,mηJ = �k,n,mWJdt1 ∧ · · · ∧ dtk

+dzi ∧
(

�k,n,m

k∑

l=1

cJ ,i,l(t, z)dt1 ∧ · · · ∧ d̂tl ∧ · · · ∧ dtk

)
+ · · · ,

(2.21)

where the dots denote the terms which contain dz j with j �= i , and the coefficients
cJ ,i,l(t, z) are rational functions in t, z of the form

PJ ,i,l(t, z)

⎛

⎝
∏

1�i< j�n

(zi − z j )
∏

1�i< j�k

(ti − t j )
n∏

l=1

k∏

i=1

(ti − zl)

⎞

⎠
−1

, (2.22)

where PJ ,i,l(t, z) is a polynomial in t, z with integer coefficients.
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Formula (2.16) implies that for any i ∈ {1, . . . , n} we have
∑

J∈Ik

( ∂

∂zi

(
�k,n,mWJ

)
dt1 ∧ · · · ∧ dtk

+dt
(
�k,n,m

n∑

l=1

cJ ,i,l(t, z)dt1 ∧ · · · ∧ d̂tl ∧ · · · ∧ dtk
))

f Jvm

= 1

κ

∑

j �=i

�(i, j)

zi − z j

∑

J∈Ik
�k,n,mWJdt1 ∧ · · · ∧ dtk f Jvm, (2.23)

where dt denotes the differential with respect to the variables t .
Integrating both sides of Eqs. (2.20) and (2.23) over γ (z) and usingStokes’ theorem,

we obtain Eqs. (2.12) and (2.5) for the vector I (γ )(z) in (2.10). Theorem 2.1 is proved.

2.5 Solutions of KZ equations with values in SingL⊗m[|m| − 2k] over Fp

Given k, n ∈ Z>0, m = (m1, . . . ,mn) ∈ Z
n
>0, κ ∈ Q

×, let p > 2 be a prime number
such that p does not divide the numerator of κ . In this case Eqs. (2.12) and (2.5)
are well defined over the field Fp and we may discuss their polynomial solutions in
Fp[z1, . . . , zn].

Choose positive integers Ms for s = 1, . . . , n, Mi, j for 1 � i < j � n, and M0,
such that

Ms ≡ −ms

κ
, Mi, j ≡ mim j

2κ
, M0 ≡ 2

κ
(mod p).

Fix integers q = (q1, . . . , qk). Let t = (t1, . . . , tk), z = (z1, . . . , zn) be variables.
Define the master polynomial

�
(p)
k,n,M (t, z) : = �

(p)
k,n,M (t1, . . . , tk, z1, . . . , zn)

=
∏

1�i< j�n

(zi − z j )
Mi, j

∏

1�i� j�k

(ti − t j )
M0

n∏

s=1

k∏

i=1

(ti − zs)
Ms .

(2.24)

Consider the Taylor expansion of the vector

∑

J∈Ik
�

(p)
k,n,M (t, z)WJ (t, z) f Jvm =

∑

i1,...,ik

Ī (i1,...,ik )(z, q)(t1 − q1)
i1 . . . (tk − qk)

ik .

(2.25)

Notice that each coordinate �
(p)
k,n,M (t, z)WJ (t, z) is a polynomial in t, z with integer

coefficients due to the positivity of the integers Ms, Mi, j , M0 and the definition of the
weight functionsWJ (t, z). Hence the Taylor coefficients Ī (i1,...,ik )(z, q) are vectors of
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polynomials in z with integer coefficients. Let I (i1,...,ik )(z, q) ∈ (Fp[z])dim L⊗m [|m|−2k]
be their canonical projection modulo p.

Theorem 2.4 For any integers q = (q1, . . . , qk) and positive integers l = (l1, . . . , lk),
the vector of polynomials I (z, q) := I (l1 p−1,...,lk p−1)(z, q) satisfies Eqs. (2.12) and
(2.5).

The parameters q, l1 p − 1, . . . , lk p − 1 are analogs of cycles γ in Sect. 2.3.

Proof Toprove that I (l1 p−1,...,lk p−1)(z, q) satisfies (2.12) and (2.5), consider theTaylor
expansions at (t1, . . . , tk) = (q1, . . . , qk) of both sides of Eqs. (2.20) and (2.23), and
divide them by dt1 ∧ · · · ∧ dtk . Notice that the Taylor expansions are well defined due
to formulas (2.18) and (2.22).

Project the Taylor coefficients of (t1 − q1)l1 p−1 . . . (tk − qk)lk p−1 to
(Fp[z])dim L⊗m [|m|−2k]. Then the terms coming from the dt ( )-summands equal zero

since d(t li pi )/dti = li pt
li p−1
i ≡ 0 (mod p), and we obtain Eqs. (2.12) and (2.5). ��

Example 2.2 Let p = 3, κ = 4, n = 5, k = 2, m1 = · · · = m5 = 1. Notice that in this
case κ ≡ 1 (mod 3) and we may set κ = 1.

The set Ik consists of ten elements J = ( j1, . . . , j5)with ji ∈ {0, 1} and j1+· · ·+
j5 = 2. The space L⊗m[|m|−2k] = (L1)

⊗5[1] has basis f Jvm = f j1v1⊗· · ·⊗ f j5v1,
J ∈ Ik . We have

�(1,2)v1 ⊗ v1 ∧ . . . ≡ −v1 ⊗ v1 ∧ . . . ,

�(1,2) f v1 ⊗ f v1 ∧ . . . ≡ − f v1 ⊗ f v1 ∧ . . . ,

�(1,2) f v1 ⊗ v1 ∧ . . . ≡ f v1 ⊗ v1 ∧ · · · + v1 ⊗ f v1 ∧ . . . ,

�(1,2)v1 ⊗ f v1 ∧ . . . ≡ f v1 ⊗ v1 ∧ · · · + v1 ⊗ f v1 ∧ . . .

(mod 3). The other �(i, j) act similarly. The system of equations (2.12) on
I (z) = ∑

J∈Ik IJ (z) f Jvm consists of five equations. The first is

I(1,1,0,0,0)(z) + I(1,0,1,0,0)(z) + I(1,0,0,1,0)(z) + I(1,0,0,0,1)(z) ≡ 0 (mod 3),

where z = (z1, . . . , z5); the others are similar. Let t = (t1, t2). We may choose the
master polynomial

�
(p=3)
2,5,M (t, z) = (t1 − t2)

2
∏

1�i< j�5

(zi − z j )
2

2∏

i=1

5∏

s=1

(ti − zs)
2.

Fix integers q = (0, 0) and l = (4, 3). Then the vector

I (11,8)(z) =
∑

J∈Ik
I (11,8)
J (z) f Jvm (2.26)

with
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I (11,8)
(1,1,0,0,0)(z) = −z3 − z4 − z5, I (11,8)

(1,0,1,0,0)(z) = −z2 − z4 − z5, (2.27)

and similar other coordinates satisfy Eqs. (2.12) and (2.5).

Example 2.3 Let κ = 4, n = 2, k = 2, m1 = m2 = 2. The space L⊗2
2 [0] has basis

f 2v2 ⊗ v2, f v2 ⊗ f v2, v2 ⊗ f 2v2. The system of equations (2.12) takes the form:

I(2,0)(z) + I(1,1)(z) = 0, I(1,1)(z) + I(0,2)(z) = 0.

Let p = 4l + 3 for some l. We may choose

�
(p)
2,2,M (t1, t2, z1, z2) = (z1 − z2)

p+1
2 (t1 − t2)

p+1
2

2∏

i=1

2∏

s=1

(ti − zs)
p−1
2 .

Notice that p+1
2 is even, the polynomial�(p)

2,2,M (t1, t2, z1, z2) is symmetricwith respect
to permutation of t1, t2, and the solution

I (p−1,p−1)(z1, z2)

= (z1 − z2)
p+1
2
(
c(2,0)(z1, z2) f

2v2 ⊗ v2 + c(1,1)(z1, z2) f v2 ⊗ f v2

+ c(2,0)(z1, z2)v2 ⊗ f 2v2) (2.28)

is nonzero. Here cJ (z1, z2) are the polynomials determined by the construction of
Sect. 2.5.

For example, for p = 3,

I (2,2)(z) = (z1 − z2)
2( f 2v2 ⊗ v2 − f v2 ⊗ f v2 + v2 ⊗ f 2v2). (2.29)

2.6 Relation of solutions to integrals over F
k
p

For a polynomial F(t1, . . . , tk) ∈ Fp[t1,…, tk] and a subset γ ⊂ F
k
p define the integral

∫

γ

F(t1, . . . , tk) :=
∑

(t1,...,tk )∈γ

F(t1, . . . , tk).

Theorem 2.5 Fix x1, . . . , xn ∈ Fp. Consider the vector of polynomials

F(t) := �
(p)
k,n,M (t1, . . . , tk, x1, . . . , xn)

∑

J∈Ik
WJ (t1, t2, x1, . . . , xn) f Jvm,

of formula (2.25). Assume that degti F(t1, . . . , tk) < 2p−2 for i = 1, . . . , k. Consider
the solution I (p−1,...,p−1)(z, q) of Eqs. (2.12) and (2.5), described in Theorem 2.4.
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Then

I (p−1,...,p−1)(x1, . . . , xn, q) = (−1)k
∫

Fkp

F(t1, . . . , tk). (2.30)

This integral is a p-analog of the hypergeometric integral (2.11).

Proof Theorem 2.5 is a straightforward corollary of formula (1.17), cf. the proof of
Theorem 1.3. ��
Example 2.4 The polynomial F(t1, t2) of Example 2.3 satisfies the inequalities
degti F(t1, t2) < 2p − 2 for i = 1, 2.

2.7 Example of a p-analog of skew-symmetry

For J ∈ Ik , the differential forms WJ (t, z)dt1 ∧ · · · ∧ dtk are skew-symmetric with
respect to permutations of t1, . . . , tk . Here is an example of a p-analog of that skew-
symmetry. For another demonstration of the skew-symmetry, see Example 2.5.

Consider the KZ differential equations with parameters n, k, κ ,m1, . . . ,mn ∈ Z>0,
where κ , m1, . . . ,mn are even, κ = 2κ ′,m1 = 2m′

1, . . . ,mn = 2m′
n . Assume that κ ′

is even and the prime p is such that κ ′∣∣(p−1) and (p−1)/κ ′ is odd, cf. Example 2.5.
Choose

�
(p)
k,n,M (t, z) =

∏

1�i< j�n

(zi − z j )
Mi, j

∏

1�i< j�k

(ti − t j )
p− p−1

κ′
k∏

i=1

n∏

s=1

(ti − zs)
m′
s
p−1
κ′

=
∏

1�i< j�n

(zi − z j )
Mi, j

⎛

⎝
∏

1�i< j�k

(ti − t j )
κ ′−1

k∏

i=1

n∏

s=1

(ti − zs)
m′
s

⎞

⎠

p−1
κ′ ∏

1�i< j�k

(ti − t j ).

(2.31)

Notice that

ϕ(t, z) :=
∏

1�i< j�k

(ti − t j )
κ ′−1

k∏

i=1

n∏

s=1

(ti − zs)
m′
s (2.32)

as well as the product
∏

1�i< j�k(ti − t j ) are skew-symmetric with respect to permu-
tations of t1, . . . , tk .

Let a be a generator of the cyclic group F
×
p . Let x = (x1, . . . , xn) ∈ F

n
p. For

 = 1, . . . , κ ′, denote

γ(x) =
{
t ∈ F

k
p | ϕ(t, x)

p−1
κ′ = a

p−1
κ′
}

, γ0(x) =
{
t ∈ F

k
p | ϕ(t, x) = 0

}
.

(2.33)

The partition of F
k
p by subsets (γ(x))κ

′
=0 is invariant with respect to the action of

the symmetric group Sk of permutations of t1, . . . , tk . For every , the subset γ(x) is
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invariant with respect to the action of the alternating subgroup Ak ⊂ Sk . For J ∈ Ik the
restriction of the functionWJ (t, x)

∏
1�i< j�k(ti − t j ) to the set γ(x) is Ak-invariant.

We have
∫

Fkp

�
(p)
k,n,M (t, z)WJ (t, x)

=
∏

1�i< j�n

(zi − z j )
Mi, j

κ ′/2∑

=1

2a
p−1
κ′

∫

γ(x)
WJ (t, x)

∏

1�i< j�k

(ti − t j ).

2.8 Relation of solutions to surfaces over Fp

Example 2.5 For distinct x1, x2 ∈ Fp let �(x1, x2) be the closure in P1(Fp)× P1(Fp)

of the affine surface

y2 = (t1 − t2)(t1 − x1)(t2 − x1)(t1 − x2)(t2 − x2), (2.34)

where P1(Fp) is the projective line over Fp. For a rational function h : �(x1, x2) →
Fp define the integral

∫

�(x1,x2)
h =

∑

P∈�

′
h(P), (2.35)

as the sum over all points P ∈ �(x1, x2), where h(P) is defined.

Recall

W(2,0)(t1, t2, x1, x2) = 1

t1 − x1

1

t2 − x1
, W(0,2)(t1, t2, x1, x2) = 1

t1 − x2

1

t2 − x2
,

W(1,1)(t1, t2, x1, x2) = 1

t1 − x1

1

t2 − x2
+ 1

t2 − x1

1

t1 − x2
.

Theorem 2.6 Let p = 4l + 3 for some l. Let

c(2,0)(z1, z2) f
2v2 ⊗ v2 + c(1,1)(z1, z2) f v2 ⊗ f v2 + c(2,0)(z1, z2)v2 ⊗ f 2v2

be the vector of polynomials appearing in the solution (2.28) of the KZ equations of
Example 2.3. Then

c(2,0)(x1, x2) =
∫

�(x1,x2)

t1 − t2
(t1 − x1)(t2 − x1)

,

c(1,1)(x1, x2) =
∫

�(x1,x2)

t1 − t2
(t1 − x1)(t2 − x2)

+
∫

�(x1,x2)

t1 − t2
(t2 − x1)(t1 − x2)

,

c(0,2)(x1, x2) =
∫

�(x1,x2)

t1 − t2
(t1 − x2)(t2 − x2)

. (2.36)
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Proof The values ofWJ (t1, t2, x1, x2) at infinite points of �(x1, x2) are equal to zero,
so the integrals are sums over points of the affine surface. We prove the first equality
in (2.36). We have

∫

�(x1,x2)

t1 − t2
(t1 − x1)(t2 − x1)

=
∑

t1,t2 �=x1

t1 − t2
(t1 − x1)(t2 − x1)

+
∑

t1,t2

t1 − t2
(t1 − x1)(t2 − x1)

(
(t1 − t2)

2∏

i=1

2∏

s=1

(ti − xs)
) p−1

2

=
∑

t1,t2∈Fp

[(t1 − x2)
p−2 − (t1 − x1)

p−2]

+
∑

t1,t2∈Fp

∑

i1,i2

ci1,i2(x1, x2)t
i1
1 t i22 = c(2,0)(x1, x2).

��
Remark Consider the projection �(x1, x2) → F

2
p, (t1, t2, y) �→ (t1, t2). For any

distinct t1, t2 ∈ Fp exactly one of the two points (t1, t2), (t2, t1) lies in the image of
the projection, since (t1 − t2)(t1 − x1)(t2 − x1)(t1 − x2)(t2 − x2) is skew-symmetric
in t1, t2 and −1 is not a square if p = 4l + 3.

3 Resonances in sl2 KZ equations

3.1 Resonances in conformal field theory overC

Letm1, . . . ,mn, k ∈ Z>0, L⊗m = Lm1 ⊗· · ·⊗ Lmn . Assume that κ > 2 is an integer.
Assume that

0 � m1, . . . ,mn,m1 + · · · + mn − 2k � κ − 2.

Consider the positive integer

 = κ − 1 − |m| + 2k. (3.1)

For z = (z1, . . . , zn) ∈ C
n with distinct coordinates define

Bk,n,m(z) =
{
w ∈ L⊗m | h.w = (|m| − 2k)w, e.w = 0, (ze)w = 0

}
,

where ze : L⊗m → L⊗m is the linear operator defined by the formula

w1 ⊗ · · · ⊗ wn �→
n∑

s=1

zsw1 ⊗ · · · ⊗ ews ⊗ · · · ⊗ wn,
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for any w1 ⊗ · · · ⊗ wn ∈ L⊗m . This vector space is called the space of conformal
blocks.

Example 3.1 Let k = 1, |m| = κ ,  = 1, Then

Bk,n,m(z) =
{ n∑

s=1

Isvm1 ⊗ · · · ⊗ f vms ⊗ · · · ⊗ vmn

∣∣∣
n∑

s=1

ms Is = 0,
n∑

s=1

zsms Is = 0
}
.

Theorem 3.1 [4,5] The family of subspaces

Bk,n,m(z) ⊂ SingL⊗m[|m| − 2k],

depending on z, is invariant with respect to the KZ equations. ��
Theorem 3.2 [4,5] All the hypergeometric solutions of the KZ equations with values in
SingL⊗m[|m|−2k], constructed in Sect. 2.3, take values in the subspaces of conformal
blocks.

Proof Theorem 3.2 is proved in [4]. Another proof for arbitrary simple Lie algebras
is given in [5]. Let I (γ )(z) = ∑

J∈Ik I
(γ )

J (z)FJvm be a hypergeometric solution. We

need to check that (ze) I (γ )(z) = 0.This equation is a systemof algebraic equations on
the coefficients (I (γ )

J (z))J∈Ik . The equations of the system are labeled by basis vectors
of L⊗m[|m| − 2(k − )]. Namely, for any Q ∈ Ik− one calculates the coefficient of
FQvm in (ze) I (γ )(z) and equates that coefficient to zero, cf. the second equation in
Example 3.1. Such an equation follows from a cohomological relation. Namely, the
corresponding differential k-form, whose integral over γ (z) has to be zero, equals the
differential with respect to the t-variables of some differential k−1-form ηn,k,,Q(t, z).
Then the desired equation holds by Stokes’ theorem, see this reasoning on pp. 182–184
in [4]. This proves Theorem 3.2. ��
Remark That k − 1-form ηn,k,,Q(t, z) is determined by the numbers n, k,  and the
index Q and has the form

ηn,k,,Q(t, z)

= �k,n,m(t, z)
∏

1�i< j�n(zi − z j )
∏

1�i< j�k(ti − t j )
∏k

i=1
∏n

s=1(ti − zs)
μn,k,,Q(t, z),

(3.2)

where μn,k,,Q(t, z) is a polynomial differential k − 1-form in t, z with integer coef-
ficients determined by n, k, , Q only, see pp. 182–184 in [4].

3.2 Resonances over Fp

Given k, n ∈ Z>0, m = (m1, . . . ,mn) ∈ Z
n
>0, κ ∈ Z>0, let p > 2 be a prime number

such that p does not divide κ . Choose positive integers Ms for s = 1, . . . , n, Mi, j for

123



Solutions of KZ differential equations modulo p 681

1 � i < j � n, M0 and K such that

Ms ≡ −ms

κ
, Mi, j ≡ mim j

2κ
, M0 ≡ 2

κ
, K ≡ 1

κ
(mod p).

Fix integers q = (q1, . . . , qk). As in Sect. 2.5 for any nonnegative integers l1, . . . , lk
define the vector I (i1,...,ik )(z, q) ∈ (Fp[z])dim L⊗m [|m|−2k].

Theorem 3.3 Let  ∈ Z>0 be such that

( − 1)K −
n∑

s=1

Ms − (k − 1)M0 ≡ 1 (mod p). (3.3)

Then for any integers q = (q1, . . . , qk) and positive integers l = (l1, . . . , lk), the
vector of polynomials I (l1 p−1,...,lk p−1)(z, q) satisfies the equation

(ze) I (l1 p−1,...,lk p−1)(z, q) = 0. (3.4)

Remark The resonance equation (3.1) has the form

 − 1

κ
= 1 − |m|

κ
+ 2

κ
(k − 1).

Equation (3.3) is the reduction modulo p of that equation.

Proof The proof of Theorem 3.3 is similar to the proof of Theorem 2.1 and uses the
universal differential k − 1-forms ηn,k,,Q(t, z) of Sect. 3.1 instead of the differential
k − 1-forms ηJ (t, z) in (2.17). ��

Example 3.2 Let p = 3, κ = 4, n = 5, k = 2, m1 = · · · = m5 = 1. Consider the
vector I (11,8)(z) = ∑

J∈Ik I
(11,8)
J (z) f Jvm of Example 2.2, which is a solution of (2.5)

and (2.12). The resonance equation (3.3) in this case takes the form  + 1 ≡ 0 (mod
3) and is satisfied for  = 2. The condition (ze)2 I (11,8)(z) = 0 means

∑

J=( j1,..., j5)∈Ik
I (11,8)
J (z)

5∏

i=1; ji=1

zi ≡ 0 (mod 3). (3.5)

Equation (3.5) takes the form

− z1z2(z3 + z4 + z5) − · · · − z4z5(z1 + z2 + z3) = − 3
∑

1�i< j<k�5

zi z j zk ≡ 0

(mod 3).
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4 KZ equations over Fp for other Lie algebras

The KZ equations are defined for any simple Lie algebra g or more generally for any
Kac–Moody algebra, see for example [11]. Similarly to what was done in Sects. 2 and
3, one can construct polynomial solutions of those KZ equations over Fp as well as
of the singular vector equations and resonance equations over Fp.

The construction of the polynomial solutions over Fp in the sl2 case was based
on the algebraic identities for logarithmic differential forms (2.14), (2.15) and the
associated cohomological relations (2.20), (2.23) as well as on the cohomological
relations associated with the differential forms ηn,k,,K (t, z) in (3.2). For an arbitrary
Kac–Moody algebra the analogs of the algebraic identities in (2.14) and (2.15) are
the identities of Theorems 6.16.2 and 7.5.2′′ in [11], respectively. For an arbitrary
simple Lie algebra, the construction of analogs of the cohomological identities for the
differential forms ηn,k,,K (t, z) is the main result of [5].

Remark For the Fp-analogs of multidimensional hypergeometric integrals associated
with arrangements of hyperplanes, see [14]. For Remarks on the Gaudin model and
Bethe ansatz over Fp, see [15].
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