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Abstract Using contiguous relations we construct an infinite number of contin-
ued fraction expansions for ratios of generalized hypergeometric series 3F2(1). We
establish exact error termestimates for their approximants andprove their rapid conver-
gence. To do so, we develop a discrete version of Laplace’smethod for hypergeometric
series in addition to the use of ordinary (continuous) Laplace’s method for Euler’s
hypergeometric integrals.
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1 Introduction

In 1813, Gauss [14] introduced a general continued fraction that represents the ratio
of two 2F1 hypergeometric functions. It is interesting because it contains a variety
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of continued fraction expansions of several important elementary functions and some
of more transcendental ones. In 1901, Van Vleck [26] established a general result on
its convergence. Gauss’s continued fraction is derived from a three-term contiguous
relation for 2F1. In 1956, using other contiguous relations, Frank [13] constructed
some more (eight or so) continued fractions of a similar sort and discussed their
convergence. In 2005, Borwein et al. [7] obtained an explicit bound for the error
term in certain special cases of Gauss’s continued fraction. In 2011, based on Gauss’s
continued fraction and other means, Colman et al. [8] developed an efficient algorithm
for the validated high-precision computation of certain 2F1 functions.

The generalized hypergeometric series of unit argument 3F2(1) also admits three-
term contiguous relations, among which the basic twelve relations were found by
Wilson [27]; see also Bailey [5]. Thus it is feasible and interesting to discuss or
utilize allied continued fractions for 3F2(1). For instance, Zhang [29] used contiguous
relations for 3F2(1) to give new proofs of three of Ramanujan’s elegant continued
fractions for products and quotients of gamma functions, namely, entries 34, 36, and
39 in Ramanujan’s second notebook [24, Chapter 12], or in its corrected version by
Berndt, Lamphere, and Wilson [6]. In a similar vein, Denis and Singh [9] dealt with
entries 25 and 33 of the same notebook.

To give a further motivation for 3F2(1) continued fractions, we look at the special
case in which one of the numerator parameters, say a0, is equal to one

3F2

(
1, a1, a2

b1, b2

)
:=

∞∑
j=0

(a1; j) (a2; j)

(b1; j) (b2; j)
, (a; j) := Γ (a + j)

Γ (a)
, (1)

whereΓ (a) is Euler’s gamma function. This series is well defined and non-terminating
if

a1, a2, b1, b2 /∈ Z≤0, (2)

in which case the series is absolutely convergent if and only if

Re s > 0, s := b1 + b2 − a1 − a2 − 1. (3)

This class of infinite sums are interesting because they contain a lot of special
evaluations, some of which are presented in Table 1. Therefore it is important to
establish a general framework for the precise and efficient computations of the series
(1). Naturally, our approach here is based on three-term contiguous relations and allied
continued fractions. As an illustration of a more general story to be developed in this
article, we shall present a continued fraction expansion of the series (1) with an exact
error term estimate for its approximants that exhibits an exponentially fast convergence
(see Theorem 1.1).

To state Theorem 1.1, let {q(n)}∞n=0 and {r(n)}∞n=0 be infinite sequences defined by

q(n) := qi ((n − i)/3), r(n) := ri ((n − i)/3), for n ≡ i mod 3, i = 0, 1, 2,
(4)
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Table 1 Some special evaluations of the series 3F2(1, a1, a2; b1, b2)

3F2

(
1, 1, 1

2, 2

)
= ζ(2) = π2

6
(Euler 1735),

3F2

(
1, 1

4 , 1
2

5
4 , 3

2

)
= π + 2 log 2

4
,

3F2

(
1, 1

4 , 1
4

5
4 , 5

4

)
= π2 + 8G

16
(G :=

∞∑
k=0

(−1)k

(2k + 1)2
is Catalan’s constant) ,

3F2

(
1, 5

6 , 4
3

3
2 , 11

6

)
= 5

2

√
3 log(2 + √

3) (Watson 1918) ,

3F2

(
1, 1, 3

4
7
6 , 11

6

)
= 2

1
2 ·5
3
5
4

log

(
3
5
4 −3

3
4 +2

1
2

3
5
4 −3

3
4 −2

1
2

)
− 2

3
2 ·5
3
5
4

arccos

(
3
5
4 +3

3
4

2

√
5+3

3
2

)
(Asakura et al. [3]),

3F2

(
1, 1, 2

3
7
6 , 11

6

)
= 5

2
5
3 ·3 1

2
log

(
2
2
3 +2

1
3 −1+3

1
2

2
2
3 +2

1
3 −1−3

1
2

)
− 5

2
2
3 ·3

arctan

(
3

3·2 2
3 +2

1
2 +3

)
(Yabu [28]) ,

3F2

(
1, a, b

1, c

)
= 2F1

(
a, b

c

)
= Γ (c) Γ (c − a − b)

Γ (c − a) Γ (c − b)
(Gauss 1812) ,

3F2

(
1, a, b

2, c

)
= c − 1

(a − 1)(b − 1)

{
Γ (c − 1) Γ (c + 1 − a − b)

Γ (c − a) Γ (c − b)
− 1

}
.

Table 2 Partial denominators and numerators of the continued fraction (6)

q0(n) := (3n + b1 − 1)(3n + b2 − 1) − (2n)(2n + a2)

(2n)(2n + a1 − 1)
(n ≥ 1),

q1(n) := (3n + b1)(3n + b2) − (2n + 1)(2n + a1)

(2n + a1)(2n + a2)
(n ≥ 0),

q2(n) := (3n + b1 + 1)(3n + b2 + 1) − (2n + a1 + 1)(2n + a2 + 1)

(2n + 1)(2n + a2 + 1)
(n ≥ 0),

r0(n) := − (n + b1 − a2 − 1)(n + b2 − a2 − 1)

(2n − 1)(2n + a2 − 1)
(n ≥ 1),

r1(n) := − (n + b1 − 1)(n + b2 − 1)

(2n)(2n + a1 − 1)
(n ≥ 1),

r2(n) := − (n + b1 − a1)(n + b2 − a1)

(2n + a1)(2n + a2)
(n ≥ 0).

where qi (n) and ri (n) are given by formulas in Table 2 and q0(0) := 1, r0(0) := 1,
r1(0) = −1. The modulo 3 structure in (4) is the reflection of a Z3-symmetry in the
relevant contiguous relations (see Sect. 2.1). Under condition (2), all the q(n) and r(n)

have non-vanishing denominators, while all the r(n) have non-vanishing numerators
if and only if the parameters satisfy

bi − a j /∈ Z≤0, i, j = 1, 2. (5)
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Thus the (formal) infinite continued fraction

∞
K
j=0

r( j)

q( j)
:= r(0)

q(0) +
r(1)

q(1) +
r(2)

q(2) + · · · · · · (6)

makes sense, provided that the conditions (2) and (5) are satisfied.

Theorem 1.1 If conditions (2), (3), and (5) are fulfilled then continued fraction (6)
converges to series (1) exponentially fast and there exists an exact error term estimate
for its approximants

3F2

(
1, a1, a2

b1, b2

)
− n

K
j=0

r( j)

q( j)
= C

(
a1, a2
b1, b2

)
· (3n)

1
2−s

22n+a1+a2
·
{
1 + O(n− 1

2 )
}

,

as n → +∞, where the constant C(a1, a2; b1, b2) is given by

C

(
a1, a2
b1, b2

)
:= π

3
2 Γ (b1) Γ (b2) Γ 2(s)

Γ (a1) Γ (a2) Γ (b1 − a1) Γ (b1 − a2) Γ (b2 − a1) Γ (b2 − a2)
.

Theorem 1.1 is only a corollary to a specific example of infinitely many continued
fractions with exact error estimates, which we shall establish in Theorems 3.2 and 3.3
(see Example 9.1). To generate infinitely many continued fractions, we naturally need
infinitely many contiguous relations, so we then need a general theory, beyond the
scopes of Bailey [5] and Wilson [27], that presides over all contiguous relations for
3F2(1). Our previous paper [10] develops such a theory and the present article relies
substantially on the main results of that paper.

2 Contiguous and recurrence relations

The hypergeometric series of unit argument 3F2(1)with full five parameters is defined
by

3F2

(
a0, a1, a2

b1, b2

)
:=

∞∑
j=0

(a0; j) (a1; j) (a2; j)

(1; j) (b1; j) (b2; j)
.

With the notation a = (a0, a1, a2; a3, a4) = (a0, a1, a2; b1, b2), this series is often
denoted by 3F2(a). It is well defined and non-terminating as a formal sum if a satisfies

a0, a1, a2, b1, b2 /∈ Z≤0, (7)

in which case 3F2(a) is absolutely convergent if and only if

Re s(a) > 0, s(a) := b1 + b2 − a0 − a1 − a2, (8)

where s(a) is called the parametric excess for 3F2(a). We say that a is balanced if
s(a) = 0.
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In order to discuss contiguous relations, however, we find it more convenient in
many respects to replace 3F2(a) by the renormalized hypergeometric series defined
by

3 f2(a) :=
∞∑
j=0

Γ (a0 + j)Γ (a1 + j)Γ (a2 + j)

Γ (1 + j)Γ (b1 + j)Γ (b2 + j)
.

This latter series is well defined and non-terminating as a formal sum, whenever

a0, a1, a2 /∈ Z≤0 (compare this with condition (7)),

in which case series 3 f2(a) is absolutely convergent if and only if (8) is satisfied. Note
that

3 f2(a) = Γ (a0) Γ (a1) Γ (a2)

Γ (b1) Γ (b2)
3F2(a), (9)

as long as both sides of Eq. (9) make sense.

2.1 Contiguous relations

It follows from [10, Theorem 1.1] that for any distinct integer vectors k, l ∈ Z
5

different from 0 there exist unique rational functions u(a), v(a) ∈ Q(a) such that

3 f2(a) = u(a) · 3 f2(a + k) + v(a) · 3 f2(a + l). (10)

An identity of the form (10) is called a contiguous relation for 3 f2(1). An algorithm
to calculate u(a) and v(a) explicitly is given in [10, Recipe 5.4]. According to it,
one calculates the connection matrix A(a; k) as in [10, Formula (30)] and defines
r(a; k) ∈ Q(a) to be its (1, 2)-entry as in [10, Formula (33)]. One also calculates
r(a; l) as well as r(a; l − k) in similar manners. If k and l are distinct then r(a; l − k)
is non-zero in Q(a) and the coefficients in (10) are represented as

u(a) = r(a; l)
det A(a; k) · r(a + k; l − k)

, v(a) = − r(a; k)
det A(a; k) · r(a + k; l − k)

,

(11)
as in [10, Proposition 5.3], where according to [10, Formula (32)] one has

det A(a; k) = (−1)k0+k1+k2(s(a) − 1; s(k))∏2
i=0(ai ; ki )∏2

i=0
∏2

j=1(b j − ai ; l j − ki )
. (12)

In order to formulate our main results in Sect. 3.2, we need one more fact
about the structure of r(a; k) which is not discussed in [10]. Given a vector k =
(k0, k1, k2; l1, l2) ∈ Z

5, let

〈a; k〉± :=
2∏

i=0

2∏
j=1

(b j − ai ; (l j − ki )±), ||k||+ :=
2∑

i=0

2∑
j=1

(l j − ki )+,
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where m± := max{±m, 0}. Note that ∏2
i=0

∏2
j=1(b j − ai ; l j − ki ) = 〈a; k〉+/〈a +

k; k〉−.
Lemma 2.1 For any non-zero vector k ∈ Z

5≥0 with s(k) = 0 there exists a non-zero
polynomial ρ(a; k) ∈ Q[a] such that the rational function r(a; k) can be written as

r(a; k) = −{s(a) − 1}ρ(a; k)
〈a; k〉+ , deg ρ(a; k) ≤ ||k||+ − 2. (13)

Proof A non-zero polynomial p(a) ∈ Q[a] is said to be a denominator of a rational
function r(a) ∈ Q(a) if the product p(a) r(a) becomes a polynomial. A denominator
of the least degree, which is unique up to constant multiples, is referred to as the
reduced denominator. Any denominator is divisible by the reduced denominator in
Q[a]. A denominator of a matrix with entries in Q(a) is, by definition, a common
denominator of those entries.

For i = 0, 1, 2, μ = 1, 2, let eiμ := (δ0i , δ1i , δ2i ; δ1μ, δ2μ), where δ∗� is Kro-
necker’s delta. A vector of this form is said to be basic. A product of contiguous
matrices in [10, Table 2] yields

A(a; eiμ) = 1

(bμ − a j )(bμ − ak)

(
ai (bμ − a j − ak) s(a) − 1

aia jak (ai + 1)bμ + a jak − b1b2

)
,

where {i, j, k} = {0, 1, 2}. Any k = (k0, k1, k2; l1, l2) ∈ Z
5≥0 with s(k) = 0 admits a

decomposition k = vl + · · · + v1 with each vi basic, so A(a; k) can be computed by
the chain rule

A(a; k) = A(a + vl−1 + · · · + v1; vl) · · · A(a + v1; v2)A(a; v1). (14)

Thus A(a; k) has a denominator each irreducible factor of which is of the form bμ −
ai + an integer. A factor of this form is said to be of type bμ − ai and the product of
all factors of this type is referred to as the bμ − ai component of the denominator.

Claim For each i = 0, 1, 2 and μ = 1, 2 the matrix A(a; k) admits a denominator
whose bμ − ai component is exactly the factorial function (bμ − ai ; (lμ − ki )+).

To show the claim we may assume i = 0 and μ = 1 without loss of generality.

(1) Ifm0 := k0−l1 ≥ 0, then take the decomposition k = l1e01+m0e02+k1e12+k2e22.
(2) If m1 := l1 − k0 > 0, then take the decomposition k = k12e12 + k22e22 + k0e01 +

k11e11 + k21e21, where ki j are non-negative integers such that k1 = k11 + k12,
k2 = k21 + k22, m1 = k11 + k21 and l2 = k12 + k22; such ki j exist thanks to
k ∈ Z

5≥0 and s(k) = 0.

We use the fact that A(a;meiμ) has a denominator (bμ − a j ;m)(bμ − ak;m), where
{i, j, k} = {0, 1, 2}, which follows by induction on m ∈ Z≥0. In case (1), the
decomposition of k and the chain rule (14) imply that A(a; k) has a denominator
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without b1 − a0 component. In case (2), the decomposition of k leads to the product
A(a; k) = A2(a; k)A1(a; k) with

A2(a; k) := A(a + k11e11 + k21e21; k12e12 + k22e22 + k1e01),

A1(a; k) := A(a; k11e11 + k21e21).

Observe that A1(a; k) has a denominator whose b1 −a0 component is (b1 −a0; k11 +
k21) = (b1 − a0;m1), while A2(a; k) has a denominator without b1 − a0 component.
So A(a; k) has a denominator whose b1 − a0 component is (b1 − a0;m1). The claim
is thus verified.

For each entry of A(a; k), the Claim implies that for i = 0, 1, 2 and μ = 1, 2
the bμ − ai component of its reduced denominator must divide the factorial (bμ −
ai ; (lμ − ki )+), so the reduced denominator itself must divide the product 〈a; k〉+ =∏2

i=0
∏2

μ=1(bμ − ai ; (lμ − ki )+). Thus one can take 〈a; k〉+ as a denominator of
A(a; k). The index of a rational function is the degree of its numerator minus that of
its denominator. An induction on the length l of product (14) shows that the index
≤ i − j for the (i, j)-entry of A(a; k). Another induction shows that the (1, 2)-entry
is divisible by s(a) − 1. All these facts lead to expression (13) for r(a; k). �

2.2 Symmetry and dichotomy

Let G = S3 × S2 be the group acting on a = (a0, a1, a2; b1, b2) by permuting
(a0, a1, a2) and (b1, b2) separately. It is obvious that 3 f2(a) is invariant under this
action, so that any element τ ∈ G transforms the contiguous relation (10) into a
second one

3 f2(a) = τu(a) · 3 f2(a + τ(k)) + τv(a) · 3 f2(a + τ(l)), (15)

where τϕ(a) := ϕ(τ−1(a)) is the induced action of τ on a function ϕ(a).
Take an element σ ∈ G such that σ 3 is identity and set

l := k + σ(k), p := k + σ(l) = k + σ(k) + σ 2(k). (16)

Formula (15) with τ = σ followed by a shift a �→ a + k yields

3 f2(a + k) = σu(a + k) · 3 f2(a + l) + σv(a + k) · 3 f2(a + p), (17)

and similarly Formula (15) with τ = σ 2 followed by another shift a �→ a + l gives

3 f2(a + l) = σ 2
u(a + l) · 3 f2(a + p) + σ 2

v(a + l) · 3 f2(a + p + k). (18)

If k is non-zero, non-negative k ∈ Z
5≥0 and balanced s(k) = 0, then so are l − k =

σ(k) and l by definition (16), hence Lemma 2.1 applies not only to k but also to σ(k)
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and l . Putting Formulas (12) and (13) for these vectors into Formula (11) we have

u(a) = (−1)k0+k1+k2 · ρ(a; l) · 〈a; k〉+ · 〈a + k; σ(k)〉+
ρ(a + k; σ(k)) · 〈a; l〉+ · 〈a + k; k〉− ∏2

i=0(ai ; ki )
, (19a)

v(a) = − (−1)k0+k1+k2 · ρ(a; k) · 〈a + k; σ(k)〉+
ρ(a + k; σ(k)) · 〈a + k; k〉− ∏2

i=0(ai ; ki )
, (19b)

Definition 2.2 For any non-zero vector k ∈ Z
5≥0 with s(k) = 0, we consider two

cases.

(1) The case is said to be of straight type when σ is identity, l = 2k and p = 3k.
(2) The case is said to be of twisted type when σ is a cyclic permutation of the upper

parameters (a0, a1, a2) that acts on the lower parameters (b1, b2) trivially,

k =
(
k0, k1, k2

l1, l2

)
, p =

(
p, p, p

3l1, 3l2

)
, (20)

with p := k0+k1+k2 = l1+l2, and ifσ(a0, a1, a2; b1, b2) = (aλ, aμ, aν; b1, b2),
then

l =
(
k0 + kλ, k1 + kμ, k2 + kν

2l1, 2l2

)
, (21)

where the index triple (λ, μ, ν) is either (2, 0, 1) or (1, 2, 0).

This dichotomy is only due to the restriction of our attention to symmetries σ such
that σ 3 = 1. Taking other symmetries from S3 × S2 would lead to other patterns of
twists. It is an interesting problem to treat some other cases or to exhaust all cases that
are possible.

2.3 Recurrence relations

In the situation of Definition 2.2, the shifts a �→ a + n p, n ∈ Z≥0, in the contiguous
relation (10) and its companions (17) and (18) induce a system of recurrence relations

f0(n) = q0(n) · f1(n) + r1(n) · f2(n), (22a)

f1(n) = q1(n) · f2(n) + r2(n) · f0(n + 1), (22b)

f2(n) = q2(n) · f0(n + 1) + r0(n + 1) · f1(n + 1), (22c)

for n ∈ Z≥0, where the sequences fi (n), qi (n) and ri (n) are defined by

f0(n) := 3 f2(a + n p), q0(n) := u(a + n p), r1(n) := v(a + n p),

f1(n) := 3 f2(a + n p + k), q1(n) := σu(a + n p + k),

r2(n) := σv(a + n p + k),
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f2(n) := 3 f2(a + n p + l), q2(n) := σ 2
u(a + n p + l),

r0(n) := σ 2
v(a + (n − 1) p + l).

In view of the modulo 3 structure in (22), it is convenient to set

f (n) := fi ((n − i)/3), (23a)

q(n) := qi ((n − i)/3), for n ≡ i mod 3, i = 0, 1, 2. (23b)

r(n) := ri ((n − i)/3). (23c)

Then the system (22) is unified into a single three-term recurrence relation

f (n) = q(n) · f (n + 1) + r(n + 1) · f (n + 2), n ∈ Z≥0. (24)

If k is non-negative, k ∈ Z
5≥0, then so are l and p by Formula (16), hence all f (n),

n ∈ Z≥0, are well defined under single assumption (7). If moreover k is balanced,
s(k) = 0, then so are l and p again by Formula (16), hence all f (n), n ∈ Z≥0
have the same parametric excess. Thus all these series are convergent under the single
assumption (8). In what follows we refer to k as the seed vector while p as the shift
vector. We remark that k is primary in the sense that l and p are derived from k by
the rule (16), but p is likewise important because it is p rather than k that is directly
responsible for the asymptotic behavior of the sequence f (n).

2.4 Simultaneousness

In place of the series 3 f2(a), we consider another series

3g2(a) = 3g2

(
a0, a1, a2

b1, b2

)
:= 3 f2

(
a0, a0 − b1 + 1, a0 − b2 + 1

a0 − a1 + 1, a0 − a2 + 1

)
. (25)

Let k, l , and p be vectors as in (16) such that s(k) = 0 and hence s(l) = s( p) = 0. By
assertion (3) of [10, Theorem 1.1] the contiguous relation (10) for 3 f2(a) is simultane-
ously satisfied by 3h2(a) := exp(π

√−1 s(a)) 3g2(a), but the factor exp(π
√−1 s(a))

is irrelevant by s(k) = s(l) = 0, thus (10) is satisfied by 3g2(a) itself. Let gi (n) and
g(n) be defined from 3g2(a) in the same manner as fi (n) and f (n) are defined from
3 f2(a) in Sect. 2.3, that is, let

g0(n) := 3g2(a + n p), g1(n) := 3g2(a + n p + k), g2(n) := 3g2(a + n p + l),
(26a)

g(n) := gi ((n − i)/3) for n ≡ i mod 3, i = 0, 1, 2. (26b)

Then the sequences f (n) in (23a) and g(n) in (26b) solve the same recurrence relation
(24). With this observation we are now ready to consider continued fractions.
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168 A. Ebisu, K. Iwasaki

3 Continued fractions

First, we present a general principle to establish an exact error estimate for the approxi-
mants to a continued fraction.Next,we announce thefinal goal of this article, Theorems
3.2 and 3.3, which will be achieved by the principle after a rather long journey of
asymptotic analysis.

3.1 A general error estimate

Let {q(n)}∞n=0 and {r(n)}∞n=1 be sequences of complex numbers such that r(n) is non-
zero for every n ∈ N := Z≥1. We consider a sequence of finite continued fractions

q(0) + n
K
j=1

r( j)

q( j)
:= q(0) + r(1)

q(1) + ··· +
r(n)

q(n)
, n ∈ Z≥0. (27)

The convergence of (27) can be described in terms of the three-term recurrence relation

x(n) = q(n) · x(n + 1) + r(n + 1) · x(n + 2), n ∈ Z≥0. (28)

A non-trivial solution X (n) to Eq. (28) is said to be recessive if X (n)/Y (n) → 0 as
n → +∞ for any solution Y (n) not proportional to X (n). Recessive solution, if it
exists, is unique up to non-zero constant multiples. Any non-recessive solution is said
to be dominant.

Theorem 3.1 (Pincherle [23]) Sequence (27) is convergent if and only if the recur-
rence equation (28) has a recessive solution X (n), in which case (27) converges to
the ratio X (0)/X (1).

We refer to Gil et al. [16], Jones and Thron [18], and Gautschi [15] for more
accessible sources on Pincherle’s theorem. Let usmake this theoremmore quantitative.
For any non-trivial solution x(n) to Eq. (28) and any positive integer m ∈ N one has

x(0)

x(1)
= q(0) + m−1

K
j=1

r( j)

q( j) +
r(m)

q(m) + r(m+1)
x(m+1)
x(m+2)

.

Thus if x(n;m) is a non-trivial solution to (28) that vanishes at n = m + 2, then

x(0;m)

x(1;m)
= q(0) + m

K
j=1

r( j)

q( j)
, or equivalently,

x(1;m)

x(0;m)
= m

K
j=0

r( j)

q( j)
, r(0) := 1.

One can express the solution x(n;m) in the form

x(n;m) = X (n) − R(m) · Y (n), R(m) := X (m + 2)

Y (m + 2)
, m, n ∈ Z≥0,
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where X (n) and Y (n) are recessive and dominant solutions to (28), respectively, so
that R(m) → 0 as m → +∞. Hence if X (0) is non-zero then so is x(0;m) for every
m � 0 and

X (1)

X (0)
− x(1;m)

x(0;m)
= X (1)

X (0)
− X (1) − R(m) · Y (1)

X (0) − R(m) · Y (0)

= ω(0) · R(m)

X (0)2 {1 − R(m) · Y (0)/X (0)} ,

where ω(n) := X (n) · Y (n + 1) − X (n + 1) · Y (n) is the Casoratian of X (n) and
Y (n), thus

X (1)

X (0)
− n

K
j=0

r( j)

q( j)
= ω(0) · R(n)

X (0)2

{
1 + O

(
R(n) · Y (0)

X (0)

)}
as n → +∞. (29)

In order to apply this general estimate to continued fractions for 3 f2(1), we want
to set up the situation in which the sequences f (n) in (23a) and g(n) in (26b) are
recessive and dominant solutions, respectively, to the recurrence relation (24). We
present in Sect. 4 a sufficient condition for f (n) to be recessive, while we impose in
Sect. 6 a further constraint that insures the dominance of g(n). In fact, upon assuming
those conditions, we deduce asymptotic representations for f (n) and g(n) showing
that they are actually recessive and dominant, respectively. The asymptotic analysis
there is used not only to prove such a qualitative assertion but also to get a precise
asymptotic behavior for the ratio R(n) = f (n+2)/g(n+2). We have also to evaluate
the initial term ω(0) for the Casoratian of f (n) and g(n); this final task is done in
Sect. 7.

3.2 Main results on continued fractions

Let {q(n)}∞n=0 and {r(n)}∞n=1 be sequences (23b) and (23c) derived from u(a) and v(a)
as in Formula (19). Consider the continued fraction K∞

j=0 r( j)/q( j), where r(0) := 1
by convention. It is said to be well defined if q( j) and r( j) take finite values with r( j)
non-zero for every j ≥ 0.

Let S(R) be the set of all real vectors p = (p0, p1, p2; q1, q2) ∈ R
5 such that

s( p) = 0; p1, p2 ≤ p0 < q1 ≤ q2 < p1 + p2. (30)

Note that (30) in particular implies p1, p2 > 0 and that S(R) is a 4-dimensional
polyhedral convex cone defined by a linear equation and a set of linear inequalities. It
is the space to which the shift vector p in (16) should belong, or rather as an integer
vector it should lie on

S(Z) := S(R) ∩ Z
5. (31)
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The following functions of p ∈ S(R) play important roles in several places of this
article:

D( p) := (−1)q1+q2 pp0
0 pp1

1 pp2
2∏2

i=0
∏2

j=1(q j − pi )q j−pi
, (32)

Δ( p) := e21e
2
2 + 18 e1e2e3 − 2 e32 − 8 e31e3 − 27 e23, (33)

where e1 := p0 + p1 + p2 = q1 + q2, e2 := p0 p1 + p1 p2 + p2 p0 + q1q2, and
e3 := p0 p1 p2. We remark that Δ( p) is the discriminant (up to a positive constant
multiple) of the cubic equation

(x − p0)(x − p1)(x − p2) + x(x − q1)(x − q2) = 0,

which plays an important role in Sect. 6.2. Moreover, for k = (k0, k1, k2; l1, l2) ∈ Z
5

we put

γ (a; k) := Γ (a0)Γ (a1)Γ (a2)Γ 2(s(a))∏2
i=0

∏2
j=1 Γ (b j − ai + (l j − ki )+)

. (34)

We are now able to state the main results of this article; they are stated in terms
of the seed vector k, but a large part of their proofs will be given in terms of the
shift vector p. For continued fractions of straight type in Definition 2.2, we have the
following theorem.

Theorem 3.2 (Straight Case) If k = (k0, k1, k2; l1, l2) ∈ S(Z) satisfies either

(a) Δ(k) ≤ 0 or (b) 2l21 − 2(k1 + k2)l1 + k1k2 ≥ 0, (35)

then |D(k)| > 1 and there exists an error estimate of continued fraction expansion

3 f2(a + k)

3 f2(a)
− n

K
j=0

r( j)

q( j)
= cs(a; k)

3 f2(a)2
· D(k)−n · n−s(a)+ 1

2 ·
{
1 + O(n− 1

2 )
}

, (36)

as n → +∞, provided that Re s(a) is positive, 3 f2(a) is non-zero, and the continued
fractionK∞

j=0 r( j)/q( j) is well defined, where D(k) is defined in (32)with p replaced
by k, while

cs(a; k) := ρ(a; k) · es(a; k) · γ (a; k),
with ρ(a; k) ∈ Q[a] being the polynomial in (13), explicitly computable from k,

es(a; k) := (2π)
3
2

∏2
i=0

∏2
j=1(l j − ki )2(l j−ki )+b j−ai− 1

2

s2(k)2s(a)−1
∏2

i=0 k
2ki+ai− 1

2
i

, (37)

with s2(k) := k0k1 + k1k2 + k2k0 − l1l2 and γ (a; k) defined by Formula (34).
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A numerical inspection shows that about 43 % of the vectors in S(Z) satisfy condi-
tion (35) (see Remark 6.2). In the straight case with k ∈ S(Z), Formulas (19) become
simpler

u(a) = (−1)l1+l2 ρ(a; 2k)
ρ(a + k; k) ∏2

i=0(ai ; ki )
, v(a) = − (−1)l1+l2 ρ(a; k) · 〈a + k; k〉+

ρ(a + k; k) ∏2
i=0(ai ; ki )

.

(38)
We turn our attention to continued fractions of twisted type in Definition 2.2.

Theorem 3.3 (Twisted Case) If k = (k0, k1, k2; l1, l2) ∈ Z
5≥0 satisfies the condition

k0+k1+k2 = l1+l2, l1 ≤ l2 ≤ τ l1, τ := (1+√
3)/2 = 1.36602540 · · · , (39)

then there exists an error estimate of continued fraction expansion

3 f2(a + k)

3 f2(a)
− n

K
j=0

r( j)

q( j)
= ct(a; k)

3 f2(a)2
· E(l1, l2)

−n · n−s(a)+ 1
2 ·

{
1 + O(n− 1

2 )
}

, (40)

as n → +∞, provided that Re s(a) is positive, 3 f2(a) is non-zero, and the continued
fraction K∞

j=0 r( j)/q( j) is well defined, where E(l1, l2) and ct(a; k) are given by

E(l1, l2) := (−l1 − l2)l1+l2

(2l1 − l2)2l1−l2(2l2 − l1)2l2−l1
, |E(l1, l2)| > 1, (41)

ct(a; k) := ρ(a; k) · et(a; k) · γ (a; k),

with ρ(a; k) ∈ Q[a] being the polynomial in (13), explicitly computable from k,

et(a; k) := (2π)
3
2

(2l1 − l2)2(2l1−l2)+2b1−b2+s(a)− 3
2 · (2l2 − l1)2(2l2−l1)+2b2−b1+s(a)− 3

2

3s(a)− 1
2 · (l1 + l2)2(l1+l2)+a0+a1+a2− 3

2 · (l21 − l1l2 + l22)
2s(a)−1

,

(42)
and γ (a; k) being defined by Formula (34).

The proofs of Theorems 3.2 and 3.3 will be completed at the end of Sect. 7.

4 Continuous Laplace method

Weshall find a class of directions p = (p0, p1, p2; q1, q2) ∈ R
5 inwhich the sequence

f (n) = 3 f2(a + n p) = 3 f2

(
a0 + p0n, a1 + p1n, a2 + p2n

b1 + q1n, b2 + q2n

)
, n ∈ Z≥0, (43)

behaves like nα as n → +∞ for some α ∈ R, where we assume s( p) = 0 so that the
parametric excesses for f (n) are independent of n, always equal to s(a). We remark
that the current f (n) corresponds to the sequence f0(n) in Sect. 2.3, not to f (n) in
Formula (23a).
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In terms of the series 3 f2(a), Thomae’s transformation [1, Corollary 3.3.6] reads

3 f2

(
a0, a1, a2

b1, b2

)
= Γ (a1)Γ (a2)

Γ (b1 − a0)Γ (b2 − a0)
3 f2

(
s(a), b1 − a0, b2 − a0

s(a) + a1, s(a) + a2

)
.

(44)
To investigate the asymptotic behavior of f (n), take Thomae’s transformation of (43)
to have

f (n) = ψ1(n) · f1(n), (45a)

ψ1(n) := Γ (a1 + p1n)Γ (a2 + p2n)

Γ (b1 − a0 + (q1 − p0)n)Γ (b2 − a0 + (q2 − p0)n)
, (45b)

f1(n) = 3 f2

(
s(a), b1 − a0 + (q1 − p0)n, b2 − a0 + (q2 − p0)n

s(a) + a1 + p1n, s(a) + a2 + p2n

)
, (45c)

and then apply ordinary Laplace’s method to the Euler integral representation for
(45c). Since this analysis is not limited to 3 f2(1), we shall deal with more general
p+1 f p(1) series.

4.1 Euler integral representations

The renormalized generalized hypergeometric series p+1 f p(z) is defined by

p+1 f p

(
a0, a1, . . . , ap

b1, . . . , bp
; z

)
:=

∞∑
k=0

Γ (a0 + k)Γ (a1 + k) · · · Γ (ap + k)

Γ (1 + k)Γ (b1 + k) · · · Γ (bp + k)
zk, (46)

where a = (a0, . . . , ap; b1, . . . , bp) ∈ C
p+1 × C

p are parameters such that none of
a0, . . . , ap is a negative integer or zero. Then (46) is absolutely convergent on the
open unit disk |z| < 1.

It is well known that if the parameters a satisfy the condition

Re bi > Re ai > 0 (i = 1, . . . , p), (47)

then the improper integral of Euler type

Ep(a; z) :=
∫
I p

φp(t; a; z) d t, φp(t; a; z) :=
∏p

i=1 t
ai−1
i (1 − ti )bi−ai−1

(1 − z t1 · · · tp)a0

is absolutely convergent, and the series (46) admits an integral representation

p+1 f p(a; z) = Γ (a0) · Ep(a; z)∏p
i=1 Γ (bi − ai )

on the open unit disk |z| < 1, (48)

where I = (0, 1) is the open unit interval, t = (t1, . . . , tp) ∈ I p and d t = dt1 · · · dtp.
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We aremore interested in p+1 f p(1), that is, in the series (46) at unit argument z = 1

p+1 f p(a) = p+1 f p(a; 1) :=
∞∑
k=0

Γ (a0 + k)Γ (a1 + k) · · · Γ (ap + k)

Γ (1 + k)Γ (b1 + k) · · · Γ (bp + k)
. (49)

It is well known that series (49) is absolutely convergent if and only if

Re s(a) > 0, s(a) := b1 + · · · + bp − a0 − a1 − · · · − ap, (50)

in which case we have p+1 f p(a; z) → p+1 f p(a) as z → 1 within the open unit disk
|z| < 1.

Lemma 4.1 If conditions (47) and (50) are satisfied, then the integral

Ep(a) :=
∫
I p

φp(t; a) d t, φp(t; a) :=
∏p

i=1 t
ai−1
i (1 − ti )bi−ai−1

(1 − t1 · · · tp)a0 (51)

is absolutely convergent and the series (49) admits an integral representation

p+1 f p(a) = Γ (a0) · Ep(a)∏p
i=1 Γ (bi − ai )

. (52)

Proof If r denotes the distance of t from 1 := (1, . . . , 1) then one has

φp(t; a) = O(rs(a)−p) as I p � t → 1, (53)

The absolute convergence of integral (51) off a neighborhoodU of 1 is due to condition
(47), while that on U follows from condition (50) and estimate (53). In view of

lim
I�z→1

φp(t; a; z) = φp(t; a), |φp(t; a; z)| ≤
{

φp(t;Re a; 0) (Re a0 ≤ 0, z ∈ I ),

φp(t;Re a) (Re a0 > 0, z ∈ I ),

Formula (52) is derived from Formula (48) by Lebesgue’s convergence theorem. �
The series (49) is symmetric in a0, a1, . . . , ap, but the integral representation (52)

is symmetric only in a1, . . . , ap. This fact is efficiently used in the next subsection.

4.2 Asymptotic analysis of Euler integrals

Observing that the 0-th numerator parameter of the sequence f1(n) in (45c) is inde-
pendent of n, we consider a sequence of the form

f1(n) := p+1 f p

(
a0, a1 + k1n, . . . , ap + kpn

b1 + l1n, . . . , bp + l pn

)
, n ∈ Z≥0.

The associated Euler integrals have an almost product structure which allows a par-
ticularly simple treatment in applying Laplace’s approximation method.
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Proposition 4.2 If k = (0, k1, . . . , kp; l1, . . . , l p) ∈ R
2p+1 is a real vector such that

li > ki > 0 = k0, i = 1, . . . , p, (54)

then Ep(a + n k) admits an asymptotic representation as n → +∞,

E p

(
a0, a1 + k1n, . . . , ap + kpn

b1 + l1n, . . . , bp + l pn

)
= C · �n

max · n− p
2 · {1 + O(1/n)} , (55)

uniform for a = (a0, . . . , ap; b1, . . . , bp) in any compact subset of (C\Z≤0)×C
p ×

C
p, where

�max :=
p∏

i=1

kkii (li − ki )li−ki

llii
, (56a)

C := (2π)
p
2

(
1 − k1 · · · kp

l1 · · · l p
)−a0 p∏

i=1

k
ai− 1

2
i (li − ki )bi−ai− 1

2

l
bi− 1

2
i

. (56b)

Proof The proof is an application of the standard Laplace method to the integral (52),
so only an outline of it is presented. Replacing a with a + n k in definition (51), we
have

Ep(a + n k) =
∫
I p

�(t)n · u(t) d t =
∫
I p

e−n φ(t) · u(t) d t,

where �(t), φ(t), and u(t) are defined by

�(t) :=
p∏

i=1

tkii (1 − ti )
li−ki , φ(t) := − log�(t), u(t) := φp(t; a).

Observe thatφ(t) attains a uniqueminimumat t0 := (k1/ l1, . . . , kp/ l p) in the interval
I p, since

∂φ

∂ti
= −ki

ti
+ li − ki

1 − ti
= li ti − ki

ti (1 − ti )
,

∂2φ

∂t2i
= ki

t2i
+ li − ki

(1 − ti )2
> 0,

∂2φ

∂ti∂t j
= 0 (i �= j).

The standard formula for Laplace’s approximation then leads to

∫
I p

e−n φ(t) · u(t) d t = u(t0)√
Hess(φ; t0)

(
2π

n

) p
2

exp(−n φ(t0)) {1 + O(1/n)}

= C · �n
max · n− p

2 {1 + O(1/n)} as n → ∞,

where Hess(φ; t0) is the Hessian of φ at t0 while �max and C are given by Formulas
(56). �
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4.3 Recessive sequences

We return to the special case of 3 f2(1) series and prove the following.

Theorem 4.3 If p = (p0, p1, p2; q1, q2) ∈ R
5 is balanced, s( p) = 0, and

p1 > q1 − p0 > 0, p2 > q2 − p0 > 0, (57)

then the sequence f (n) = 3 f2(a + n p) in (43) admits an asymptotic representation

3 f2(a+ n p) = Γ (s(a)) · s2( p)−s(a) · n−2s(a) · {1+ O(1/n)}, as n → +∞, (58)

uniform in any compact subset ofRe s(a) > 0, where s2( p) := p0 p1+ p1 p2+ p2 p0−
q1q2.

Proof By Formulas (45) and (52), the sequence (43) can be written f (n) =
ψ2(n) e2(n) with

ψ2(n) := Γ (s(a)) Γ (a1 + p1n) Γ (a2 + p2n)∏2
j=1

∏
i=0, j Γ (b j − ai + (q j − pi )n)

, (59a)

e2(n) := E2

(
s(a), b1 − a0 + (q1 − p0)n, b2 − a0 + (q2 − p0)n

s(a) + a1 + p1n, s(a) + a2 + p2n

)
. (59b)

Conditions s( p) = 0 and (57) imply that p1, p2 > 0 and q j − pi > 0 for every
j = 1, 2 and i = 0, j , so Stirling’s formula applied to (59a) yields an asymptotic
representation

ψ2(n) = B · An · n1−2s(a) {1 + O(1/n)}, (60)

as n → +∞, where A and B are given by

A := pp1
1 pp2

2∏2
j=1

∏
i=0, j (q j − pi )q j−pi

, B := Γ (s(a)) · pa1−
1
2

1 p
a2− 1

2
2

2π
∏2

j=1
∏

i=0, j (q j − pi )b j−ai− 1
2

.

When p = 2, k1 = q1 − p0, k2 = q2 − p0, l1 = p1, l2 = p2, condition (54)
becomes (57), so Proposition 4.2 applies to the sequence (59b). In this situation, we
have�max = A−1 in (56a) andC = B−1 ·Γ (s(a)) · {p1 p2−(q1− p0)(q2− p0)}−s(a)

in (56b), where we have p1 p2 − (q1 − p0)(q2 − p0) = s2( p) from s( p) = 0. Thus
Formula (55) reads

e2(n) = B−1 · Γ (s(a)) · s2( p)−s(a) · A−n · n−1 {1+ O(1/n)} as n → +∞. (61)

Combining Formulas (60) and (61), we have the asymptotic representation (58). �
Thomae’s transformation (44) rewrites 3 f2(a) so that the parametric excess s(a)

appears as an upper parameter and the invariance s(a) = s(a + n p), n ∈ Z≥0, for
balanced p facilitates the analysis leading to Theorem 4.3. Note that (44) is only
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one of an order 120 group of transformations for 3F2(1) (see [19, Theorem 3] for an
impressive account).Wewonder if other transformations of the group could be applied
to cover some non-balanced cases.

Remark 4.4 We take this opportunity to review some existing results on the large-
parameter asymptotics of 2F1 and 3F2. For the former, we refer to a classical book
of Luke [20, Chap. 7] and more recent articles of Temme [25], Paris [22], Farid
Khwaja and Olde Daalhuis [11], Aoki and Tanda [2], and Iwasaki [17], where much
work has used the traditional (continuous) version of Laplace’s method, while [2]
employs exact WKB analysis. For the latter, there are very few to cite; some results
are mentioned in [20, Sect. 7.4], but most work has focused on the asymptotics of
terminating series such as the behavior asn → ∞of the ‘extended Jacobi’ polynomials
3F2(−n, n + λ, a3; b1, b2; z), to which one can apply very different techniques such
as ones based on generating series; see e.g., Fields [12]. Temme [25] comments on
the difficulty of obtaining large-parameter asymptotics of 3F2 functions, even in the
terminating cases. As an attempt to overcome this difficulty, we shall introduce a
discrete version of Laplace’s method.

5 Discrete Laplace method

When a solution to a recurrence equation is given in terms of hypergeometric series,
we want to know its asymptotic behavior and thereby to check whether it is actually a
dominant solution. To this end, regarding the series as a “discrete” integral, we develop
a discrete Laplace method as an analogue to the usual (continuous) Laplace method
for ordinary integrals. While Theorems 3.2 and 3.3 on continued fractions are the
final goal of this article, the main result of this section, Theorem 5.2, and the method
leading to it are the methodological core of the article.

5.1 Formulation

Let σ = (σi ) ∈ R
I , λ = (λi ) ∈ R

I , τ = (τ j ) ∈ R
J , μ = (μ j ) ∈ R

J be real numbers
indexed by finite sets I and J . Suppose that the pairs (σ , τ ) and (λ,μ) are balanced
to the effect that ∑

i∈I
σi =

∑
j∈J

τ j ,
∑
i∈I

λi =
∑
j∈J

μ j . (62)

Let α(n) = (αi (n)) ∈ C
I and β(n) = (β j (n)) ∈ C

J be sequences in n ∈ N of
complex numbers indexed by i ∈ I and j ∈ J . Suppose that they are bounded, that
is, for some constant R > 0,

|αi (n)| ≤ R (i ∈ I ); |β j (n)| ≤ R ( j ∈ J ), ∀n ∈ N. (63)

In practical applications, α(n) and β(n) will typically be independent of n; however,
allowing such a moderate dependence upon n as in (63) is quite helpful in developing
the theory.
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Given 0 ≤ r0 < r1 ≤ +∞, we consider the sum of gamma products

g(n) :=
�r1n�−1∑
k=�r0n�

G(k; n), G(k; n) :=
∏

i∈I Γ (σi k + λi n + αi (n))∏
j∈J Γ (τ j k + μ j n + β j (n))

, n ∈ N,

(64)
where �x� := min{m ∈ Z : x ≤ m} denotes the ceiling function. We remark that the
reflection of discrete variable k �→ �r0n�+�r1n�−1−k in (64) induces an involution

σ ′
i = −σi , λ′

i = λi + σi (r0 + r1), α′
i (n) = αi (n) − σi r(n), (65a)

τ ′
j = −τ j , μ′

j = μ j + τ j (r0 + r1), β ′
j (n) = β j (n) − τ j r(n), (65b)

where r(n) := (r0+r1)n+1−�r0n�−�r1n� and the resulting data are indicated with
a prime, while the reflection leaves r0 and r1 unchanged. Since −1 < r(n) ≤ 1, if
αi (n) and β j (n) are bounded then so are α′

i (n) and β ′
j (n). This reflectional symmetry

is helpful in some occasions. Moreover, for any integer s ≤ r0 the shift k �→ k + sn
in (64) results in the translations

r0 �→r0−s, r1 �→r1−s; σi �→ σi , λi �→ λi+σi s; τ j �→ τ j , μ j �→ μ j+τ j s.
(66)

Taking s = �r0� we may assume 0 ≤ r0 < 1, where �x� := max{m ∈ Z : m ≤ x} is
the floor function. This normalization is also sometimes convenient.

It is insightful to rewrite the gamma product G(k; n) as

G(k; n) = H (k/n; n) , H(x; n) :=
∏

i∈I Γ (li (x) n + αi (n))∏
j∈J Γ (m j (x) n + β j (n))

, (67)

where li (x) and m j (x) are affine functions defined by

li (x) := σi x + λi (i ∈ I ), m j (x) := τ j x + μ j ( j ∈ J ).

We remark that condition (62) is equivalent to the balancedness of affine functions

∑
i∈I

li (x) =
∑
j∈J

m j (x),
∀x ∈ R. (68)

The sum g(n) is said to be admissible if

σi �= 0; li (r0) ≥ 0, li (r1) ≥ 0 (i ∈ I ), (69a)

τ j �= 0; m j (r0) ≥ 0, m j (r1) ≥ 0 ( j ∈ J ), (69b)

where if r1 = +∞ then by li (r1) ≥ 0 and m j (r1) ≥ 0, we mean σi > 0 and τ j > 0.
Condition (69) says that li (x) andm j (x) are non-constant affine functions taking non-
negative values at both ends of the interval [r0, r1], so they must be positive in its
interior, that is,
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li (x) > 0 (i ∈ I ); m j (x) > 0 ( j ∈ J ), r0 < ∀x < r1. (70)

To work near the endpoints of the interval, we introduce four index subsets

I0 := {i ∈ I : li (r0) = 0}, I1 := {i ∈ I : li (r1) = 0}, (71a)

J0 := { j ∈ J : m j (r0) = 0}, J1 := { j ∈ J : m j (r1) = 0}. (71b)

Then there exists a positive constant c > 0 such that

li (x) ≥ c (i ∈ I\(I0∪I1)); m j (x) ≥ c ( j ∈ J\(J0∪J1)), r0 ≤ ∀x ≤ r1. (72)

This “uniformly away from zero” property will be important in applying a version of
Stirling’s formula which is given later in (90), especially when I0 ∪ I1 ∪ J0 ∪ J1 = ∅
(regular case).

Lemma 5.1 We have σi > 0 for i ∈ I0 while σi < 0 for i ∈ I1, in particular
I0 ∩ I1 = ∅. Similarly we have τ j > 0 for j ∈ J0 while τ j < 0 for j ∈ J1, in
particular J0 ∩ J1 = ∅. If

α
(ν)
i (n) := αi (n) + σi (�rνn� − rνn) /∈ Z≤0 + |σi |Z≤−ν, i ∈ Iν, ν = 0, 1, n ∈ N,

(73)
then the sum g(n) is well defined, that is, every summand G(k; n) = H(k/n; n) in
(64) takes a finite value for any n ≥ (R + 1)/c with R and c given in (63) and (72).

Proof By condition (69a), if i ∈ I0 then 0 ≤ li (r1) = li (r1) − li (r0) = (r1 − r0)σi
with r1 − r0 > 0 and σi �= 0, which forces σi > 0, while if i ∈ I1 then 0 ≤ li (r0) =
li (r0) − li (r1) = (r0 − r1)σi with r0 − r1 < 0 and σi �= 0, which forces σi < 0.
A similar argument using (69b) leads to the assertions for J0 and J1. The sum g(n)

fails to make sense only when the argument of an upper gamma factor of a summand
G(k; n) takes a negative integer value or zero, that is,

σi k + λi n + αi (n) = li (k/n) n + αi (n) ∈ Z≤0,
∃i ∈ I, �r0n� ≤ ∃k ≤ �r1n� − 1.

This cannot occur for i ∈ I \ (I0 ∪ I1) and n ≥ (R + 1)/c, since (63) and (72) imply
that li (k/n) n + Re αi (n) ≥ cn − R ≥ 1 for any k ∈ Z such that r0 ≤ k/n ≤ r1.
Observe that

σi k + λi n + αi (n) = σi l + li (r0)n + α
(0)
i (n) = σi l + α

(0)
i (n), i ∈ I0,

where l := k−�r0n� ranges over 0, 1, . . . , �r1n�−�r0n�−1. This cannot be a negative
integer or zero, if condition (73) is satisfied for ν = 0. A similar argument can be
made for ν = 1, since condition (73) for ν = 1 is obtained from that for ν = 0 by
applying reflectional symmetry (65). Thus if (73) is satisfied then g(n) is well defined
for n ≥ (R + 1)/c. �
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To carry out analysis it is convenient to quantify condition (73) by writing

δν(n) := min
{
1,

∏
i∈Iν

dist(α(ν)
i (n), Z≤0 + |σi |Z≤−ν)

}
> 0, ν = 0, 1, n ∈ N,

(74)
where dist(z, Z) stands for the distance between a point z and a set Z in C, and cut
off by 1 is simply to make δν(n) ≤ 1 as it really works only when 0 < δν(n) � 1.
Condition (74) or (73) is referred to as the genericness for the data α(n).

5.2 Main results on discrete Laplace method

To state the main result of this section we introduce the following quantities:

�(x) :=
∏
i∈I

li (x)
li (x)

∏
j∈J

m j (x)
−m j (x), (75a)

u(x; n) := (2π)
|I |−|J |

2
∏
i∈I

li (x)
αi (n)− 1

2
∏
j∈J

m j (x)
1
2−β j (n), (75b)

where |I | and |J | are the cardinalities of I and J .We refer to�(x) as themultiplicative
phase function for the sum g(n) in (64).

Thanks to positivity (70) the function �(x) is smooth and positive on (r0, r1). If
we employ the convention 00 = 1, which is natural in view of the limit xx → 1 as
x → +0, then �(x) is continuous and positive at x = r0 as well as at x = r1 when
r1 < +∞, even if some of the li (x)’s or m j (x)’s vanish at one or both endpoints.
When r1 = +∞, some calculations using balancedness condition (62) shows that

�(x) =
(
σλ/τμ

)
· (

σσ /ττ
)x · {1 + O(1/x)} as x → +∞, (76)

where σσ := ∏
i∈I σ

σi
i , σλ := ∏

i∈I σ
λi
i , and so on; note that all of σi and τ j are

positive due to the admissibility condition (69) for the r1 = +∞ case. Thus it is
natural to define

�(+∞) :=

⎧⎪⎨
⎪⎩
0 (if σσ < ττ ),

σλ/τμ (if σσ = ττ ),

+∞ (if σσ > ττ ).

(77)

With this understanding we assume the continuity at infinity:

σσ ≤ ττ (when r1 = +∞). (78)

Then�(x) is continuous on [r0, r1] even when r1 = +∞ and it makes sense to define

�max := max
r0≤x≤r1

�(x),
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as a positive finite number. Therefore the function

φ(x) := − log�(x) (79)

is a real-valued, continuous function on [r0, r1), smooth in (r0, r1); if r1 < +∞ then
it is also continuous at x = r1; otherwise, φ(x) is either continuous at x = +∞ or
tends to +∞ as x → +∞. We refer to φ(x) as the additive phase function for the
sum g(n) in (64).

When r1 = +∞ we have to think of the (absolute) convergence of infinite series
(64). If the strict inequality σσ < ττ holds in (78) then it certainly converges. Oth-
erwise, in order to guarantee its convergence, suppose that there is a constant σ > 0
such that for any n ∈ N,

Re γ (n) ≤ −1 − σ (if σσ = ττ ), (80)

where

γ (n) :=
∑
i∈I

αi (n) −
∑
j∈J

β j (n) + |J | − |I |
2

. (81)

Thanks to positivity (70), the function u(x; n) is also smooth and nowhere vanishing
on (r0, r1), but it may be singular at one or both ends of the interval when some of
the li (x)’s or m j (x)’s vanish there. To deal with this situation we say that g(n) is left-
regular if I0∪ J0 = ∅; right-regular if I1∪ J1 = ∅; and regular if I0∪ J0∪ I1∪ J1 = ∅.
If g(n) is left-regular resp. right-regular with r1 < +∞, then u(x; n) is continuous at
x = r0 resp. x = r1. When r1 < +∞ the reflectional symmetry (65) exchanges left
and right regularities to each other. We remark that if r1 = +∞ then right-regularity
automatically follows from admissibility.

The maximum of �(x) or equivalently the minimum of φ(x) plays a leading role
in our analysis, so it is important to think of the first and second derivatives of φ(x).
Differentiations of (79) with balancedness condition (62) took into account yield

φ′(x) = log
∏
j∈J

m j (x)
τ j

∏
i∈I

li (x)
−σi , (82a)

φ′′(x) =
∑
j∈J

τ 2j

m j (x)
−

∑
i∈I

σ 2
i

li (x)
. (82b)

Denote by Max the set of all maximum points of �(x) on [r0, r1]. Suppose that
�(x) attains its maximum �max only within (r0, r1), that is, r0, r1 /∈ Max. Moreover
suppose that every maximum point is non-degenerate to the effect that

Max � (r0, r1), φ′′(x0) > 0 at any x0 ∈ Max, (83)

which is referred to as properness of the maximum. By Formula (82a) any x ∈ Max is
a root of

χ(x) :=
∏
j∈J

m j (x)
τ j −

∏
i∈I

li (x)
σi = 0, x ∈ (r0, r1), (84)
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which is called the characteristic equation for g(n), while χ(x) is referred to as the
characteristic function for g(n). It is easy to see that Eq. (84) has only a finite number
of roots, unless χ(x) ≡ 0, so Max must be a finite set. Note that φ′(x) and χ(x) have
the same sign.

Equation (84) can be used to determine the set Max explicitly. In applications to
hypergeometric series, one usually puts σi , τ j = ±1 and λi , μ j ∈ Z, thus (84) is
equivalent to an algebraic equation with integer coefficients and hence any x ∈ Max

must be an algebraic number. In this case with r1 = +∞, since σσ = ττ = σλ =
τμ = 1, the continuity at infinity (78) is trivially satisfied with �(+∞) = 1 in (77),
thus condition Max � (r0, +∞) in (83) includes �max > 1.

Theorem 5.2 If balancedness (62), boundedness (63), admissibility (69), generic-
ness (74) and properness (83) are all satisfied, with continuity at infinity (78) and
convergence (80) being added when r1 = +∞, then the sum g(n) in (64) admits an
asymptotic representation

g(n) = nγ (n)+ 1
2 · � n

max · {C(n) + �(n)} , (85)

where γ (n) is defined in Formula (81) while �max and C(n) are defined by

�max := �(x0) for any x0 ∈ Max; C(n) := √
2π

∑
x0∈Max

u(x0; n)√
φ′′(x0)

(86)

in terms of the notations in (75), whereas the error term �(n) is estimated as

|�(n)| ≤ K {n− 1
2 + λ−n(δ0(n)−1 + δ1(n)−1)}, ∀n ≥ N , (87)

for some constants K > 0, λ > 1, and N ∈ N, where δ0(n) and δ1(n) are defined in
(74). This estimate is valid uniformly for all α(n) and β(n) satisfying conditions (63)
and (74) along with (80) when r1 = +∞, in which case I1 = ∅ and so δ1(n) = 1.

Things are simpler when Max consists of a single point x0 ∈ (r0, r1), in which case
the main idea for proving Theorem 5.2 is to divide the sum (64) into five components:

g(n) = g0(n) + h0(n) + h(n) + h1(n) + g1(n),

with each component being a partial sum of (64) defined by

g0(n) := sum of G(k; n) over �r0n� ≤ k ≤ �(r0 + ε)n� − 1, (left end)

h0(n) := sum of G(k; n) over �(r0 + ε)n� ≤ k ≤ �(x0 − ε)n� − 1, (left side)

h(n) := sum of G(k; n) over �(x0 − ε)n� ≤ k ≤ �(x0 + ε)n� − 1, (top) (88)

h1(n) := sum of G(k; n) over �(x0 + ε)n� ≤ k ≤ �(r1 − ε)n� − 1, (right side)

g1(n) := sum of G(k; n) over �(r1 − ε)n ≤ k ≤ �r1n� − 1, (right end)
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where if r1 = +∞ then the right-end component should be omitted. In order for the
division (88) to make sense, the number ε must satisfy

0 < ε < ε0 := min{(x0 − r0)/2, (r1 − x0)/2}. (89)

How to take ε ∈ (0, ε0) will be specified in the course of establishing Theorem 5.2.
We want to think of h(n) as the principal part of g(n), while other four components

as remainders. Thus estimating the top component h(n) is the central issue of this
section, but treatment of both ends g0(n) and g1(n) is also far from trivial. For the
sake of simplicity we shall deal with the case |Max| = 1 only, but even when |Max| ≥ 2
things are essentially the same and it will be clear how to modify the arguments. The
reflectional symmetry (65) reduces the discussion at the right end or right side to the
discussion at the left counterpart. The top and side sums are regular, so we shall begin
by estimating regular sums in Sect. 5.3.

In the present article, we are working in the balanced cases, that is, under condition
(62); it is an interesting problem to extend our method so as to cover non-balanced
cases.

In the sequel, we shall often utilize the following version of Stirling’s formula: For
any positive number c > 0 and any compact subset A � C, we have

Γ (xn + a) = (2π)1/2 xa− 1
2 na− 1

2 xxn (n/e)xn { 1 + O(1/n) } as n → +∞,

(90)
where Landau’s symbol O(1/n) is uniform with respect to (x, a) ∈ R≥c × A.

5.3 Regular sums and side components

In this subsection, we assume that g(n) in (64) satisfies balancedness (62), bounded-
ness (63), and admissibility (69), alongwith continuity at infinity (78) and convergence
(80) if r1 = +∞, while properness (83) is not assumed and genericness (74) is irrel-
evant to regular sums.

Lemma 5.3 If the sum g(n) in (64) is regular then there exists an integer N0 ∈ N and
a constant C0 > 0 such that H(x; n) in Formula (67) can be written

H(x; n) = u(x; n) · nγ (n) · �(x)n · {1 + e(x; n)}, (91a)

|e(x; n)| ≤ C0/n, ∀n ≥ N0, r0 ≤ ∀x ≤ r1. (91b)

Proof Since g(n) is regular, that is, I0 ∪ I1 ∪ J0 ∪ J1 = ∅, we have the uniform
positivity (72) for all i ∈ I , j ∈ J , and x ∈ [r0, r1]. This together with boundedness
(63) allows us to apply Stirling’s formula (90) to all gamma factors Γ (li (x)n+αi (n))

and Γ (m j (x)n + β j (n)) of H(x; n) in (67). Taking definitions (75) and (81) into
account, we use Formula (90) to have

H(x; n) = u(x; n) · nγ (n) · �(x)n ·
{
(n/e)

∑
i∈I li (x)−

∑
j∈J m j (x)

}n · {1 + O(1/n)},
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where the O(1/n) term is uniform with respect to x ∈ [r0, r1] as well as to α(n) and
β(n) satisfying condition (63). Then balancedness (68) yields the desired Formula
(91). �
Proposition 5.4 If the sum g(n) in Formula (64) is regular then it admits an estimate

|g(n)| ≤ C1 · nRe γ (n)+1 · � n
max,

∀n ≥ N0,

for a constant C1 > 0 and an integer N0 ∈ N which is the same as in Lemma 5.3.

Proof From representation (91), we have

|H(x; n)| ≤ (1+C0) · |u(x; n)| · nRe γ (n) · � n
max, r0 ≤ ∀x ≤ r1,

∀n ≥ N0. (92)

First we consider the case r1 < +∞. Since g(n) is regular and α(n) and β(n) are
bounded by assumption (63), the definition (75b) implies that u(x; n) is bounded for
(x, n) ∈ [r0, r1] × Z≥N0 . Replacing the constant C0 by a larger one if necessary, we
have |H(x; n)| ≤ C0 · nRe γ (n) · � n

max for any x ∈ [r0, r1] and n ≥ N0. Thus by
definitions (64) and (67), we have for any n ≥ N0,

|g(n)| ≤
�r1n�−1∑
k=�r0n�

|H(k/n; n)| ≤ C0 · nRe γ (n) · � n
max

�r1n�−1∑
k=�r0n�

1

= C0 · nRe γ (n) · � n
max · (�r1n� − �r0n�) ≤ C1 · nRe γ (n)+1 · � n

max,

with the constant C1 := C0(1 + r1 − r0).
We proceed to the case r1 = +∞ and σσ = ττ in which condition (80) takes

place. Since g(n) is regular and α(n) and β(n) are bounded by (63), the definition
(75b) implies that

u(x; n) = (2π)
|I |−|J |

2
∏
i∈I

σ
αi (n)− 1

2
i

∏
j∈J

τ
1
2−β j (n)

j · xγ (n) · {1 + O(1/x)} as x → +∞,

uniformly for n ∈ N. By condition (80) there exists a constant C2 > 0 such that

|u(x; n)| ≤ C2 (2 + x)−1−σ , ∀x ≥ r0,
∀n ≥ N0.

In view of definitions (64) and (67), this estimate together with Formula (92) yields

|g(n)| ≤
∞∑

k=�r0n�
|H(k/n; n)|

≤ C2 (1 + C0) · nRe γ (n)+1 · � n
max

∞∑
k=�r0n�

(
2 + k

n

)−1−σ 1

n
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≤ C2 (1 + C0) · nRe γ (n)+1 · � n
max

∫ ∞

r0
(1 + x)−1−σ dx

= C1 · nRe γ (n)+1 · � n
max,

for any integer n ≥ N0, where C1 := C2 (1 + C0) (1 + r0)−σ /σ .
The proof ends with the case where r1 = +∞ and σσ < ττ . By Stirling’s formula

(90) and asymptotic representation (76), there exists a constant C3 > 0 such that

|H(x; n)| ≤ C3 · (xn)Re γ (n) · �(x)n, �(x) ≤ C3 · ρx , ∀x ≥ r0,
∀n ≥ N0,

with 0 < ρ := σσ /ττ < 1. Take a number r2 > r0 so large that d := C3 · ρr2/2 <

�max and let g(n) = g1(n) + g2(n) be the decomposition according to the division
[r0, +∞) = [r0, r2) ∪ [r2, +∞). Then an estimate for the r1 < +∞ case applies
to g1(n), while one has |H(x; n)| ≤ C3 · dn · (xn)c · ρxn/2 for x ≥ r2, where
c := supn≥N0

Re γ (n), and hence

|g2(n)| ≤
∞∑

k=�r2n�
|H(k/n; n)| ≤ C3 · dn

∞∑
k=�r2n�

kc · ρk/2

≤ C3 · dn
∞∑
k=1

kc · ρk/2 = C4 · dn

for any n ≥ N0. It is clear from 0 < d < �max that the proposition follows. �
Proposition 5.4 can be used to estimate the side components h0(n) and h1(n) in

(88).

Lemma 5.5 For any 0 < ε < ε0 there exist N ε
1 ∈ N and Cε

1 > 0 such that

|h0(n)| ≤ Cε
1 · nRe γ (n)+1 · (�ε

0)
n, |h1(n)| ≤ Cε

1 · nRe γ (n)+1 · (�ε
1)

n, ∀n ≥ N ε
1 ,

where
�ε

0 := max
r0+ε≤x≤x0−ε

�(x) and �ε
1 := max

x0+ε≤x≤r1−ε
�(x).

Proof We have only to apply Proposition 5.4 with r0 and r1 replaced by r0 + ε and
x0 − ε to deduce the estimate for h0(n). In a similar manner, we apply the proposition
this time with r0 and r1 replaced by x0 + ε and r1 − ε to get the estimate for h1(n). �

5.4 Top component

We consider the top component h(n) in (88). Recall the setting in Sect. 5.2 that
Max = {x0} � (r0, r1), �max = �(x0) = e−φ(x0), φ′(x0) = 0, and φ′′(x0) > 0.
Since the sum h(n) is regular, Lemma 5.3 implies that H(x; n) can be written as in
(91a) with estimate (91b) now being

|e(x; n)| ≤ C0(ε)/n, ∀n ≥ N0(ε), x0 − ε ≤ ∀x ≤ x0 + ε. (93)

123



Contiguous relations, Laplace’s methods, and continued fractions... 185

The local study of H(x; n) near x = x0 is best performed in terms of new variables

y := x − x0 (shift); z := √
n y (scale change).

Taylor expansions around x = x0 show that φ(x) and u(x; n) can be written

φ(x) = φ(x0) + a y2 + η(y), |η(y)| ≤ b |y|3, |∀y | ≤ ε1, (94a)

u(x; n) = u(x0; n) + v(y; n), |v(y; n)| ≤ c |y|, |∀y | ≤ ε1, (94b)

with a := 1
2 φ′′(x0) > 0 and some positive constants b, c, ε1 > 0. It is clear that a

and b are independent of n. We can also take c and ε1 uniformly in n because α(n)

and β(n) are bounded by assumption (63). If we put

Ha(x; n) := u(x0; n) · nγ (n) · �(x)n = u(x0; n) · nγ (n) · � n
max · e−n{a y2+η(y)},

(95a)

Hb(x; n) := v(y; n) · nγ (n) · �(x)n = nγ (n) · � n
max · v(y; n) · e−n{a y2+η(y)}, (95b)

Hc(x; n) := u(x; n) · nγ (n) · �(x)n · e(x; n), (95c)

then Formula (91a) yields H(x; n) = Ha(x; n) + Hb(x; n) + Hc(x; n), which in turn
gives

h(n) = ha(n) + hb(n) + hc(n), hν(n) :=
m−1∑
k=l

Hν(k/n; n), ν = a, b, c,

where l := �(x0 − ε)n� and m := �(x0 + ε)n�.
To estimate ha(n) we use some a priori estimates, which will be collected in

Sect. 5.6.

Lemma 5.6 For any 0 < ε < ε2 := min{ε0, ε1
2 , a

4b } and n ≥ N1(ε) :=
max{2/ε, N0(ε)},

ha(n) = √
π/a · u(x0; n) · nγ (n)+1/2 · � n

max ·
{
1 + ea(n) · n−1/2

}
, (96a)

|ea(n)| ≤ M5(a, b; ε) := 2M3(a, b) + (5/a) · (2ε)−3/2, (96b)

where M3(a, b) is defined in Lemma 5.17 and currently a := 1
2φ

′′(x0) > 0.

Proof Put ψ(z; a) := e−a z2+δ(z) with δ(z) := −n · η (
n−1/2z

)
. Then (95a) and (94a)

read

Ha(x; n) = u(x0; n) · nγ (n)+1/2 · � n
max · ψ(z; a) · 1√

n
, (97a)

|δ(z)| ≤ b√
n

|z|3 (|∀z | ≤ ε1
√
n ). (97b)
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Consider the sequence Δ : ξk := (k − x0n)/
√
n (k = l, . . . ,m). From the definitions

of l and m,

− ε
√
n ≤ ξl < −ε

√
n + 1/

√
n, ε

√
n ≤ ξm < ε

√
n + 1/

√
n, (98)

which together with 0 < ε < ε2 and n ≥ N1(ε) implies inclusion [ξl , ξm] ⊂
[−ε1

√
n, ε1

√
n], so the estimate (97b) is available for all z ∈ [ξl , ξm]. From For-

mula (97a), we have

ha(n) = u(x0; n) · nγ (n)+ 1
2 · � n

max · R(ψ,Δ) with R(ψ;Δ) :=
m−1∑
k=l

ψ(ξk; a)
1√
n
,

(99)
where R(ψ;Δ) is the left Riemann sum of ψ(z; a) for equipartition Δ of the interval
[ξl , ξm].

Let ϕ(z; a) := e−az2 . Since |ξk − z| ≤ 1/
√
n for any z ∈ [ξk, ξk+1], Lemma 5.17

yields

∣∣∣∣R(ψ;Δ) −
∫ ξm

ξl

ϕ(z; a) dz

∣∣∣∣ =
∣∣∣∣∣
m−1∑
k=l

∫ ξk+1

ξk

{ψ(ξk; a) − ϕ(z; a)} dz
∣∣∣∣∣

≤
m−1∑
k=l

∫ ξk+1

ξk

|ψ(ξk; a) − ϕ(z; a)| dz ≤ M3(a, b)√
n

m−1∑
k=l

∫ ξk+1

ξk

ϕ(z; a/4) dz

= M3(a, b)√
n

∫ ξm

ξl

ϕ(z; a/4) dz ≤ M3(a, b)√
n

∫ ∞

−∞
ϕ(z; a/4) dz = 2M3(a, b)

√
π

an
,

where estimate (119) is used in the second inequality. By the partition of Gaussian
integral

√
π/a =

∫ ∞

−∞
ϕ(z; a) dz =

∫ ξl

−∞
+

∫ ξm

ξl

+
∫ ∞

ξm

ϕ(z; a) dz,

and bounds ξl ≤ −ε
√
n/2 and ξm ≥ ε

√
n, which follow from (98) and n ≥ 2/ε, we

have

∣∣∣R(ψ;Δ) − √
π/a

∣∣∣ ≤
∫ −ε

√
n/2

−∞
ϕ(z; a) dz + 2M3(a, b)

√
π

an
+

∫ ∞

ε
√
n
ϕ(z; a) dz

≤ 2M3(a, b)

√
π

an
+ 5

√
π

2a3/2ε2 · n ≤
√

π

an
M5(a, b; ε), (100)

with M5(a, b; ε) := 2M3(a, b) + (5/a) · (2ε)−3/2, where the estimate
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∫ ∞

z
ϕ(t; a) dt ≤ 1

2

√
π

a
ϕ(z; a) ≤

√
π

2a3/2z2
, ∀z ≥ 0,

and
√
n ≥ √

2/ε are used in the second and third inequalities, respectively. Upon
writing R(ψ;Δ) = √

π/a {1 + e2(n) · n−1/2}, Formula (96) follows from (99) and
(100). �

Lemma 5.7 For any 0 < ε < ε2 and n ≥ N1(ε), we have

|hb(n)| ≤ c M6(a) · nRe γ (n) · � n
max, (101)

where M6(a) := 2M4(a/2)
√

π/a + 2/a with M4(a) defined in Lemma 5.18 and
a := 1

2φ
′′(x0) > 0. For any 0 < ε < ε0 there exists a constant C2(ε) > 0 such that

|hc(n)| ≤ C2(ε) · nRe γ (n) · � n
max,

∀n ≥ N0(ε). (102)

Proof If |y| ≤ 2ε2 (≤ ε1) then estimate (94a) yields

a y2 + η(y) ≥ a y2 − b |y|3 = a y2
(
1 − b

a |y|)
≥ a y2

(
1 − 2b

a ε2
) ≥ a

2 y2,

which together with estimate (94b) and definition (95b) gives

|Hb(x; n)| ≤ c · nRe γ (n) · � n
max · e− a

2 ny
2 |y|, |∀y | ≤ 2ε2,

= c · nRe γ (n) · � n
max · ϕ1(z; a/2) · 1√

n
, |∀z | ≤ 2ε2

√
n, (103)

where ϕ1(z; a) := |z| e−az2 . If 0 < ε < ε2 and n ≥ N1(ε) then [ξl , ξm] ⊂
[−2ε2

√
n, 2ε2

√
n] follows from (98), so estimate (103) is available for all z ∈

[ξl , ξm], yielding

|hb(n)| ≤
m−1∑
k=l

|Hb(k/n; n)| ≤ c · nRe γ (n) · � n
max · R(ϕ1;Δ),

where the Riemann sum R(ϕ1;Δ) := ∑m−1
k=l ϕ1(ξk; a/2) · 1√

n
is estimated as

R(ϕ1;Δ) ≤
m−1∑
k=l

∫ ξk+1

ξk

|ϕ1(ξk; a/2) − ϕ1(z; a/2)| dz +
∫ ξm

ξl

ϕ1(z; a/2) dz

≤ M4(a/2)
m−1∑
k=l

∫ ξk+1

ξk

|ξk − z| ϕ(z; a/4) dz +
∫ ∞

−∞
ϕ1(z; a/2) dz
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≤ M4(a/2)√
n

∫ ∞

−∞
ϕ(z; a/4) dz +

∫ ∞

−∞
ϕ1(z; a/2) dz

= 2M4(a/2)

√
π

an
+ 2

a
≤ M6(a),

where the second inequality is obtained by Lemma 5.18. Now (101) follows readily.
Since α(n) and β(n) are bounded by (63), there exists a constant C1(ε) > 0 such

that |u(x; n)| ≤ C1(ε) for any n ∈ N and x ∈ [x0 − ε, x0 + ε], which together with
(93) yields

|Hc(x; n)|≤C1(ε) · nRe γ (n) · � n
max · C0(ε)/n, ∀n ≥ N0(ε), x0−ε ≤ ∀x ≤ x0 + ε.

Since m − l = �(x0 + ε)n� − �(x0 − ε)n� ≤ (2ε + 1)n, we have for any n ≥ N0(ε),

|hc(n)| ≤
m−1∑
k=l

|H(k/n; n)|

≤ C0(ε) · C1(ε) · m − l

n
· nRe γ (n) · � n

max = C2(ε) · nRe γ (n) · � n
max,

where C2(ε) := (2ε + 1) · C0(ε) · C1(ε). This establishes estimate (102). �
Proposition 5.8 For any 0 < ε < ε2, there is a constant M(ε) > 0 such that

h(n) = √
2π

u(x0; n)√
φ′′(x0)

· nγ (n)+ 1
2 · � n

max ·
{
1 + e(n)√

n

}
, |e(n)| ≤ M(ε), (104)

for any n ≥ N1(ε), where ε2 and N1(ε) are given in Lemma 5.6.

Proof This readily follows from h(n) = ha(n) + hb(n) + hc(n) and Lemmas 5.6 and
5.7. �

5.5 Irregular sums and end components

We shall estimate the left-end component g0(n) in (88). When r1 < +∞ the estimate
for the right-end component g1(n) follows from the left-end counterpart by reflectional
symmetry (65). If we make the translation k �→ l := k − �r0n� for convenience, we
can write

σi k + λi n + αi (n) = σi l + λ̄i n + ᾱi (n), λ̄i := li (r0) (i ∈ I ),

τ j k + μ j n + β j (n) = τ j l + μ̄ j n + β̄ j (n), μ̄ j := m j (r0) ( j ∈ J ),

where ᾱi (n) := αi (n) + σi (�r0n� − r0n) and β̄ j (n) := β j (n) + τ j (�r0n� − r0n).

Note that ᾱi (n) here is the same as α
(0)
i (n) in Formula (73). Put I+

0 := I \ I0 and
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J+
0 := J \ J0, where the index sets I0 and J0 are defined in (71). Then G(k; n) factors

as

G(k; n) = G0(l; n) · G+
0 (l; n), l := k − �r0n�, (105a)

G0(l; n) :=
∏

i∈I0 Γ (σi l + ᾱi (n))∏
j∈J0 Γ (τ j l + β̄ j (n))

, G+
0 (l; n) :=

∏
i∈I+

0
Γ (σi l + λ̄i n+ᾱi (n))∏

j∈J+
0

Γ (τ j l+μ̄ j n+β̄ j (n))
.

(105b)

From Lemma 5.1 one has σi > 0 for i ∈ I0 and τ j > 0 for j ∈ J0, whereas condition
(68) at x = r0 implies that (λ̄i )i∈I+

0
and (μ̄ j ) j∈J+

0
are balanced to the effect that

∑
i∈I+

0

λ̄i =
∑
j∈J+

0

μ̄ j . (106)

However, since (σi )i∈I0 and (τ j ) j∈J0 , resp. (σi )i∈I+
0
and (τ j ) j∈J+

0
, may not be bal-

anced, we put

ρ0 :=
∑
i∈I0

σi −
∑
j∈J0

τ j , ρ+
0 :=

∑
i∈I+

0

σi −
∑
j∈J+

0

τ j , ρ0 = −ρ+
0 , (107)

where the relation ρ0 = −ρ+
0 follows from the first condition of (62).

We begin by giving an asymptotic behavior of G0(l; n) as l → ∞ in terms of

�0 := e−ρ0
∏
i∈I0

σ
σi
i

∏
j∈J0

τ
−τ j
j ,

u0(n) := (2π)
|I0 |−|J0 |

2
∏
i∈I0

σ
ᾱi (n)− 1

2
i

∏
j∈J0

τ
1
2−β̄ j (n)

j ,

γ0(n) :=
∑
i∈I0

ᾱi (n) −
∑
j∈J0

β̄ j (n) + |J0| − |I0|
2

.

Note that �0 is positive and u0(n) is non-zero due to the positivity of σi and τ j for
i ∈ I0 and j ∈ J0. We use the following general fact about the gamma function.

Lemma 5.9 For any z ∈ C \ Z≤0 and any integer m such that m ≥ 1 + |Re z|,

|Γ (z)| ≤ 2|Γ (z + m)|
dist(z, Z≤0)

.

Proof If Re z > 0 we have dist(z, Z≤0) = |z| and the results follows readily. If
Re z ≤ 0 then Re(z + m) ≥ 1 and so the sequence |z|, |z + 1|, · · · , |z + m − 1|
contains dist(z,Z≤0) as its minimum with the next smallest ≥ 1/2 and all the rest
≥ 1, thus |(z; m)| = |z||z + 1| · · · |z + m − 1| ≥ dist(z,Z≤0)/2, hence |Γ (z)| =
|Γ (z + m)/(z; m)| ≤ 2|Γ (z + m)|/dist(z,Z≤0). �
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Lemma 5.10 There exists a constant K0 > 0 such that

|G0(l; n)| ≤ K0 · δ0(n)−1 · (1 + l)|Re γ0(n)| · lρ0 l · �l
0,

∀l ∈ Z≥0,
∀n ∈ N,

(108)

where for l = 0 the convention lρ0 l = 1 is employed.

Proof Note thatG0(l; n) in (105b) takes a finite value for every l ≥ κ := maxi∈I0(R+
1)/σi and n ∈ N, since (63) implies thatσi l+Re ᾱi (n) ≥ σi l+Re αi (n) ≥ σi l−R ≥ 1
for i ∈ I0. By Stirling’s formula, (90) we have G0(l; n) = u0(n) · lγ0(n)+ρ0 l ·�l

0 · {1+
O(1/ l)} as l → +∞ uniformly with respect to n ∈ N. Thus there exists a constant
M0 > 0 such that

|G0(l; n)| ≤ M0 · (1 + l)|Re γ0(n)| · lρ0 l · �l
0,

∀l ≥ κ, ∀n ∈ N.

Take the smallest integer m ≥ maxi∈I0{1 + σi (κ + 1) + R} and put

Ḡ0(l; n) :=
∏

i∈I0 Γ (σi l + ᾱi (n) + m)∏
j∈J0 Γ (τ j l + β̄ j (n))

.

Since 1 + |σi l + Re ᾱi (n)| ≤ 1 + σi l + |Re ᾱi (n)| ≤ 1 + σi l + |Re αi (n)| + σi ≤ m
for any 0 ≤ l < κ , n ∈ N and i ∈ I0, Lemma 5.9 implies that for any 0 ≤ l < κ and
n ∈ N,

|G0(l; n)| ≤ 2|I0| · |Ḡ0(l; n)|∏
i∈I0 dist(σi l + ᾱi (n), Z≤0)

≤ 2|I0| · |Ḡ0(l; n)|∏
i∈I0 dist(ᾱi (n), Z≤0 + |σi |Z≤0)

≤ 2|I0| · |Ḡ0(l; n)|
δ0(n)

.

In view of condition (74), there exists a constant M ′
0 > 0 such that

2|I0| · |Ḡ0(l; n)| ≤ M ′
0 · (1 + l)|Re γ0(n)| · lρ0l · �l

0, 0 ≤ ∀l < κ, ∀n ∈ N.

Then by 1 ≤ δ0(n)−1 the estimate (108) holdswith the constant K0 := max{M0, M ′
0}.�

We proceed to the investigation into G+
0 (l; n) by writing

G+
0 (l; n) = H+

0 (l/n; n) , H+
0 (x; n) :=

∏
i∈I+

0
Γ (l̄i (x) n + ᾱi (n))∏

j∈J+
0

Γ (m̄ j (x) n + β̄ j (n))
, (109)

where l̄i (x) := σi x + λ̄i and m̄ j (x) := τ j x + μ̄ j , and then by putting
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�+
0 (x) := e−ρ+

0 x
∏
i∈I+

0

l̄i (x)
l̄i (x)

∏
j∈J+

0

m̄ j (x)
−m̄ j (x),

u+
0 (x; n) := (2π)

|I+0 |−|J+
0 |

2
∏
i∈I+

0

l̄i (x)
ᾱi (n)− 1

2
∏
j∈J+

0

m̄ j (x)
1
2−β̄ j (n),

γ +
0 (n) :=

∑
i∈I+

0

ᾱi (n) −
∑
j∈J+

0

β̄ j (n) + |J+
0 | − |I+

0 |
2

.

Note that �+
0 (x) and u+

0 (x; n) are well-defined continuous functions on [0, ε] with
�+

0 (x) being positive while u+
0 (x; n) non-vanishing and uniformly bounded in n ∈ N.

Lemma 5.11 For any 0 < ε < ε0, there exist an integer N0(ε) ∈ N and a constant
K+
0 (ε) > 0 such that for any n ≥ N0(ε) and 0 ≤ x ≤ ε,

|H+
0 (x; n)| ≤ K+

0 (ε) · nRe γ +
0 (n)+ρ+

0 x n · �+
0 (ε)n with �+

0 (ε) := max
0≤x≤ε

�+
0 (x).

(110)

Proof From the definitions of I+
0 , J+

0 , l̄i (x), m̄ j (n), there is a constant c(ε) > 0 such
that

l̄i (x) > c(ε) (i ∈ I+
0 ), m̄ j (x) > c(ε) ( j ∈ J+

0 ), 0 ≤ ∀x ≤ ε.

By condition (63), H+
0 (x; n) takes a finite value for any x ∈ [0, ε] and n ≥ N0(ε) :=

(R + 1)/c(ε) and Stirling’s formula (90) implies that H+
0 (x; n) admits an asymptotic

formula

H+
0 (x; n) = u+

0 (x; n) · nγ +
0 (n)+ρ+

0 x n · �+
0 (x)n · {1 + O(1/n)} as n → +∞,

uniform in x ∈ [0, ε], where one also uses the equality∑
i∈I+

0
l̄i (x)−∑

j∈J+
0
m̄ j (x) =

ρ+
0 x , which is due to balancedness condition (106) and definition (107). From this

estimate and the boundedness of u+
0 (x; n) coming from (63), the assertion (110)

follows readily. �
Now we are able to give an estimate for the left-end component g0(n) in terms of

ε3 :=
{

+∞ (if ρ0 ≥ 0),

e−1�
−1/ρ0
0 (if ρ0 < 0),

(111a)

�0(ε) :=
{
1 (if ρ0 > 0, or ρ0 = 0 with �0 ≤ 1),

(ερ0�0)
ε (if ρ0 < 0, or ρ0 = 0 with �0 > 1),

(111b)

Δ0(ε) := �0(ε) · �+
0 (ε). (111c)
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Lemma 5.12 For any 0 < ε < ε4 := min{ε0, ε2, ε3} with ε0, ε2, and ε3 defined in
(89), Lemma 5.6 and (111a), respectively, there exist N0(ε) ∈ N and K0(ε) > 0 such
that

|g0(n)| ≤ K0(ε) · δ0(n)−1 · n|Re γ0(n)|+Re γ +
0 (n)+1 · Δ0(ε)

n, ∀n ≥ N0(ε).

Proof It follows from Formulas (109), (110), and (107) that

|G+
0 (l; n)| = |H+

0 (l/n; n)| ≤ K+
0 (ε) · nRe γ +

0 (n) · n−ρ0l · �+
0 (ε)n .

Multiplying this estimate by inequality (108), we have from Formula (105a),

|G(k; n)| ≤ K (ε) · δ0(n)−1 · nRe γ +
0 (n) · ϕ(l; n) · �+

0 (ε)n · (1 + l)|Re γ0(n)|, (112)

for any n ≥ N0(ε) and 0 ≤ l := k − �r0n� < εn, where K (ε) := K0 · K+
0 (ε) and

ϕ(t; n) := (t/n)ρ0t · �t
0 (t > 0) with ϕ(0; n) = lim

t→+0
ϕ(t; n) = 1.

A bit of differential calculus shows the following:

(i) If either ρ0 > 0 or ρ0 = 0 with �0 ≤ 1, then ϕ(t; n) is non-increasing in t ≥ 0
and hence ϕ(t; n) ≤ ϕ(0; n) = 1 = �0(ε)

n for any t ≥ 0.
(ii) If either ρ0 < 0 or ρ0 = 0 with �0 > 1, then d

dt ϕ(t; n) ≥ 0 in 0 ≤ t ≤ ε3 n with
equality only when t = ε3 n, so that ϕ(t; n) ≤ ϕ(εn; n) = (ερ0�0)

εn = �0(ε)
n

for any 0 ≤ t ≤ εn (< ε3 n), where ε3 and �0(ε) are defined in (111a) and
(111b), respectively.

In either case 0 < ϕ(t; n) ≤ �0(ε)
n for any 0 ≤ t < εn and thus (112) and (111c)

lead to

|G(k; n)| ≤ K (ε) · δ0(n)−1 · nRe γ +
0 (n) · Δ0(ε)

n · (1 + l)|Re γ0(n)|, (113)

for any n ≥ N0(ε) and 0 ≤ l := k − �r0n� < εn. Since

∑
0≤l<εn

(1 + l)|Re γ0(n)| ≤
∫ εn+1

0
(1 + t)|Re γ0(n)| dt ≤ (εn + 2)|Re γ0(n)|+1

|Re γ0(n)| + 1

≤ {(2 + ε) · n}|Re γ0(n)|+1,

summing up (113) over the integers 0 ≤ l ≤ �(r0 + ε)n� − �r0n� − 1 (< εn) yields

123



Contiguous relations, Laplace’s methods, and continued fractions... 193

|g0(n)| ≤ K (ε) · δ0(n)−1 · (2 + ε)|Re γ0(n)|+1 · n|Re γ0(n)|+Re γ +
0 (n)+1 · Δ0(ε)

n,
∀n ≥ N0(ε).

Since γ0(n) is bounded by condition (63), we can take a constant K0(ε) ≥ K (ε) · (2+
ε)|Re γ0(n)|+1 to establish the lemma. �
Proposition 5.13 For any d > �(r0), there exists a positive constant ε5 ≤ ε4 such
that

|g0(n)| ≤ M0(d, ε) · δ0(n)−1 · dn, ∀n ≥ N0(ε), 0 < ∀ε ≤ ε5, (114)

for some M0(d, ε) > 0 and N0(ε) ∈ N independent of d, where �(x) is defined in
(75a) and ε4 is given in Lemma 5.12. When r1 < +∞, a similar statement can be
made for the right-end component g1(n) in (88); for any d > �(r1) there exists a
sufficiently small ε6 > 0 such that

|g1(n)| ≤ M1(d, ε) · δ1(n)−1 · dn, ∀n ≥ N1(ε), 0 < ∀ε ≤ ε6.

Proof We show the assertion for the left-end component g0(n) only as the right-
end counterpart follows by reflectional symmetry (65). Observe that �0(ε) → 1,
�+

0 (ε) → �(r0), and so Δ0(ε) → �(r0) as ε → +0. Thus given d > �(r0) there is
a constant 0 < ε5 < ε4 such that d > Δ0(ε) for any 0 < ε ≤ ε5. Then Lemma 5.12
enables us to take a constant M0(d, ε) as in (114). �
Proof of Theorem 5.2 As is mentioned at the end of Sect. 5.2 only the singleton case
Max = {x0} is treated for the sake of simplicity. We can take a number d so that
max{�(r0), �(r1)} < d < �max, since�(x) attains its maximum only at the interior
point x0 ∈ (r0, r1). For this d take the numbers ε5 and ε6 as in Proposition 5.13 and
put ε := min{ε5, ε6}. For this ε consider the numbers �ε

0 and �ε
1 in Lemma 5.5, both

of which are strictly smaller than �max. Take a number d0 so that max{d, �ε
0, �ε

1} <

d0 < �max and put λ := �max/d0 > 1. Then the estimates in Propositions 5.8 and
5.13 and Lemma 5.5 are put together into Eq. (88) to yield

g(n) = nγ (n)+ 1
2 · � n

max · {C(n) + �(n)} ,

where C(n) is defined in (86) and �(n) admits the estimate (87). �
Even without assuming properness (83) we have the following convenient propo-

sition.

Proposition 5.14 Suppose that the sum g(n) in (64) satisfies balancedness (62),
boundedness (63), admissibility (69), and genericness (74) along with continuity at
infinity (78) and convergence (80) when r1 = +∞. For any d > �max, there exist
K > 0 and N ∈ N such that

|g(n)| ≤ K · dn · {δ0(n)−1 + δ1(n)−1}, ∀n ≥ N .
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Proof Divide g(n) into three components; sums over [r0, r0 + ε], [r0 + ε, r1 − ε],
and [r1 − ε, r1]. Take ε > 0 sufficiently small depending on how d is close to �max.
Apply Proposition 5.13 to the left and right components and then use Lemma 5.5 in
the middle one. �

5.6 A priori estimates

We present the a priori estimates used in Sect. 5.4. In what follows, we often use the
inequality

|ex − 1| ≤ |x | e|x | (x ∈ R). (115)

Given a positive constant a, we consider the function ϕ(x; a) := e−ax2 .

Lemma 5.15 If x, y ∈ R, and |y − x | ≤ 1, then

|ϕ(y; a) − ϕ(x; a)| ≤ M1(a) |y − x | ϕ(x; a/2), (116)

where M1(a) := a sup
x∈R

(2|x | + 1)e− a
2 (x2−4|x |−2) < ∞.

Proof Put h := y − x . It then follows from inequality (115) that

∣∣∣eax2−a(x+h)2 − 1
∣∣∣ =

∣∣∣e−ah(2x+h) − 1
∣∣∣ ≤ a |h||2x + h| ea|h||2x+h|

≤ a |h| (2|x | + |h|) ea|h|(2|x |+|h|) ≤ a |h| (2|x | + 1) ea(2|x |+1),

whenever |h| ≤ 1. Dividing both sides by eax
2
we have

∣∣∣e−a(x+h)2 − e−ax2
∣∣∣ ≤ a |h| (2|x | + 1) e−a(x2−2|x |−1)

= a (2|x | + 1) e− a
2 (x2−4|x |−2) · e− a

2 x
2 |h| ≤ M1(a) e− a

2 x
2 |h|,

which proves the lemma. �
Let b > 0,m ≥ 1, 0 < ε ≤ a

4b , and suppose that a function δ(x) admits an estimate

|δ(x)| ≤ b

m
|x |3 (|∀x | ≤ εm). (117)

Lemma 5.16 Under condition (117), the function ψ(x; a) := e−ax2+δ(x) satisfies

|ψ(x; a) − ϕ(x; a)| ≤ b M2(a)

m
ϕ(x; a/2) (|∀x | ≤ εm), (118)

where M2(a) := sup
x∈R

|x |3 e− a
4 x2 < ∞.
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Proof For |x | ≤ εm, we have∣∣∣e−ax2+δ(x) − e−ax2
∣∣∣ = e−ax2

∣∣∣eδ(x) − 1
∣∣∣ ≤ |δ(x)| e−ax2+|δ(x)| by (115),

≤ b

m
|x |3 e−ax2+ b

m |x |3 = b

m
|x |3 e−ax2

(
1− b

am |x |
)

by (117),

≤ b

m
|x |3 e−ax2

(
1− bε

a

)
by |x | ≤ εm,

≤ b

m
|x |3 e− 3a

4 x2 = b

m
|x |3 e− a

4 x
2 · e− a

2 x
2

by 0 < ε ≤ a

4b
,

≤ bM2(a)

m
e− a

2 x
2
,

where the last inequality is by the definition of M2(a). �
Lemma 5.17 Under condition (117), if |x | ≤ εm, |y| ≤ εm, and |y− x | ≤ 1/m, then

|ψ(y; a) − ϕ(x; a)| ≤ M3(a, b)

m
ϕ(x; a/4), (119)

where M3(a, b) := M1(a) + bM2(a) + bM1(a/2)M2(a).

Proof Putting y = x + h with |h| ≤ 1/m, we have

|ψ(y; a) − ϕ(x; a)|
≤ |ψ(y; a) − ϕ(y; a)| + |ϕ(y; a) − ϕ(x; a)| by t.i.,

≤ bM2(a)
m ϕ(y; a

2 ) + M1(a) |h| ϕ(x; a
2 ) by (118) and (116),

≤ bM2(a)
m

{|ϕ(y; a
2 ) − ϕ(x; a

2 )| + ϕ(x; a
2 )

} + M1(a)
m ϕ(x; a

2 ) by t.i. and |h| ≤ 1
m ,

≤ bM2(a)
m

{
M1(

a
2 ) |h| ϕ(x; a

4 ) + ϕ(x; a
2 )

} + M1(a)
m ϕ(x; a

2 ) by (116),

≤ bM2(a)
m

{
M1(

a
2 ) ϕ(x; a

4 ) + ϕ(x; a
2 )

} + M1(a)
m ϕ(x; a

2 ) by |h| ≤ 1
m ≤ 1,

≤ M3(a,b)
m ϕ(x; a

4 ) by ϕ(x; a
2 ) ≤ ϕ(x; a

4 ),

where t.i. refers to trigonometric inequality. �
Lemma 5.18 If x, y ∈ R and |y − x | ≤ 1, then ϕ1(x; a) := |x | e−ax2 satisfies

|ϕ1(y; a) − ϕ1(x; a)| ≤ M4(a) |y − x | ϕ(x; a/4), (120)

where M4(a) := 1 + M1(a) · max
x∈R (|x | + 1)e− a

4 x
2

< ∞.

Proof Putting y = x + h with |h| < 1, one has

|ϕ1(x + h; a) − ϕ1(x; a)| = ||x + h| ϕ(x + h; a) − |x | ϕ(x; a)|
≤ |x + h||ϕ(x + h; a) − ϕ(x; a)| + ||x + h| − |x || ϕ(x; a) by t.i.,

≤ (|x | + 1) M1(a) |h| ϕ(x; a/2) + |h| ϕ(x; a) by |h| < 1, (116) and t.i.,
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= M1(a) · (|x | + 1)e− a
4 x

2 |h| ϕ(x; a/4) + |h| ϕ(x; a)

≤ {1 + M1(a) · (|x | + 1)e− a
4 x

2}|h| ϕ(x; a/4) by ϕ(x; a) ≤ ϕ(x; a/4),

≤ M4(a) |h| ϕ(x; a/4).

Thus estimate (120) has been proved. �

6 Dominant sequences

Recall that the hypergeometric series 3g2(a) is defined in (25) and the subset S(Z) ⊂
Z
5 is defined in (31). In what follows, we fix any positive numbers R, σ > 0 and let

A(R, σ ) := { a = (a0, a1, a2; b1, b2) ∈ C
5 : ||a|| ≤ R, Re s(a) > σ },

where || · || is the standard norm on C5. As an application of Sect. 5 we shall show the
following.

Theorem 6.1 If p = (p0, p1, p2; q1, q2) ∈ S(Z) is any vector satisfying either

(a) Δ( p) ≤ 0 or (b) 2q21 − 2(p1 + p2)q1 + p1 p2 ≥ 0, (121)

where Δ( p) is the polynomial in (33), then |D( p)| > 1 and there exists an asymptotic
formula

t (a) · 3g2(a + n p) = B(a; p) · D( p)n · n−s(a)− 1
2

{
1 + O(n− 1

2 )
}

as n → +∞,

uniformly valid with respect to a ∈ A(R, σ ), where D( p) is defined in (32) and

t (a) : = sin π(b1 − a0) · sin π(b2 − a0),

B(a; p) : = π
1
2 · pa0−

1
2

0 p
a1− 1

2
1 p

a2− 1
2

2 · s2( p)s(a)−1

2
3
2
∏2

i=0
∏2

j=1(q j − pi )b j−ai− 1
2

, (122)

with s2( p) := p0 p1 + p1 p2 + p2 p0 − q1q2 as in Theorem 4.3.

Remark 6.2 Conditions (30) and (121) are invariant under multiplication of p by any
positive scalar. This homogeneity allowsone to restrictS(R) toS1(R) := S(R)∩{q1 =
1}, which is a 3-dimensional solid tetrahedron. A numerical integration shows that the
domain in S1(R) bounded by inequalities (121) occupies some 43 % of the whole
S1(R) in volume basis. Thus we may say that about 43 % of the vectors in S(Z)

satisfy condition (121).

By the definition of 3g2(a) one can write g(n) := 3g2(a + n p) = ∑∞
k=0 ϕ(k; n)

with
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ϕ(k; n)

:= Γ (k + p0n + a0)Γ (k − (q1 − p0)n + a0 − b1 + 1)Γ (k − (q2 − p0)n + a0 − b2 + 1)

Γ (k + 1)Γ (k + (p0 − p1)n + a0 − a1 + 1)Γ (k + (p0 − p2)n + a0 − a2 + 1)
.

We remark that the current g(n) corresponds to the sequence g0(n) in (26a), not to
g(n) in (26b). In general a gamma factor Γ (σk + λn + α) is said to be positive resp.
negative on an interval of k, if σk + λn is positive resp. negative whenever k lies in
that interval. Since p ∈ S(Z), all lower and an upper gamma factors of ϕ(k; n) are
positive in k > 0, while the remaining two upper factors changes their signs when
k goes across (q1 − p0)n or (q2 − p0)n. Thus it is natural to make a decomposition
g(n) = g1(n) + g2(n) + g3(n) with

g1(n) :=
(q1−p0)n−1∑

k=0

ϕ(k; n), g2(n) :=
(q2−p0)n−1∑
k=(q1−p0)n

ϕ(k; n),

g3(n) :=
∞∑

k=(q2−p0)n

ϕ(k; n),

where if q1 = q2 then g2(n) should be null so we always assume q1 < q2 when
discussing g2(n). It turns out that the first component g1(n) is the most dominant
among the three, yielding the leading asymptotics for g(n). The proof of Theorem 6.1
is completed at the end of Sect. 6.3.

6.1 First component

For the first component g1(n), applying Euler’s reflection formula for the gamma
function to the two negative gamma factors in the numerator of ϕ(k; n), we have

t (a) · g1(n) = π2 · (−1)(q1+q2)n · G1(n)

with G1(n) :=
L1n−1∑
k=0

Γ (σ1k + λ1n + α1)∏5
j=1 Γ (τ j k + μ j n + β j )

,

where L1 = q1 − p0, σ1 = 1, λ1 = p0, α1 = a0, and

τ1 = 1, τ2 = 1, τ3 = 1, τ4 = −1, τ5 = −1,

μ1 = 0, μ2 = p0 − p1, μ3 = p0 − p2, μ4 = q1 − p0 = L1, μ5 = q2 − p0,

β1 = 1, β2 = a0 − a1 + 1, β3 = a0 − a2 + 1, β4 = b1 − a0, β5 = b2 − a0.

Under the assumption of Theorem 6.1, the sum G1(n) satisfies all conditions in
Theorem 5.2. Indeed, balancedness (62) follows from s( p) = 0; boundedness (63)
is trivial because α1 and β j are independent of n; admissibility (69) is fulfilled with
r0 = 0 and r1 = L1 due to condition (30); genericness (74) is trivial since I0 ∪ I1 = ∅
with J0 = {1} and J1 = {4} by inequalities in (30). To verify properness (83), notice
that the characteristic equation (84) now reads
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χ1(x) = x(x + p0 − p1)(x + p0 − p2)

(−x + q1 − p0)(−x + q2 − p0)
− (x + p0) = 0.

Thanks to s( p) = 0, this equation reduces to a linear equation in x having the unique
root

x0 = p0(q1 − p0)(q2 − p0)

p1 p2 − (q1 − p0)(q2 − p0)
= p0(q1 − p0)(q2 − p0)

s2( p)
,

where s( p) = 0 again leads to s2( p) = p1 p2 − (q1 − p0)(q2 − p0), which together
with (30) yields s( p) − p0(q2 − p0) = (q1 − p1)(q1 − p2) > 0 and hence s2( p) >

p0(q2 − p0) > 0, that is,

0 < x0 < L1 = q1 − p0.

If φ1(x) is the additive phase function for G1(n) then it follows from (82b) and (30)
that

φ′′
1 (x0)

= 1

x0
+ 1

x0 + p0 − p1
+ 1

x + p0 − p2
+ 1

q1 − p0 − x0
+ 1

q2 − p0 − x0
− 1

x0 + p0

= s2( p)4

p0 p1 p2
∏2

i=0
∏2

j=1(q j − pi )
> 0.

Thus in the interval 0 < x < L1, the function φ1(x) has only one local and hence
global minimum at x = x0, which is non-degenerate. Therefore properness (83) is
satisfied with Max = {x0} and hence Theorem 5.2 applies to the sum G1(n).

Lemma 6.3 For any p ∈ S(Z), we have |D( p)| > 1 and an asymptotic representa-
tion

t (a) · g1(n) = B(a; p) · D( p)n · n−s(a)− 1
2

{
1 + O(n− 1

2 )
}

as n → +∞,

uniform with respect to a ∈ A(R, σ ), where D( p), t (a), and B(a; p) are as in (32)
and (122).

Proof Substituting x = x0 into Formulas (75) and using s( p) = 0 repeatedly, one
has

(�1)max = �1(x0) = pp0
0 pp1

1 pp2
2∏2

i=0
∏2

j=1(q j − pi )q j−pi
,

u1(x0) = pa0−1
0 pa1−1

1 pa2−1
2 s2( p)s(a)+1

(2π)2
∏2

i=0
∏2

j=1(q j − pi )b j−ai
,
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while γ1 := γ (n) in definition (81) now reads γ1 = −s(a)−1. Since δ0(n) = δ1(n) =
1 in (87) by I0 ∪ I1 = ∅, Formula (85) in Theorem 5.2 implies that

G1(n) = C1 · (�1)
n
max · nγ1+ 1

2 ·
{
1 + O(n− 1

2 )
}

as n → +∞,

where Formula (86) allows one to calculate the constant C1 := C(n) as

C1 = √
2π

u1(x0)√
φ′′
1 (x0)

= p
a0− 1

2
0 p

a1− 1
2

1 p
a2− 1

2
2 s2( p)s(a)−1

(2π)
3
2
∏2

i=0
∏2

j=1(q j − pi )b j−ai− 1
2

.

In view of the relation between G1(n) and g1(n), the above asymptotic formula for
G1(n) gives the one for g1(n). Finally |D( p)| > 1 follows from Lemma 6.4. �
Lemma 6.4 Under condition (30), one has |D( p)| = (�1)max > �1(0) > 1.

Proof First, |D( p)| = (�1)max is obvious from the definition (32) of D( p) and the
expression for (�1)max, while (�1)max > �1(0) is also clear from Max = {x0}.
Regarding p = (p0, p1, p2; q1, q2) as real variables subject to the linear relation
s( p) = 0 and ranging over the closure of the domain (30), we shall find the minimum
of

�1(0) = pp0
0

(p0 − p1)p0−p1(p0 − p2)p0−p2(q1 − p0)q1−p0(q2 − p0)q2−p0
.

For any fixed (p0, p1, p2), due to the constraint s( p) = 0, one can thought of�1(0) as
a function of single variable q1 in the interval p0 ≤ q1 ≤ p1+ p2. Differentiation with
respect to q1 shows that �1(0) attains its minimum (only) at the endpoints q1 = p0,
p1 + p2, whose value is

�(p0, p1, p2) := pp0
0

(p0 − p1)p0−p1(p0 − p2)p0−p2(p1 + p2 − p0)p1+p2−p0
.

So�1(0) > �(p0, p1, p2) for any p0 < q1 < p1+p2.With afixed p0 > 0we thinkof
�(p0, p1, p2) as a function of (p1, p2) in the closed simplex p0 ≤ p1 + p2, p1 ≤ p0,
p2 ≤ p0. It has a unique critical value �(p0, 2p0/3, 2p0/3) = 3p0 > 1 in the
interior of the simplex, while on its boundary one has�(p0, α, p0) = �(p0, p0, α) =
�(p0, α, p0 − α) = pp0

0 α−α(p0 − α)α−p0 ≥ 1 for any 0 ≤ α ≤ p0. Therefore, we
have �1(0) > �(p0, p1, p2) ≥ 1 under condition (30). �

6.2 Second component

Taking the shift k �→ k + (q1 − p0)n in ϕ(k; n) (see (66)) and applying the reflection
formula to the unique negative gamma factor in the numerator of ϕ(k+(q1− p0)n; n),
one has
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g2(n) = π · (−1)(q2−q1)n G2(n)

sin π(b2 − a0)

with G2(n) :=
L2n−1∑
k=0

(−1)k
∏2

i=1 Γ (σi k + λi n + αi )∏4
j=1 Γ (τ j k + μ j n + β j )

,

where L2 = q2 − q1 > 0, σ1 = σ2 = 1, λ1 = q1, λ2 = 0, α1 = a0, α2 = a0 − b1 + 1,
and

τ1 = 1, τ2 = 1, τ3 = 1, τ4 = −1,

μ1 = q1 − p0, μ2 = q1 − p1, μ3 = q1 − p2, μ4 = q2 − q1 = L2,

β1 = 1, β2 = a0 − a1 + 1, β3 = a0 − a2 + 1, β4 = b2 − a0.

Rewriting k �→ 2k or k �→ 2k + 1 according as k is even or odd, we have a
decomposition G2(n) = G20(n) − G21(n) + H2(n), where G2ν(n) is given by

G2ν(n) :=
� L2

2 n�−1∑
k=0

∏2
i=1 Γ (2σi k + λi n + αi + ν σi )∏4
j=1 Γ (2τ j k + μ j n + β j + ν τ j )

, ν = 0, 1,

while if L2 or n is even then H2(n) := 0; otherwise, i.e., if both of L2 and n are odd
then

H2(n) :=
∏2

i=1 Γ ((σi L2 + λi )n + αi )∏4
j=1 Γ ((τ j L2 + μ j )n + β j )

.

Obviously, G20(n) and G21(n) have the same multiplicative phase function, which
we denote by �2(x). Let φ2(x) := − log�2(x) be the associated additive phase
function. In order tomake the second component g2(n)weaker than the first one g1(n),
we want to make φ′

2(x) ≥ 0 or equivalently χ2(x) ≥ 0 for every 0 ≤ x ≤ L2/2, where
χ2(x) is the common characteristic function (84) for the sums G20(n) and G21(n),
which is given by

χ2(x) = (2x + μ1)
2(2x + μ2)

2(2x + μ3)
2

(−2x + L2)2
− (2x + λ1)

2(2x + λ2)
2.

The non-negativity of χ2(x) in the interval 0 ≤ x ≤ L2/2 is equivalent to

χ(x; p) := (x + μ1)(x + μ2)(x + μ3) + (x + λ1)(x + λ2)(x − L2)

= (x + q1 − p0)(x + q1 − p1)(x + q1 − p2) + x(x + q1)(x + q1 − q2)

≥ 0 for any 0 ≤ x ≤ L2 = q2 − q1.
(123)

It is easy to see that G20(n) and G21(n) satisfy balancedness (62), boundedness
(63), and admissibility (69) conditions, where r0 = 0, r1 = L2/2, and I0 = {2},
I1 = J0 = ∅, J1 = {4}, while genericness (74) for G2ν(n) becomes b1 − a0 /∈ Z≥ν+1
for ν = 0, 1.
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Lemma 6.5 Under the assumption of Lemma 6.3, if p satisfies the additional condi-
tion (123) then there exist positive constants 0 < d2 < |D( p)|, C2 > 0 and N2 ∈ N

such that

|t (a) · g2(n)| ≤ C2 · dn2 , ∀n ≥ N2,
∀a ∈ A(R, σ ).

Proof Condition (123) implies that�2(x) is decreasing everywhere in 0 ≤ x ≤ L2/2
and is strictly so near x = 0 since χ(0; p) = (q1 − p0)(q1 − p1)(q1 − p2) > 0 by
condition (30). Hence �2(x) attains its maximum (only) at the left end x = 0 of the
interval, having the value

(�2)max = �2(0) = qq11
(q1 − p0)q1−p0(q1 − p1)q1−p1(q1 − p2)q1−p2(q2 − q1)q2−q1

= �1(L1),

whereas (�2)max = �1(L1) < (�1)max = |D( p)| follows from Lemma 6.4. Thus
if d2 is any number such that (�2)max < d2 < |D( p)|, then Proposition 5.14 shows
that

|G2ν(n)| ≤ K2 · dn2
min{1, dist(b1 − a0, Z≥ν+1)} ≤ K2 · dn2

δ(b1 − a0)
, ∀n ≥ N2, ν = 0, 1,

for some K2 > 0 and N2 ∈ N, where δ(z) := min{1, dist(z, N)} for z ∈ C.
We have to take care of H2(n) when L2 and n are both odd. Stirling’s formula (90)

yields

H2(n) = 1

2π
·

∏2
i=1(σi L2 + λi )

αi− 1
2∏4

j=1(τ j L2 + μ j )
β j− 1

2

· �2(L2/2)
n · nγ2 · {1 + O(1/n)}

as n → +∞, where γ2 := α1 + α2 − β1 − β2 − β3 − β4 + 1. Since �2(L2/2) <

(�2)max < d2, upon retaking K2 > 0 suitably, one has |H2(n)| ≤ K2 · dn2 ≤ K2 ·
dn2 /δ(b1 − a0) for any n ≥ N2.

Then from the relation between g2(n) and G2(n) = G20(n)−G21(n)+ H2(n) one
has

|t (a) · g2(n)| ≤ 3πK2 · M2(a) · dn2 with M2(a) := | sin π(b1 − a0)|
δ(b1 − a0)

.

Since M2(a) is bounded for a ∈ A(R, σ ) the lemma follows (here σ is irrelevant).
�

Lemma 6.5 tempts us to ask when condition (123) is satisfied.

Lemma 6.6 For any p ∈ S(R) condition (121) implies condition (123).
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Proof We use the following general fact. Let χ(x) be a real cubic polynomial with
positive leading coefficient and Δ be its discriminant. If Δ < 0 then χ(x) has only
one real root so that once χ(c0) > 0 for some c0 ∈ R then χ(x) > 0 for every x ≥ c0.
Even ifΔ = 0, once χ(c0) > 0 then χ(x) ≥ 0 for every x ≥ c0 with possible equality
χ(c1) = 0, c1 > c0, only ifχ(x) attains a localminimumat x = c1. Currently,χ(x; p)
has discriminantΔ( p) in Formula (33) andχ(0; p) = (q1−p0)(q1−p1)(q1−p2) > 0
by condition (30). Thus if Δ( p) ≤ 0 then χ(x; p) ≥ 0 for every x ≥ 0; this is just
the case (a) in condition (121).

We proceed to the case (b) in (121). The derivative of χ(x; p) in x is given by

χ ′(x; p) = 6x2 + 4(2q1 − q2)x + (3q1 − p1 − p2)(p1 + p2 − q2)

+ 2q21 − 2(p1 + p2)q1 + p1 p2.

Note that 2q1 − q2, 3q1 − p1 − p2, p1 + p2 − q2 > 0 by condition (30). Having axis
of symmetry x = −(2q1 − q2)/3 < 0, the quadratic function χ ′(x; p) is increasing
in x ≥ 0 and hence

χ ′(x; p) ≥ χ ′(0; p) = (3q1− p1− p2)(p1+ p2 − q2)+2q21 − 2(p1 + p2)q1 + p1 p2

> 2q21 − 2(p1 + p2)q1 + p1 p2 ≥ 0 for any x ≥ 0,

where the last inequality stems from (b) in condition (121). Thusχ(x; p) ≥ χ(0; p) >

0 for any x ≥ 0, so condition (123) is satisfied. �
The converse to the implication in Lemma 6.6 is also true, accordingly conditions

(121) and (123) are equivalent for any p ∈ S(R), but the proof of this fact is omitted
as it is not needed in this article. In the situation of Lemma 6.5 we proceed to the third
component.

6.3 Third component

For the third component g3(n), taking the shift k �→ k + (q2 − p0)n in ϕ(k; n), one
has

g3(n) =
∞∑
k=0

∏3
i=1 Γ (σi k + λi n + αi )∏3
j=1 Γ (τ j k + μ j n + β j )

,

where σ1 = σ2 = σ3 = τ1 = τ2 = τ3 = 1 and

λ1 = q2, λ2 = q2 − q1, λ3 = 0, α1 = a0, α2 = a0 − b1 + 1, α3 = a0 − b2 + 1,

μ1 = q2 − p0, μ2 = q2 − p1, μ3 = q2 − p2, β1 = 1, β2 = a0 − a1 + 1, β3 = a0 − a2 + 1.

It is easy to see that g3(n) satisfies balancedness (62), boundedness (63), admissi-
bility (69) with r0 = 0 and r1 = +∞. Notice that I0 = {3} if q1 < q2 and I0 = {2, 3}
if q1 = q2, while I1 = J0 = J1 = ∅. Genericness (74) becomes b2 − a0 /∈ N if
q1 < q2, and b1 − a0, b2 − a0 /∈ N if q1 = q2. Continuity at infinity (78) is satisfied
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with σσ = ττ = 1; convergence condition (80) is equivalent to Re s(a) ≥ σ . Under
the assumption of Lemma 6.5, we have the following.

Lemma 6.7 There exist positive constants 0 < d3 < |D( p)|, C3 > 0, and N3 ∈ N

such that

|t (a) · g3(n)| ≤ C3 · dn3 , ∀n ≥ N3,
∀a ∈ A(R, σ ).

Proof In view of s( p) = 0 the characteristic function (84) for g3(n) is given by

χ3(x) = (x + q2 − p0)(x + q2 − p1)(x + q2 − p2) − (x + q2)(x + q2 − q1)x

= s( p) x2 + {2s( p) q2 + s2( p)}x + (q2 − p0)(q2 − p1)(q2 − p2)

= s2( p) x + (q2 − p0)(q2 − p1)(q2 − p2).

Since s2( p) > 0 and (q2 − p0)(q2 − p1)(q2 − p2) > 0 from condition (30), one has
χ3(x) > 0 and hence the additive phase function φ3(x) satisfies φ′

3(x) > 0 for any
x ≥ 0. Thus �3(x) = e−φ3(x) is strictly decreasing in x ≥ 0 and attains its maximum
(only) at x = 0, having the value

(�3)max = �3(0) = qq22 (q2 − q1)q2−q1

(q2 − p0)q2−p0(q2 − p1)q2−p1(q2 − p2)q2−p2
= �2(L2/2),

whereas (�3)max = �2(L2/2) < (�2)max = �2(0) = �1(L1) < (�1)max =
|D( p)|. Thus if d3 is any number with (�3)max < d3 < |D( p)| then Proposition 5.14
implies that for any n ≥ N3,

|g3(n)| ≤ K3 · dn3
δ(b2 − a0)

if q1 < q2;

|g3(n)| ≤ K3 · dn3
δ(b1 − a0) · δ(b2 − a0)

if q1 = q2,

where the function δ(z) is defined in the proof of Lemma 6.5. Since sin π(b j −
a0)/δ(b j − a0), j = 1, 2, are bounded for a ∈ A(R, σ ), the lemma follows immedi-
ately. �

Theorem 6.1 is now an immediate consequence of Lemmas 6.3, 6.5, 6.6, and 6.7.
Theorems 4.3 and 6.1 then imply that if the shift vector p ∈ S(Z) satisfies condition
(121) then f (n) in (23a) and g(n) in (26b) are recessive and dominant solutions to
the recurrence relation (28) whose coefficients q(n) and r(n) are given by (23b) and
(23c). Now it is almost ready to apply the general error estimate (29) to X (n) = f (n)

and Y (n) = g(n), where a precise asymptotic formula for the ratio R(n) = f (n +
2)/g(n + 2) is available from Theorems 4.3 and 6.1.
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Table 3 Five parameter involutions (including identity)

σ
(0)
0 (a) := a = (a0, a1, a2; b1, b2) ,

σ
(0)
1 (a) := (a0 + 1 − b1, a1 + 1 − b1, a2 + 1 − b1; 2 − b1, b2 + 1 − b1),

σ
(0)
2 (a) := (a0 + 1 − b2, a1 + 1 − b2, a2 + 1 − b2; b1 + 1 − b2, 2 − b2),

σ
(∞)
0 (a) := (a0, a0 + 1 − b1, a0 + 1 − b2; a0 + 1 − a1, a0 + 1 − a2),

a∗ := (1 − a0, 1 − a1, 1 − a2; 2 − b1, 2 − b2).

Theorem 6.1 is established under balancedness condition s( p) = 0. We wonder if
the discrete Laplace method in Sect. 5 could be extended so as to work even when this
condition fails to hold.

7 Casoratian and error estimates

All that remain are to evaluate the initial term ω(0) of the Casoratian determinant

ω(n) := f (n) · g(n + 1) − f (n + 1) · g(n),

and to incorporate the ensuing formula with the asymptotic representation for R(n) to
complete the proofs of Theorems 3.2 and 3.3. The first task is done in Sect. 7.1, while
the second in Sect. 7.2.

7.1 Casoratian

In order to evaluate ω(0), following [10, Formulas (7), (8), and (10)], we define

y(0)
i (a; z) := z1−bi

3 f2(σ
(0)
i (a); z), i = 0, 1, 2, b0 := 1,

y(∞)
0 (a; z) := eiπs(a)z−a0

3 f2(σ
(∞)
0 (a); 1/z),

where σ
(ν)
i are involutions on the parameters a as in Table 3, and put y(ν)

i (a) :=
y(ν)
i (a; 1). Note that y(0)

0 (a) = 3 f2(a) and y(∞)
0 (a) = eiπs(a)3g2(a). Moreover let

1 := (1, 1, 1; 1, 1).
Lemma 7.1 For any a ∈ C

5 with Re s(a) > 1 one has

W (a) := y(0)
0 (a) · y(∞)

0 (a + 1) − y(0)
0 (a + 1) · y(∞)

0 (a)

= −eiπs(a)
Γ (a0)Γ (a1)Γ (a2)Γ (a0 − b1 + 1)Γ (a0 − b2 + 1)Γ (s(a) − 1)

Γ (b1 − a1)Γ (b1 − a2)Γ (b2 − a1)Γ (b2 − a2)
.

(124)
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Proof A careful inspection of Bailey [4, Sect. 10.3, Formulas (3) and (5)] shows that

w(a; z) := y(0)
0 (a; z) · y(0)

1 (a + 1; z) − y(0)
0 (a + 1; z) · y(0)

1 (a; z)
= Γ (a0)Γ (a1)Γ (a2)Γ (a0 − b1 + 1)Γ (a1 − b1 + 1)Γ (a2 − b1 + 1)

Γ (b1)Γ (1 − b1)Γ (b2 − a0)Γ (b2 − a1)Γ (b2 − a2)

× z1−b1−b2(1 − z)s(a)−1 · y(0)
2 (a∗; z), |z| < 1,

where a∗ is defined in Table 3, while Okubo, Takano, and Yoshida [21, Lemma 2]
show that

lim
z↑1(1 − z)s(a)−1 · y(0)

2 (a∗; z) = Γ (s(a) − 1), Re s(a) > 1.

It follows from these facts that w(a) := w(a; 1) admits a representation

w(a) = Γ (a0)Γ (a1)Γ (a2)Γ (a0 − b1 + 1)Γ (a1 − b1 + 1)Γ (a2 − b1 + 1)Γ (s(a) − 1)

Γ (b1)Γ (1 − b1)Γ (b2 − a0)Γ (b2 − a1)Γ (b2 − a2)
.

By the connection formula y(∞)
0 (a) = C0(a) y

(0)
0 (a)+C1(a) y

(0)
1 (a) in [10, Formula

(16)], where

C0(a) = eiπs(a) · sin πa1 · sin πa2
sin πb1 · sin π(b2 − a0)

,

C1(a) = −eiπs(a) · sin π(b1 − a1) · sin π(b1 − a2)

sin πb1 · sin π(b2 − a0)
,

and the periodicity Ci (a + 1) = Ci (a), i = 0, 1, we have W (a) = C1(a) w(a). This
together with the reflection formula for the gamma function yields Formula (124). �
Theorem 7.2 The initial value of the Casoratian ω(n) is given by

ω(0) = π2 · ρ(a; k) · Γ (a0)Γ (a1)Γ (a2)Γ (s(a))

t (a)
∏2

i=0
∏2

j=1 Γ (b j − ai + (l j − ki )+)
, (125)

where ρ(a; k) ∈ Q[a] is the polynomial in (13) and t (a) := sin π(b1−a0)·sin π(b2−
a0).

Proof From definitions (23a) and (26b), we find that

ω(0) = f0(0) · g1(0) − f1(0) · g0(0) = 3 f2(a) · 3g2(a + k) − 3 f2(a + k) · 3g2(a)
= y(0)

0 (a) e−iπs(a+k)y(∞)
0 (a + k) − y(0)

0 (a + k) e−iπs(a)y(∞)
0 (a)

= e−iπs(a){y(0)
0 (a) y(∞)

0 (a + k) − y(0)
0 (a + k) y(∞)

0 (a)}
= e−iπs(a)r(a; k){y(0)

0 (a) y(∞)
0 (a + 1) − y(0)

0 (a + 1) y(∞)
0 (a)}

= e−iπs(a)r(a; k)W (a),
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where the fourth equality follows from s(k) = 0 and the fifth from the three-term
relation

y(ν)
0 (a + k) = r1(a; k) y(ν)

0 (a) + r(a; k) y(ν)
0 (a + 1), ν = 0,∞,

where r1(a; k) and r(a; k) are the (1, 1) and (1, 2) entries of the connection matrix
A(a; k) as in [10, Formulas (33) and (34)]. Using Formula (124) one has

ω(0) = −r(a; k) Γ (a0)Γ (a1)Γ (a2)Γ (a0 − b1 + 1)Γ (a0 − b2 + 1)Γ (s(a) − 1)

Γ (b1 − a1)Γ (b1 − a2)Γ (b2 − a1)Γ (b2 − a2)

= −π2 · r(a; k) · Γ (a0)Γ (a1)Γ (a2)Γ (s(a) − 1)

t (a)
∏2

i=0
∏2

j=1 Γ (b j − ai )

= π2 · ρ(a; k) · Γ (a0)Γ (a1)Γ (a2) · {s(a) − 1}Γ (s(a) − 1)

t (a)
∏2

i=0
∏2

j=1(b j − ai ; (l j − ki )+) · ∏2
i=0

∏2
j=1 Γ (b j − ai )

= RHS of (125),

where the second equality follows from the reflection formula for the gamma function,
the third from (13) and the final one from the recursion formula for the gamma function.

�

7.2 Error estimates

We are now in a position to establish our main results in Sect. 3.2 by means of the
general estimate (29) upon putting X (n) = f (n) and Y (n) = g(n). In this subsection,
unless otherwise mentioned explicitly, Landau’s symbols O( · ) are uniform in any
compact subset of

A := {a ∈ C
5 : Re s(a) > 0}.

Proof of Theorem 3.2 In the straight case in Definition 2.2, the sequences in (23a) and
(26b) are given by f (n) = 3 f2(a+ nk) and g(n) = 3g2(a+ nk), respectively. Under
the assumption of Theorem 3.2, we can use Theorems 4.3 and 6.1 with p replaced by
k to get

f (n) = 3 f2(a + nk) = Γ (s(a)) · s2(k)−s(a) · n−2s(a) · {1 + O(1/n)},
g(n) = 3g2(a + nk) = B(a; k)

t (a)
· D(k)n · n−s(a)− 1

2 ·
{
1 + O(n− 1

2 )
}

,

where D(k), t (a), and B(a; k) are given by (32) and (122) with p replaced by k, and
hence
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R(n) = f (n + 2)

g(n + 2)

= t (a) · Γ (s(a)) · s2(k)−s(a)

B(a; k) · D(k)2
· D(k)−n · n−s(a)+ 1

2 ·
{
1 + O(n− 1

2 )
}

.

Combining this formula with (125) in Theorem 7.2, we have

ω(0) R(n) = ρ(a; k) · es(a; k) · γ (a; k) · D(k)−n · n−s(a)+ 1
2 ·

{
1 + O(n− 1

2 )
}

,

where es(a; k) and γ (a; k) are defined in (37) and (34). To cope with the error term in
Formula (29), we also need to care about how R(n) · Y (0)/X (0) depends on a ∈ A.
Observe that

R(n) · Y (0)

X (0)
= R(n) · 3g2(a)

3 f2(a)
=ψ1(a) · ψ2(a) · D(k)−n · n−s(a)+1

2 ·
{
1 + O(n− 1

2 )
}

,

with ψ1(a) := Γ (s(a)) · s2(k)−s(a)

B(a; k) · D(k)2
, ψ2(a) := t (a) · 3g2(a)

3 f2(a)
.

It is obvious that ψ1(a) is holomorphic in A. It is also easy to see that ψ2(a) is
holomorphic in A0 := {a ∈ A : 3 f2(a) �= 0}. Indeed 3g2(a) has a pole when
a0 − b1 + 1 ∈ Z≤0 or a0 − b2 + 1 ∈ Z≤0 but the pole is canceled by a zero of
t (a) = sin π(b1 − a0) · sin π(b2 − a0); similarly 3g2(a) has a pole when a0 ∈ Z≤0
but it is canceled by a pole of 3 f2(a). Now estimate (29) leads to asymptotic Formula
(36), in which Landau’s symbol is uniform in any compact subset of A0. �

Proof of Theorem 3.3 In the twisted case in Definition 2.2, if n = 3m + i , m ∈ Z≥0,
i = 0, 1, 2, then the sequences f (n) in (23a) and g(n) in (26b) are given by

f (3m + i) = 3 f2(a + j i + m p), g(3m + i) = 3g2(a + j i + m p),

where j0 = 0, j1 = k, j2 = l , and p is the shift vector in Formula (20).
Observe that p belongs to S(Z) and satisfies condition (121), if and only if the

seed vector k ∈ Z
5 fulfills condition (39). Indeed, since p0 = p1 = p2 = l1 + l2,

q1 = 3l1, and q2 = 3l2, the inequalities in (30) becomes l1 + l2 < 3l1 ≤ 3l2 <

2(l1 + l2), which is equivalent to l1 ≤ l2 < 2l1. Case (a) in condition (121) now reads
Δ( p) = −27(l22 − 4l1l2 + l21)(l

2
2 + 2l1l2 − 2l21)(2l

2
2 − 2l1l2 − l21) ≤ 0, which together

with l1 ≤ l2 < 2l1 yields l1 ≤ l2 ≤ τ l1 in condition (39), where τ = (1 + √
3)/2.

On the other hand, case (b) in condition (121) becomes l22 − 10l1l2 + 7l21 ≥ 0, that
is, l2 ≤ (5 − 3

√
2)l1 or l2 ≥ (5 + 3

√
2)l1, but neither of which is possible when

l1 ≤ l2 < 2l1.
Thus under the assumption of Theorem 3.3 one can apply Theorems 4.3 and 6.1 to

the shift vector p in (20) with a replaced by a + j i to obtain
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f (3m + i) = 3 f2(a + j i + m p) = Γ (s(a)) · s2( p)−s(a) · m−2s(a) · {1 + O(1/m)},
g(3m + i) = 3g2(a + j i + m p)

= B(a + j i ; p)
t (a + j i )

· D( p)m · m−s(a)− 1
2 ·

{
1 + O(m− 1

2 )
}

,

where s( j i ) = 0 is also used. Substituting the settings (20) and (21) into definitions
(32) and (122) and taking s(k) = 0 into account, one has D( p) = E(l1, l2)3 and

t (a + j i ) = (−1)i(l1+l2) · t (a),
B(a + j i ; p) = (−1)i(l1+l2) · B(a; p) · E(l1, l2)

i , i = 0, 1, 2,

where E(l1, l2) is defined in (41). These formulas and s2( p) = 3(l21 − l1l2 + l22) lead
to

f (n) = 3s(a) · Γ (s(a)) · (l21 − l1l2 + l22)
−s(a) · n−2s(a) · {1 + O(1/n)},

g(n) = 3s(a)+
1
2 · B(a; p)

t (a)
· E(l1, l2)

n · n−s(a)− 1
2 ·

{
1 + O(n− 1

2 )
}

,

so the ratio R(n) = f (n + 2)/g(n + 2) is estimated as

R(n) = t (a) · Γ (s(a)) · (l21 − l1l2 + l22)
−s(a)

3
1
2 · B(a; p) · E(l1, l2)2

·E(l1, l2)
−n · n−s(a)+ 1

2 ·
{
1 + O(n− 1

2 )
}

.

Substituting p = (l1 + l2, l1 + l2, l1 + l2; 3l1, 3l2) into definition (122) yields

B(a; p) = π
1
2 (l1 + l2)a0+a1+a2− 3

2 · 3s(a)−1 · (l21 − l1l2 + l22)
s(a)−1

2
3
2 · (2l1 − l2)2b1−b2+s(a)− 3

2 (2l2 − l1)2b2−b1+s(a)− 3
2

,

which is put together with Formula (125) in Theorem 7.2 to give

ω(0) R(n) = ρ(a; k) · et(a; k) · γ (a; k) · E(l1, l2)
−n · n−s(a)+ 1

2 ·
{
1 + O(n− 1

2 )
}

,

where et(a; k) and γ (a; k) are given in (42) and (34). The treatment of R(n) ·
Y (0)/X (0) is similar to the one in the straight case and the estimate (29) leads to
asymptotic Formula (40), in which Landau’s symbol is uniform in any compact sub-
set of A0. �

8 Back to original series and specializations

Theorems 3.2 and 3.3 are stated in terms of the renormalized series 3 f2(a). It is
interesting to reformulate them in terms of the original series 3F2(1). Multiplying
equations (36) and (40) by
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Γ (b1 + l1)Γ (b2 + l2)

Γ (a0 + k0)Γ (a1 + k1)Γ (a2 + k2)
· Γ (a0)Γ (a1)Γ (a2)

Γ (b1)Γ (b2)
= (b1; l1)(b2; l2)

(a0; k0)(a1; k1)(a2; k2)
and using relation (9) between 3 f2(a) and 3F2(a), we find that

3F2(a + k)

3F2(a)
− n

K
j=0

r∗( j)
q∗( j)

= c∗
s (a; k)

3F2(a)2
· D(k)−n · n−s(a)+ 1

2 ·
{
1 + O(n− 1

2 )
}

,

(126a)

3F2(a + k)

3F2(a)
− n

K
j=0

r∗( j)
q∗( j)

= c∗
t (a; k)

3F2(a)2
· E(l1, l2)

−n · n−s(a)+ 1
2 ·

{
1 + O(n− 1

2 )
}

,

(126b)

as n → +∞, where the quantities marked with an asterisk are defined by

q∗(0) := u(a)
∏2

i=0(ai ; ki ), q∗(n) := q(n), n ≥ 1,

r∗(0) := (b1; l1)(b2; l2), r∗(1) := v(a)
∏2

i=0(ai ; ki ), r∗(n) := r(n), n ≥ 2,

c∗
ι (a; k) := ρ(a; k) · eι(a; k) · γ ∗(a; k), ι = s, t, (127)

with ρ(a; k) and eι(a; k) unaltered while

γ ∗(a; k) := Γ (b1 + l1)Γ (b2+l2)Γ (b1)Γ (b2)Γ 2(s(a))

Γ (a0+k0)Γ (a1 + k1)Γ (a2+k2)
∏2

i=0
∏2

j=1 Γ (b j − ai + (l j − ki )+)
.

It follows from (9) that A∗
0 := {a ∈ A : b1, b2 /∈ Z≤0, 3F2(a) �= 0} ⊂ A0, where

A and A0 are defined in Sect. 7.2, so Landau’s symbols in (126) are uniform in any
compact subset of A∗

0.
Take an index λ ∈ {0, 1, 2} such that kλ > 0 and put {λ,μ, ν} = {0, 1, 2}. For

any non-zero vector k ∈ Z
5≥0 with s(k) = 0 such an index λ always exists since

k0 + k1 + k2 = l1 + l2 > 0. In Formulas (126), take the limit aλ → 0 and make the
substitutions ai �→ ai − ki , b j �→ b j − l j for i = μ, ν and j = 1, 2. This procedure
is referred to as the λ-th specialization. If this is well defined then 3F2(a) → 1 as
aλ → 0, so Formulas (126a) and (126b) lead to

3F2

(
kλ, aμ, aν

b1, b2

)
− n

K
j=0

r̂( j)

q̂( j)
= ĉs(a; k) · D(k)−n · n−ŝ+ 1

2 ·
{
1 + O(n− 1

2 )
}

,

(128a)

3F2

(
kλ, aμ, aν

b1, b2

)
− n

K
j=0

r̂( j)

q̂( j)
= ĉt(a; k) · E(l1, l2)

−n · n−ŝ+ 1
2 ·

{
1 + O(n− 1

2 )
}

,

(128b)

where q̂(n) and r̂(n) are derived from q∗(n) and r∗(n), while ĉι(a; k) := ρ̂(a; k) ·
êι(a; k) · γ̂ (a; k), ι = s, t, are obtained from (127) through the specialization; in
particular one has
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γ̂ (a; k) := Γ (b1)Γ (b2)Γ 2(ŝ)

Γ (kλ)Γ (aμ)Γ (aν)
∏
j=1,2

(b j − l j ; (l j − kλ)+) ·
∏

i=μ,ν

∏
j=1,2

Γ (b j − ai + (ki − l j )+)
,

with ŝ := b1 + b2 − aμ − aν − kλ. Landau’s symbols in (128) are uniform in compact
subsets of

Â := { (aμ, aν; b1, b2) ∈ C
4 : Re ŝ > 0, b1, b2 /∈ Z≤0 }.

The specialization is indeed well defined. It follows from [10, Proposition 4.9] and
Lemma 2.1 that for any c ∈ Q

5, the restriction ρ(a + c; k)∣∣a0=a1=a2=0 is a non-
zero polynomial inQ[b1, b2] and hence ρ(a+ c; k)|aλ=0 is a non-zero polynomial in
Q[aμ, aν, b1, b2]. This is also the case for σ(k) and l in place of k in Sect. 2.2. Thus
Formula (19a) implies that the specialization for q∗(0),

q̂(0) : = lim
aλ→0

u(a)
2∏

i=0

(ai ; ki ) followed by ai �→ ai − ki , b j �→ b j − l j ,

i = μ, ν, j = 1, 2,

is well defined and the ensuing q̂(0) is a non-trivial rational function inQ(aμ, aν, b1,
b2). In a similar manner, Formula (19b) tells us that the specialization for r∗(1), that is,
r̂(1) ∈ Q(aμ, aν, b1, b2) is well defined and non-trivial. The specialization for q∗(n)

with n ≥ 1 is also well defined, since q∗(n) = q(n) is of the form σ i
u(a + c), where

i ∈ {0, 1, 2} and c is a vector in Z5≥0 whose λ-th upper component, say cλ, is positive,

in which case one can take limaλ→0
σ i
u(a + c) without trouble, because the critical

factorial (aλ; kλ) → 0 in the denominator of (19a) is now replaced by a safe one
(aλ+cλ; kλ) → (cλ; kλ) �= 0. The resulting q̂(n) is non-trivial inQ(aμ, aν, b1, b2). A
similar argument can bemade for r̂(n)with n ≥ 2. Thus the procedure of specialization
is well defined over the rational function field Q(aμ, aν, b1, b2).

9 Some examples

To illustrate Theorems 3.2 and 3.3, we present a couple of the simplest examples.

Example 9.1 The simplest example of twisted type is given by

k =
(
1, 1, 0

1, 1

)
, l =

(
1, 2, 1

2, 2

)
, p =

(
2, 2, 2

3, 3

)
,

together with σ(a0, a1, a2; b1, b2) = (a2, a0, a1; b1, b2). The recipe described in
Sect. 2.1 readily yields ρ(a; l) = b1b2 − a0a2 and ρ(a; k) = ρ(a + k; σ(k)) = 1, so
Formula (19) yields

u(a) = b1b2 − a0a2
a0a1

, v(a) = − (b1 − a0)(b2 − a0)

a0a1
.
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Table 4 Partial denominators and numerators in Example 9.1 with r0(0) := 1

q0(n) := (3n + b1)(3n + b2) − (2n + a0)(2n + a2)

(2n + a0)(2n + a1)
(n ≥ 0),

q1(n) := (3n + b1 + 1)(3n + b2 + 1) − (2n + a0 + 1)(2n + a1 + 1)

(2n + a1 + 1)(2n + a2)
(n ≥ 0),

q2(n) := (3n + b1 + 2)(3n + b2 + 2) − (2n + a1 + 2)(2n + a2 + 1)

(2n + a0 + 1)(2n + a2 + 1)
(n ≥ 0),

r0(n) := − (n + b1 − a2)(n + b2 − a2)

(2n + a0 − 1)(2n + a2 − 1)
(n ≥ 1),

r1(n) := − (n + b1 − a0)(n + b2 − a0)

(2n + a0)(2n + a1)
(n ≥ 0),

r2(n) := − (n + b1 − a1)(n + b2 − a1)

(2n + a1 + 1)(2n + a2)
(n ≥ 0).

Thus the partial denominators and numerators of the continued fraction in Theorem
3.3 are given as in Table4, so the continued fraction for 3 f2(a + k)/3 f2(a) is well
defined when

a0, a1, a2 /∈ Z≤0; b j − ai /∈ Z≤0, b j − a2 /∈ Z≤−1, i = 0, 1, j = 1, 2.

In the error estimate (40), we have E(l1, l2) = E(1, 1) = 4 and

ct(a; k) = π
3
2 · Γ (a0)Γ (a1)Γ (a2)Γ 2(s(a))

2a0+a1+a2+1 · 3s(a)− 1
2
∏2

j=1
∏2

i=0 Γ (b j − ai + δi2)
.

Passing to the continued fraction for 3F2(a+ k)/3F2(a), we have q∗
0 (0) = b1b2 −

a0a2, r∗
0 (0) = b1b2, r∗

1 (0) = −(b1 − a0)(b2 − a0), and q∗
i (n) = qi (n), r∗

i (n) = ri (n)

for all other (i, n) in Formula (126b). The 0-th specialization of (126b) then leads to
q̂0(0) = r̂0(0) = (b1 − 1)(b2 − 1), r̂1(0) = −(b1 − 1)(b2 − 1) in Formula (128b),
while all other q̂i (n) and r̂i (n) are given as in Table 2, where circumflex “ ˆ” is deleted
for the sake of simplicity. Clearly, we can make q̂0(0) = r̂0(0) = 1, r̂1(0) = −1 up to
equivalence of continued fractions and we have established Theorem 1.1.

Example 9.2 The next simplest example of twisted type is given by

k =
(
2, 0, 0

1, 1

)
, l =

(
2, 2, 0

2, 2

)
, p =

(
2, 2, 2

3, 3

)
,

where p and σ are the same as in Example 9.1. In this case, the recipe in Sect. 2.1
gives

ρ(a; l) = b1b2 + a0a1 − (a2 − 1)(a0 + a1 + 1),

ρ(a; k) = b1b2 − a1a2 − (a0 + 1)(b1 + b2 − a1 − a2),

ρ(a + k; σ(k)) = (b1 + 1)(b2 + 1) − (a0 + 2)a2 − (a1 + 1)(b1 + b2 − a0 − a2).
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With these data, the Formula (19) yields

u(a) = (b1 − a1)(b2 − a1) · ρ(a; l)
a0(a0 + 1) · ρ(a + k; σ(k))

,

v(a) = − (b1 − a2 + 1)(b2 − a2 + 1) · ρ(a; k)
a0(a0 + 1) · ρ(a + k; σ(k))

.

In the error estimate (40) in Theorem 3.3, we have E(l1, l2) = E(1, 1) = 4, and

ct(a; k) = π
3
2 · ρ(a; k) · Γ (a0)Γ (a1)Γ (a2)Γ 2(s(a))

2a0+a1+a2+1 · 3s(a)− 1
2 · ∏2

j=1 Γ (b j − a0) · ∏2
i=1

∏2
j=1 Γ (b j − ai + 1)

.

The0-th specialization leads to a continued fraction expansion (128b) for 3F2(2, a1, a2;
b1, b2).

Example 9.3 The simplest example of straight type is given by k = (2, 2, 2; 3, 3),
l = 2k, and p = 3k. The recipe in Sect. 2.1 shows that ρ(a; k) = a0a1a2(b1 + b2 +
1) + b1b2{s(a) − s2(a)} and ρ(a; 2k) is a polynomial of degree 10 (explicit formula
is omitted). Formula (38) yields

u(a) = ρ(a; 2k)
ρ(a + k; k)∏2

i=0 ai (ai + 1)
,

v(a) = −ρ(a; k)∏2
i=0

∏2
j=1(b j − ai + 1)

ρ(a + k; k)∏2
i=0 ai (ai + 1)

.

In the error estimate (36) in Theorem 3.2, we have D(k) = 26 = 64 and

cs(a; k) = π
3
2 · ρ(a; k) · Γ (a0)Γ (a1)Γ (a2)Γ 2(s(a))

2a0+a1+a2+9 · 32s(a)−1 · ∏2
i=0

∏2
j=1 Γ (b j − ai + 1)

.
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