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Abstract In this work, we solve the general linearization problem for the generalized
Bessel polynomials using their inversion formula. For some particular values, we get
a recurrence relation satisfied by the linearization coefficients from which we deduce
their nonnegativity. We also recover a result given by Berg and Vignat (Constr Approx
27:15–32, 2008) and derived an explicit formula that generalizes a result by Atia and
Zeng (Ramanujan J 28:211–221, 2012).
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1 Introduction

Given a sequence of polynomials {pn(x)}n∈N0 , one may like to know something about
the nonnegativity of the coefficients Lk(m, n) in

pn(x)pm(x) =
n+m∑

k=0

Lk(m, n)pk(x). (1)
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218 D. D. Tcheutia

Equation (1) is called the linearization formula of the polynomial sequence
{pn(x)}n∈N0 and Lk(m, n) the linearization coefficients. It is often important to know
whether the linearization coefficients are positive or non-negative (see e.g. [5,9], [13,
Chap. 9 and references therein], [14,18]). In the sequel, we use the generalized hyper-
geometric series defined by

pFq

(
a1, . . . , ap
b1, . . . , bq

∣∣∣∣ x
)

=
∞∑

n=0

(a1)n · · · (ap)n
(b1)n · · · (bq)n

xn

n! ,

where (a)n denotes the Pochhammer symbol (or shifted factorial) given by

(a)n = a(a + 1)(a + 2) · · · (a + n − 1), n ∈ N, (a)0 = 1.

Consider the generalized Bessel polynomials defined (in 1949 byKrall and Frink [19])
for N ∈ N by (see also [12, Chap. 2], [13, p. 123], [17, Section 9.13, p. 244])

yn(x;α) = 2F0

( −n, n + α + 1
−

∣∣∣∣ −
x

2

)
, n = 0, 1, . . . , N , α < −2N − 1, x ≥ 0,

(2)
and (see [12, p. 13], [13, p. 123], [17, Remarks, p. 246])

θn(x;α, β) = xn yn(2(βx)
−1;α) =

n∑

m=0

(−1)n−m(−n)n−m(n + α + 1)n−m

(n − m)!βn−m
xm .

(3)
We refer to [12,13,17,19] concerning references to the literature and the history about
Bessel polynomials.

In this work, we give the linearization formulae for the generalized Bessel poly-
nomials (yn(x;α))n and (θn(x;α, β))n ; we find recurrence relations satisfied by the
linearization coefficients of the polynomial family (θn(x; 0, β))n (from which their
nonnegativity is deduced) and the polynomial family (yn(x;α))n . For β = 2 in
(θn(x; 0, β))n , we recover results given by Berg and Vignat [5] and we derived an
explicit formula that generalizes a result by Atia and Zeng [3]. Following the work by
Atia and Zeng [3], we simplify the linearization coefficients of the polynomial family
(θn(x; 0, β))n from a double sum to a single sum.

2 Linearization formulae of the Bessel polynomials

In this section, we solve the more general linearization problem

pn(ax)pm(bx) =
n+m∑

k=0

Lk(m, n, a, b)pk(x) (4)

for the generalized Bessel polynomials. The linearization formula (4) follows from the
hypergeometric representation of the generalized Bessel polynomials and their inver-
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sion formula, that is, a formula expanding the basis (xn)n into a family of polynomials
(pn(x))n with deg pn = n

xn =
n∑

m=0

Im(n)pm(x).

The inversion formula of the generalized Bessel polynomials (yn(x;α))n is given by
(see e.g. [7], [12, p. 73], [15], [23, Eq. (7), p. 294], [24,27])

xn = (−2)n
n∑

m=0

(2m + α + 1)
(−n)m�(α + m + 1)

m!�(n + m + α + 2)
ym(x;α). (5)

The polynomial θn(x;α, β) is solution of the differential equation (see [12, Eq. (29),
p. 13], compare [13, p. 123])

xy′′(x) − (2n + α + βx)y′(x) + nβy(x) = 0. (6)

Equation (6) follows immediately from the differential equation (see e.g. [12, Eq. (26),
p. 12], [17, p. 245], [19, Eq. (33)])

x2y′′(x) + [(α + 2)x + 2]y′(x) − n(n + α + 1)y(x) = 0

satisfied by yn(x;α) and the relation θn(x;α, β) = xn yn(2(βx)−1;α). In [12, Eq. (5),
p. 42], the so-called pseudo-generating function for θn(x;α, β) is given as follows:

(1 − 2u)−1(1 − u)−αeβxu =
∞∑

n=0

{βu(1 − u)}nθn(x;α, β)/n!. (7)

From this pseudo-generating function, we prove that

Proposition 1 The inversion formula of the Bessel polynomials (θn(x;α, β))n is given
by

xn = (n + α + 1)
n∑

m=0

(−n)m(−α − m)n−m−1

(−1)m+1βn−mm! θm(x;α, β). (8)

Proof From (7), we get

eβxu =
∞∑

n=0

(βx)nun

n! =
∞∑

n=0

βn

n! u
n(1 − u)n+α(1 − 2u)θn(x;α, β).

Since

un(1 − u)n+α(1 − 2u) = un(1 − u)n+α+1 − un+1(1 − u)n+α
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and

(1 − u)a =
∞∑

m=0

(−a)m

m! um,

it follows that

un(1 − u)n+α(1 − 2u) =
∞∑

m=0

(−n − α − 1)m(n + α + m + 1)

m!(n + α + 1)
un+m .

Therefore

∞∑

n=0

(βx)nun

n! =
∞∑

n=0

∞∑

m=0

βn(−n − α − 1)m(n + α + m + 1)

n!m!(n + α + 1)
un+mθn(x;α, β).

From the relation [23, Eq. (1), p. 56]

∞∑

n=0

∞∑

m=0

A(m, n) =
∞∑

n=0

n∑

m=0

A(m, n − m),

we deduce by equating the coefficients of un in the latter expression that

xn = (n + α + 1)
n∑

m=0

n!(−n + m − α − 1)mβ−m

(n − m)!m!(n − m + α + 1)
θn−m(x;α, β)

from which the result follows. ��

Remark 2 For α = 0 and β = 2, we have the Bessel polynomials (see [5,12])

qn(x) = 2nn!
(2n)!θn(x; 0, 2) =

n∑

k=0

(−n)k2k

(−2n)kk! x
k, (9)

and (8) becomes (after multiplication and division by n!)

xn = (n + 1)!
n∑

m=0

(2m)!(−n)m(−m)n−m−1

(−1)m+12n(m!)2n! qm(x).

Since (−m)n−m−1 = 0 if n−m−1 > m, i.e., if 0 ≤ m < n−1
2 , and (−n)m(−m)n−m−1

(−1)m+1m!n! =
(−1)n−m

(n−m)!(2m+1−n)! , the above inversion formula coincides with the one due to Carlitz [6]
(see [3, Eq. (13)], [5, Eq. (17)], [12, p. 73])
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xn =
n∑

m=0

Im(n)qm(x),

with In(m) =
{

(n+1)!
2n

(−1)n−m (2m)!
(n−m)!m!(2m+1−n)! , if n−1

2 ≤ m ≤ n,

0, if 0 ≤ m < n−1
2 .

To solve (4), we proceed in general as follows (see [1,15]): If

pn(x) =
n∑

i=0

Ai (n)xi ,

then by the Cauchy product,

pn(ax)pm(bx) =
n+m∑

l=0

Gl(m, n)xl ,

with

Gl(m, n) =
l∑

i=0

Ai (n)Al−i (m)aibl−i .

Combining the preceding result with the inversion formula

xl =
l∑

k=0

Ik(l)pk(x),

we get

Lk(m, n, a, b) =
n+m−k∑

l=0

Gl+k(m, n)Ik(l + k)

=
n+m−k∑

l=0

l+k∑

i=0

aibl+k−i Ik(l + k)Ai (n)Al+k−i (m).

It follows then from the representations (2) and (3) of the generalized Bessel polyno-
mials and their inversion formulae (5) and (8) that

Theorem 3 The linearization formula for the generalized Bessel polynomials

yn(ax;α)ym(bx;β) =
n+m∑

k=0

Lk(m, n, a, b)yk(x; γ ) (10)

has the coefficients
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222 D. D. Tcheutia

Lk(m, n, a, b)

=
n+m−k∑

l=0

l+k∑

i=0

ai bl+k−i (2k + γ + 1)(−l − k)k(−n, n + α + 1)i (−m,m + β + 1)l+k−i

k!i !(l + k − i)!(γ + k + 1)l+k+1
.

The linearization formula for the Bessel polynomials

θn(ax; λ, δ)θm(bx;μ, γ ) =
n+m∑

k=0

Lk(m, n, a, b)θk(x;α, β) (11)

has the coefficients

Lk(m, n, a, b)

=
n+m−k∑

l=0

(l + k + α + 1)(−l − k)k(−α − k)l−1

(−1)n+m−l+1βl k!

×
min(n,l+k)∑

i=max(0,l+k−m)

ai (−n, n + λ + 1)n−i (−m,m + μ + 1)m+i−l−k

bi−l−kδn−iγm+i−l−k(n − i)!(m + i − l − k)! .

In the above theorem, (a1, a2, . . . , ak)n = (a1)n(a2)n · · · (ak)n .

Special cases

For m = 0 and α = γ in (10), we get the multiplication formula (see e.g. [8,20,25])

yn(ax;α) =
n∑

k=0

(−a)k(−n)k(α + n + 1)k
k!(α + k + 1)k

× 2F1

(
k − n, α + k + n + 1

α + 2k + 2

∣∣∣∣ a
)
yk(x;α),

and for m = 0, λ = α, δ = β, we deduce from (11) the multiplication formula

θn(ax;α, β) =
n∑

k=0

(−1)n(−a)k(−n, n + α + 1)n−k

βn−k(n − k)!

× 3F2

( −n + k, −1 − α − k, α + 2 + k
−2n + k − α, α + k + 1

∣∣∣∣ a
)

θk(x;α, β). (12)

3 Recurrence equations and nonnegativity of the linearization
coefficients

In what follows, we derive a recurrence equation for the linearization coefficients
L(β)
k (m, n, a, 1 − a) of the linearization formula
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θn(ax; 0, β)θm((1 − a)x; 0, β) =
n+m∑

k=0

L(β)
k (m, n, a, 1 − a)θk(x; 0, β) (13)

in the specific case α = 0, b = 1 − a. Moreover, we give conditions for those
coefficients to be nonnegative and we recover the result by Berg and Vignat [5] as a
particular case.We also derive amixed recurrence relation satisfied by the linearization
coefficients L(α)

k (m, n, a, b) of the linearization formula

yn(ax;α)ym(bx;α) =
n+m∑

k=0

L(α)
k (m, n, a, b)yk(x;α). (14)

Proposition 4 The polynomials θn(x;α, β) and yn(x;α) satisfy, respectively, the
structure relations (compare [13, Eq. (4.10.12)])

θ ′
n(x;α, β) = cn θn(x;α, β) − cn x θn−1(x;α, β), with cn = nβ

2n + α
, n ≥ 1,

(15)

x2y′
n(x;α) = 2(n + α + 1)

2n + α + 2
yn+1(x;α)

−
(

(n + α + 1)x + 2(n + α + 1)

2n + α + 2

)
yn(x;α). (16)

Proof Substitute θn(x;α, β) = Anxn + Bnxn−1 + Cnxn−2 + . . . and yn(x;α) =
A′
nx

n + B ′
nx

n−1 + C ′
nx

n−2 + · · · , respectively, in the structure relations

θ ′
n(x;α, β) = cnθn(x;α, β) + (dnx + en)θn−1(x;α, β),

x2y′
n(x;α) = c′

n yn+1(x) + (d ′
nx + e′

n)yn(x;α)

and equate the coefficients of xn, xn−1 and xn−2 to get the coefficients cn, dn =
−cn, en = 0, c′

n, d ′
n, e′

n . ��

Note that Relations (15) and (16) can also be obtained using the Maple procedure
sumdiffrule of the hsum.mpl package (see [16]).

Now let m, n ≥ 1. Proceeding as Berg and Vignat [5], we differentiate (11) (for
λ = μ = α and δ = γ = β) to obtain

aθ ′
n(ax;α, β)θm(bx;α, β) + b θn(ax;α, β)θ ′

m(bx;α, β)

=
n+m∑

k=0

Lk(n,m, a, b)θ ′
k(x;α, β).

Using first (15) and then (11), this equation becomes
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224 D. D. Tcheutia

n+m∑

k=0

(acn + bcm − ck)Lk(m, n, a, b)θk(x;α, β)

+ x
n+m−1∑

k=0

(
a2cnLk(n − 1,m, a, b)

+ b2cmLk(n,m − 1, a, b) − Lk+1(m, n, a, b)ck
)
θk(x;α, β) = 0. (17)

Since this relation is true for all x , therefore for x = 0, we have

(acn + bcm)L0(m, n, a, b)θ0(0;α, β)

+
n+m∑

k=1

(acn + bcm − ck)Lk(m, n, a, b)θk(0;α, β) = 0.

This equation is valid if (acn + bcm)L0(m, n, a, b) = 0, acn + bcm − ck = 0, k =
1, . . . , n + m, that is, if L0(m, n, a, b) = 0, α = 0 and a + b = 1 since clearly from
the definition (3), β 	= 0. Under these conditions, we remain with

βx

2

n+m−1∑

k=0

(
a2Lk(n − 1,m, a, 1 − a) + (1 − a)2Lk(n,m − 1, a, 1 − a)

−Lk+1(m, n, a, 1 − a)
)
θk(x; 0, β) = 0, for all x .

Finally dividing the above equation by βx and equating the coefficients of θk(x; 0, β)

yields:

Proposition 5 For n,m ≥ 1 and k = 0, 1, . . . , n + m − 1, the recurrence equation

a2L(β)
k (m, n − 1, a, 1 − a) + (1 − a)2L(β)

k (m − 1, n, a, 1 − a)

−L(β)
k+1(m, n, a, 1 − a) = 0, (18)

with L(β)
0 (m, n, a, 1−a) = 0 is satisfied by the linearization coefficients L(β)

k (n,m, a,

1 − a) of the linearization formula (13).

Remark 6 If the Bessel polynomials θn(x;α, β) were orthogonal, this method for
computing the recurrence relation of the linearization coefficients could be extended
to the case a + b 	= 1. In fact, Favard’s theorem [10] states that if they are orthogonal,
they satisfy a three-term recurrence relation of the form

xθn(x;α, β) = Anθn+1(x;α, β) + Bnθn(x;α, β) + Cnθn−1(x;α, β), (19)

that we can use to substitute xθk(x;α, β) in (17) and equate the coefficients of
θk(x;α, β) to get a mixed recurrence equation for the linearization coefficients.
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Nonnegative linearization coefficients... 225

If the recurrence equation (19) was valid, then to get the coefficients An, Bn,Cn ,
we substitute θn(x;α, β) = knxn + k′

nx
n−1 + k′′

n x
n−2 + · · · in (19) and equate the

coefficients of xn, xn−1, xn−2 to get An, Bn,Cn . But it happens that this system has no
solution meaning that such three-term recurrence relation doesn’t exist for the family
θk(x;α, β). Zeilberger’s algorithm (see e.g. [16,21]) deals with sums of the form

Sn =
∞∑

m=−∞
A(n,m)

and generates a homogeneous linear recurrence equation with polynomial coefficients
for Sn . Using Zeilberger’s algorithm implemented in Maple by the sumrecursion
procedure of the hsum package [16], we find that the recurrence equation satisfied by
θn(x;α, β) is

x2nβ (2 n + 2 + α) θn−1(x;α, β)

= (2 n + α) (n + α + 1) βθn+1(x;α, β)

− (2 n + 1 + α) (α β x + (2 n + 2 + α) (2 n + α)) θn(x;α, β).

This equation can also be obtained by substituting x ← 2
βx in [17, Eq. (9.13.3), p.

245] and multiplying the resulting equation by xn+1.

Remark 7 With the help of a computer algebra system, extensive numerical investi-
gations indicate that for all a and β in (13), the coefficients L(β)

k (m, n, a, 1 − a) =
0, 0 ≤ k < min(m, n),m, n ≥ 1.

Theorem 8 Let m, n ≥ 1. Then for 0 ≤ a ≤ 1 and β > 0, L(β)
k (m, n, a, 1 − a) ≥

0, k = 0, 1, . . . , n + m.

The proof of this theorem uses the following result.

Proposition 9 For k = 0, 1, . . . , n, the coefficients

Dk(n, a, β) = (−1)n(−a)k(−n, n + 1)n−k

βn−k(n − k)! 3F2

( −n + k, −1 − k, 2 + k
−2n + k, k + 1

∣∣∣∣ a
)

,

of the multiplication formula

θn(ax; 0, β) =
n∑

k=0

Dk(n, a, β)θk(x; 0, β)

obtained from (12) by taking α = 0 are nonnegative for 0 ≤ a ≤ 1 and β > 0.

Proof In fact for 0 ≤ a ≤ 1 and β > 0,

(−1)n(−a)k(−n, n + 1)n−k

βn−k(n − k)! ≥ 0, k = 0, 1, . . . , n.
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226 D. D. Tcheutia

It remains to prove that

3F2

( −n + k, −1 − k, 2 + k
−2n + k, k + 1

∣∣∣∣ a
)

≥ 0, k = 0, 1, . . . , n, 0 ≤ a ≤ 1.

From the formula (see e.g. [22, Eq. (3), p. 388])

3F2

(
a1, a2, a3
b1, b2

∣∣∣∣ωz
)

= (1 − z)−a1
∞∑

j=0

(a1) j
j ! 3F2

( − j, a2, a3
b1, b2

∣∣∣∣ ω
)(

z

z − 1

) j

,

we have for a1 = −k−1, a2 = −n+k, a3 = k+2, b1 = −2n+k, b2 = k+1, ω =
1, z = a,

3F2

( −n + k, −1 − k, 2 + k
−2n + k, k + 1

∣∣∣∣ a
)

= (1 − a)k+1
k+1∑

j=0

(
k + 1

j

)
3F2

( − j, −n + k, k + 2
−2n + k, k + 1

∣∣∣∣ 1
) (

a

1 − a

) j

.

Note that the sum over j is now from 0 to k + 1 since (−k − 1) j = 0 when j > k + 1.
From the following formula (see e.g. [22, Eq. (82), p. 539])

3F2

( −n, b, c
d, e

∣∣∣∣ 1
)

= (b)n(d + e − b − c)n
(d)n(e)n

×3F2

( −n, d − b, e − b
−n − b + 1, d + e − b − c

∣∣∣∣ 1
)

,

for n = j, b = k + 2, c = −n + k, d = −2n + k, e = k + 1, it follows that

3F2

( − j, −n + k, k + 2
−2n + k, k + 1

∣∣∣∣ 1
)

= (k + 2) j (−n − 1) j
(−2n + k) j (k + 1) j

3F2

( −1, − j, −2n − 2
−n − 1, − j − k − 1

∣∣∣∣ 1
)

.

This sum contains only two summands and simplifies to

3F2

( − j, −n + k, k + 2
−2n + k, k + 1

∣∣∣∣ 1
)

= (k + 1 − j)
(n+1

j

)

(k + 1)
(2n−k

j

) .
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Nonnegative linearization coefficients... 227

We therefore deduce that

3F2

( −n + k, −1 − k, 2 + k
−2n + k, k + 1

∣∣∣∣ a
)

= (1 − a)k+1
k+1∑

j=0

(
k + 1

j

)
(k + 1 − j)

(n+1
j

)

(k + 1)
(2n−k

j

)
(

a

1 − a

) j

,

which is clearly nonnegative for 0 ≤ a ≤ 1. ��
Proof of Theorem 8 Let 0 ≤ a ≤ 1 and β > 0. The nonnegativity of the coefficients
L(β)
k (m, n, a, 1 − a) follows by induction (on m and n) from the nonnegativity of

Dk(n, a, β) = L(β)
k (0, n, a, 1 − a), Dk(m, 1 − a, β) = L(β)

k (m, 0, a, 1 − a) and the
recurrence relation (18). ��
Proposition 10 The linearization coefficients L(α)

k (m, n, a, b) of the linearization for-
mula (14) are solution of the mixed recurrence equation

2 (k + 1) (α − k + m + n)

(2 k + 2 + α) (α + 2 k + 3)
L(α)
k+1 (m, n, a, b)

+ 2(n + α + 1)

a(2n + α + 2)
L(α)
k (m, n + 1, a, b)

+ 2(m + α + 1)

b(2m + α + 2)
L(α)
k (m + 1, n, a, b)

− 2 (k + α) (2α + k + m + 1 + n)

(α + 2 k) (α + 2 k − 1)
L(α)
k−1 (m, n, a, b)

+
(((

2 (α − k + m + n + 1) α

(2 k + 2 + α) (α + 2 k)
+ 2 (k + α + 1)

2 k + 2 + α

)
b − 2 (m + α + 1)

2m + 2 + α

)
a

−2 (n + α + 1) b

2 n + 2 + α

)
L(α)
k (m, n, a, b)

ab
= 0.

Proof Differentiate the both sides of (14) and multiply the result by x2 to use the
structure relation (16). Rewrite the output with the help of (14) and use the three-term
recurrence equation [17, Eq. (9.13.3)]

xyn(x;α) = 2(n + α + 1)

(2n + α + 1)2
yn+1(x;α)

− 1

(2n + α)(2n + α + 2)
(2αyn(x;α) + 2nyn−1(x;α)) .

Equating the coefficients of yk(x;α) leads to the result. ��
Remark 6 may explain why some researchers are interested by the case b = 1− a.

The special case α = λ = μ = 0 and β = δ = γ = 2 leads to the Bessel polynomials
qn(x) defined in (9) and Eq. (11) becomes (see [4])

123



228 D. D. Tcheutia

qn(ax)qm(bx) =
n+m∑

k=0

Lk(m, n, a, b)qk(x), (20)

with

Lk(m, n, a, b) = n!m!(2k)!
(2n)!(2m)!k!

min(k+1,n+m−k)∑

l=0

(l + k + 1)(−l − k)k(−k)l−1

(−1)n+m−l+1k!

×
min(n,l+k)∑

i=max(0,l+k−m)

ai (−n, n + 1)n−i (−m,m + 1)m+i−l−k

bi−l−k(n − i)!(m + i − l − k)! .

For b = 1 − a, that is, for 0 ≤ a ≤ 1 and β > 0, since L(β)
k (m, n, a, 1 − a) ≥ 0 , we

deduce forβ = 2 from the relation Lk(m, n, a, 1−a) = 2n+mn!m!(2k)!
(2n)!(2m)!2kk! L

(2)
k (m, n, a, 1−

a) that Lk(m, n, a, 1 − a) ≥ 0 for 0 ≤ a ≤ 1 and Lk(m, n, a, 1 − a) = 0 for
k < min(m, n), which are the results obtained by Berg and Vignat [5]. Equation (20)
is therefore a generalization of their linearization formula for all a > 0 and b > 0 and
Theorem 8 a more general result of the nonnegativity of the linearization coefficients
for all β > 0.

Berg and Vignat [5] wrote that they “were unable to derive the explicit expression
of the linearization coefficients Lk(m, n, a, 1−a)” of the polynomial family (qn(x))n
in (20). Nevertheless, they proved using a recursion formula for Lk(m, n, a, 1 − a)

(see [5, Lemma 3.6], [3, Eq. (5)])

1

2k + 1
Lk+1(m, n, a, 1 − a) = a2

2n − 1
Lk(m, n − 1, a, 1 − a)

+ (1 − a)2

2m − 1
Lk(m − 1, n, a, 1 − a), (21)

for k = 0, 1, . . . ,m + n − 1 with L0(m, n, a, 1 − a) = 0, Ln+m(m, n, a, 1 − a) =
an(1−a)m , that these coefficients are nonnegative for 0 ≤ a ≤ 1 and Lk(m, n, a, 1−
a) = 0 if k < min(m, n).Using this nonnegativity, they deduced that the distribution of
a finite convex combination of independent Student t-random variables with arbitrary
odd degrees of freedom has a density which is a finite convex combination of certain
Student t-densities with odd degrees of freedom. Atia and Zeng [3] were the first to
derive a double sum formula for Lk(m, n, a, 1 − a) that they simplified to the single
sum

Lk(m, n, a, 1 − a)

= a2n+m−k(1 − a)−n+k (1/2)n+m−k(1/2)k
(1/2)n(1/2)m

2(n+m−k)∑

j=0

(−1) j

×
(

n + m + 1

2n + 2m − 2k − j

)(−m + k + j

j

)
a− j . (22)
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Note that the explicit expression of Lk(m, n, a, b) in (20) generalizes the result by
Atia and Zeng and in the case b = 1 − a, it reduces to

Lk(m, n, a, 1 − a)

= n!m!(2k)!
(2n)!(2m)!k!

n+m−k∑

l=0

(l + k + 1)(−l − k)k(−k)l−1

(−1)n+m−l+1k!

×
min(n,l+k)∑

i=max(0,l+k−m)

ai (−n, n + 1)n−i (−m,m + 1)m+i−l−k

(1 − a)i−l−k(n − i)!(m + i − l − k)! . (23)

By direct computation, we get as in [3, p. 216]

Ln+m(m, n, a, 1 − a) = an(1 − a)m
(1/2)n+m

(1/2)n(1/2)m
, (24)

Ln+m−1(m, n, a, 1 − a) = an+1(1 − a)m−1 (1/2)(1/2)n+m−1

(1/2)n(1/2)m

((
n + m + 1

2

)

−
(
n + m + 1

1

)(
n

1

)
a−1 +

(
n + 1

2

)
a−2

)
, (25)

Ln+m−2(m, n, a, 1 − a) = an+2(1 − a)m−2 (1/2)2(1/2)n+m−2

(1/2)n(1/2)m

((
n + m + 1

4

)

−
(
n + m + 1

3

)(
n − 1

1

)
a−1 +

(
n + m + 1

2

)(
n

2

)
a−2

−
(
n + m + 1

1

)(
n + 1

3

)
a−3 +

(
n + 2

4

)
a−4

)
. (26)

We make a conjecture after further computation that (23) is equivalent to (22). In
fact, from the relation Lk(m, n, a, 1 − a) = 2n+mn!m!(2k)!

(2n)!(2m)!2kk! L
(2)
k (m, n, a, 1 − a) and the

recurrence relation (18), it follows that Lk(m, n, a, 1−a) is solution of the recurrence
relation (21). Since (22) and (23) are solution of the same recurrence equation (21)
with the same initial conditions, it follows that they are equivalent.

One question arise at this point: Is-it also possible to reduce the linearization coef-
ficients L(β)

k (m, n, a, 1 − a) given in (13) as double sum into a single sum? In this
direction, we get

L(β)
n+m(m, n, a, 1 − a) = (2m)! (2 n)! (n + m)!

m! n! (2 n + 2m)! Ln+m(m, n, a, 1 − a),

L(β)
n+m−1(m, n, a, 1 − a) = (2m)! (2 n)! (n + m − 1)!

m! n! (2 n + 2m − 2)! β Ln+m−1(m, n, a, 1 − a),

L(β)
n+m−2(m, n, a, 1 − a) = (2m)! (2 n)! (n + m − 2)!

m! n! (2 n + 2m − 4)! β2 Ln+m−2(m, n, a, 1 − a),
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with Ln+m(m, n, a, 1 − a), Ln+m−1(m, n, a, 1 − a), Ln+m−2(m, n, a, 1 − a) given,
respectively, by (24)–(26). It follows from (11) that

θn(ax; 0, β)θm(bx; 0, β) =
n+m∑

k=0

L(β)
k (m, n, a, b)θk(x; 0, β), (27)

with

L(β)
k (m, n, a, b) =

min(k+1,n+m−k)∑

l=0

(l + k + 1)(−l − k)k(−k)l−1

(−1)n+m−l+1βn+m−kk!

×
min(n,l+k)∑

i=max(0,l+k−m)

ai (−n, n + 1)n−i (−m,m + 1)m+i−l−k

bi−l−k(n − i)!(m + i − l − k)! .

The latter expression and Eq. (22) lead to

L(β)
k (m, n, a, b) = (2m)!(2n)!k!

m!n!(2k)!βn+m−k
Lk(m, n, a, b), (28)

from which we deduce for b = 1 − a

L(β)
k (m, n, a, 1 − a) = (2m)!(2n)!k!

m!n!(2k)!βn+m−k
Lk(m, n, a, 1 − a)

= (2m)!(2n)!k!a2n+m−k(1/2)n+m−k(1/2)k
m!n!(2k)!βn+m−k(1 − a)n−k(1/2)n(1/2)m

×
2(n+m−k)∑

j=0

(−1) j
(

n + m + 1

2n + 2m − 2k − j

)(−m + k + j

j

)
a− j ,

which is the single sum expression of L(β)
k (m, n, a, 1 − a).

In the recentmanuscript [4], Benabdallah andAtia derived the linearization formula
(20) and wrote the linearization coefficients Lk(m, n, a, b) as a triple sum from which
they deduce the following positivity result.

Corollary 11 (see [4])For 0 ≤ k ≤ n+m and a+b 	= 0, the linearization coefficients
Lk(m, n, a, b) of (20) are positive if and only if 0 ≤ a ≤ a + b ≤ 1.

From the above corollary and Relation (28), we deduce that

Corollary 12 For 0 ≤ k ≤ n+m, a+b 	= 0 and β > 0, the linearization coefficients
L(β)
k (m, n, a, b) of the linearization formula (27) are positive if and only if 0 ≤ a ≤

a + b ≤ 1.
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