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Abstract This short paper derives the relationship between solutions of q-difference
equations and generating functions for q-orthogonal polynomials. The key of the
method is to obtain the expression of certain q-orthogonal polynomials as solutions of
q-difference equations. In addition, we show how to generalize Ramanujan’s integrals
by the technique of q-difference equation. More over, we find two generalized q-Chu–
Vandermonde formulas from the perspective of the method of q-difference equations.
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1 Introduction

The objective of this paper is to extend the work of Liu [14,15] and Liu and Zeng [17].
These authors have found a q-difference equation related to Rogers–Szegö polyno-
mials [21] which can be used to find interesting transformation formulas. We do the
same analysis for the more general Al-Salam–Carlitz polynomials [8]. We apply this
approach to provide a generating function for Al-Salam–Carlitz polynomials, gener-
alize Ramanujan’s q-beta integrals and the q-Chu–Vandermonde summation formula.
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64 J. Cao

For further information about basic hypergeometric series and q-orthogonal polyno-
mials, see [2,11,12,23].

In this paper, we follow the notations and terminology in [9] and suppose that
0 < q < 1. The basic hypergeometric series rφs

rφs

[
a1, a2, . . . , ar
b1, b2, . . . , bs

; q, z

]
=

∞∑
n=0

(
a1, a2, . . . , ar ; q

)
n(

q, b1, b2, . . . , bs; q
)
n

[
(−1)nq(n2)

]1+s−r
zn

(1.1)
converges absolutely for all z if r ≤ s and for |z| < 1 if r = s+1 and for terminating.
The compact factorials of rφs are defined, respectively, by

(a; q)0 = 1, (a; q)n =
n−1∏
k=0

(1 − aqk), (a; q)∞ =
∞∏
k=0

(1 − aqk) (1.2)

and (a1, a2, . . . , am; q)n = (a1; q)n(a2; q)n · · · (am; q)n , where m ∈ N :=
{1, 2, 3, . . .} and n ∈ N0 := N ∪ {0}.

The Rogers–Szegö polynomials were introduced by Szegö in 1926 but were already
studied earlier by Rogers in 1894–1895. A good definition can be found in the book
by Barry Simon [20, Ex. (1.6.5), pp. 77–87].

The homogeneous Rogers–Szegö polynomials [18, p. 3]

hn(b, c|q) =
n∑

k=0

[
n
k

]
bkcn−k and gn(b, c|q) =

n∑
k=0

[
n
k

]
qk(k−n)bkcn−k . (1.3)

The Al-Salam–Carlitz polynomials were introduced by Al-Salam and Carlitz in 1965
[1, Eqs. (1.11) and (1.15)]

φ(a)
n (x |q) =

n∑
k=0

[
n
k

]
(a; q)k x

k and ψ(a)
n (x |q) =

n∑
k=0

[
n
k

]
qk(k−n)xk(aq1−k; q)k .

(1.4)
They play important roles in the theory of q-orthogonal polynomials. In fact, there are
two families of these polynomials: onewith continuous orthogonality and another with
discrete orthogonality. They are given explicitly in the book of Koekoek–Swarttouw–
Lesky [13, Eqs. (14.24) and (14.25), pp. 534–540].

The generalized Al-Salam–Carlitz polynomials [7, Eq. (4.7)]

φ(a,b,c)
n (x, y|q) =

n∑
k=0

[
n
k

]
(a, b; q)k

(c; q)k
xk yn−k and

ψ(a,b,c)
n (x, y|q) =

n∑
k=0

[
n
k

]
(a, b; q)k

(c; q)k
(−1)kq(k+1

2 )−nk xk yn−k, (1.5)
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q-difference equations for Ramanujan’s integrals 65

whose generating functions are [7, Eqs. (4.10) and (4.11)]

∞∑
n=0

φ
(a,b,c)
n (x, y|q) tn

(q;q)n
= 1

(yt;q)∞ 2φ1

[
a, b
c

; q, xt

]
, max{|yt | , |xt |} < 1, (1.6)

∞∑
n=0

ψ
(a,b,c)
n (x, y|q)

(−1)nq(n2)tn

(q;q)n
= (yt; q)∞2φ1

[
a, b
c

; q, xt

]
, |xt | < 1. (1.7)

Liu [14,15] obtained several important results by using the following q-difference
equations. Liu and Zeng [17] provide further applications of these q-difference meth-
ods to q-orthogonal polynomials.

Proposition 1 ([17, Eqs. (1.7) and (1.8)]) Let f (a, b) be a two-variable analytic
function at (0, 0) ∈ C

2. Then

(A) f can be expanded in terms of hn(a, b|q) if and only if f satisfies the functional
equation

b f (aq, b) − a f (a, bq) = (b − a) f (a, b). (1.8)

(B) f can be expanded in terms of gn(a, b|q) if and only if f satisfies the functional
equation

a f (aq, b) − b f (a, bq) = (a − b) f (aq, bq). (1.9)

The method of q-difference equation is an effective way to obtain many results in
q-series. For more information, please refer to [6,7,14,15].

Theorem 2 Let f (a, b, c, x, y) be a five-variable analytic function in a neighbour-
hood of (a, b, c, x, y) = (0, 0, 0, 0, 0) ∈ C

5.

(I) If f (a, b, c, x, y) can be expanded in terms of φ(a,b,c)
n (x, y|q) if and only if

y
[
f (a, b, c, x, y) −

(
1 + q−1c

)
f (a, b, c, qx, y) + q−1c f

(
a, b, c, q2x, y

)]

= x

{[
f (a, b, c, x, y) − f (a, b, c, x, qy)

]

− (a + b)
[
f (a, b, c, qx, y) − f (a, b, c, qx, qy)

]

+ ab
[
f
(
a, b, c, q2x, y

) − f
(
a, b, c, q2x, qy

)]}
. (1.10)

(II) If f (a, b, c, x, y) can be expanded in terms of ψ(a,b,c)
n (x, y|q) if and only if

q−1y
[
f (a, b, c, x, y) − (

1 + q−1c
)
f
(
a, b, c, qx, y

) + q−1c f
(
a, b, c, q2x, y

)]

= x

{[
f (a, b, c, x, y) − f

(
a, b, c, x, q−1y

)]

− (a + b)
[
f (a, b, c, qx, y) − f

(
a, b, c, qx, q−1y

)]

+ ab
[
f
(
a, b, c, q2x, y

) − f
(
a, b, c, q2x, q−1y

)]}
. (1.11)
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66 J. Cao

Remark 3 For a = b = c = 0 in Theorem 2, Eqs. (1.10) and (1.11) reduce to (1.8)
and (1.9), respectively.

To determine if a given function is an analytic function in several complex variables,
we often use the following Hartogs’s theorem. For more information, please refer to
Taylor [22, p. 28] and Liu [16, Theorem 1.8].

Proposition 4 (Hartogs’s theorem [10, p. 15]) If a complex-valued function is holo-
morphic (analytic) in each variable separately in an open domain D ⊆ C

n, then it is
holomorphic (analytic) in D.

In order to prove Theorem 2, we need the following fundamental property of several
complex variables.

Proposition 5 ([19, p. 5, Proposition 1]) If f (x1, x2, . . . , xk) is analytic at the origin
(0, 0, . . . , 0) ∈ C

k , then, f can be expanded in an absolutely convergent power series,

f (x1, x2, . . . , xk) =
∞∑

n1,n2,...,nk=0

αn1,n2,...,nk x
n1
1 xn22 · · · xnkk .

Proof of Theorem 2 From the Hartogs’s theorem and the theory of several complex
variables (see Propositions 4 and 5), we assume that

f (a, b, c, x, y) =
∞∑
k=0

Ak(a, b, c, y)xk . (1.12)

On one hand, substituting Eq. (1.12) into (1.10) yields

y

[ ∞∑
k=0

Ak(a, b, c, y)xk −
(
1 + q−1c

) ∞∑
k=0

Ak(a, b, c, y)(qx)k

+ q−1c
∞∑
k=0

Ak(a, b, c, y)
(
q2x

)k]

= x

{[ ∞∑
k=0

Ak(a, b, c, y)xk −
∞∑
k=0

Ak(a, b, c, qy)xk
]

− (a + b)

[ ∞∑
k=0

Ak(a, b, c, y)(qx)k −
∞∑
k=0

Ak(a, b, c, qy)(qx)k
]

+ ab

[ ∞∑
k=0

Ak(a, b, c, y)
(
q2x

)k −
∞∑
k=0

Ak(a, b, c, qy)
(
q2x

)k]}
. (1.13)

By equating coefficients of xk on both sides of Eq. (1.13), we have

Ak(a, b, c, y) =
(
1 − aqk−1

) (
1 − bqk−1

)
(
1 − qk

) (
1 − cqk−1

) Dy Ak−1(a, b, c, y). (1.14)
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q-difference equations for Ramanujan’s integrals 67

Iterating, we have

Ak(a, b, c, y) = (a, b; q)k

(q, c; q)k
Dk

y A0(a, b, c, y). (1.15)

Letting f (a, b, c, 0, y) = A0(a, b, c, y) = ∑∞
n=0 μn yn , we have

Ak(a, b, c, y) = (a, b; q)k

(q, c; q)k

∞∑
n=0

μn
(q; q)n

(q; q)n−k
yn−k . (1.16)

By Eq. (1.12), we have

f (a, b, c, x, y) =
∞∑
k=0

(a, b; q)k

(q, c; q)k

∞∑
n=0

μn
(q; q)n

(q; q)n−k
yn−k xk

=
∞∑
n=0

μn

n∑
k=0

[
n
k

]
(a, b; q)k

(q, c; q)k
xk yn−k =

∞∑
n=0

μnφ
(a,b,c)
n (x, y|q).

On the other hand, if f (a, b, c, x, y) can be expanded in terms of φ
(a,b,c)
n (x, y|q), we

can verify that f (a, b, c, x, y) satisfies Eq. (1.10). The proof of Eq. (1.10) is complete.
Similarly, we can deduce Eq. (1.11). The proof of Theorem 2 is complete. ��

This paper is organized as follows. In Sect. 2, we generalize two generating func-
tions for Andrews–Askey polynomials. In Sect. 3, we deduce generalizations of
Ramanujan type q-beta integrals. In Sect. 4, we generalize q-Chu–Vandermonde for-
mula.

2 Two generating functions for generalized Al-Salam–Carlitz
polynomials

In this section, we generalize generating functions for Al-Salam–Carlitz polynomials.

Theorem 6 We have

∞∑
n=0

φ(a,b,c)
n (x, y|q)

(
s/r; q)

nr
n

(q; q)n
= (sy; q)∞

(r y; q)∞
3φ2

[
a, b, s/r
c, sy

; q, r x

]
,

max{|r x | , |r y|} < 1, (2.1)
∞∑
n=0

ψ(a,b,c)
n (x, y|q)

(
r/s; q)

ns
n

(q; q)n
= (r y; q)∞

(sy; q)∞
3φ2

[
a, b, r/s
c, q/(sy)

; q,
qx

y

]
,

max{|sy| , |qx/y|} < 1. (2.2)
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68 J. Cao

Corollary 7 We have

∞∑
n=0

φ(a,b,c)
n (x, y|q)(−1)nq(n2)

sn

(q; q)n
= (sy; q)∞2φ2

[
a, b
c, sy

; q, sx

]
, (2.3)

∞∑
n=0

ψ(a,b,c)
n (x, y|q)

sn

(q; q)n
= 1

(sy; q)∞
3φ2

[
a, b, 0
c, q/(sy)

; q,
qx

y

]
,

max{|sy| , |qx/y|} < 1. (2.4)

Remark 8 For r = 0 in Theorem 6, Eqs. (2.1) and (2.2) reduce to Eqs. (2.3) and (2.4),
respectively. For s = 0 in Theorem 6, Eqs. (2.1) and (2.2) reduce to Eqs. (1.6) and
(1.7), respectively.

Proof of Theorem 6 By the Weierstrass M-test, series
∑∞

n=0 Mn is convergent when

limn→∞
∣∣∣Mn+1

Mn

∣∣∣ < 1. We check that both sides of Eq. (2.1) are convergent if

max{|r x | , |r y|} < 1, that is,

lim
n→∞

∣∣∣∣∣
φ

(a,b,c)
n+1 (x, y|q)(s/r; q)n+1rn+1/(q; q)n+1

φ
(a,b,c)
n (x, y|q)(s/r; q)nrn/(q; q)n

∣∣∣∣∣ = |r y| < 1,

lim
n→∞

∣∣∣∣ (a, b, s/r; q)n+1(r x)n+1/(q, c, sy; q)n+1

(a, b, s/r; q)n(r x)n/(q, c, sy; q)n

∣∣∣∣ = |r x | < 1.

We denote the right-hand side of Eq. (2.1) by f (a, b, c, x, y), we can verify that
f (a, b, c, x, y) satisfies Eq. (1.10), so we have

f (a, b, c, x, y) =
∞∑
n=0

μnφ
(a,b,c)
n (x, y|q) (2.5)

and

f (a, b, c, 0, y) =
∞∑
n=0

μn y
n = (sy; q)∞

(r y; q)∞
=

∞∑
n=0

(
s/r; q)

n(yr)
n

(q; q)n
. (2.6)

So f (a, b, c, x, y) is equal to the left-hand side of (2.1). Similarly, we can obtain Eq.
(2.2). The proof is complete. ��

3 Generalizations of two of Ramanujan’s integrals

The following two integrals of Ramanujan [3] are quite famous.

Proposition 9 ([3, Eqs. (2) and (3)]) For 0 < q = exp(−2k2) < 1 and m ∈ R.
Suppose that |abq| < 1, we have
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q-difference equations for Ramanujan’s integrals 69

∫ ∞

−∞
e−x2+2mx(

aq1/2e2ikx , bq1/2e−2ikx ; q)
∞

d x = √
πem

2

(−aqe2mki ,−bqe−2mki ; q)
∞

(abq; q)∞
.

(3.1)
Suppose that max

{∣∣aq1/2e2mk
∣∣ , ∣∣bq1/2e−2mk

∣∣} < 1, we have

∫ ∞

−∞
e−x2+2mx

(
−aqe2kx ,−bqe−2kx ; q

)
∞ d x

= √
πem

2 (abq; q)∞(
aq1/2e2mk, bq1/2e−2mk; q)

∞
. (3.2)

Derivations of (3.1) and (3.2) for real values of the parameterm have been deduced
by Askey [3]. Later on it became clear that these integrals are in fact valid for arbitrary
complex values of the parameterm and they are thus instances of the standard Fourier
transform with the exponential kernel by Atakishiyev and Feinsilver [5].

In this section, we have the following generalization of Ramanujan’s integrals.

Theorem 10 Form ∈ R, 0 < q = exp(−2k2) < 1. Suppose thatmax{|abq| , |qc/a|}
< 1, we have

∫ ∞

−∞
e−x2+2mx(

aq1/2e2ikx , bq1/2e−2ikx ; q
)

∞
3φ2

[
r, s, 0

t, q1/2e−2ikx/a
; q,

qc

a

]
d x

= √
πem

2

(
−aqe2mki ,−bqe−2mki ; q

)
∞

(abq; q)∞
3φ2

[
r, s,−e2mki/b

t, 1/(ab)
; q,

qc

a

]
. (3.3)

Suppose that max
{∣∣aq1/2e2mk

∣∣ , ∣∣bq1/2e−2mk
∣∣ , ∣∣cq1/2e2mk

∣∣} < 1, we have

∫ ∞

−∞
e−x2+2mx

(
−aqe2kx ,−bqe−2kx ; q

)
∞2φ2

[
r, s

t,−aqe2kx
; q,−cqe2kx

]
d x

= √
πem

2 (abq; q)∞(
aq1/2e2mk, bq1/2e−2mk; q

)
∞

3φ2

[
r, s, bq1/2e−2mk

t, abq
; q, cq1/2e2mk

]
.

(3.4)

Remark 11 For c = 0 in Theorem 10, Eqs. (3.3) and (3.4) reduce to Eqs. (3.1) and
(3.2), respectively.

Proof of Theorem 10 It is easily seen that

(∣∣∣q 1
2 /a

∣∣∣ ; q)
n

≤
∣∣∣(q 1

2 e−2ikx/a; q
)
n

∣∣∣ ≤
(
−

∣∣∣q 1
2 /a

∣∣∣ ; q)
n

(3.5)
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70 J. Cao

and

∞∑
n=0

(|r | , |s| ; q)
n(

− |q| ,− |t | ,− ∣∣q1/2/a∣∣ ; q)
n

∣∣∣qc
a

∣∣∣n ≤
∣∣∣∣3φ2

[
r, s, 0

t, q1/2e−2ikx/a
; q,

qc

a

]∣∣∣∣

≤
∞∑
n=0

(− |r | ,− |s| ; q)
n(

|q| , |t | , ∣∣q1/2/a∣∣ ; q)
n

∣∣∣qc
a

∣∣∣n .

(3.6)

Thus, we have

∣∣∣∣∣∣∣
∫ ∞

−∞
e−x2+2mx(

aq1/2e2ikx , bq1/2e−2ikx ; q
)

∞
d x

∣∣∣∣∣∣∣
·

∞∑
n=0

(|r | , |s| ; q)
n(

− |q| ,− |t | ,− ∣∣q1/2/a∣∣ ; q)
n

∣∣∣qc
a

∣∣∣n

≤

∣∣∣∣∣∣∣
∫ ∞

−∞
e−x2+2mx(

aq1/2e2ikx , bq1/2e−2ikx ; q
)

∞
3φ2

[
r, s, 0
t, q1/2e−2ikx/a

; q,
qc

a

]
d x

∣∣∣∣∣∣∣

≤

∣∣∣∣∣∣∣
∫ ∞

−∞
e−x2+2mx(

aq1/2e2ikx , bq1/2e−2ikx ; q
)

∞
d x

∣∣∣∣∣∣∣
·

∞∑
n=0

(− |r | ,− |s| ; q)
n(

|q| , |t | , ∣∣q1/2/a∣∣ ; q)
n

∣∣∣qc
a

∣∣∣n .

(3.7)

Denoting the right-hand side of Eq. (3.3) by f (r, s, t, c, a) and utilizing Eqs. (3.1) and
(3.7), we have

| f (r, s, t, c, a)| ≤

∣∣∣∣∣∣∣
√

πem
2

(
−aqe2mki ,−bqe−2mki ; q

)
∞

(abq; q)∞

∣∣∣∣∣∣∣
×

∞∑
n=0

(− |r | ,− |s| ; q)
n(

|q| , |t | , ∣∣q1/2/a∣∣ ; q)
n

∣∣∣qc
a

∣∣∣n

≤ √
πem

2

(
− |aq| ,− |bq| ; q

)
∞

(|abq| ; q)∞

×
∞∑
n=0

(− |r | ,− |s| ; q)
n(

|q| , |t | , ∣∣q1/2/a∣∣ ; q)
n

∣∣∣qc
a

∣∣∣n . (3.8)

From the Weierstrass M-test, we know that for max{|abq| , |qc/a|} < 1, the function
f (r, s, t, c, a) is uniformly absolutely convergent, so f (r, s, t, c, a) is an analytic
function of r, s, t, c and a for max{|abq| , |qc/a|} < 1 (see also [[17], p. 516]). Thus
f (r, s, t, c, a) is analytic near (r, s, t, c, a) = (0, 0, 0, 0, 0) (see also [[4], p. 220] and
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q-difference equations for Ramanujan’s integrals 71

[[17], p. 511]). We can check that f (r, s, t, c, a) satisfies Eq. (1.11), so the left-hand
side of Eq. (3.3) equals

f (r, s, t, c, a) =
∞∑
n=0

μnψ
(r,s,t)
n (c, a|q), (3.9)

where

f (r, s, t, 0, a) =
∞∑
n=0

μna
n = √

πem
2

(
−aqe2mki ,−bqe−2mki ; q

)
∞

(abq; q)∞
by (3.1)

=
∫ ∞

−∞
e−x2+2mx(

aq1/2e2ikx , bq1/2e−2ikx ; q
)

∞
d x

=
∫ ∞

−∞
e−x2+2mx(

bq1/2e−2ikx ; q
)

∞

{ ∞∑
n=0

(
aq1/2e2ikx

)n
(q; q)n

}
d x .

So we have

f (r, s, t, c, a) =
∫ ∞

−∞
e−x2+2mx(

bq1/2e−2ikx ; q
)

∞

{ ∞∑
n=0

ψ(r,s,t)
n (c, a|q)

(
q1/2e2ikx

)n
(q; q)n

}
d x,

(3.10)
which is equal to the left-hand side of Eq. (3.3) by Eq. (2.4). Similarly, we can gain
Eq. (3.4). The proof of Theorem 10 is complete. ��

4 Generalizations of q-Chu–Vandermonde formula

The q-Chu–Vandermonde formula is [9, Eq. (II.6)]

2φ1

[
q−n, a
c

; q, q

]
=

(
c/a; q)

n

(c; q)n
an . (4.1)

In this section, we now extend the q-Chu–Vandermonde formula.

Theorem 12 For n ∈ N0, we have

n∑
k=0

(
q−n, a; q)

kq
k

(q, cd; q)k
3φ2

[
r, s, aqk

t, qa/(cd)
; q,

qg

d

]

=
(
cd/a; q)

na
n

(cd; q)n
3φ2

[
r, s, a

t, aq1−n/(cd)
; q,

qg

d

]
, |qg/d| < 1, (4.2)
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n∑
k=0

(
q−n, a; q)

kq
k

(q, cd; q)k
3sφ2

[
r, s, aqk

t, cdqk
; q,

cg

a

]

=
(
cd/a; q)

na
n

(cd; q)n
3φ2

[
r, s, aqn

t, cdqn
; q,

cgqn

a

]
, |cg/a| < 1. (4.3)

Remark 13 For g = 0 in Theorem12, Eqs. (4.2) and (4.3) reduce to (4.1), respectively.

Proof of Theorem 12 First, we can rewrite Eq. (4.1) equivalently by

n∑
k=0

(
q−n, a; q)

kq
k

(q; q)k

(
cdqk; q)

∞(
cd/a; q)

∞
= an

(
cdqn; q)

∞(
cdqn/a; q)

∞
. (4.4)

We denote the right-hand side of (4.2) by F(r, s, t, g, d), we can check that
F(r, s, t, g, d) satisfies Eq. (1.11). By Eq. (4.4), we have

F(r, s, t, g, d) =
∞∑
j=0

μ jψ
(r,s,t)
j (g, d|q) (4.5)

and

F(r, s, t, 0, d) =
∞∑
j=0

μ j d
j = an

(
cdqn; q)

∞(
cdqn/a; q)

∞

=
n∑

k=0

(
q−n, a; q)

kq
k

(q; q)k

∞∑
j=0

(
aqk; q)

j

(
cd/a

) j
(q; q) j

.

So we have

F(r, s, t, g, d) =
n∑

k=0

(
q−n, a; q)

kq
k

(q; q)k

∞∑
j=0

(
aqk; q)

j

(
c/a

) j
(q; q) j

ψ
(r,s,t)
j (g, d|q), (4.6)

which is equal to the left-hand side of (4.2) by Eq. (2.2). Similarly, we can deduce Eq.
(4.3). The proof is complete. ��
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