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Abstract Partitions associated with mock theta functions have received a great deal of
attention in the literature. Recently, Choi and Kim derived several partition identities
from the third- and sixth-order mock theta functions. In addition, three Ramanujan-
type congruences were established by them. In this paper, we present some new
congruences for these partition functions.
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1 Introduction

A partition of a positive integer  is a finite nonincreasing sequence of positive integers
whose sum equals n. Furthermore, a partition is called a ¢-core partition if there are
no hook numbers being multiples of ¢. Let a;(n) be the number of #-core partitions of
n. It is known [18] that
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t
L

Here and in what follows, we make use of the standard ¢g-series notation (cf. [19]).

n—1

(@ = (a; q)n = [ [(1 — ag"),

k=0

(@)oo = (@; @)oo = [ [ (1 — ag")

k=0
(ar,az, -+, am; Qoo = (a1; @)oo (@2; Qoo - - (Am; G)oo-

In addition, the cubic partition, which was introduced by Chan [11,12] and named
by Kim [21] in connection with Ramanujan’s cubic continued fractions, is a 2-color
partition where the second color appears only in multiples of 2. Let a(n) denote the
number of cubic partitions of n, then its generating function is

o0

Y am)g" = 1

= (@: )oo(g%: 4% o0

In his last letter to Hardy [9, pp. 220-223], Ramanujan defined 17 functions, which
he called mock theta functions. Since then, there has been an intensive study of partition
interpretations for mock theta functions; see [2—6].

Recently, Choi and Kim [15] obtained the following identity related to the third-
order mock theta function,

4. 4)3

q
v(q)+v3(q,q;q)=2(2 5
9%:97) 5

k]

where v(q) is the third mock theta function and v3(q, ¢; q) is defined by Choi [14],
S qn(n—H)

v = = (=43 q)nt1

o0
c vig i) =Y 4" (—q; 4"

We remark that vi(q, g; g) is, in fact, identical to v(—gq); see Fine’s book [17,
Eq. (26.85)].

Choi and Kim also gave the following identities related to the sixth-order mock
theta functions:

q(q% q%3

(@: Doo(@* 4P oo
(q% 43,

(q; Q)oo(q ' q )oo’

V(g +2¥_(q) =3

2p(q) +Ar(q) =3
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where ¥ (g), ¥_(q), p(q), and A(q) are the sixth-order mock theta functions,

- (—1)”q("+”2(q;q2) 4" (—q; @)2n—2
W(g) = ,
@ ZO (=4 Dons1 Z @ a0

p(q) = Zq

Meanwhile, Choi and Kim studied three analogous partition functions defined by

(n+l

)(—g; q)n (—1)"q" (g5 4*n
M=)y — 1T
(4: 4°) @ nX:(:) (=45 @n

w5 ahk
Zb( )q" = IRUEY DN M
. qa(q% q%3
2
,;)C(”)q @ D@ 0’ @
3. 3\3
Zd(n)q CEL L 3)

(4: oo (@?; 4o

where b(n) denotes the number of partition pairs (A, 0); o is a partition into distinct
even parts; and A is a partition into even parts of which 2-modular diagram is 2-core,
and both c(n) and d(n) can be regarded as 3-core cubic partitions.

In this paper, we mainly study Ramanujan-type congruences for these partition
functions. This paper is organized as follows: In Sect. 2, we introduce some preliminary
results. In the next two sections, we will prove some Ramanujan-type congruences
for b(n) and c(n), respectively. In Sect. 5, by employing p-dissection formulas of
Ramanujan’s theta functions 1/ (¢) and f(—gq) established by Cui and Gu [16] as well
as (p, k)-parameter representations due to Alaca and Williams [1], we show some
congruences for d(n). Finally, we end this paper with several open problems.

2 Preliminaries

Let f(a, b) be Ramanujan’s general theta function given by

oo
nn+1) nmn-1)
flaby= > a2 ", Jab| < 1.

n=—oo

We now introduce the following Ramanujan’s classical theta functions:

5
(q) = f(q,q) = —— “4)
0(q) = f(q.q n;mq I
V@) = fa.a)=Yq"7" :%, )

n=0
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Flea) = f—q. =g = Y (=1)"¢" " = 1. ©)
One readily verifies
R
¢(—q) = S (7

Here and in the sequel, we write f; := (¢¥; ¢¥)oo for positive integers k for conve-
nience.
We first require the following 2-dissections.

Lemma 1 It holds that

1 N Nidir

— = +2 , 8)
Y Y

8 i foft

—= = +3 s C)
RoRn g

A% + fi> (10)

i o qf4'

Proof Here (8) comes from the 2-dissection of ¢(q) (cf. [8, p. 40, Entry 25]). For (9)
and (10), see [26]. O

The following 3-dissections are also necessary.

Lemma 2 It holds that

1 ¢ (=¢") 3 2.2, 3
o(—q)  ¢*(—q%) (1 +2qw(gT) +agTw g ))’ ()
1 v3(q%) < 1 q 2)
= — +4q° ). 12
V@ Vi) \w@d)  wg) ! (2
where 3
flf6
= . 13
w(q) NG (13)
Furthermore, ;
1 S
7= % (Pz(cf) +3qP () [ +9q2f96)s (14)
where o3 (=q%) 3 (g3)
P = 4 . 15
@ fl( o wp) >
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Proof For (11) and (12), see Baruah and Ojah [7]. For (14), see Wang [24]. Note that
Wang [24] showed

3n+1

q3n+2
Plg) =1 1+6Z< 3n+l_1_q3n+2>

n>0

We know from [23, Egs. (3.2) and (3.5)] that

3n+1

w 3(q%) q g
I/f(q) - 42 (1 — gon+2 ] _q6n+4> ’

n>0

6n+1 6n+2 6n+4 6n+5
(=) 142 Z( q 4 9 )

(ﬂ( 61) = 6n+1 1 — q6n+2 1— q6n+4 1 — q6n+5

Hence, (15) follows immediately by the following trivial identity:

X X )C2

7 =

l—x 1—x2

1—x

Furthermore, we need

Lemma 3 ([16, Theorem 2.1]) For any odd prime p,

p—3

P21 > 2 2wk Py pP-@ktp
V) =qF v(g")+> q ° f(q g 2 )

We further claim that for 0 < k < (p — 3)/2,

k2+k¢p2—
2 8

(mod p).

Lemma 4 ([16, Theorem 2.2]) For any prime p > 5,

)— P 21
f=) = (D75 ¢ f(—q")
p—1
=
3k2 4k 3p2(6k+1)p 3p2—(6k+1)p
+ ) (=Dfg2 f(—q T —q 2 )

—1
=7
ket 2L

We further claim that for —(p — 1)/2 <k < (p — 1)/2 and k # (£p — 1)/6,

3k + k " P —
2 24

(mod p).
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Here for any prime p > 5,

tp—1_ |2l p=1 (mod6),
6 =P p=-—1 (mod6).

- —1
6

At last, we require the following relations due to Alaca and Williams [1].

Lemma 5 Let

X (q) — ¢*(q?)

p=rp(q) = 2070
and
3.3
k= kig) = 24
v(q)
Then

fi=278g75pB (= PP (14 p)F(1+2p)F 2+ p)FK2,
fo=273gTTp (= I+ p) I +2p) T2+ p) ik,
=278 8 pE (= PR+ I +2p) B+ p) kT,
fo=275q6ps (= PR+ P +2p)F 2+ p) 2k,
fo=2"tg T p = PR+ pFA +2p) R+ py ik
fz =273 pI(1 = B+ p)F L +2p) B + p)ik?

3 Congruences for b(n)

Theorem 1 Forn > 0, « > 1, and prime p > 5, we have

. 20—1 _
b@mmg%+mp I)EO(MMD, (16)

3

where j =1,2,..., p— 1.
Proof In light of (1), we derive that

Zﬁmm ‘ﬁ_& (mod 2).

Applying Lemma 4, we deduce that, for any prime p > 5,

00 2
Zb(pn—i— P
n=0

1
) = (- 1) f( ¢*")  (mod 2),
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and

Zb(p n+

n=0

-1
) =(— 1) f( g% (mod 2).
Moreover,

f(=¢*) (mod 2).

0 4
-1
Zb<p3n+p . >qn

n=0

Hence, by induction on «, we derive that, for o > 1,

200 £p—
Zb< 201, 4 P ; l)qnz(_1)< 1)f( ¢®) (mod 2).

This immediately leads to

2u

3

—1
b <p2“—1(pn +h+? ) =0 (mod 2),

forj=1,2,...,p— 1. O

Remark 1 When studying the 1-shell totally symmetric plane partition function f(n)
(which is different to Ramanujan’s theta function f(—g) given in Sect. 2) introduced
by Blecher [10], Hirschhorn and Sellers [20] proved that, forn > 1,

fBn —2) = hn),

with

> h@n+ D" =3
n=0 1

A couple of congruences modulo powers of 2 and 5 for i (n) have been obtained
subsequently; see [13,25,27]. We see from (1) that

b(2n) = h(2n + 1).
One therefore may obtain some congruences for b(n) as well. For example,

b(8n+6) =0 (mod 4).
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4 Congruences for c(n)
Theorem 2 Forn > 0, we have
c2Tn+24)=0 (mod 9). (17)

Proof We see from (2) and Lemma 2 that
0 3
> et = e
= p(=q)¥(q)
f3¢< -9’ (%)
NACPAVAIES)!
4 2
) <w2<q3) wigh ! )

Employing Lemma 2, we deduce that

(1+ 2qw(q’) + 4q2w2(q3))

e¢]

n 3q0° (=) Y3 (g)
Zc(?an)q = 3
s fie(=a) ¥ (q)
_ 390’ @ fs
(=g V(g f1?

X (1 + 2qw(q3) + 4q2w2(q3)) (

(P2 +3aP@) 5 +94°£5)

V2 w<q3)+q)’ (1%)

Extracting terms involving ¢+ and replacing ¢> by ¢ in (18), it follows that

o0 2 12 21
ZC(9n+6)q”=12f216f36+135 /3 f6 +72 2f31({ + 19243 7f67 -
n=0 f] f6 fl fz f] f2f3
Hence,
& 2 r21
Zc(9n+6)qn53f216f36 +3 3 f
=0 i e L
f—z f +q>5 f (mod 9).
f 18 13
Noting that f22 /f1 contains no terms of the form ¢>"*2, we have
(e.¢]
> c@Tn+24)g" =0 (mod 9).
n=0
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Theorem 3 Forn > 0, we have
c(45n+1t)=0 (mod 5), (19)

wheret = 9 and 18.

Proof Referring to (18), we have

00 18 9 6 15
S cOng" =45q 2L 102 L Se | ogggs Se
n=0 fl f6 1 f2 f1 fz
Hence,
> cOng" =3¢ -5 (mod 5).
n=0 fj 10
Since f] contains no terms of the form ¢>**3 and ¢°"**, we have
cOGn+1)) = c@5n+9)=0 (mod 5),
and
c(9(5n +2)) = c(45n +18) =0 (mod 5).
This yields that (19). O
Corollary 1 Forn > 0, we have
c(d5n+1t)=0 (mod 15), (20)

wheret =9 and 18.
Proof We know from [15, Theorem 4.2] that

c(3n)=0 (mod 3),

which is indeed a direct consequence of (18). Hence, Corollary 1 follows by Theo-
rem 3. o

5 Congruences for d(n)

Theorem 4 Forn > 0, « > 1, and prime p > 3, we have

87 20—1 __ 1
d <2p2"‘ Gl p)f: ) =0 (mod?2). 1)

where j =1,2, ..., p— 1.
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Proof From (3), one can see

Zd(n) "= ﬁ = fo=> (mod 2).

With the help of (9), we have

2 £2 2
Zd(n)q f“f" f4f°f12 (mod 2).

5 I 12 1
Hence,
o0 ) f6f4
nX:(:)d(Zn)q = ﬁ =1vy(g) (mod2).

Invoking Lemma 3, for any odd prime p, we derive that

oo p2 _ 1 .,
Y.d (2 (pn + 5 )) q"=v(g") (mod2),
n=0

and
00 p2 1
Zd (2 (pzn + 3 >> q" =v¥(g) (mod 2).
n=0

Furthermore,

oo
S d <2p3n + 2
n=0

—1
)q” =Y (¢”) (mod 2).

It therefore follows by induction on « that for o > 1,

2a

> -1
> d (2192“_111 +2 1 )q” =Y (q”) (mod 2).
n=0

Thus, for j =1,2,...,p—1,

2a

d( 2=V pp 4 jy 4 2 )Eo (mod 2),

which is the desired result.
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Theorem § Forn > 0, o > 1, and prime p > 5, we have

24j 2ol
d (6p2°‘n + (24 + p)4p

) =0 (mod 3), (22)

where j =1,2,...,p— 1.

Proof 1t follows by (11) and (12) that

B
d
Z m = (=¥ (q)

fgw a3 (")
o~ v (gd)

IS S S
X <w2<q3> i) 1 ) )

(1+2qwia®) +44*w @)

So we get

0 3 3 3/,3
JOm " — 3<p(—q)w(q)< 1 _, )
X_: Gma Vot —)vt) \w2(g) ()

g \n) g

Based on (10), we derive that

9 £3
Zd(6n)q ?82 +3g ﬁffz 2823;]3 (mod 3).

Invoking Lemma 4, we arrive at that, for any prime p > 5,

2

Zd(6(pn+p2;1)) = ()% f(—¢") (mod 3),
n=0

and

o0 2 1
Zd(é(pn~l— 5 )) = (=) f(=q) (mod 3).
n=0

Furthermore, we have

0 2 2
2 p —1 p —1 n_ D
ngzod<6<p (pn—i— 7 )—i— Y ))q = f(—q"”) (mod 3).
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Namely,

o0 p4 _1
> d <6p3n + >q" = f(—¢”) (mod 3).
n=0

Thus, by induction on «, we derive that, for o > 1,

2a

> d <6p2“—1n e 1) ¢ = ) peqn) moas)
n=0

This yields that, for j = 1,2, ..., p — 1,

p2a

—1
d (6p2°‘—1<pn + )+ ) =0 (mod 3),

4
which implies (22). O

Theorem 6 Forn > 0, « > 1, and prime p > 5, we have

24j 4+ 9p)p* ' —1
d(6p2°‘n+( j+9p)p

1 ) =0 (mod9), 24)

where j =1,2, ..., p— 1.

Proof Extracting terms involving ¢>"2 and replace ¢> by ¢ in (23), then we derive
that

36 36K

> dGn+2)q" =

= ) (25)
—~ o=@ s Af
It follows by (10) that
> N 0 N 0 N i)
dBn+2)q" =3 =3 +3 .
,; T R -
Hence,
- N
d6n +2 =3 =3 d 9).
;) (61 +2)q i fo (mod 9)

In view of Lemma 4, for any prime p > 5, we deduce that

i 2 — +p—1
>.d (6 (pn + w) + 2) ¢"=3(-D"5 f(—¢°") (mod9),
n=0
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and
00 2
Zd<6<p2n+¥) +2>q =3(=D)% f(=¢°) (mod9).
n=0

Moreover,

e} 4
> d (6 (p3n + w> + 2) ¢" =3f(—¢°") (mod 9).

n=0

Hence, by induction on « > 1, we arrive at

200 P—
Zd< (et 2 —1)>+2>Q”ss<—1>°‘<iﬁl>f<—q9p> (mod 9).

8

which implies that for j = 1,2, ..., p — 1,

200 _
d <6 (Pza_l(lm + )+ w> + 2) =0 (mod?9).

This leads to (24). O

Theorem 7 Forn > 0, we have

d45n+1t) =0 (mod 5), (26)
where t = 17 and 35.
Proof From (25), we have
0 33 £3
> dBn+2)q" = %
=0 (=) (q) f3

Again by (11), (12), and (14), we have

> dOn+8)q" =f,- H

n=0

where

_ <9f39f4f2 +9f33f42f618> N (27f36f69 - 18f4f618>
fl3 213f132 f1f216f162 f12 213 f216f132
2 ( £ 1 | T2E St | 1086 f&g)
RAEE AR HOf
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37200 1y +q4144f33 3
17 nR

O
We next show a surprising congruence.
Lemma 6 It holds that ;
H=37 2= (mod 5). 27)
sJ10

Proof (Proof of Lemma 6) To prove (27), it suffices to show

flS
H—Sﬁ =0 (mod 53),
T/

or equivalently,

15 5 10 £10
(H—S /3 >f1f3f4 fo" _y (mod 5),

5 10 4 r6
fl 2 f2f12

L 11064°

Iy isinvertible in thering Z/5Z[[q]]. According to Lemma 5, it becomes
2712

since

15p2(1 — p)(1+ p)> Q2+ p)2Q +5p + 12p2 +5p3 + 2pH)i8

=0 d 5).
32¢%2(1 +2p) (mod 5)
Lemma 6 follows obviously. O
We know from Lemma 6 that
00 3
n _ f15
> dOn+8)¢" =32 (mod 5).
n=0 fS f]()
Since f> = (¢%; ¢%)oo contains no terms of the form ¢>"*! and ¢>**3, we have
dOGn+1)+8)=d@5n+17)=0 (mod5),
and
dOGn+3)+8) =d@5n+35) =0 (mod5),
which leads to Theorem 7. O
Corollary 2 Forn > 0, we have
d45n+1t)=0 (mod 15), (28)

where t = 17 and 35.
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Proof Again, we know from [15, Theorem 4.2] that
d(Bn+2)=0 (mod 3).

It indeed follows directly from (25). We thus prove Corollary 2 by Theorem 7. O

6 Final remarks

We end this paper by raising the following congruences.

Question 1 We have

c(45n4+21)=0 (mod 5), 29)
c63n+1t)=0 (mod 7), (30)
where t = 30, 48, and 57.
Question 2 We have
d(45n +41)=0 (mod 5), 3D
d63n+1t)=0 (mod 7), 32)

where t = 32, 50, and 59.

All these congruences have been verified by the authors using an algorithm due to
Radu and Sellers [22]. However, since the modular form proofs are very routine and
tedious, we here want to ask if there exist elementary proofs of these congruences.

Acknowledgements We would like to thank the referee and editor for helpful comments.
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