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Abstract Motivated by some recent works on BPS invariants of open strings/knot
invariants, we guess there may be a general correspondence between the Ooguri–
Vafa invariants of toric Calabi–Yau 3-folds and cohomologies of Nakajima quiver
varieties. In this short note, we provide a toy model to explain this correspondence.
More precisely, we study the topological open string model of C

3 with one Aganagic–
Vafa braneDτ , and we show that, when τ ≤ 0, its Ooguri–Vafa invariants are given by
the Betti numbers of certain quiver variety. Moreover, the existence of Ooguri–Vafa
invariants implies an infinite product formula. In particular, we find that the τ = 1 case
of such infinite product formula is closely related to the celebrated Rogers–Ramanujan
identities.
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Rogers–Ramanujan identities
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1 Introduction

Topological string theory is the topological sector of superstring theory [72]. In math-
ematics, we use Gromov–Witten theory to describe the topological string theory, see
[27] for a review. Topological string amplitude is the generating function of Gromov–
Witten invariants which are usually rational numbers according to their definitions
[7,51]. In 1998, Gopakumar and Vafa [23] found that topological string amplitude
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is also the generating function of a series of integer-valued invariants related to BPS
counting in M-theory. Later, Ooguri and Vafa [64] extended the above result to open
string case, we name the corresponding integer-valued invariants as OV invariants.
Furthermore, the OV invariants are further refined by Labasitida, Mariño, and Vafa in
[48], the resulted invariants are called LMOV invariants [52], which have been studied
by many literatures, see [54,59] for the recent approaches.

A central question in topological string theory is how to define the GV/OV/LMOV
invariants directly. There have been many works, for examples [33,34,39,58,66],
devoted to the definition of GV invariants. However, to the author’s knowledge, no
direct related works study the definition of OV/LMOV invariants. But there are some
attempts to explain the integrality of OV invariants through different mathematical
models. In [43], Kucharski and Sulkowski related the OV invariants to the combina-
torics on words. In the joint work with Luo [54], we investigated the LMOV invariants
for resolved conifoldwhich is the large N duality of the framed unknot [57].Moreover,
we found that the (reduced) topological string partition function of C

3 is equivalent
to the Hilbert–Poincare polynomial of certain cohomological Hall algebra of quiver.
Very recently, a series of works due to Diaconescu et al. [14,16,17] showed that the
(refined) GV invariants can be expressed in terms of the Betti numbers of certain
character varieties of algebraic curves based on the main conjectures in [15,32]. By
the analogues of quiver varieties and character varieties showed in [30], it is natu-
ral to expect there will be an explanation of the integrality of GV/OV invariants by
using quiver varieties. It is also expected that a general toric Calabi–Yau/quiver variety
correspondence may exist in geometry.

1.1 Open string model on (C3,Dτ )

In this short note, we provide a toy model to state this correspondence through numer-
ical calculations. More precisely, we focus on the open topological string on (C3,Dτ ),
whereDτ is the framing τ ∈ ZAganagic–VafaA-brane [4,5]. Its (reduced) topological
string partition is given by

Z (C3,Dτ )(gs, x = (x, 0, 0, . . .)) =
∑

n≥0

(−1)n(τ−1)q
n(n−1)

2 τ+ n2
2

(1 − q)(1 − q2) · · · (1 − qn)
xn . (1)

We define

f τ
n (q) = (q1/2 − q−1/2)[xn]Log

⎛

⎝
∑

n≥0

(−1)n(τ−1)q
n(n−1)

2 τ+ n2
2

(1 − q)(1 − q2) · · · (1 − qn)
xn

⎞

⎠ , (2)

where [xn]g(x) denotes the coefficient of xn in the series g(x) ∈ Z[[x]] and Log is the
plethystic logarithm introduced in Sect. 2.2. Applying the work of Ooguri and Vafa
[64] to this open string model (C3,Dτ ), we formulate the following conjecture:
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Conjecture 1.1 For any τ ∈ Z, for a fixed integer m ≥ 1, we have

f τ
m(q) =

∑

k∈Z

Nm,k(τ )q
k
2 ∈ Z[q± 1

2 ]. (3)

In other words, for a fixed integer m ≥ 1, there are only finitely many k, such that the
integers Nm,k(τ ) are nonzero.

The rest of this paper is devoted to study the Conjecture 1.1.We start with the τ = 0
case for warming up. Recall the classical Cauchy identity for Schur functions [55],

∑

λ∈P
sλ(y)sλ(x) =

∏

i, j≥1

1

(1 − xi y j )
, (4)

where x = (x1, x2, . . .), y = (y1, y2, . . .), and P denotes the set of all the
partitions. We consider the specialization x = (x, 0, 0, . . .) and y = qρ =
(q−1/2, q−3/2, q−5/2, . . .), the left- hand side of (4) becomes

∑

λ∈P
sλ(q

ρ)sλ(x = (x, 0, 0, . . .)) =
∑

n≥0

sn(q
ρ)xn (5)

=
∑

n≥0

(−1)nq
n2
2

(1 − q)(1 − q2) · · · (1 − qn)
xn,

and the right-hand side of (4) gives

∏

j≥1

(1 − xq− j+ 1
2 )−1. (6)

Comparing to formulae (2) and (3) forwhen τ = 0, by using the definition of plethystic
logarithm Log, we obtain

Nm,k(0) =
{
1, ifm = 1 and k = 0,

0, otherwise.

However, for general τ ∈ Z, the Conjecture 1.1 is nontrivial. The first result of this
paper is that, when τ ≤ 0, we find that the OV invariants Nn,k(τ ) can be expressed in
terms of the Betti number of certain quiver variety, which implies the Conjecture 1.1
for the case of τ ≤ 0.

1.2 Proof of the Conjecture 1.1 for the case of τ ≤ 0

We construct a quiver of one vertex with 1 − τ infinite legs. Let Qñ(1−τ) be the asso-
ciated quiver variety of the representations in a dimension related to n and 1 − τ ,
we refer to [31] and Sect. 4 for this construction. Let dñ(1−τ) = dimQñ(1−τ).
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There is a Weyl group Sn which acts on the compactly supported cohomology

H
1−n+2dñ(1−τ )− j
c (Qñ(1−τ); C). Then, we have the following:

Theorem 1.2 If n is odd

Nn, j (τ ) =
{
0, j is odd,

−(−1)(τ−1)n dim(H
1−n+2dñ(1−τ )− j
c (Qñ(1−τ); C)Sn ), j is even.

(7)

If n is even

Nn, j (τ ) =
{
0, j is even,

−(−1)(τ−1)n dim(H
1−n+2dñ(1−τ )− j
c (Qñ(1−τ); C)Sn ), j is odd.

(8)

Therefore, as a direct corollary, we have shown

Corollary 1.3 The Conjecture 1.1 holds for τ ≤ 0.

Now the remain question is what about the case of τ ≥ 1? We do not know how
to prove this case, but we find it is closely related to celebrated Rogers–Ramanujan
identities (10) and (11).

1.3 A Rogers–Ramanujan type identity

Combing(2), (3), and the definition of plethystic logarithm Log, Conjecture 1.1 can
be rewritten in the form of infinite product (37).

Let us take a closer look at the case of τ = 1. After some numerical computations
byMaple 13 (see Sect. 5 for some of these numerical results), we observe the following
rules for those integers Nm,k(1):

• If m is even, Nm,k(1) ≥ 0, and when m is odd, Nm,k(1) ≤ 0.
• For a fix integer m ≥ 4, we define the subset of Z,

Im = {m + 1,m + 3, . . . ,m2 − 2m − 5,m2 − 2m − 3, (m − 1)2} ⊂ Z.

then Nm,k(1) = 0, if k ∈ Z \ Im . Note that the last gap in Im is (m − 1)2 − (m2 −
2m − 3) = 4. Moreover, we let I1 = {0}, I2 = {1}, I3 = {4}, according to the
computations in Sect. 5.

Based on the above observations, let nm,k = (−1)mNm,k(1), we have the following
refined form of the infinite product Formula (37) for τ = 1.

Conjecture 1.4 For a fixed m ≥ 1, there are only finitely many positive integers nm,k

for k ∈ Im, such that

∑

n≥0

anqn
2

(1 − q)(1 − q2) · · · (1 − qn)
=

∏

m≥1,l≥0

∏

k∈Z

(1 − a2mqk+l+2m)n2m,2k+2m−1

(1 − a2m−1qk+l+2m−1)n2m−1,2k+2m−2
.

(9)
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Remark 1.5 After the email correspondence with Ole Warnaar [71], he suggested the
author to rewrite the deformed Rogers–Ramanujan identity (57) into the form (9)
which is related to the Rogers–Selberg identity [25].

Note that, (9) can be regarded as a Rogers–Ramanujan type identity. Recall the two
classical Rogers–Ramanujan identities

∑

n≥0

qn
2

(1 − q) · · · (1 − qn)
=

∏

n≥0

1

(1 − q5n+1)(1 − q5n+4)
, (10)

∑

n≥0

qn
2+n

(1 − q) · · · (1 − qn)
=

∏

n≥0

1

(1 − q5n+2)(1 − q5n+3)
. (11)

Formulae (10) and (11) were first discovered by Rogers [68], and then rediscovered
by Ramanujan [26], Schur [69], and Baxter [6]. Now, there have been many differ-
ent proofs and interpretations for them [1,8,22,49,70]. We refer to [25,71] for most
modern understanding of the Rogers–Ramanujan identities.

These conjectural integers nm,k appearing in (9) are important.We expect an explicit
formula for them. Let

gm(q) =
∑

k∈Z

nm,kq
k, (12)

by using Maple 13, we have computed gm for small m as showed in Sect. 5.

By our numerical computations, if we let a = 1 and a = q
1
2 , respectively, in For-

mula (9), then it recovers the Rogers–Ramanujan identities (10) and (11). Therefore,
(9) can be regarded as an one-parameter- deformed Rogers–Ramanujan identity. From
this point of view, integrality structures of topological string partitions provide a lot of
infinite product formulas, which largely extend the explorations of Rogers–Ramanujan
type formulae.

Finally, in order to give the reader some flavor of these numbers nm,k , we compute
the value f τ (1) of (3) at q = 1 from Mariño–Vafa formula [53,57] as follows:

f τ
m(1) = 1

m2

∑

d|m
μ(m/d)(−1)dτ

(
d(τ + 1) − 1

d − 1

)
, (13)

where μ(n) denotes the Möbius function. We prove that

Theorem 1.6 For any m ≥ 1,

f τ
m(1) = 1

m2

∑

d|m
μ(m/d)(−1)dτ

(
d(τ + 1) − 1

d − 1

)
∈ Z. (14)

In particular, we obtain
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Corollary 1.7 For any m ≥ 1,

gm(1) =
∑

k

nm,k = (−1)m f 1m(1) ∈ Z. (15)

The rest of this article is arranged as follows: in Sect. 2, we introduce the basic nota-
tions for partitions, symmetric functions, and plethystic operators. Then, we review
the mathematical structures of topological strings in Sect. 3. We formulate the gen-
eral Ooguri–Vafa conjecture by using plethystic operators and we present the explicit
form of Ooguri–Vafa conjecture for the open string model (C3,Dτ ). In Sect. 4, we
first review the main results of the work [31], as an application, we prove the Ooguri–
Vafa conjecture for (C3,Dτ ) when τ ≤ 0. In Sect. 5, we focus on the Ooguri–Vafa
conjecture for (C3,Dτ ) for the special case τ = 1. We propose the deformed Rogers–
Ramanujan type identity (9). Finally, we present a proof of the integrality of (14).

2 Symmetric functions and plethystic operators

2.1 Partitions and symmetric functions

A partition λ is a finite sequence of positive integers (λ1, λ2, . . .) such that λ1 ≥ λ2 ≥
· · · . The length of λ is the total number of parts in λ and denoted by l(λ). The weight
of λ is defined by |λ| = ∑l(λ)

i=1 λi . If |λ| = d, we say λ is a partition of d and denoted as
λ � d. The automorphism group of λ, denoted byAut(λ), contains all the permutations
that permute parts of λ by keeping it as a partition. Obviously, Aut(λ) has the order
|Aut(λ)| = ∏l(λ)

i=1 mi (λ)! where mi (λ) denotes the number of times that i occurs in λ.
Define zλ = |Aut(λ)|∏λ

i=1 λi .
Every partition is identified to a Young diagram. The Young diagram of λ is a

graph with λi boxes on the i th row for j = 1, 2, . . . , l(λ), where we have enumerated
the rows from top to bottom and the columns from left to right. Given a partition λ,
we define the conjugate partition λt whose Young diagram is the transposed Young
diagram of λ: the number of boxes on j th column of λt equals to the number of boxes
on j th row of λ, for 1 ≤ j ≤ l(λ). For a box x = (i, j) ∈ λ, the hook length and
content are defined to be hl(x) = λi +λtj − i − j +1 and cn(x) = j − i , respectively.

In the following, we will use the notation P+ to denote the set of all the partitions
of positive integers. Let 0 be the partition of 0, i.e., the empty partition. Define P =
P+ ∪ {0}, and Pn the n tuple of P .

The power sum symmetric function of infinite variables x = (x1, . . . , xN , . . .) is
defined by pn(x) = ∑

i x
n
i .Given a partition λ, we define pλ(x) = ∏l(λ)

j=1 pλ j (x). The
Schur function sλ(x) is determined by the Frobenius formula

sλ(x) =
∑

μ

χλ(μ)

zμ
pμ(x), (16)
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where χλ is the character of the irreducible representation of the symmetric group S|λ|
corresponding to λ, we have χλ(μ) = 0 if |μ| �= |λ|. The orthogonality of character
formula gives

∑

λ

χλ(μ)χλ(ν)

zμ
= δμν. (17)

We let �(x) be the ring of symmetric functions of x = (x1, x2, . . .) over the ring
Q(q, t), and let 〈·, ·〉 be the Hall pair on �(x) determined by

〈sλ(x), sμ(x)〉 = δλ,μ. (18)

For �x = (x1, . . . , xn), denote by �(�x) := �(x1) ⊗Z · · · ⊗Z �(xn) the ring of
functions separately symmetric in x1, . . . , xn , where xi = (xi1, x

i
2, . . .). We will

study functions in the ring �(�x). For �μ = (μ1, . . . , μn) ∈ Pn , we let a �μ(�x) =
aμ1(x1) · · · aμn (xn) ∈ �(�x) be homogeneous of degree (|μ1|, . . . , |μn|). More-
over, the Hall pair on �(�x) is given by 〈a1(x1) · · · an(xn), b1(x1) · · · bn(xn)〉 =
〈a1(x1), b1(x1)〉 · · · 〈an(xn), bn(xn)〉 for a1(x1) · · · an(xn), b1(x1) · · · bn(xn) ∈ �(�x).

2.2 Plethystic operators

For d ∈ Z+, we define the dth Adams operator 	d as the Q-algebra map on �(�x)

	d( f (�x; q, t)) = f (�xd ; qd , td). (19)

Denote by �(�x)+ the set of symmetric functions with degree ≥ 1. The plethystic
exponential Exp and logarithm Log are inverse maps

Exp : �(�x)+ → 1 + �(�x)+, Log : 1 + �(�x)+ → �(�x)+, (20)

respectively, defined by (see [30])

Exp( f ) = exp

⎛

⎝
∑

d≥1

	d( f )

d

⎞

⎠ , Log( f ) =
∑

d≥1

μ(d)

d
	d(log( f )), (21)

where μ is the Möbius function. It is clear that

Exp( f + g) = Exp( f )Exp(g), Log( f g) = Log( f ) + Log(g), (22)

and Exp(x) = 1
1−x , if we use the expansion log(1 − x) = −∑

d≥1
xd
d .
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3 Integrality structures in topological strings

3.1 Closed strings and Gopakumar–Vafa conjecture

Let X be a Calabi–Yau 3-fold, the Gromov–Witten invariants K X
g,Q is the virtual

counting of the number of holomorphic maps f from genus g Riemann surface Cg to
X such that f∗[Cg] = Q ∈ H2(X, Z) [27]. Define

FX (gs, ω) =
∑

g≥0

g2g−2
s F X

g (ω), Z X (gs, ω) = exp(FX (gs, ω)).

Usually, the Gromov–Witten invariants K X
g,Q are rational numbers. In 1998, Gopaku-

mar and Vafa [23] conjectured that the generating function FX (gs, ω) of Gromov–
Witten invariants can be expressed in terms of integer-valued invariants N X

g,Q as
follows

FX (gs, ω) =
∑

g≥0

g2g−2
s

∑

Q �=0

K X
g,Qe

−Q·ω

=
∑

g≥0,d≥1

∑

Q �=0

1

d
N X
g,Q

(
2 sin

dgs
2

)2g−2

e−dQ·ω. (23)

The invariants N X
g,Q are called GV invariants in literatures. A central question in

topological string is how to define theGV invariants directly.We refer to [33,34,39,58]
for some progresses in this direction.

Obviously, genus 0 part of the Gopakumar–Vafa formula (23) yields the multiple
covering formula [3]:

∑

Q �=0

K X
0,Qe

−Q·ω =
∑

Q �=0

N X
0,Q

∑

d≥1

1

d3
e−dQ·ω. (24)

By using the principle of mirror symmetry, around 1990, Candalas et al [13] cal-
culated the numbers N X5

0,Q from formula (24) for quintic Calabi–Yau 3-fold X5, and

found that N X5
0,Q was equal to the number of rational curves of degree Q in X5 which

was hard to compute in enumerative geometry by classical method. This was the first
important application of the topological string theory in mathematics.

When X is a toric Calabi–Yau 3-fold which is a toric variety with trivial canonical
bundle [9]. Because of its toric symmetry, the geometric information of a toric Calabi–
Yau 3-fold is encoded in a trivalent graph named “toric diagram” [2]which is the gluing
of some trivalent vertices. The topological string partition function Z X (gs, ω) =
exp(FX (gs, ω)) of a toric Calabi–Yau 3-fold X can be computed by using the method
of topological vertex [2,45]. The integrality of the invariants N X

g,Q for toric Calabi–
Yau 3-fold X determined by Gopakumar–Vafa formula (23) was later proved by P.
Peng [65] and Konishi [37].
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3.2 Open strings and Ooguri–Vafa conjecture

Now we discuss the open topological strings. Let X be a Calabi–Yau 3-fold with a
submanifoldD, we assume dim H1(D, Z) = n with basis γ1, . . . γn . It is also expected
that there are open Gromov–Witten invariants K (X,D)

�μ,g,Q determined by topological data

g, �μ, Q, such that K (X,D)

�μ,g,Q is the virtual counting of holomorphic maps f from genus
g Riemann surface Cg with boundary ∂Cg to (X,D), such that f∗([Cg]) = Q ∈
H2(X,D) and f∗([∂Cg]) = ∑n

i=1
∑

j≥1 μi
jγi ∈ H1(D, Z). There are no general

theory for open Gromov–Witten invariants, but see [38,50] for mathematical aspects
of defining these invariants in special cases.

The total free energy and partition function of open topological string on X are
defined by as follows

F (X,D)(x1, . . . , xn; gs, ω) = −
∑

g≥0

∑

�μ∈Pn\{0}

√−1
l(μ)

|Aut ( �μ)|g
2g−2+l( �μ)
s (25)

×
∑

Q �=0

K (X,D)

�μ,g,Q e
−Q·ω

n∏

i=1

pμi (xi ),

Z (X,D)(x1, . . . , xn; gs, ω) = exp(F (X,D)(x1, . . . , xn; gs, ω)).

We would like to calculate the partition function Z (X,D)(x1, .., xn; gs, ω) or the open
Gromov–Witten invariants K (X,D)

�μ,g,Q . For compact Calabi–Yau 3-folds, such as the quin-
tic X5, there are only a few works devoted to the study of its open Gromov–Witten
invariants, for example, a complete calculation of the disk invariants of X5 with bound-
ary in a real Lagrangian was given in [67].

Suppose X is a toric Calabi–Yau 3-fold, andD is a special Lagrangian submanifold
named as Aganagic–Vafa A-brane in the sense of [4,5]. The open string partition
function Z (X,D)(x1, .., xn; gs, ω) canbe computed by themethodof topological vertex
[2,45] or topological recursion developed by Eynard and Orantin [18]. The second
approach was first proposed by Mariño [56], and studied further by Bouchard et al.
[10]; the equivalence of these two methods was proved in [19,20].

The open Gromov–Witten invariants K (X,D)

�μ,g,Q are rational numbers in general. Just
as in the closed string case [23], the open topological strings compute the partition
function of BPS domain walls in a related superstring theory [64]. Ooguri and Vafa
made the prediction that there are integers N �μ;i, j (OV invariants) such that

F (X,D)(x1, . . . , xn; gs, ω) =
∑

d≥1

∑

�μ∈Pn\{0}

1

d

∑

i, j

N �μ,i, j a
di
2 q

dj
2

q
d
2 − q− d

2

s �μ(�x), (26)

where q = e
√−1gs and a = e−ω.

Cleanly, one can formulate Ooguri–Vafa conjecture by using the Plethystic loga-
rithm Log
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Conjecture 3.1 Let

f �μ(q, a) = (q1/2 − q−1/2)〈Log(Z (X,D)(x1, . . . , xn; q, a)), s �μ(�x)〉, (27)

then we have

f �μ(q, a) =
∑

i, j

N �μ,i, j a
i
2 q

j
2 ∈ Z

[
q± 1

2 , a± 1
2

]
. (28)

Remark 3.2 TheseOV invariants N �μ,i, j were further refined to be the invariants n �μ,g,Q
in [46–48]. See [54] for a more recent discussion about the LMOV invariants n �μ,g,Q .

3.3 Open string model on C
3

In this subsection, we focus on the open string model on C
3 with Aganagic–Vafa

A-brane Dτ , where τ ∈ Z denotes the framing [4,5]. The topological (open) string
partition function of (C3,Dτ ) is given by the Mariño–Vafa formula [57] which was
proved by [53] and [63], respectively:

Z (C3,Dτ )(x; q) =
∑

λ∈P
Hλ(q; τ)sλ(x), (29)

and where

Hλ(q; τ) = (−1)|λ|τq
κλτ

2
∏

x∈λ

qcn(x)/2

qhl(x)/2 − q−hl(x)/2
, (30)

where κλ = ∑l(λ)
i=1 λi (λi − 2i + 1).

The partition function Z (C3,Dτ )(x; q) is in fact a certain generating function of terms
which are the coefficients of highest order of a in the corresponding terms appearing in
the open string partition function of the resolved conifold. That is why the parameter
a does not appear in the expression Z (C3,Dτ )(x; q). We refer to [54] for more details.

Applying the Ooguri–Vafa Conjecture 3.1 to Z (C3,Dτ )(gs, x), it follows that for any
τ ∈ Z and μ ∈ P+, we have

f τ
μ (q) = (q

1
2 − q− 1

2 )〈Log(Z (C3,Dτ )(x; q)), sμ(x)〉 ∈ Z[q± 1
2 ]. (31)

In particular, if we let x = (x, 0, 0, . . .), then

Z (C3,Dτ )(gs, x = (x, 0, 0, . . .)) =
∑

n≥0

H(n)(q; τ)xn

=
∑

n≥0

(−1)n(τ−1)q
n(n−1)

2 τ+ n2
2

(1 − q)(1 − q2) · · · (1 − qn)
xn, (32)
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and

f τ
n (q) := f τ

(n)(q) =
(
q

1
2 − q− 1

2

)
[xn]Log

⎛

⎝
∑

n≥0

(−1)n(τ−1)q
n(n−1)

2 τ+ n2
2

(1 − q)(1 − q2) · · · (1 − qn)
xn

⎞

⎠ .

(33)

Therefore, formula (31) implies that for any τ ∈ Z and n ∈ Z≥1,

f τ
n (q) ∈ Z[q± 1

2 ]. (34)

Therefore, we formulate the Ooguri–Vafa conjecture for (C3,Dτ ) as follows

Conjecture 3.3 For any τ ∈ Z, for a fixed integer n ≥ 1, we have

f τ
n (q) =

∑

k∈Z

Nn,k(τ )q
k
2 ∈ Z[q± 1

2 ]. (35)

In other words, for a fixed integer n ≥ 1, there are only finitely many k, such that the
integers Nn,k(τ ) are nonzero.

Now identity (33) is equivalent to

Log

⎛

⎝
∑

n≥0

(−1)n(τ−1)q
n(n−1)

2 τ+ n2
2

(1 − q)(1 − q2) · · · (1 − qn)
xn

⎞

⎠ =
∑

n≥0

∑

k∈Z

Nn,k(τ )q
k
2

(
q

1
2 − q− 1

2

) xn . (36)

By using the properties of plethystic operators introduced in Sect. 2.2, we can write
(32) in the form of infinite product as follows:

∑

n≥0

(−1)n(τ−1)q
n(n−1)

2 τ+ n2
2

(1 − q)(1 − q2) · · · (1 − qn)
xn = Exp

⎛

⎝
∑

n≥0

∑

k∈Z

Nn,k(τ )q
k
2

(
q

1
2 − q− 1

2

) xn
⎞

⎠

= Exp

⎛

⎝−
∑

n≥0

∑

k∈Z

∑

l≥0

Nn,k(τ )q
k
2 q

1
2+l xn

⎞

⎠

=
∏

n≥0

∏

k∈Z

∏

l≥0

(
1 − q

k
2 q

1
2+l xn

)Nn,k (τ )

, (37)

where we have used the formal series

1

1 − q
= 1 + q + q2 + · · · . (38)

Remark 3.4 When we write the formula (32) into the form of infinite product, one can
also use the formal series
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1

1 − q−1 = 1 + q−1 + q−2 + · · · . (39)

In order to make the connections to the Rogers–Ramanujan identities, here we need
the infinite product form (37) by using the expansion (38).

In the following two sections, we will show that when τ ∈ Z and τ ≤ 0, these
integers Nn,k(τ ) can be interpreted as the Betti numbers of certain cohomologies of
quiver varieties, which finishes the proof of Conjecture 3.3 for τ ≤ 0. As to the case
of τ ≥ 1, we study carefully for the special case of τ = 1, and we find that these
integers Nn,k(1) together with formula (37) give a deformed version of the famous
Rogers–Ramanujan identities (10) and (11).

4 Cohomologies of quiver varieties

Motivated by the previous works in Gauge theory [41,42], Nakajima [61,62] intro-
duced the quiver varieties and illustrated how to use them to construct the geometric
representations of Kac–Moody algebras. From then on, quiver varieties became to
be the central objects in mathematics, we refer to [40] for the introduction to quiver
varieties. Quiver varieties have a lot of structures and applications, for example, they
can be used to prove the famous Kac’s conjectures [35].

4.1 Kac’s conjecture

We follow the notations in [30,31]. Take a ground field K, denote by � = (I,�) a
quiver with I = {1, . . . , n} the set of vertices, and � the set of edges of �. For γ ∈ �,
let h(γ ), t (γ ) ∈ I denote the head and tail of γ . A representation of � of dimension
v = {vi }i∈I ∈ (Z≥0)

n over K is a collection of K-linear maps φγ : K
vt (γ ) → K

vh(γ )

for each γ ∈ � that can be identified with matrices by using the canonical base of
K

m . A representation is said to be absolutely indecomposable overK, if it is nontrivial
and not isomorphic to a direct sum of two nontrivial representations of � over K. A
indecomposable representation is said to be absolutely indecomposable over K, if it
is still indecomposable over any extension field of K.

In order to study the representation theory of general quiver �, Kac [35] introduced
Av(q), the number of isomorphic classes of absolutely indecomposable representa-
tions of � with dimension v = (v1, . . . , vn) over finite field Fq . Following the idea of
[35], Hua firstly computed the Kac polynomial Av(q) in the following form:

∑

v∈Z
n≥0 {0}

Av(q)

n∏

i=1

T vi
i = (q − 1) (40)

·Log
⎛

⎝
∑

(π1,...,πn)∈Pn

∏
γ∈� q〈π t (γ ),πh(γ )〉

∏
i∈I q〈π i ,π i 〉 ∏

k≥1
∏mk (π

i )
j=1 (1 − q− j )

n∏

i=1

T |π i |
i

⎞

⎠ ,
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where 〈, 〉 is the pairing on partitions defined by

〈λ,μ〉 =
∑

i, j

min(i, j)mi (λ)m j (μ). (41)

Kac [35] proved that Av(q) has integer coefficients and made two remarkable conjec-
tures:

(i) If� has no edge-loops, then the constant term of Av(0) is equal to themultiplicity
of the root v in the corresponding Kac–Moody algebra g(�).

(ii) The Kac polynomial Av(q) has nonnegative coefficients.
Conjecture (i) was proved byHausel [29] andConjecture (ii) was completely settled

by Hausel et al. [31] by using the theory of Nakajima quiver varieties and computing
via arithmetic Fourier transform. They introduced the following functionwhich largely
generalizes Hua’s formula (40)

H(x1, . . . , xn; q) := (q − 1) (42)

·Log
⎛

⎝
∑

(π1,...,πn)∈Pn

∏
γ∈� q〈π t (γ ),πh(γ )〉

∏
i∈I q〈π i ,π i 〉 ∏

k≥1
∏mk (π

i )
j=1 (1 − q− j )

n∏

i=1

H̃π i (xi ; q)

⎞

⎠ ,

where H̃π i (xi ; q) is the (transformed) Hall–Littlewood polynomial introduced in [21].
For s �μ(�x) := sμ1(x1) · · · sμn (xn), we let

H
s
�μ(q) := 〈H(x1, . . . , xn; q), s �μ(�x)〉. (43)

4.2 The quiver varieties Qṽ

In their remarkablework [31],Hausel et al. found thegeometric interpretationofHs
�μ(q)

by computing, via arithmetic Fourier transform, the dimensionof certain cohomologies
of Nakajima quiver varieties. Let us briefly recall the main results in [31].

We denote the space of all the representations of � over K with dimension v by

RepK(�, v) :=
⊕

γ∈�

Matvh(γ ),vt (γ )
(K). (44)

Let GLv = ∏
i∈I GLvi (K) and glv = ∏

i∈I glvi (K). The algebraic group GLv acts on
RepK(�, v) as

(g · φ)γ = gvh(γ )
φγ g

−1
vt (γ )

(45)

for any g = (gi )i∈I ∈ GLv, φ = (φγ )γ∈� ∈ RepK(�, v). Since the diagonal center
(λIvi )i∈I ∈ GLv acts trivially on RepK(�, v), the action reduces to an action of
Gv = GLv/K

×.
Let � be the double quiver of �, namely, � has the same vertices as �, but the

set of edges are given by � := {γ, γ ∗|γ ∈ �}, where h(γ ∗) = t (γ ) and t (γ ∗) =
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h(γ ). By the trace pairing, we may identify RepK(�, v) with the cotangent bundle
T∗RepK(�, v). We define the moment map

μv :RepK(�, v) → gl0v (46)

(xγ )γ∈� �→
∑

γ∈�

[xγ , xγ ∗ ],

where gl0v = {(Xi )i∈I ∈ glv|
∑

i∈I Tr(Xi ) = 0} is identified with the dual of the
Lie algebra of Gv. It is a Gv-equivariant map. For ξ = (ξi )i∈I ∈ K

I such that
ξ · v = ∑

i ξivi = 0, then

(ξi Ivi )i∈I ∈ gl0v. (47)

For such a ξ ∈ K
I , the affine variety μ−1

v (ξ) inherits a Gv-action. The quiver variety
Qv is the affine GIT quotient

μ−1
v (ξ)//Gv. (48)

The (related) quiver varieties were studied by many authors in past two decades, for
example [11,44,61,62].

Let �̃v on vertex set Ĩv be the quiver obtained from (�, v) by adding at each
vertex i ∈ I a leg of length vi − 1 with all the edges oriented towards the vertex i .

Let ṽ ∈ Z
Ĩv≥0 be the dimension vector with coordinate vi at i ∈ I ⊂ Ĩv and with

coordinates (vi − 1, vi − 2, . . . , 1) on the leg attached to the vertex i ∈ I . We let Qṽ
be the quiver variety attached to the quiver �̃v with parameter ξ̃ such that ξ̃ · ṽ = 0.
Denote by C̃v the Cartan matrix of the quiver �̃v, then

dṽ := 1 − 1

2
ṽt C̃vṽ (49)

equals 1
2 dimQṽ if Qṽ is nonempty.

Let Wv := Sv1 × · · · × Svn be the Weyl group of the group GLv := GLv1 ×
· · · × GLvn , it acts on H∗

c (Qṽ; C) by the work of Nakajima [61,62]. We denote by

χ �μ = χμ1 · · · χμn : Wv → C
× the exterior product of the irreducible characters χμi

of the symmetric group Svi in the notation of [55]. In particular, χ(vi ) is the trivial
character and χ(1vi ) is the sign character εi : Svi → {±1}.

The main result of [31] is

Theorem 4.1 (Theorem 1.4 and Corollary 1.5 in [31]) We have

H
s
�μ(q) =

∑

i

〈
ρ2i , εχ �μ〉

Wv
qi−dṽ , (50)

where 〈ρ2i , εχ �μ〉Wv is the multiplicity of εχ �μ in the representation ρ2i of Wv in
H2i
c (Qṽ; C).
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In particular, for �μ = (1v) = ((1v1), . . . , 1vn ) ∈ Pn, we have

H
s
1v(q) =

∑

j

dim
(
H2 j
c (Qṽ; C

)Wv
)q j−dṽ . (51)

4.3 A special case

For the quiver � = (I,�), we attach ki ≥ 1 infinite legs to each vertex i ∈ I of �.
Let k = (k1, . . . , kn) ∈ Z

n≥1. We set all the arrows on the new legs point towards
the vertex. Given a dimension vector v ∈ Z

n≥0 \ {0}, one can also construct quiver
varieties similarly including the previous construction as the special case of all ki = 1.
More precisely, let �̃(k) be the quiver obtained from (�, v) by adding at each vertex
i ∈ I ki infinite legs of the edges all oriented toward the vertex i . Denote by ṽ(k)

the dimension vector with coordinate vi at i ∈ I and with the same coordinates
(vi − 1, vi − 2, . . . , 1, 0, 0, . . .) on the ki legs attached to the vertex i ∈ I . Now we
let Qṽ(k) be the quiver variety associated to quiver �̃(k).

Corollary 4.2 ([31], Proposition 3.4, by changing q → q−1) We have the identity

(q−1 − 1)Log

⎛

⎝
∑

v∈Z
n≥0

q
1
2 (γ (v(k))+δ(v(k)))

∏n
i=1(1 − q) · · · (1 − qvi )

(−1)δ(v(k))
n∏

i=1

T vi
i

⎞

⎠ (52)

=
∑

v∈Z
n≥0

H
s
1v(k) (q

−1)(−1)δ(v(k))
n∏

i=1

T vi
i ,

where

γ (v(k)) =
n∑

i=1

(2 − ki )v
2
i − 2

∑

γ∈�

vt (γ )vh(γ ), δ(v(k)) =
n∑

i=1

kivi , (53)

and (1v(k)) = ((1v1)k1 , . . . , (1kn )kn ), where (1vi )ki denotes that (1vi ) appears ki times.

By Theorem 4.1, we obtain

H
s
1v(k) (q

−1) =
∑

j

dim
(
H2 j
c (Qṽ(k); C)Wv

)
qdṽ(k)− j . (54)

Now, we can finish the proof of Theorem 1.2.

Proof For the framing τ ∈ Z≤0, we take k = 1 − τ ∈ Z≥1. Consider the one vertex
quiver � = •, we construct a new quiver �(k) with the unique vertex attached with
k infinite legs as shown above. Associate a dimension vector ñ(k) to quiver �(k), we
have the quiver varietyQñ(k) by the construction showed previously. Now combining
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formulae (53) and (54) together in this special case, by the variable change x = q1/2T ,
we obtain

(q1/2 − q−1/2)Log

⎛

⎝
∑

n≥0

(−1)n(τ−1)q
n(n−1)

2 τ+ n2
2

(1 − q)(1 − q2) · · · (1 − qn)
xn

⎞

⎠ (55)

= −
∑

n≥0

H
s
1n(k) (q)1/2−n/2(−1)(τ−1)nxn

= −
∑

n≥0

∑

j

dim
(
H2 j
c (Qñ(k); C)Sn

)
q

1−n
2 +dñ(k)− j (−1)(τ−1)nxn .

Therefore,

f τ
n (q) = −

∑

j

dim
(
H2 j
c (Qñ(1−τ); C)Sn

)
q

1−n
2 +dñ(1−τ )− j (−1)(τ−1)n . (56)

Comparing to Formula (35), we obtain the formulae (7) and (8) in Theorem 1.2.
��

5 Deformed Rogers–Ramanujan identities

In the above section, we have interpreted and proved the integrality of Ooguri–Vafa
invariants Nn, j (τ ) for τ ∈ Z and τ ≤ 0. It is natural to ask how about the case τ ≥ 1?

As shown in Sect. 3, Conjecture 3.3 leads to the conjectural infinite product formula
(37).

In the following, we study carefully for Formula (37) in τ = 1.We find that if we let
nm,k := (−1)mNm,k , then nm,k will be nonnegative. After some concrete computation
by using Maple 13, we propose

Conjecture 5.1 For a fixed integer m ≥ 1, there exist finite many positive integers
nm,k , such that

∑

n≥0

qn
2

(1 − q) · · · (1 − qn)

(
q− 1

2 x
)n =

∏

m≥1

∏

k∈Z

∏

l≥0

(
1 − q

k+1
2 +l xm

)(−1)mnm,k
. (57)

In particular, when x = q
1
2 and x = q

3
2 , these integers nm,k together with the formula

(57) yield the two Rogers–Ramanujan identities (10) and (11).

Let us give some numerical checks for Conjecture 5.1.We introduce the polynomial

gm(q) =
∑

k∈Z

nm,kq
k . (58)

By using Maple 13, we have computed the polynomial gm(q) for 1 ≤ m ≤ 18. Here
is a list for them when m ≤ 6:
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g1(q) = 1

g2(q) = q,

g3(q) = q4,

g4(q) = q5 + q9,

g5(q) = q6 + q8 + q10 + q12 + q16,

g6(q) = q7 + 2q9 + q11 + 3q13 + q15 + 2q17 + q19 + q21 + q25.

If we let x = q
1
2 , identity (57) becomes

∑

n≥0

qn
2

(1 − q) · · · (1 − qn)
=

∏

m≥1

∏

k≥0

∏

l≥0

(
1 − q

m+k+1
2 +l

)(−1)mnm,k
(59)

=
∏

i

∏

l≥0

(1 − qi+l)ni ,

where ni = ∑
m+k+1=2i (−1)mnm,k , our computations imply that

ni =

⎧
⎪⎨

⎪⎩

−1, i = 5k + 1 or 5k + 4, for k ≥ 0,

1, i = 5k + 2 or 5k + 5, for k ≥ 0,

0, otherwise.

It turns out that formula (59) gives the first Rogers–Ramanujan identity (10).

Similarly, letting x = q
3
2 , identity (57) becomes

∑

n≥0

qn
2+n

(1 − q) · · · (1 − qn)
=

∏

m≥1

∏

k∈Z

∏

l≥0

(
1 − q

3m+k+1
2 +l

)(−1)mnm,k
(60)

=
∏

i

∏

l≥0

(1 − qi+l)ri ,

where ri = ∑
3m+k+1=2i (−1)mnm,k , we find that

ri =

⎧
⎪⎨

⎪⎩

−1, i = 5k + 2, for k ≥ 0,

1, i = 5k + 4, for k ≥ 0,

0, otherwise.

Hence formula (60) gives the second Rogers–Ramanujan identity (11).
Formula (57) in Conjecture 5.1 is a formula of type “infinite sum= infinite product.”

We expect it could be interpreted by the denominator formula for some kinds of root
system [36].

These conjectural integers nm,k appearing in Conjecture (5.1) are important.
Although we have not obtained an explicit formula for them, we have an explicit
formula for the value of

∑
k nm,k for any m ≥ 1.
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First, recall the definition of f τ
μ(q) in (31), we have

Z (C3,Dτ )(x; q) = Exp

⎛

⎝ 1

q
1
2 − q− 1

2

∑

μ∈P+
f τ
μ(q)sμ(x)

⎞

⎠ . (61)

By Formula (25) for the case of (C3,Dτ ), the open string free energy is given by

F (C3,Dτ )(x) = log Z (C3,Dτ )(x; q) (62)

= −
∑

μ∈P+

∑

g≥0

√−1
l(μ)

|Aut (μ)|K
(C3,Dτ )

μ,g, |μ|
2

g2g−2+l(μ)
s pμ(x),

which is the generating function the Gromov–Witten invariants K (C3,Dτ )

μ,g, |μ|
2

, and where

q = eigs .

An explicit expression for K (C3,Dτ )

μ,g, |μ|
2

is obtained in [38] (cf. Formula (15) in [54]).

In particular, for m ≥ 1 and g = 0, we have

K (C3,Dτ )

m,0,m2
= (−1)mτ

m2

(
m(τ + 1) − 1

m − 1

)
. (63)

Then, we combine (61) and (62) together, and consider the specialization x =
(x, 0, 0, . . .), it follows that

∑

m≥1

∑

g≥0

K (C3,Dτ )

m,g,m2
g2gs xm =

∑

d≥1

√−1gs

d(q
d
2 − q− d

2 )

∑

m≥1

∑

k

Nm,k(τ )q
dk
2 xdm . (64)

Taking the coefficients of xm in (64), and considering the limit gs → 0, we obtain

K (C3,Dτ )

m,0,m2
=

∑

d|m

1

d2
∑

k

Nm/d,k(τ ), (65)

where we have used

lim
gs→0

√−1gs

q
d
2 − q− d

2

= lim
gs→0

√−1gs

e
√−1gs d2 − e−√−1gs d2

= 1

d
. (66)

Finally, by Möbius inversion formula, we have

f τ
m(1) =

∑

k

Nm,k(τ ) =
∑

d|m

μ(md )
(m
d

)2 K
(C3,Dτ )

d,0, d2
, (67)

where μ(d) is the Möbius function.

123



Topological strings, quiver varieties,… 417

Therefore, by the expression (65) we obtain

Proposition 5.2 For m ≥ 1, the value f τ
m(1) of (3) at q = 1 is given by

f τ
m(1) = 1

m2

∑

d|m
μ(m/d)(−1)dτ

(
d(τ + 1) − 1

d − 1

)
. (68)

In the following, we will prove that

Theorem 5.3 For any m ≥ 1 and τ ∈ Z,

1

m2

∑

d|m
μ(m/d)(−1)dτ

(
d(τ + 1) − 1

d − 1

)
∈ Z. (69)

For τ ≤ 0, we have shown the integrality of Ooguri–Vafa invariant Nm,k(τ ) in
Theorem 1.2, so we only need to prove Theorem 5.3 for the case of τ > 0 in the
following.

In the author’s joint work with Luo [54], we develop a systematic method to deal
with the integrality of BPS numbers from string theory. We can apply our method
directly to prove Theorem 5.3.

We define the following function, for nonnegative integer n and prime number p,

f p(n) =
n∏

i=1,p�i

i = n!
p[n/p][n/p]! . (70)

Lemma 5.4 (cf. Lemma4.6 in [54]) For oddprimenumbers p andα ≥ 1or for p = 2,
α ≥ 2, we have p2α | f p(pαn) − f p(pα)n. For p = 2, α = 1, f2(2n) ≡ (−1)[n/2]
(mod 4).

Proof With α ≥ 2 or p > 2, pα−1(p − 1) is even, then

f p(p
αn) − f p(p

α(n − 1)) f p(p
α)

= f p(p
α(n − 1))

⎛

⎝
pα∏

i=1,p�i

(pα(n − 1) + i) − f p(p
α)

⎞

⎠

≡ pα(n − 1) f p(p
α(n − 1)) f p(p

α)

⎛

⎝
pα∑

i=1,p�i

1

i

⎞

⎠ (mod p2α)

≡ pα(n − 1) f p(p
α(n − 1)) f p(p

α)

⎛

⎝
[pα/2]∑

i=1,p�i

(
1

i
+ 1

pα − i

)⎞

⎠ (mod p2α)

≡ pα(n − 1) f p(p
α(n − 1)) f p(p

α)

⎛

⎝
[pα/2]∑

i=1,p�i

pα

i(pα − i)

⎞

⎠ ≡ 0 (mod p2α).
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Thus the first part of Lemma 5.4 is proved by induction. For p = 2, α = 1, the
remain argument is straightforward. ��
Lemma 5.5 For prime number p and n = pαa, p � a, α ≥ 1, τ ≥ 0, p2α divides

(−1)τn
(

(τ + 1)n − 1

n − 1

)
− (−1)τn/p

(
(τ + 1)n/p − 1

n/p − 1

)
.

Proof By a straightforward computation, we have

(−1)τn
(

(τ + 1)n − 1

n − 1

)
− (−1)τn/p

(
(τ + 1)n/p − 1

n/p − 1

)

= (−1)τn
(

(τ + 1)n/p − 1

n/p − 1

) (
f p((τ + 1)n)

f p(τn) f p(n)
− (−1)τ(n−n/p)

)
. (71)

For p > 2 or p = 2, α > 1, then n − n/p is even, thus (71) is divisible by p2α by
Lemma 5.4. For p = 2, α = 1, (71) is divisible by 4 if

[
(τ + 1)n

4

]
+

[τn

4

]
+

[n
4

]
− τ

(
n − n

2

)
≡ 0 (mod 2)

which depends only on τ (mod 2), verify for τ ∈ {0, 1} to get the results. ��
Now, we can finish the proof of Theorem 5.3.

Proof For m ≥ 1, we write m = pα1
1 pα2

2 · · · pαr
r , where each αi ≥ 1 and p1, . . . , pr

are r distinct primes.
By the definition of Möbius function, only when m/d = pδ1

1 pδ2
2 · · · pδr

r for δi ∈
{0, 1}, μ(m/d) is nonzero and

μ(pδ1
1 pδ2

2 · · · pδr
r ) = (−1)

∑r
i=1 δi . (72)

Therefore,

∑

d|m
μ(m/d)(−1)dτ

(
d(τ + 1) − 1

d − 1

)

=
∑

δi∈{0,1},1≤i≤r

(−1)
∑r

i=1 δi (−1)τnδ

(
(τ + 1)nδ − 1

nδ − 1

)
, (73)

where nδ = pα1−δ1
1 pα2−δ2

2 · · · pαr−δr
r . We need to show for any 1 ≤ i ≤ r , (73) is

divisible by p2αii . Without loss of generality, we only show that (73) is divisible by

p2α11 in the following.
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Indeed, (73) is equal to

∑

δ j∈{0,1}, j≥2

(−1)δ2+···+δr

(
(−1)τnδ′

(
(τ + 1)nδ′ − 1

nδ′ − 1

)

−(−1)τnδ′/p1
(

(τ + 1)nδ′/p1 − 1

nδ′/p1 − 1

))
, (74)

where nδ′ = pα1
1 pα2−δ2

2 · · · pαr−δr
r = pα1a. Therefore, by Lemma 5.5, the formula

(73) is divisible by p2α11 , hence we complete the proof of Theorem 5.3. ��
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