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Abstract The polynomial Ramanujan sumwas first introduced byCarlitz (DukeMath
J 14:1105–1120, 1947), and a generalized version by Cohen (Duke Math J 16:85–90,
1949). In this paper, we study the arithmetical and analytic properties of these sums,
deriving various fundamental identities, such as Hölder formula, reciprocity formula,
orthogonality relation, and Davenport–Hasse type formula. In particular, we show that
the special Dirichlet series involving the polynomial Ramanujan sums are, indeed, the
entire functions on the whole complex plane, and we also give a square mean values
estimation. The main results of this paper are new appearance to us, which indicate
the particularity of the polynomial Ramanujan sums.
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1 Introduction and results statement

One hundred years ago, Ramanujan was the first to appreciate the importance of the
following exponential sum:
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c(m, n) =
n∑

d=1,
(d,n)=1

e

(
md

n

)
, (1.1)

where e(x) = e2π i x ; n and m are positive integers. His interest in this sum originated
in his desire to obtain expression for a variety of well-known arithmetical functions
in the form of a series

∑
n anc(m, n); in particular, he obtained some very famous

identities, for example (see [29] and [41])

+∞∑

n=1

c(m, n)

n
= 0,

+∞∑

n=1

c(m, n)

m
= −�(n) and c(m, n) =

∑

d|n,d|m
dμ

(n
d

)
,

(1.2)
whereμ(n) is the Möbius function;�(n) is the Mangoldt function, and the last equal-
ity is usually said to be the Kluyver’s equality. Following him, many other authors
were also interested in this fascinating sum [6,7,36], especially it makes surprising
appearances in singular series of the Hardy–Littlewood asymptotic formula for War-
ing problems and in the asymptotic formula of Vingradov on sums of three primes.
For details, the reader is referred to [18].

Many mathematicians later tried to generalize this sum to find more and more
applications. One of the most popular generalization was given by Cohen [10–12,14]
(or see [46]) that

ck(m, n) =
n∑

d=1,
(d,nk)k=1

e

(
md

nk

)
, (1.3)

where the g.c.d function (a, b)k is the greatest common kth power divisors of the
integers a and b. In [10] and [12], Cohen presented an analogue of the Kluyver and
Hölder formula for the above generalized Ramanujan sums

ck(m, n) =
∑

d|n,dk |m
dkμ

(n
d

)
= φk(n)μ(N )φ−1

k (N ), (1.4)

where Nk = nk

(m,nk )k
, and φk(n) is the Jordan totient function given by the following

product expression (z is a complex number):

φz(n) = nz
∏

p|n
p prime

(
1 − 1

pz

)
. (1.5)

Various other generalizations were discussed in many papers including that of
[3,9,16,32,35,42,50]. Here, wemention another interesting result, namely reciprocity
formula. In [26,27], Johenson showed that

μ(m̄)c(nm∗,m)

m∗ = μ(n̄)c(mn∗, n)

n∗ , (1.6)
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On the polynomial Ramanujan sums over finite fields 865

where n̄ denotes the largest square-free divisions of n, and n∗ = n
n̄ .

In more recent years, people have more and more interests in this sum; it appeared
in various other seemingly unrelated problems. In Algebra, Ramanujan sums as the
super characters exhibit a new application of the theory of super characters [20],
which recently developed by Diaconis–Issacs and Andre’ [15], and Ramanujan sums
in arithmetical semigroup [22]. In number theory, Ramanujan sums appeared in the
study ofWaring type formula [30], the distribution of rational numbers in short interval
[28], equirepartitionmodulo odd integers [5], the distribution of average of Ramanujan
sums [1,2,8,21,34,37,44,49], graph theory [17], symmetry classes of tensors [47],
combinatorics [43], cyclotomic polynomials [19,33,48], and Mahler matrices [31]. In
physics, Ramanujan sums have applications in the processing of low-frequency noise
[39], and of long-period sequences [40], and in the study of quantum phase locking
[38].

The main purpose of this paper is to generalize the Ramanujan sums to the polyno-
mial case, anddiscuss various analogueproperties of the classical case. Thepolynomial
Ramanujan sumwas first introduced byCarlitz [7], and a generalized version byCohen
[10]. To state their definition, let Fq be a finite field with q = pl elements, where p
is a prime number; Fq [x] be the polynomial ring. Suppose H is a fixed polynomial in
Fq [x], and H �= 0, we first choose a complex-valued character of the additive group of
the residue class ringFq [x]/〈H〉; these characters are said to be the additive characters
modulo H on Fq [x]. If A is in Fq [x], let A ≡ am−1xm−1 + · · · + a1x + a0 (mod H),
wherem = deg(H), we set an additive function modulo H on Fq [x] by t (A) = am−1.
Then, for any A and B in Fq [x], we have t (A+ B) = t (A)+ t (B), and t (A) = t (B) if
A ≡ B (mod H), in particular, t (A) = 0 whenever H |A. To generalize this t-function
modulo H , for any given polynomial G in Fq [x], we let tG(A) = t (GA). Clearly, tG
is also an additive function modulo H , that is

tG(A + B) = tG(A) + tG(B) and tG(A) = tG(B) if A ≡ B (mod H). (1.7)

Next, let λ be a fixed non-principal character on Fq , for example, one may choose
λ(a) = e

( tr(a)
p

)
for a ∈ Fq , where tr(a) is the trace map from Fq to Fp. We define a

complex-valued function E(G, H) on Fq [x] by

E(G, H)(A) = λ(tG(A)). (1.8)

It is easy to see that E(G, H) is an additive character modulo H on Fq [x], and

E(G, H)(A) = E(A, H)(G). (1.9)

The polynomial Ramanujan sum modulo H on Fq [x] is given by (see Carlitz [7, 4.1])

η(G, H) =
∑

Dmod H,
(D,H)=1

E(G, H)(D), (1.10)
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866 Z. Zheng

where the summation extends over a complete residue system modulo H in Fq [x].
If k ≥ 1 is a fixed integer, the generalized version of Cohen (see [10, 3.3]) is the
following:

ηk(G, H) =
∑

Dmod Hk ,

(D,Hk )k=1

E(G, Hk)(D), (1.11)

where the summation ranges over a complete residue systemmodulo Hk in Fq [x], and
the g.c.d. function (A, B)k denotes the largest kth power common divisor (monic) of
the polynomials A and B in Fq [x]. We set (A, B)1 = (A, B) the usual g.c.d. function.
If Dmod Hk with (D, Hk)k = 1, which is said to be a k-reduced residue system
modulo H according to Cohen [11,12]. Clearly, η1(G, H) = η(G, H).

By the above notations, it is easy to verify (see [10, (3.4) and (3.5)]) that

ηk(G1, H) = ηk(G2, H), if G1 ≡ G2 (mod Hk), (1.12)

ηk(G, H1H2) = ηk(G, H1)ηk(G, H2), if (H1, H2) = 1, (1.13)

and

ηk(G, H) =
∑

D|H,Dk |G
|D|kμ

(
H

D

)
, (1.14)

where and later, μ(H) is the Möbius function on Fq [x], |D| = qdeg(D) is the absolute
value function on Fq [x], and D|H means D is a monic divisor of H , and

∑
D|H means

D extending over all of monic divisors of H .
We note that the additive characters E(G, H) given by (1.8) are, indeed, all of

the additive characters ψ modulo H ; in other words, for any additive character ψ

modulo H , there exists a unique polynomial G in Fq [x], such that ψ = E(G, H),
and deg(G) < deg(H) (See Lemma 2.1). Therefore, the polynomial Ramanujan
sums η(G, H) and ηk(G, H) coincide with the classical sums c(m, n) and ck(m, n)

respectively.
The first result of this paper is to derive an analogue of Hölder formula for the

polynomial sums. There is no essential difficulty to do this, but we make use of a
simpler method to show (see Theorem 2.1) that

η(G, H) = φ(H)μ

(
H

(G, H)

)
φ−1

(
H

(G, H)

)
,

and ηk(G, H) = φk(H)μ(N )φ−1
k (N ), (1.15)

where φ(H) is the Euler totient function, and φk(H) is the Jordan totient function
on Fq [x], and Nk = Hk

(G,H)k
. As we know, in the classical case, the proof of (1.4) by

Cohen is more complicated (see Theorem 1 of [12]).
The second result is to present an analogue of the reciprocity formula for the poly-

nomial Ramanujan sums (see Theorem 3.1). Let H̄ be the largest square-free divisor
of H , and H∗ = H

H̄
, then we have
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On the polynomial Ramanujan sums over finite fields 867

μ(H̄)η(GH∗, H)

|H∗| = μ(Ḡ)η(HG∗,G)

|G∗| . (1.16)

The generalized sums ηk(G, H) seemingly cannot share this kind of formula when
k > 1; however, we derive the second reciprocity formula for ηk(G, H) (see Theo-
rem 3.3): if Dk

1 |H and Dk
2 |H , then

φk(D2)ηk

(
H

Dk
2

, D1

)
= φk(D1)ηk

(
H

Dk
1

, D2

)
. (1.17)

The importance of (1.17) lies in the fact that it is equivalent to the Hölder formula
(1.15), and plays a role in the proof of the orthogonal relation formula (4.13).

The main results of this paper are the following theorems on the special Dirich-
let series involving in the polynomial Ramanujan sums. Let A be the set of monic
polynomials of Fq [x]. We define

δk(s,G) =
∑

H∈A

ηk(G, H)

|H |s =
+∞∑

n=0

A(n)q−ns (1.18)

and

τk(s, H) =
∑

G∈A

ηk(G, H)

|G|s =
+∞∑

n=0

B(n)q−ns, (1.18’)

where s = c + i t is a complex number, and

A(n) =
∑

H∈A
deg(H)=n

ηk(G, H), B(n) =
∑

G∈A
deg(G)=n

ηk(G, H).

The last two infinite series in (1.18) and (1.18’) are the definitions of δk(s,G) and
τk(s, H), which tell us how to understand the special Dirichlet series in the middle of
(1.18) and (1.18’). We show that

Theorem 1.1 If G �= 0, then δk(s,G) is an entire function on the whole complex
plane, and we have

δk(s,G) = (1 − q1−s)
∑

Dk |G
|D|k−s . (1.19)

In particular, we have

δk(1,G) =
∑

H∈A

ηk(G, H)

|H | = 0. (1.20)

Furthermore, for any real numbers c and T > 0, we also have the following square
mean value estimation:
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1

2T

∫ T

−T
|δk(c + i t,G)|2dt =

(
1 + q2(1−c)

)
σ0(2(k − c),G)

− 2q1−kσ1(2(k − c),G) + O

(
1

T

)
, (1.21)

where (x is a real number)

σ0(x,G) =
∑

Dk
1 |G,Dk

2 |G
deg(D1)=deg(D2)

|D1|x , and σ1(x,G) =
∑

Dk
1 |G,Dk

2 |G
deg(D1)=deg(D2)+1

|D1|x ,

(1.22)
and the constant implied by “O” depends on q, G, and c only.

If G = 0, then E(G, Hk) is the principal additive character modulo Hk , and
ηk(G, H) = φk(H) by (1.11). It is easy to see that

δk(s,G) = ζ−1
A

(s)ζA(s − k), if Re(s) > k + 1, (1.23)

where ζA is the zeta function on Fq [x] given by

ζA(s) =
∑

H∈A

1

|H |s . (1.24)

It is well known (see [45, Chap. 2]) that

ζA(s) =
(
1 − q1−s

)−1
, if Re(s) > 1. (1.25)

Therefore, ηk(s,G) has a simple pole s = k+1 with residue 1
ζA(k+1) log q at s = k+1,

when G = 0.

Theorem 1.2 If H is a positive degree polynomial in Fq [x], then τk(s, H) is an entire
function on the whole complex plane, and we have

τk(s, H) = (1 − q1−s)−1φk(1−s)(H), (1.26)

where φk(1−s)(H) is the generalized Jordan totient function given by

φz(H) = |H |z
∏

P|H
P irreducible

(
1 − 1

|P|z
)

. (1.27)

Especially, if s = 1, we have

τk(1, H) =
∑

G∈A

ηk(G, H)

|G| = −k�(H)

log q
, (1.28)
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On the polynomial Ramanujan sums over finite fields 869

where�(H) is the Mangoldt function on Fq [x]. Moreover, for any real numbers c and
T with c �= 1 and T > 0, we have

1

2T

∫ T

−T
|τk(c + i t, H)|2dt =∣∣1 − q2c(1−c)

∣∣−1

×
∑

D1|H,D2|H
deg(D1)=deg(D2)

μ

(
H

D1

)
μ

(
H

D2

)
|D1|2(1−c)

+ 2|1 − q2(1−c)|−1

×
∑

D1|H,D2|H
deg(D1)>deg(D2)

μ

(
H

D1

)
μ

(
H

D2

)

× |D1|(k+2)(1−c)|D2|(2−k)(1−c) + O

(
1

T

)
, (1.29)

where the constant implied by “O” depends on q, H, and c only.

If deg(H) = 0, then ηk(G, H) = 1 for any G in Fq [x], it follows that τk(s, H) =
ζA(s), which has a simple pole s = 1 with residue 1

log q at s = 1. If c = 1, the square
mean value estimation is more complicated, and we will present it in another place.

The polynomial Ramanujan sum η(G, H) in fact is a special type of Gauss sum
on Fq [x]. In [51], we presented an analogue of Davenport–Hasse’s theorem for the
polynomial Gauss sums (see [51, Theorem 1.3]). In the last section of this paper, we
show that the generalized polynomial Ramanujan sums ηk(G, H) also share this kind
of Davenport–Hasse’s formula (see Theorem 7.1).

Throughout this paper, P denotes an irreducible polynomial in Fq [x], D|H means
that D is a monic divisor of H ;

∑
D|H means D extending over all of monic divisors

of H , and |H | = qdeg(H) is the absolute value function on Fq [x].

2 Preliminaries

We start this section by determining the construction of the additive character group
modulo H on Fq [x] via E(G, H).

Lemma 2.1 For any ψ , an additive character modulo H on Fq [x], there exists a
unique polynomial G in Fq [x] such that ψ = E(G, H), and deg(G) < deg(H).

Proof For the sake of convenience, we write ψG = E(G, H). By (1.8), we have
ψG1 = ψG2 , if G1 ≡ G2 (mod H), and hence we may set G in a complete residue
system modulo H in Fq [x], so that deg(G) < deg(H). Moreover, we have

ψG1+G2 = ψG1 · ψG2 and ψ̄G = ψ−G , (2.1)

where ψ̄G is the usual conjugation of a complex number ψG . Since ψG = ψ0, the
principal additive character modulo H , if G = 0, or H |G. Conversely, we have
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870 Z. Zheng

ψG = ψ0 if and only if H |G. To show that statement, we see that λ is a non-principal
additive character on Fq by assumption, then there is an element a in Fq , so that
λ(a) �= 1. If H � G, we let

R = (G, H) = xk + ak−1x
k + · · · + a1x + a0 ∈ Fq [x], (2.2)

where 0 ≤ k ≤ m − 1, and m = deg(H). It follows that

axm−1−k R = axm−1 + · · · .

We note the following congruent equation in variable T that

GT ≡ axm−1−k R (mod H) (2.3)

is solvable in Fq [x]; therefore, there exists a polynomial A in Fq [x] such that

GA ≡ axm−1 + · · · . (mod H), (2.4)

and tG(A) = t (GA) = a, so ψG(A) = λ(tG(A)) = λ(a) �= 1, and ψG �= ψ0. By
(2.1), we have immediately

ψG1 �= ψG2 , if G1 �≡ G2 (mod H) (2.5)

because if ψG1 = ψG2 then ψG1−G2 = ψ0, and G1 ≡ G2 (mod H). This shows that
ψG are different from each other when G running through a complete residue system
of modulo H . Hence, there are exactly |H | = qm different characters ψG , but the
number of additive characters modulo H on Fq [x] is exactly qm , thus every character
ψ is just of the form ψG . We complete the proof of Lemma 2.1. ��

Next two lemmas are not new; one may find them in Carlitz [7] (see [7, (2.4), (2.5),
and (2.6)]), but we give a more explicit expression here.

Lemma 2.2 If A is a monic polynomial in Fq [x], then we have

E(GA, H A) = E(G, H). (2.6)

Proof For any B ∈ Fq [x], let

GB ≡ am−1x
m−1 + · · · + a1x + a0 (mod H),

then

AGB ≡ A(am−1x
m−1 + · · · + a0) (mod AH).

Because A is a monic polynomial, we see that the function tGA modulo H A just is
the function tG modulo H . It follows that

E(GA, H A)(B) = λ(tG(B)) = E(G, H)(B), (2.7)

and the lemma follows immediately. ��
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On the polynomial Ramanujan sums over finite fields 871

Lemma 2.3 Suppose A ∈ Fq [x], then we have

∑

Gmod H

E(G, H)(A) =
{
|H|, if H|A,

0, otherwise,
(2.8)

where the summation extends over a complete residue system modulo H.

Proof By Lemma 2.1, it just is the orthogonal relation formula; we have the lemma
at once. ��

The following lemma is amore complicated orthogonal relation, whichwill be used
in the next section.

Lemma 2.4 If D1|H, D2|H, (X, Dk
1)k = 1, and (Y, Dk

2)k = 1, where X and Y are
two polynomials in Fq [x] with deg(X) < k deg(D1) and deg(Y ) < k deg(D2), then
we have

∑

A+B≡G (mod Hk )

E(X, Dk
1)(A)E(Y, Dk

2)(B)

=
{ |H |k E(X, Dk), if X = Y, D1 = D2 = D,

0, otherwise,
(2.9)

where the summation ranges over a complete residue system modulo Hk.

Proof We first note that E(G, H) = E(G, a−1H), where a is the leading coefficient
of H . Without loss of generality, we may suppose that H is a monic polynomial, and
write D1R1 = H , D2R2 = H , and B = G − A (mod Hk), then the left side of (2.9)
is (see (1.9)) that

∑

Amod Hk

E
(
X, Dk

1

)
(A)E

(
Y, Dk

2

)
(G − A)

= E(Y, Dk
2)(G)

∑

Amod Hk

E
(
XRk

1, H
k)(A)E

(
Y Rk

2, H
k)(−A)

= E(Y, Dk
2)(G)

∑

Amod Hk

E
(
A, Hk)(XRk

1 − Y Rk
2

)
. (2.10)

By Lemma 2.3, the inner sum in the above equality is zero, if XRk
1 − Y Rk

2 �≡
0 (mod Hk), and |H |k , if XRk

1 ≡ Y Rk
2 (mod Hk). Since deg(X) < k deg(D1) and

deg(Y ) < k deg(D2), we have XRk
1 = Y Rk

2, if XRk
1 ≡ Y Rk

2 (mod Hk). It follows that
XDk

2 = Y Dk
1, and D1 = D2, X = Y , since (X, Dk

1)k = (Y, Dk
2)k = 1. We complete

the proof of this lemma. ��
Remark 2.1 According to Definition 3.3 of [24], we may give a modern way to
approach the additive characters modulo H on Fq [x] (see (1.8)). Let K = Fq(x)
be the field of rational functions over Fq , and K∞ be the completion of K with respect
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872 Z. Zheng

to the infinite place. Then every α ∈ K∞ can be expressed in a unique way in Laurent
series of the form

α =
+∞∑

i=n

ai

(
1

x

)i

, n ∈ Z, ai ∈ Fq and an �= 0.

Let res∞(α) = a1, which is said to be the residue of α at the infinite place. Let H be
a fixed polynomial in Fq [x], H �= 0, and G be in Fq [x] with deg(G) < deg(H). We
may define an additive character E(G, H) on K+∞ by (see also Sect. 3 of [25])

E(G, H)(α) = λ

(
res∞

(
Gα

H

))
,

where K+∞ is the additive group of the local field K∞, and λ is a fixed non-principal
character on Fq as before. It is easy to see that the restriction of E(G, H) on Fq [x] is
an additive character modulo H on Fq [x]. By this definition, we see that Lemma 2.2
is trivial.

Next, we give a simple proof of (1.14) and (1.15). In order to prove the Kluyver
and Hölder’s formula in the polynomial case, we first make some slight modification
of the Möbius inversion formula on Fq [x].
Definition 2.1 A non-zero mapping δ from Fq [x] to the complex plane is said to be
an arithmetical function on Fq [x], if δ(aA) = δ(A) for any a ∈ F

∗
q and A ∈ Fq [x]. It

is said to be a multiplicative function, if δ(AB) = δ(A) · δ(B), whenever (A, B) = 1,
and a complex multiplicative function, if δ(AB) = δ(A) · δ(B) for any A, B in Fq [x].

We start with the following a few important examples of the arithmetical functions
on Fq [x].

Möbius function μ(H): Let μ(0) = 0, and

μ(H) =
⎧
⎨

⎩

1, if H ∈ F
∗
q ,

0, if there exists a P such that P2|H,

(−1)t , if H = P1P2 · · · Pt ,where Pj are different.
(2.11)

It is easy to see that μ(H) is a multiplicative function on Fq [x]. Moreover, we have
the following identities that

∑

D|H
μ(D) =

{
1, if deg(H) = 0,
0, if deg(H) ≥ 1,

(2.12)

and ∑

Dk |H
μ(D) =

{
1, if D is kth power divisors-free,
0, otherwise.

(2.13)

Euler totient function φ(H): If H �= 0, we define φ(H) to be the number of
polynomials of degree less than deg(H) that are coprime to H , and φ(0) = 0.
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On the polynomial Ramanujan sums over finite fields 873

Jordan totient function φk(H): If H �= 0, φk(H) is the number of polynomials
of degree less than k · deg(H) that have no common kth power divisors other than one
with Hk .

Clearly, φ1(H) = φ(H), and φk(H) is a multiplicative function on Fq [x]. The
following equalities are easy to verify:

∑

D|H
φ(D) = |H | and

∑

D|H
φk(D) = |H |k . (2.14)

Mangoldt function �(H): We define the Mangoldt function �(H) on Fq [x] by

�(H) =
{
log |P|, if H = Pt , t ≥ 1,
0, otherwise.

(2.15)

It is easy to see that ∑

D|H
�(D) = log |D|. (2.16)

Lemma 2.5 (Möbius Inversion Formula) If (H) and δ(H) are two arithmetical
functions on Fq [x], then

(H) =
∑

D|H
δ(D), for all H �= 0, (2.17)

if and only if

δ(H) =
∑

D|H
μ(D)

(
H

D

)
, for all H �= 0. (2.18)

Proof The proof is similar to the classical case; from (2.12), we have the lemma
immediately. ��

As a direct consequence of Lemma 2.5, from (2.14) and (2.16), we have

φ(H) =
∑

D|H
μ(D)

∣∣∣∣
H

D

∣∣∣∣ = |H |
∏

P|H

(
1 − 1

|P|
)

, (2.19)

φk(H) =
∑

D|H
μ(D)

∣∣∣∣
H

D

∣∣∣∣
k

= |H |k
∏

P|H

(
1 − 1

|P|k
)

, (2.20)

and

�(H) =
∑

D|H
log |D| · μ

(
H

D

)
. (2.21)

We give a simple proof of (1.14) and (1.15) now. The method here is an analogue
of Anderson and Apostol [3], or see Apostol [4].
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Lemma 2.6 (Kluyver’s formula) Let ηk(G, H) be the polynomial Ramanujan sums
given by (1.11), and H �= 0, then we have

ηk(G, H) =
∑

D|H,Dk |G
|D|kμ

(
H

D

)
. (2.22)

Proof By (2.13), we have

ηk(G, H) =
∑

Rmod Hk

E(G, Hk)(R)
∑

Dk |(R,Hk )k

μ(D)

=
∑

D|H
μ(D)

∑

Rmod Hk

Dk |R

E(G, Hk)(R)

=
∑

D|H
μ(D)

∑

Rmod Hk

Dk |R

E(R, Hk)(G). (2.23)

We write R = A · Dk , and note that E(R, Hk) = E(A,
( H
D

)k
) by Lemma 2.2. It

follows that

ηk(G, H) =
∑

D|H
μ(D)

∑

Amod
(
H
D

)k
E

(
A,

(
H

D

)k
)

(G)

=
∑

D|H
μ

(
H

D

) ∑

Amod Dk

E(A, Dk)(G)

=
∑

D|H
Dk |G

μ

(
H

D

)
|D|k . (2.24)

We complete the proof of Lemma 2.6. ��
Theorem 2.1 (Hölder formula) For any G and H in Fq [x] and H �= 0, we have

ηk(G, H) = φk(H)μ(N )φ−1
k (N ), where Nk = Hk

(G, Hk)k
. (2.25)

Proof Let (G, Hk)k = Ak , then D|H and Dk |G if and only if D|A. Let N = H
A , then

by Lemma 2.6, we have

ηk(G, H) =
∑

D|A
|D|kμ

(
N A

D

)
=

∑

D|A
μ(ND)

∣∣∣∣
A

D

∣∣∣∣
k

=μ(N )
∑

D|A
(D,N )=1

μ(D)

∣∣∣∣
A

D

∣∣∣∣
k
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=μ(N )|A|k
∏

P|A
P�N

(1 − |P|−k)

=μ(N )|A|k ∏
P|A·N (1 − |P|−k)

∏
P|N (1 − |P|−k)

=μ(N )|H |k ∏
P|H (1 − |P|−k)

|N |k ∏
P|N (1 − |P|−k)

=φk(H)μ(N )φ−1
k (N ), (2.26)

where Nk = Hk

Ak = Hk

(G,Hk )k
. We complete the proof of Theorem 2.1. ��

By (2.25), (1.15) and (1.14) follow immediately; in particular, we have

ηk(G, H) = φk(H) if Hk |G, (2.27)

and
ηk(G, H) = μ(H) if (G, Hk)k = 1. (2.28)

3 Reciprocity formula

In this section, we give two reciprocity formulas for the polynomial Ramanujan sums.
We start with the following lemmas.

Lemma 3.1 Let η(G, H) be the polynomial Ramanujan sum given by (1.10), and
H be a square-free polynomial, then μ(H)η(G, H) is a multiplicative function in
variable G.

Proof Let f (G) = μ(H)η(G, H), H = P1P2 · · · Pn , and G = G1 · G2, where
(G1,G2) = 1. We set

(G, H) =
∏

i∈γ

Pi , (G1, H) =
∏

i∈γ1

Pi , (G2, H) =
∏

i∈γ2

Pi , (3.1)

where γ1 ∪ γ2 = γ ⊂ {1, 2, . . . , n}, and γ1 ∩ γ2 is an empty set. Then by the Hölder
formula (2.25) (k = 1), we have

f (G) = (−1)−|γ |μ2(H)
∏

i∈γ

φ(Pi ), (3.2)

f (G1) = (−1)−|γ1|μ2(H)
∏

i∈γ1

φ(Pi ), (3.3)

and
f (G2) = (−1)−|γ2|μ2(H)

∏

i∈γ2

φ(Pi ). (3.4)
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Since |γ1| + |γ2| = |γ |, and μ2(H) = μ4(H), then f (G) = f (G1) · f (G2), and the
lemma follows. ��
Lemma 3.2 If H is square-free, then we have

μ(H)η(G, H) =
∑

D|(G,H)

|D|μ(D). (3.5)

Proof Since the both sides of (3.5) are multiplicative in G, it suffices to prove that
when G = Ps . Let H = P1P2 · · · Pn . If P �= Pj , 1 ≤ j ≤ n, then the both sides of
(3.5) are one, so we may let P = Pj . It follows that

μ(H)η(G, H) = −μ2(H)φ(Pj ) = 1 − |Pj |, (3.6)

and ∑

D|(G,H)

|D|μ(D) = 1 − |Pj |. (3.7)

The lemma follows at once. ��
We note that the sum in (3.5) is symmetric in G and H , and hence as a direct

consequence of Lemma 3.2, we have

Corollary 3.1 Suppose that both G and H are square-free, then

μ(H)η(G, H) = μ(G)η(H,G). (3.8)

Theorem 3.1 (The first reciprocity formula) Let H̄ be the largest square-free divisor
of H, and H∗ = H

H̄
, then

μ(H̄)η(GH∗, H)

|H∗| = μ(Ḡ)η(HG∗,G)

|G∗| . (3.9)

Proof It is easy to verify the observation of Hardy that

η(G, H) = 0 if H∗
� G and φ(H) = |H∗|φ(H̄). (3.10)

In order to prove (3.9), we first show that

η(GH∗, H) = |H∗|η(G, H̄). (3.11)

By (2.25)(k = 1), one has

η(GH∗, H) = φ(H)μ

(
H

(GH∗, H)

)
φ−1

(
H

(GH∗, H)

)

= |H∗|φ(H̄)μ

(
H̄

(G, H̄)

)
φ−1

(
H̄

(G, H̄)

)

= |H∗|η(G, H̄),
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and (3.11) follows. We note that η(G, H̄) = η(Ḡ, H̄); it follows by Corollary 3.1 that

μ(H̄)η(GH∗, H)

|H∗| = μ(H̄)η(G, H̄) = μ(H̄)η(Ḡ, H̄)

= μ(Ḡ)η(H̄ , Ḡ) = μ(Ḡ)η(H, Ḡ)

= μ(Ḡ)η(HG∗,G)

|G∗| .

We complete the proof of Theorem 3.1. ��
The next reciprocity property first appeared in [20, Theorem 3.8] in the rational

case, and here, we present an analogue in the polynomial case.

Theorem 3.2 (The second reciprocity formula) If D1|H, and D2|H, then we have

φ(D2)η

(
H

D2
, D1

)
= φ(D1)η

(
H

D1
, D2

)
. (3.12)

Proof By (2.25), then

η

(
H

D2
, D1

)
= φ(D1)μ

⎛

⎝ D1(
H
D2

, D1

)

⎞

⎠ φ−1

⎛

⎝ D1(
H
D2

, D1

)

⎞

⎠ (3.13)

and

η

(
H

D1
, D2

)
= φ(D2)μ

⎛

⎝ D2(
H
D1

, D2

)

⎞

⎠ φ−1

⎛

⎝ D2(
H
D1

, D2

)

⎞

⎠ . (3.14)

We write D = D1D2, then

D1(
H
D2

, D1

) = D

(H, D)
= D2(

H
D1

, D2

) , (3.15)

and the theorem follows at once. ��
The importance of (3.12) lies in the fact that it is equivalent to the Hölder formula

(2.25) (k = 1). If we take D1 = H , and D2 = H
(G,H)

in (3.12), and note that

η(G, H) = η((G, H), H), (3.16)

and η(1, H) = μ(H), then

η(G, H) = φ(H)μ

(
H

(G, H)

)
φ−1

(
H

(G, H)

)
, (3.17)

which is the Hölder formula of η(G, H).
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The generalized polynomial Ramanujan sum ηk(G, H) seemingly cannot share the
first reciprocity formulawhen k > 1, sinceG and H are not symmetric in a generalized
version of (3.5). But, indeed, ηk(G, H) shares the second reciprocity formula.

Theorem 3.3 If Dk
1 |H and Dk

2 |H, then

φk(D2)ηk

(
H

Dk
2

, D1

)
= φk(D1)ηk

(
H

Dk
1

, D2

)
. (3.18)

Proof By (2.25), we have

ηk

(
H

Dk
2

, D1

)
= φk(D1)μ(N1)φ

−1
k (N1) (3.19)

and

ηk

(
H

Dk
1

, D2

)
= φk(D2)μ(N2)φ

−1
k (N2), (3.20)

where Nk
1 = Dk

1

( H
Dk
2
,Dk

1)k
and Nk

2 = Dk
2

( H
Dk
1
,Dk

2)k
.

We write D = D1D2, then

Nk
1 = Dk

(H, Dk)k
= Nk

2 . (3.21)

It follows that N1 = N2, and we have Theorem 3.3. ��
As the case of k = 1, (3.18) is equivalent to (2.25). If we replace H by Hk in (3.18),

then if D1|H and D2|H , we have

φk(D2)ηk

(
Hk

Dk
2

, D1

)
= φk(D1)ηk

(
Hk

Dk
1

, D2

)
. (3.22)

As an analogue of the above equality in the rational case, one may see Lemma 1 of
[12]. Taking D1 = H , and D2 = H

A , where Ak = (G, Hk)k in (3.22), we note that

ηk(G, H) = ηk(A
k, H) and ηk(1, H) = μ(H). (3.23)

It follows that
ηk(G, H) = φk(H)μ(N )φ−1

k (N ),

where N = H
A , and Nk = Hk

Ak = Hk

(G,Hk )k
, we have (2.25) at once.

To make applications of the first reciprocity formula, one may follow Johnson
[26] to consider the C-series representations and the C ′-series representation for the
arithmetical function on Fq [x], and show that the two classes of representation are
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equivalent under certain conditions. Here we consider a special Dirichlet series and
derive its values by using Theorem 3.1. We set

σ(s, H) =
∑

G∈A
G square-free

η(G, H)

|G|s , (3.24)

where A is the set of monic polynomials of Fq [x], and s is a complex variable. If H
is square-free, and Re(s) > 1, we have the following formula:

μ(H)σ (s, H) = ζA(s)ζ−1
A

(2s)
∏

P|H

1 − |P| + |P|s
1 + |P|s , (3.25)

where ζA(s) is the zeta function on Fq [x] given by (1.24). If Re(s) > 1, then ζA(s)
has the following Euler product formula:

ζA(s) =
∏

P∈A

(1 − |P|−s)−1. (3.26)

To prove (3.25), by (3.8), we have

μ(H)σ (s, H) =
∑

G∈A,
G square-free

μ(G)η(H,G)

|G|s , (3.27)

where f (G) = μ(G)η(H,G) is a multiplicative function in G, so we may make use
of Euler product and obtain that

μ(H)σ (s, H) =
∏

P∈A

(
1 − η(H, P)

|P|s
)

.

It is easy to see that η(H, P) = μ(P), if P � H , and η(H, P) = φ(P), if P|H . Then,
we have

μ(H)σ (s, H) =
∏

P∈A,
P�H

(
1 + 1

|P|s
) ∏

P|H

(
1 − φ(P)

|P|s
)

= ζA(s)ζ−1
A

(2s)
∏

P|H

1 − |P| + |P|s
1 + |P|s ,

which is (3.25).
An application of the second reciprocity formula appears in the next section (See

Lemma 4.4).
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4 Orthogonality relation

In this section, we derive some more complicated orthogonal formula and a number
of corollaries for the polynomial Ramanujan sums. In the rational case, one may find
the analogues in Cohen [11,12]. We begin by proving

Lemma 4.1 If D1|H and D2|H, then for any G in Fq [x], we have
∑

A+B≡G (mod Hk )

ηk(A, D1)ηk(B, D2) =
{ |H |kηk(G, D), if D1 = D2 = D,

0, otherwise,

(4.1)
where the summation extends over a complete residue system modulo Hk.

Proof By Lemma 2.4, the left-hand side of (4.1) is

∑

(X,Dk
1)k=1

∑

(Y,Dk
2)k=1

∑

A+B≡G (mod Hk )

E(A, Dk
1)(X)E(B, Dk

2)(Y )

= |H |k
∑

(X,Dk )=1

E(X, Dk)(G) = |H |kηk(G, D), (4.2)

if D1 = D2 = D. Otherwise it is zero. We have the lemma immediately. ��
Definition 4.1 A k-reduced residue system modulo H is that D ranges over modulo
Hk such that (D, Hk)k = 1.

Lemma 4.2 A complete residue system modulo Hk is given by A = R
( H
D

)k
, where

D ranges over the divisors of H, and for each D, R ranges over a k-reduced residue
system modulo D.

Proof See Cohen [13, Lemma 4]. ��
The next lemma is a more generalized form of the second reciprocity formula of

ηk(G, H).

Lemma 4.3 If Dk
1 |H, and Dk

2 |H, then for any R in Fq [x], we have

φk(D2)ηk

(
RH

Dk
2

, D1

)
= φk(D1)ηk

(
RH

Dk
1

, D2

)
. (4.3)

Proof It follows directly from Theorem 3.3. ��
If we replace H by Hk in the above equality, then we have the following corollary.

Corollary 4.1 If D1|H, and D2|H, then for any polynomial R in Fq [x] we have
(comparing with [12, Lemma 1]) that

φk(D2)ηk

(
R

(
H

D2

)k

, D1

)
= φk(D1)ηk

(
R

(
H

D1

)k

, D2

)
. (4.4)

123



On the polynomial Ramanujan sums over finite fields 881

Lemma 4.4 If D|H, D1|H, and R ∈ Fq [x] such that (R, Dk)k = 1, then we have

ηk

(
R

(
H

D

)k

, D1

)
= ηk

((
H

D

)k

, D1

)
. (4.5)

Proof By (4.3), then

ηk

(
R

(
H

D

)k

, D1

)
= φk(D1)

φk(D)
ηk

(
R

(
H

D1

)k

, D

)
. (4.6)

Because of (R, Dk)k = 1, it is easy to see by (2.25) that

ηk

(
R

(
H

D1

)k

, D

)
= ηk

((
H

D1

)k

, D

)
. (4.7)

By (4.3) once again, we have

ηk

((
H

D1

)k

, D

)
= φk(D)

φk(D1)
ηk

((
H

D

)k

, D1

)
, (4.8)

and the lemma follows at once. ��
Now we state and prove the main result of this section.

Theorem 4.1 If D1|H, and D2|H, then

∑

D|H
ηk

((
H

D

)k

, D1

)
ηk

((
H

D2

)k

, D

)
=

{ |H |k, if D1 = D2,

0, otherwise.
(4.9)

Proof By Lemma 4.2, Amod Hk is given by A = R
( H
D

)k , where D ranges over the
divisors of H , and for each D, R ranges over a k-reduced residue system modulo D.
Therefore, by (4.5), the left side of (4.1) may be written as

∑

Amod Hk

ηk(A, D1)ηk(G − A, D2)

=
∑

D|H
ηk

((
H

D

)k

, D1

)
∑

Rmod Dk

(R,Dk )k=1

ηk

(
G − R

(
H

D

)k

, D2

)
. (4.10)

We consider the inner sum of the right side of (4.10) separately, and denote this
sum by S, then
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S =
∑

Rmod Dk

(R,Dk)k=1

∑

Amod Dk
2

(A,Dk
2)k=1

E

(
G − R

(
H

D

)k

, Dk
2

)
(A)

=
∑

Amod Dk
2

(A,Dk
2)k=1

E(G, Dk
2)(A)

∑

Rmod Dk

(R,Dk )k=1

E

(
−A

(
H

D

)k

, Dk
2

)
(R). (4.11)

We write D2 · B = H , by (2.6) of Lemma 2.2, then

E(−A

(
H

D

)k

, Dk
2) = E

(
−A

(
H

D

)k

Bk, Hk

)

= E

(
−A

(
H

D2

)k (
H

D

)k

, Hk

)

= E

(
−A

(
H

D2

)k

, Dk

)
. (4.12)

It follows that

S =
∑

Amod Dk
2

(A,Dk
2)k=1

E(G, Dk
2)(A)

∑

Rmod Dk

(R,Dk)k=1

E

(
−A

(
H

D2

)k

, Dk

)
(R)

=
∑

Amod Dk
2

(A,Dk
2)k=1

E(G, Dk
2)(A)ηk

(
−A

(
H

D2

)k

, D

)

=
∑

Amod Dk
2

(A,Dk
2)k=1

E(G, Dk
2)(A)ηk

((
H

D2

)k

, D

)

= ηk(G, D2)ηk

((
H

D2

)k

, D

)
. (4.13)

By Lemma 4.1 and (4.10), we have

ηk(G, D2)
∑

D|H
ηk

((
H

D

)k

, D1

)
ηk

((
H

D2

)k

, D

)

=
{ |H |kηk(G, D), if D1 = D2 = D,

0, otherwise.
(4.14)
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If we take G = 0 in the above equality, and note that ηk(0, D2) = φk(D2) (see
(2.27)), then ηk(0, D2) �= 0, and we have

∑

D|H
ηk

((
H

D

)k

, D1

)
ηk

((
H

D2

)k

, D

)
=

{ |H |k, if D1 = D2 = D,

0, otherwise.

(4.15)
We complete the proof of Theorem 4.1. ��

Next, we deduce a number of the arithmetical relations, most of which are the
straightforward consequences of (4.1) and (4.9).

Corollary 4.2
∑

Gmod Hk

ηk(G, H) =
{
1, if deg(H) = 0,
0, if deg(H) ≥ 1.

(4.16)

Proof Let D1 = H , and D2 = 1 in (4.1), and we have this corollary at once. ��
Corollary 4.3

∑

D|H
ηk(G, D) =

{ |H |k, if G ≡ 0 (mod Hk),

0, otherwise.
(4.17)

Proof Taking D1 = 1 in Theorem 4.1, we have (4.17) immediately. ��
Corollary 4.4

∑

D|H
ηk

((
H

D

)k

, H

)
ηk(G, D) =

{ |H |k, if(G, Hk)k = 1,
0, otherwise.

(4.18)

Proof Let D1 = H in (4.9), and by (4.5) we have this corollary. ��
Corollary 4.5 If D1|H, then we have

∑

D|H
ηk

((
H

D

)k

, D1

)
φk(D) =

{ |H |k, if D1 = 1,
0, otherwise.

(4.19)

Proof If we take D2 = 1 in (4.9), and note that ηk(Hk, D) = φk(D), then (4.19)
follows immediately. ��

Using (4.3) with R = 1, we may reformulate Theorem 4.1 as follows.

Corollary 4.6 If D1|H and D2|H, then

∑

D|H

1

φk(D)
ηk

((
H

D1

)k

, D

)
ηk

((
H

D2

)k

, D

)
=

{
|H |k

φk (D′) , if D1 = D2 = D′,
0, otherwise.

(4.20)
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In particular, for any D1|H , we have

∑

D|H

1

φk(D)
ηk

((
H

D1

)k

, D

)2

= |H |k
φk(D1)

. (4.21)

If we make use of the Hölder formula in the above equality, it yields

Corollary 4.7 If D1D′
1 = H, then

∑

D|H
N (D′

1,D)=D

φk(D)

(
μ(N )

φk(N )

)2

= |H |k
φk(D1)

. (4.22)

The special cases of D1 = 1 and D1 = H lead to the following corollaries,
respectively

Corollary 4.8 (see (2.14)) ∑

D|H
φk(D) = |H |k (4.23)

and

Corollary 4.9
∑

D|H

|μ(D)|
φk(D)

= |H |k
φk(H)

. (4.24)

In fact, we have the following more generalized conclusions.

Lemma 4.5 If R|H, then we have

αk(R, H) =
∑

D| HR
(D,R)=1

|μ(D)|
φk(D)

= φk(R)

φk(H)

∣∣∣∣
H

R

∣∣∣∣
k

. (4.25)

Proof The left side of (4.25) has the following product expression:

αk(R, H) =
∏

P| HR
P�R

(
1 + 1

φk(P)

)

=
∏

P|H

(
1 + 1

φk(P)

) ∏

P|R

(
1 + 1

φk(P)

)−1

= φk(R)

φk(H)

∣∣∣∣
H

R

∣∣∣∣
k

,

and the lemma follows. ��
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Next, we generalize the Jordan totient function φk(H) to φs(H), where s is a
complex number variable. We define (see (1.5) in the rational case)

φs(H) =
∑

D|H
|D|sμ

(
H

D

)
= |H |s

∏

P|H

(
1 − 1

|P|s
)

. (4.26)

Lemma 4.6 If s is an arbitrary complex number, then

∑

D|H
ηk

((
H

D

)k

, H

)
φks(D) = |H |ksφk(1−s)(H). (4.27)

Proof By (2.25) and (4.26), we have

∑

D|H
ηk

((
H

D

)k

, H

)
φks(D) = φk(H)

∑

D|H

μ(D)

φk(D)
φks(D)

= φk(H)
∑

D|H

μ(D)

φk(D)

∑

R|D
|R|ksμ

(
D

R

)

= φk(H)
∑

D|H

∑

R·E=D
(R,E)=1

μ2(E)|R|ksμ(R)

φk(R)φk(E)

= φk(H)
∑

R|H

|R|ksμ(R)

φk(R)

∑

E | HR
(E,R)=1

|μ(E)|
φk(E)

= |H |ksφk(1−s)(H), (4.28)

and the lemma follows. ��

We may obtain more orthogonal relation formulas from (4.1) and (4.9). For exam-
ple, if we take G = 0 in (4.1), and note that ηk(−B, D2) = ηk(B, D2), if follows that

Corollary 4.10 If D1|H and D2|H, then

∑

Amod Hk

ηk(A, D1)ηk(A, D2) =
{ |H |kφk(D), if D1 = D2 = D,

0, otherwise.
(4.29)

In particular, if D|H, then

∑

Amod Hk

ηk(A, D)2 = |H |kφk(D). (4.30)
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5 The series δk(s, G)

In this section, we prove Theorem 1.1. Recall that the Dirichlet series δk(s,G) is given
by (see (1.18))

δk(s,G) =
∑

H∈A

ηk(G, H)

|H |s . (5.1)

Lemma 5.1 If Re(s) > k + 1, G �= 0, then we have

δk(s,G) = (1 − q1−s)
∑

Dk |G
|D|k−s . (5.2)

Proof Since Re(s) > k+1, (5.1) is absolutely convergent, and thus by (2.22) we have

δk(s,G) =
∑

H∈A

1

|H |s
∑

D|H,Dk |G
|D|kμ

(
H

D

)

=
∑

Dk |G
|D|k

∑

H∈A
D|H

μ
( H
D

)

|H |s

=
∑

Dk |G
|D|k−s

∑

H∈A

μ(H)

|H |s . (5.3)

If Re(s) > 1, we have (see [45, Proposition 2.6])

∑

H∈A

μ(H)

|H |s = ζ−1
A

(s) = (1 − q1−s), (5.4)

and the lemma follows at once. ��

Proof of Theorem 1.1 We first show that the series
∑+∞

n=0 A(n)q−ns in (1.18) con-
verges for all s to an entire function, in fact a polynomial in q−s . We let

A(n) =
∑

H∈A
deg(H)=n

ηk(G, H). (5.5)

By definition (1.18), we have

δk(s,G) =
+∞∑

n=0

A(n)q−ns =
+∞∑

n=0

A(n)un, (5.6)
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where u = q−s . On the other hand, if G �= 0, and Re(s) > k + 1, by Lemma 5.1,

δk(s,G) = (1 − q1−s)
∑

Dk |G
qdkq−ds

= (1 − qu)
∑

Dk |G
qdkud

=
∑

Dk |G
qdkud −

∑

Dk |G
qdk+1ud+1, (5.7)

where d = deg(D). We set
γ (G, n) =

∑

Dk |G
deg(D)=n

1. (5.8)

By (5.7), we have

δk(s,G) =
+∞∑

n=0

qnkγ (G, n)un −
+∞∑

n=0

qnk+1γ (G, n)un+1

=
+∞∑

n=0

qnkγ (G, n)un −
+∞∑

n=1

q(n−1)k+1γ (G, n − 1)un

=
+∞∑

n=0

qnk
(
γ (G, n) − q1−kγ (G, n − 1)

)
un . (5.9)

Comparing the coefficients of un of (5.6) and (5.9), we have

A(n) = qnk
(
γ (G, n) − q1−kγ (G, n − 1)

)
. (5.10)

By the definition of γ (G, n), if n − 1 >
deg(G)

k , it is easy to see that γ (G, n) =
γ (G, n − 1) = 0, and it follows that

A(n) = 0, whenever n − 1 >
deg(G)

k
. (5.11)

We note that the definition of A(n) is independent on the choice of s, and thus for any
s, we have

δk(s,G) =
∑

0≤n≤ deg(G)
2 +1

A(n)un =
∑

H∈A

deg(H)≤ deg(G)
2 +1

ηk(G, H)

|H |s , (5.12)

which indicates that δk(s,G) is, indeed, a finite summand; therefore, δk(s,G) is an
entire function, and on the whole complex plane, we have
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δk(s,G) = (1 − q1−s)
∑

Dk |G
|D|k−s . (5.13)

In particular, if s = 1, then we have

δk(1,G) =
∑

H∈A

ηk(G, H)

|H | = 0.

To complete the proof of Theorem 1.1, next we show the square mean values
estimate (1.22). If c and T are two given real numbers and T > 0, by (5.13), we have

∫ T

−T
|δk(c + i t,G)|2dt =

∑

Dk
1 |G,Dk

2 |G
q(d1+d2)(k−c)

×
∫ T

−T
(1 − q1−c−i t )(1 − q1−c+i t )q(d2−d1)i tdt, (5.14)

where d1 = deg(D1) and d2 = deg(D2). We denote the inner integral of (5.14) by
S(d1, d2),

S(d1, d2) =
∫ T

−T
(1 − q1−c−i t )(1 − q1−c+i t )q(d2−d1)i tdt. (5.15)

Making substitution u = qit , it follows that

S(d1, d2) = 1

i log q

∫ qiT

q−iT

(
1 + q2(1−c) − q1−cu−1 − q1−cu

)
ud2−d1−1du. (5.16)

Let n = d2 − d1 − 1, if n �= −2,−1, 0, then

S(d1, d2) = 2

log q

[
1 + q2(1−c)

n + 1

(
qi(n+1)T − q−i(n+1)T

)

− q1−c

n + 2

(
qi(n+2)T − q−i(n+2)T

)
− q1−c

n

(
qinT − q−inT

)]
,

which yields the following estimate:

|S(d1, d2)| ≤ 4

log q

(
1 + q2(1−c)

n + 1
+ q1−c

n + 2
+ q1−c

n

)
. (5.17)
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If n = d2 − d1 − 1 = 0, then d2 = 1 + d1, by (5.16), we have

S(d1, d2) = 1

i log q

[(
1 + q2(1−c))(qiT − q−iT ) − 2iT q1−c log q

−q1−c

2

(
q2iT − q−2iT )]

= − 2Tq1−c + O(1). (5.18)

If n = d2 − d1 − 1 = −1, then d2 = d1, and

S(d1, d2) = 1

i log q

[
2iT

(
1 + q2(1−c)) log q − 2q1−c(qiT − q−iT )]

= 2T
(
1 + q2(1−c)) + O(1). (5.19)

If n = d2 − d1 − 1 = −2, we also have

S(d1, d2) = −2Tq1−c + O(1). (5.20)

Putting the above equalities together, by (5.14), we have

1

2T

∫ T

−T
|δk(c + i t,G)|2dt = (

1 + q2(1−c)) ∑

Dk
1 |G,Dk

2 |G
d1=d2=d

q2d(k−c) − 2q1−c

×
∑

Dk
1 |G,Dk

2 |G
d1=d2+1

q(d1+d2)(k−c) + O

(
1

T

)

=(1 + q2(1−c))
∑

Dk
1 |G,Dk

2 |G
d1=d2=d

|D1|2(k−c) − 2q1−k

×
∑

Dk
1 |G,Dk

2 |G
d1=d2+1

|D1|2(k−c) + O

(
1

T

)
.

Let

σ0(x,G) =
∑

Dk
1 |G,Dk

2 |G
d1=d2

|D1|x and σ1(x,G) =
∑

Dk
1 |G,Dk

2 |G
d1=d2+1

|D1|x , (5.21)

then we finally obtain

1

2T

∫ T

−T
|δk(c+i t,G)|2dt = (1+q2(1−c))σ0(2(k−c))−2q1−kσ1(2(k−c))+O

(
1

T

)
.

We complete the proof of Theorem 1.1.
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6 The series τk(s, H)

In this section, we prove Theorem 1.2. Recalling the Dirichlet series τk(s, H) is given
by (see (1.18’)) that

τk(s, H) =
∑

G∈A

ηk(G, H)

|G|s . (6.1)

This series is more complicated than δk(s,G), because that ηk(G, H) is not multi-
plicative in G, and thus we cannot make use of Euler product directly. Our treatment
begins with the following auxiliary series:

τ ′
k(s, H) =

∑

G∈A

χ(G)

|G|s , (6.2)

where χ(G) = 1, if (G, Hk)k = 1, and χ(G) = 0, if (G, Hk)k > 1. Since χ(G) is a
multiplicative function in G, we have the following equality by using Euler product
(if Re(s) > 1):

τ ′
k(s, H) =

∏

P∈A

(1 − |P|−s)−1
∏

P|H
(1 − |P|−ks)

= ζA(s)φks(H)|H |−ks . (6.3)

First, we show a precise analogue of Theorem 13 of [12] with the following lemma.

Lemma 6.1 If H is positive polynomial and Re(s) > k + 1, then

τk(s, H) = (1 − q1−s)−1φk(1−s)(H). (6.4)

Proof Let Ak = (G, Hk)k . By (3.23), we have ηk(G, H) = ηk(Ak, H), and it follows
that

τk(s, H) =
∑

A|H
ηk(A

k, H)
∑

G∈A

Ak=(G,Hk )k

1

|G|s

=
∑

A|H

ηk(Ak, H)

|A|sk
∑

G1∈A

(G1,(
H
A )k )k=1

1

|G1|s

= ζA(s)|H |−ks
∑

A|H
ηk(A

k, H)φks

(
H

A

)
.

By Lemma 4.6, we have

τk(s, H) = ζA(s)φk(1−s)(H) = (1 − q1−s)−1φk(1−s)(H).

We complete the proof of Lemma 6.1. ��
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Proof of Theorem 1.2 We now return to the proof of Theorem 1.2. For any integer
n ≥ 0, we let

B(n) =
∑

G∈A
deg(G)=n

ηk(G, H). (6.5)

By definition (1.18’), we have

τk(s, H) =
+∞∑

n=0

B(n)q−ns =
+∞∑

n=0

B(n)un, (6.6)

where u = q−s . If Re(s) > k + 1, by Lemma 6.1

τk(s, H) = (1 − q1−s)−1φk(1−s)(H) = (1 − q1−s)−1
∑

D|H
|D|k(1−s)μ

(
H

D

)

= (1 − qu)−1
∑

D|H
μ

(
H

D

)
qdkudk, (6.7)

where u = q−s and d = deg(D). Because of |qu| < 1, then (1 − qu)−1 has a
geometric series expression, we have

τk(s, H) =
∑

D|H
μ

(
H

D

) +∞∑

n=0

qn+dkun+dk

=
∑

D|H
μ

(
H

D

) +∞∑

n=dk

qnun . (6.8)

We set

Jk(D, n) =
{
1, if n ≥ k deg(D),

0, if n < k deg(D).
(6.9)

It follows from (6.8) that

τk(s, H) =
+∞∑

n=0

⎛

⎝
∑

D|H
μ

(
H

D

)
Jk(D, n)

⎞

⎠ qnun . (6.10)

Comparing coefficients of un of (6.6) and (6.10), we have

B(n) =
∑

D|H
μ

(
H

D

)
Jk(D, n) · qn . (6.11)

If n ≥ k deg(H), then Jk(D, n) = 1 for all of D that D|H , and hence

B(n) = qn
∑

D|H
μ

(
H

D

)
= 0. (6.12)
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The last equality of (6.12) follows from (2.12) and deg(H) ≥ 1. We note that B(n)

is independent on the choice of complex number s by the definition of B(n), and
therefore, for any complex number s, we have B(n) = 0, whenever n ≥ k · deg(H).
It follows from (6.6) that

τk(s, H) =
∑

n≤k deg(H)

B(n)un =
∑

G∈A
deg(G)≤k·deg(H)

ηk(G, H)

|G|s , (6.13)

which indicates that τk(s, H) is, indeed, a finite summand, and thus, τk(s, H) is an
entire function on the whole complex plane. Moreover, by the principle of analytic
continuation, on the whole complex plane, we have

τk(s, H) = (1 − q1−s)−1φk(1−s)(H). (6.14)

In particular, if s = 1, by L’Hôpital’s rule we have

τk(1, H) = lim
s→1

(1 − q1−s)−1φk(1−s)(H)

= −k
∑

D|H log |D|μ ( H
D

)

log q
= −k�(H)

log q
, (6.15)

which is the equality (1.28), and is an analogue of Ramanujan’s identity (1.2).
In order to complete the proof of Theorem 1.2, it remains to prove the square mean

value estimate. If T and c are any real numbers that T > 0, c �= 1, by (6.14) we have

∫ T

−T
|τk(c + i t, H)|2dt =

∑

D1|H,D2|H
μ

(
H

D1

)
μ

(
H

D2

)
|D1D2|k(1−c)

×
∫ T

−T

qk(d2−d1)i tdt

(1 − q1−c−i t )(1 − q1−c+i t )
. (6.16)

We denote

S1(d1, d2) =
∫ T

−T

qk(d2−d1)i tdt

(1 − q1−c−i t )(1 − q1−c+i t )
, (6.17)

and make the substitution of u = −t , it follows that

S1(d1, d2) =
∫ T

−T

qk(d1−d2)i tdt

(1 − q1−c−i t )(1 − q1−c+i t )
, (6.18)

which shows that d1 and d2 are symmetric in (6.16). Therefore, we may suppose that
d2 ≥ d1, and make the substitution u = qit in (6.17), then

S1(d1, d2) = i

q1−c log q

∫ qiT

q−iT

uk(d2−d1)du

(u − q1−c)(u − qc−1)
. (6.19)
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If d1 = d2, then we have

S1(d1, d2) = i

(q2(1−c) − 1) log q

[
log

(
qiT − q1−c) − log

(
q−iT − q1−c)

− log
(
qiT − qc−1) + log

(
q−iT − qc−1)]. (6.20)

We note that 1 − c and c − 1 are symmetric in the above: first we let c > 1, and then

log(qiT − q1−c) − log(q−iT − q1−c)

= 2iT log q + log(1 − q−iT q1−c) − log(1 − qiT q1−c). (6.21)

Let z = q1−cq±iT , then |z| = q1−c < 1 for c > 1, and we have the following power
series expansion that

− log(1 − z) = z + 1

2
z2 + 1

3
z3 + · · · .

It follows that

| log(1 − z)| ≤ |z| + 1

2
|z|2 + · · · ≤ log

1

1 − |z| = log
1

1 − q1−c
, (6.22)

and by (6.21), we have

log(qiT − q1−c) − log(q−iT − q1−c) = 2iT log q + O(1). (6.23)

The remaining part of (6.20) is

log(qiT − qc−1) − log(qiT − qc−1) = log
1 − q1−cqiT

1 − q1−cq−iT

= log(1 − q1−cqiT ) − log(1 − q1−cq−iT ).

By (6.22), we have

∣∣ log
(
1 − q1−cqiT

) − log
(
1 − q1−cq−iT )∣∣ ≤ 2 log

1

1 − q1−c
. (6.24)

Hence, if d2 = d1, and c > 1, we obtain

S1(d1, d2) = 2T

1 − q2(1−c)
+ O(1). (6.25)

If d1 = d2, and c < 1, the same method yields the following estimate

S1(d1, d2) = 2T

q2(1−c) − 1
+ O(1). (6.26)
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Therefore, if d1 = d2, we have

S1(d1, d2) = 2T

|1 − q2(1−c)| + O(1). (6.27)

Next, we consider d2 > d1, and let n = (d2 − d1)k. By (6.19), then

S1(d1, d2) = i

(q2(1−c) − 1) log q

[∫ qiT −q1−c

q−iT −q1−c

(u + q1−c)n

u
du

−
∫ qiT −qc−1

q−iT −qc−1

(u + qc−1)n

u
du

]
. (6.28)

We write

(u + q±(1−c))n =
n∑

j=0

(
n

j

)
u jq±(1−c)(n− j). (6.29)

If j �= 0, then it is easy to verify that the inner integral in (6.28) is O(1). if j = 0,
there is a similar argument like the case of d1 = d2, which yields

S1(d1, d2) = qk(d2−d1)(1−c)

|1 − q2(1−c)| 2T + O(1). (6.30)

By (6.16), we finally obtain

1

2T

∫ T

−T
|τk(c + i t, H)|2dt

= 1

|1 − q2(1−c)|
∑

D1|H,D2|H
deg(D1)=deg(D2)

μ

(
H

D1

)
μ

(
H

D2

)
|D1|2(1−c)

+ 2

|1 − q2(1−c)|
∑

D1|H,D2|H
deg(D1)>deg(D2)

(
μ

(
H

D1

)
μ

(
H

D2

)

× |D1|(k+2)(1−c)|D2|(2−k)(1−c)
)

+ O

(
1

T

)
. (6.31)

We complete the proof of Theorem 1.2.

7 Davenport–Hasse type formula

The polynomial Ramanujan sum η(G, H) essentially is a special type of Gauss sum
onFq [x]. Let χ be amultiplicative character modulo H onFq [x], andψG = E(G, H)

be the additive character modulo H given by (1.8); the Gauss sum G(χ,ψG) modulo
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H on Fq [x] is defined by

G(χ,ψG) =
∑

Dmod H

χ(D)ψG(D), (7.1)

where D extends over a complete residue system modulo H in Fq [x]. Let χ0 be the
principal multiplicative character: it is χ0(D) = 1 if (D, H) = 1, and χ0(D) = 0 if
(D, H) > 1, and then we see that η(G, H) = G(χ0, ψG).

In an upcoming paper [51], we presented an analogue of Davenport–Hasse’s the-
orem for the polynomial Gauss sums (see [51, Theorem 1.3]). To state this result, let
Fqn/Fq be a finite extension over Fq of degree n, and tr(a) and N (a) be the trace map
and norm from Fqn to Fq , respectively,

tr(a) =
n∑

i=1

σ i (a) and N(a) =
n∏

i=1

σ i (a), (7.2)

where σ(a) = aq for a in Fqn is the Frobenius of Fqn . If A is a polynomial in Fqn [x],
A = akxk + ak−1xk−1 + · · · + a1x + a0, the trace map and norm can be extended to
Fqn [x] by

tr(A) =
n∑

i=1

σ i (A) and N(A) =
n∏

i=1

σ i (A), (7.3)

where σ(A) = ∑k
i=0 σ(ai )xi .

Let H be a polynomial in Fq [x] and, therefore, also a polynomial in Fqn [x]. To
define a Gauss sum modulo H on Fqn [x], for any A in Fqn [x], we set

ψ
(n)
G (A) = ψG(tr(A)) and χ(n)(A) = χ(N (A)), (7.4)

and thus, the Gauss sums G(χ(n), ψ
(n)
G ) modulo H on Fqn [x] is given by

ψ(χ(n), ψ
(n)
G ) =

∑

D∈Fqn [x]
Dmod H

χ(n)(D)ψ
(n)
G (D), (7.5)

where the summation extends over a complete residue system modulo H in Fqn [x].
By the above notations, we may define a polynomial Ramanujan sum η(n)(G, H)

modulo H on Fqn [x] by

η(n)(G, H) =
∑

Dmod H
D∈Fqn [x]

χ
(n)
0 (D)ψ

(n)
G (D), (7.6)
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and a generalized version η
(n)
k (G, H) by

η
(n)
k (G, H) =

∑

Dmod Hk

(D,Hk )k=1

ψ
(n)
G (D), (7.7)

where the summation ranges over a complete residue system modulo Hk in Fqn [x].
If χ and ψG are not both principal, in [51] we showed the following Davenport–

Hasse type formula:

(−1)m−m1
φ(n)(N )

φ(n)(H)
G(χ(n), ψ

(n)
G ) =

(
(−1)m−m1

φ(N )

φ(H)
G(χ,ψG)

)n

, (7.8)

where φ(H) is the Euler totient function on Fq [x], φ(n)(H) is the function on Fqn [x],
N = H

(G,H)
, m = deg(H), and m1 = deg(G, H).

As a direct consequence of (7.8), if H � G, then ψG is not principal, and we have

(−1)m−m1
φ(n)(N )

φ(n)(H)
η(n)(G, H) =

(
(−1)m−m1

φ(N )

φ(H)
η(G, H)

)n

. (7.9)

The main purpose of this section is to show that the generalized version ηk(H,G)

also shares this kind of Davenport–Hasse type formula. We have

Theorem 7.1 If H and G are any polynomials in Fq [x] such that Hk
� G and H �= 0,

then

(−1)m−m1
φ

(n)
k (N )

φ
(n)
k (H)

η
(n)
k (G, H) =

(
(−1)m−m1

φk(N )

φk(H)
ηk(G, H)

)n

, (7.10)

where φk(H) is the Jordan totient function on Fq [x], and φ
(n)
k (H) is the function on

Fqn [x], N = H
A , A

k = (G, Hk)k , m = deg(H), and m1 = deg(A).

Proof If Ak = (G, Hk)k in Fq [x], it is easy to verify that Ak = (G, Hk)k holds in
Fqn [x]. By (2.25), we have

η
(n)
k (G, H) = φ

(n)
k (H)μ(n)(N )

(
φ

(n)
k (N )

)−1
, (7.11)

and
ηk(G, H) = φk(H)μ(N )φ−1

k (N ), (7.12)

where μ(n)(H) is the Möbius function on Fqn [x]. To prove (7.10), it suffices to show
that

(−1)m+m1μ(n)(N ) = (
(−1)m+m1μ(N )

)n
, (7.13)

where N = H
A , and Ak = (G, Hk)k .
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We note that both sides of (7.13) are multiplicative in H , so it suffices to prove
(7.13) when H = Pt , where P is an irreducible in Fq [x] and t ≥ 1. If t ≥ 1 and
A = Pt1 with t1 < t − 1, then both sides of (7.13) are zero. Therefore, we may
suppose A = Pt−1, and N = P . It is well known (see Hayes [23], for example) that
P is product of exactly (h, n) irreducibles in Fqn [x], where h = deg(P), so (7.13)
becomes that

(−1)th+(t−1)h+(h,n) = (−1)n(th+(t−1)h+1), (7.14)

which is equivalent to
h + (h, n) ≡ n(h + 1) (mod 2). (7.15)

It is easy to verify that (7.15) is true for any positive integers n and h, and we complete
the proof of Theorem 7.1. ��
Acknowledgements The author would like to thank the referees for their very careful reading on this paper
and pointing out a mistake in the main theorems.
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