
Ramanujan J (2018) 47:185–200
https://doi.org/10.1007/s11139-017-9934-1

Fourier coefficients of half-integral weight cusp forms
and Waring’s problem

Fabian Waibel1

Received: 29 December 2016 / Accepted: 27 June 2017 / Published online: 21 August 2017
© Springer Science+Business Media, LLC 2017

Abstract Extending the approach of Iwaniec and Duke, we present strong uniform
bounds for Fourier coefficients of half-integral weight cusp forms of level N . As an
application, we consider a Waring-type problem with sums of mixed powers.
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1 Introduction

A positive, integral, symmetric k × k matrix A with even diagonal elements gives rise
to a quadratic form q(x) := 1

2 x
t Ax . It is a central problem of number theory to study

the representation function

r(q, n) := #
{
x ∈ Z

k | q(x) = n
}

.

One way to do so is by examining the theta series

θ(q, z) :=
∑

x∈Zk

e(q(x)z) =
∞∑
n=0

r(q, n)e(nz)
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186 F. Waibel

which is a modular form of (generally) half-integral weight of level N , where N is
the level of q. To understand r(q, n), decompose θ(q, z) into an Eisenstein series and
a cusp form. To treat the cusp form contribution, one may apply the results from the
late eighties from Iwaniec [7], Duke [3] and Duke–Schulze-Pillot [4]. Let f (z) =∑

n≥1 a(n)e(nz) be a holomorphic cusp form of half-integral weight k/2, k ≥ 3 for
the group � = �0(N ), normalised with respect to

〈 f, g〉 =
∫

�\H

f (z)g(z)yk
dx dy

y2
. (1)

Then, it was shown in [3,7] that, for squarefree n,

a(n) � nk/4−2/7+ε . (2)

The aim of this paper is threefold: we extend the bound (2) to arbitrary n, we include
forms of level N with arbitrary nebentypus and improve the bound with respect to N .
For the second point we need to bear in mind that the Weil–Estermann bound does
not necessarily hold for twisted Kloosterman sums for prime power moduli (cf. [10,
Example 9.9]). The main strategy follows the work of Duke and Iwaniec [3,7] with
the extensions of Blomer [1].

LetU be the subspace of theta functions of S3/2(N , χ) of type
∑

n≥1 ψ(n)ne(tn2z)
for some real character ψ and 4t |N , so that for all f ∈ U⊥ the Shimura lift of f is
cuspidal. If d divides a power of x , we write d|x∞, and we denote the squarefree
kernel by rad(n).

Theorem 1 Fix an orthonormal basis {ϕ j = ∑
n≥1 a j (n)e(nz)}dj=1 of Sk/2(N , χ)

for odd k ≥ 5 and of U⊥ for k = 3. Then it holds for n = tv2w2 with t squarefree,
v|N∞, (w, N ) = 1 and quadratic χ that

d∑
j=1

|a j (n)|2 � nk/2−1
(

t3/7v6/7

N 2/7(n, N )1/7
+ t3/8v3/4

N 1/8(n, N )1/4
+ v(n, N )

N
+ 1

)
(nN )ε.

For arbitrary χ , the last term within the bracket changes to v(n,N )
N

(
cχ rad(cχ )

)1/4
,

where cχ is the conductor of χ .

Theorem 1 is ultimately based on Iwaniec’s method of bounding sums of
half-integral weight Kloosterman sums. By a very different approach, based onWald-
spurger’s theorem and subconvexity, one can bound a j (n) by O(nk/4−5/16) cf. [2,
Corollary 2] which is slightly better in terms of n. However, the implied constant
depends quite strongly on N . For many applications involving families of cusp forms,
such as the one presented below, Theorem 1 leads therefore to stronger results.

We singled out the case of quadratic χ because this is the relevant case for quadratic
forms and the main application that we proceed to present. It has been investigated by
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Wooley [21] under which conditions on the exponents k j , j = 1, . . . , t the Diophan-
tine equation

x21 + x22 + x33 + x34 +
t∑

j=1

y
k j
j = n (3)

has solutions for all sufficiently large n. His proof is based, among other things, on a
result of Golubeva [5, Theorem 2] which we can improve by Theorem 1 as follows.

Theorem 2 Let P 	= 3 be an odd prime, (n, 6P) = 1 and n = tv2 with t squarefree.
Then

n = x2 + y2 + 6Pz2

is solvable for (x, y, z) ∈ N
3 if P1+ε ≤ min(n1/17v12/17, n1/11v6/11, n1/3). This

holds, in particular, if nv28/3 > P17+ε .

In [5], the bound is nv12 > P21+ε . For ki ∈ N and 2 ≤ k1 ≤ . . . ≤ kt set

γ (k) =
t∏

i=1

(
1 − 1

ki

)
and γ̃ (k) =

(
1 − 1

kt

) t−2∏
i=1

(
1 − 1

ki

)
.

Theorem 3 Assume the Riemann hypothesis for all L-functions associated with
Dirichlet characters. Then, provided that γ (k) < 28

39 , all sufficiently large numbers n
are represented in the form of (3). The same conclusions hold without the assumption
of the Riemann hypothesis if

1. t ≥ 2 and γ̃ (k) < 58
81 or

2. γ (k) < 58
81 and the exponents k1, . . . , kt are not all even.

The original bounds in [21, Theorem 1.2] are γ (k) < 12/17 with the assumption
of the Riemann hypothesis, γ̃ (k) < 74/105 for (i) and γ (k) < 74/105 for (i i). As
a consequence, it follows that every sufficiently large number n is represented in the
form

x21 + x22 + x33 + x34 +
t∑

j=1

x3tj = n,

with odd t ≤ 81, or in the form

x21 + x22 + x33 + x34 + x85 + x126 + x167 + x208 = n

if the truth of the Riemann hypothesis is assumed.
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188 F. Waibel

2 Shimura’s lift and Maaß forms

We follow the exposition of [1]. For 0 	= z ∈ C and v ∈ R define zv by

zv = |z|vexp(iv arg(z)), where arg(z) ∈ (−π, π ].

For a holomorphic function on the upper half plane f : H → C and γ =
(
a b
c d

)
∈

�0(4) set

f |[γ ]k/2(z) =
(
ε−1
d

( c

d

))−k
(cz + d)−k/2 f (γ z),

where
( c
d

)
is the extended Kronecker symbol (cf. [19, p. 442]) and εd = (−1

d

)1/2
.

From now on, χ will always denote a character mod N and 4|N . For odd k, we
denote the spaces of modular forms and cusp forms of half-integral weight k/2 for
�0(N ) and transformation behaviour f |[γ ]k/2(z) = χ(d) f (z) by Mk/2(N , χ) and
Sk/2(N , χ). For f, g ∈ Sk/2(�, χ), the inner product is defined by (1). For (n, N ) = 1,
let T (n) : Mk(N , χ) → Mk(N , χ) be the Hecke operator (cf. [11, Chapter4.3]).

For f = ∑
n≥1 c(n)e(nz) ∈ Sk/2(N , χ), k ≥ 3 odd, ε = (−1)(k−1)/2 and t without

square factors (other than 1) prime to N , define Ct (n) by the formal identity

∞∑
n=1

Ct (n)n−s = L(s − k/2 + 3/2, χ4εtχ)

∞∑
n=1

c(tn2)n−s .

Then Ft (z) = ∑∞
n=1 Ct (n)e(nz) ∈ Mk−1(N/2, χ2) is called the t-Shimura lift. If f

is an eigenform for all Hecke operators T (p2), p � N with eigenvalues λp, then Ft ,
if it is not equal to 0, is an eigenform for all Tp, p � N with the same eigenvalues, and
it holds for (n, N ) = 1 that [19, Corollary 1.8]

Ct (n) = c(t) · λn .

There exists an orthonormal basis of U⊥ and of Sk/2(N , χ), k ≥ 5, of simultaneous
eigenforms for all T (p2), p � N . Consequently, if the t-Shimura lift of f is cuspidal,
it follows by Deligne’s bound for integral-weight modular forms for (w, N ) = 1 that

∣∣c(tw2)
∣∣ =

∣∣∣c(t)
∑
d|w

μ(d)χ4εtχ(d)dk/2−3/2λw/m

∣∣∣ ≤ |c(t)|wk/2−1τ(w)2. (4)

For k ≥ 5 the Shimura lift is always cuspidal. However, for k = 3 the t-Shimura lift is
cuspidal for all squarefree t if and only if f ∈ U⊥, i.e. f does not live in the subspace
of theta functions.

The theory of Maaß forms with general weights was introduced by Selberg [18].
For γ ∈ �0(4) and k ∈ Z set
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Fourier coefficients of half-integral... 189

f |[γ ]k/2(z) =
(
ε−1
d

( c

d

))−k
e−i(k/2)arg(cz+d) f (γ z).

We call a function f : H → C an automorphic form of weight k/2 if it satisfies for
all γ ∈ � the transformation rule

f |[γ ]k/2(z) = χ(d) f (z),

and f (z) � yσ + y1−σ for some σ > 0. A Maaß form is an automorphic form that
is an eigenfunction of

�k/2 = −y2
(

∂2

∂x2
+ ∂2

∂y2

)
+ i(k/2)y

∂

∂x
,

with eigenvalue λ = s(1−s).We denote the space of such forms byAs(�\H, k/2, χ).

Their inner product is defined by

〈 f, g〉 =
∫

�\H

f (z)g(z)
dxdy

y2
. (5)

Every form f in As(�\H, k/2, χ) has a Fourier expansion at the cusp ∞ given by

f (z) = ρ+ys + ρ−ys−1 +
∑

n∈Z,n 	=0

ρ(n)Wsgn(n)k/4,s−1/2(4π |n|y)e(nx), (6)

where Wα,β(z) denotes the standard Whittaker function [12, p. 295]. If the zero coef-
ficient of f ∈ As(�\H, k/2, χ) vanishes at every cusp, then it is called a Maaß cusp
form and the space of such forms is denoted by Cs(�\H, k/2, χ).

3 Proof of Theorem 1

Let {ϕ j = ∑
n≥1 a j (n)e(nz)}dj=1 be an orthonormal basis of Sk/2(N , χ) for odd k ≥ 5

and of U⊥ for k = 3. Set n = tv2w2 with μ2(t) = 1, v|N∞ and (w, N ) = 1. The
square part of n coprime to N , w, can be easily handled by (4) since (|a j (n)|2 �
wk/2−1+ε |a j (tv2)|2). Therefore, it is sufficient to prove that

d∑
j=1

|a j (n)|2 � nk/2−1
(

t3/7v6/7

N 2/7(n, N )1/7
+ t3/8v3/4

N 1/8(n, N )1/4
+ v(n, N )

N
+ 1

)
(nN )ε

for n = tv2, with μ2(t) = 1 and v arbitrary.
The proof follows the Iwaniec–Duke approach very closely and we assume some

familiarity with the article [7]. For k ≥ 5, we directly apply the Petersson formula
while for k = 3, we first embed the weight 3/2 cusp forms into the space ofMaaß cusp
forms of weight 3/2 via f (x + iy) �→ y3/4 f (x + iy) and then apply the Kuznetsov
formula. The Petersson formula for half-integral weights states that [16, p. 89]
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190 F. Waibel

�(k/2 − 1)

(4πn)k/2−1

d∑
j=1

|a j (n)|2 = 1 + 2π i−k/2
∑
N |c

c−1 Jk−1

(
4πn

c

)
Kk

χ (n, n; c),

where Jk/2−1 is the Bessel function of order k/2 − 1 and

Kk
χ (m, n; c) =

∑′

d(mod c)

ε−k
d χ(d)

( c

d

)
e

(
md + nd̄

c

)
(7)

is a twisted Kloosterman sum. If f (z) is a normalised cusp form for �0(N ) with
respect to (1), then [�0(Q) : �0(N )]−1/2 f (z) is a normalised cusp for�0(Q) provided
that N |Q. Instead of applying the Petersson formula for the level N , we use it for
higher levels Q = pN with primes p ∈ P = {p | P < p ≤ 2P, p � 2nN }. Since
[�0(pN ) : �0(N )] ≤ p + 1, this yields (cf. [7, p. 400])

d∑
j=1

|a j (n)|2 � nk/2−1
(
P +

∑
p∈P

∣∣∣∣
∑

(pN )|c
c−1Kk

χ (n, n; c)Jk/2−1

(
4πn

c

) ∣∣∣∣logP
)

,

(8)

where we choose P > 1 + (log2nN )2 to ensure that #P � P(logP)−1. After
expressing the Bessel function bymeans of its asymptotic formula and applying partial
summation, it remains to find a bound for sums of the type

∑
Q∈Q

|KQ(x)|, where

KQ(x) :=
∑

c≤x, Q|c
c−1/2Kk

χ (m, n; c)e
(
2νn

c

)
(9)

with −1 ≤ ν ≤ 1 and Q ∈ Q = {pN | p ∈ P}.
First, we factor the modulus c into qr , where q is coprime to 2nN and r |(2nN )∞.

This way, (7) decomposes into a Kloosterman sum of modulus r and a Salié sum of
modulus q which is explicitly computable. Very similar to [7, Lemma 6], we obtain

Kk
χ (n, n; c) = q1/2

∑
s(mod r/2)

2�s

ε−2k
s fr (2s, χ)

[
(1 + i s)

(
nr

q

)
+ (1 − i s)

(−nr

q

)]

×
∑
ab=q

e

(
2n

(
ar

b
− br

a
+ sab

r

))
. (10)

The main difference is that

fr (2s, χ) =
∑

d(mod r)
d+d̄≡2s(mod r)

( r
d

)
χ(d).
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Fourier coefficients of half-integral... 191

Lemma 4 For quadratic χ , one has the following bound

|Kk
χ (n, n; c)| ≤ τ(c)(n, c)1/2c1/2,

while, for arbitraryχ one gets an additional factor of (cχ rad(cχ ))1/4 on the right-hand
side.

Proof If we split the sum for c = rq, r |2∞, (2, q) = 1 we obtain

Kk
χ (n, n; c) = Kk−q+1

χr
(nq̄, nq̄; r)Sχq (nr̄ , nr̄ , q) , (11)

where χr and χq are characters modulo r and q, respectively, and the latter sum

Sχ (n, n; q) =
∑′

d(mod q)

χ(d)

(
d

q

)
e

(
n(d + d̄)

q

)

is a Kloosterman sum twisted by a character. For arbitrary χ , we apply [10, Theorem
9.3] and get |Sχ (n, n; q)| ≤ τ(q)(n, q)1/2q1/2(qχ rad(qχ ))1/4. Since the conduc-
tor of a real character with odd modulus is always squarefree, we obtain the Weil
bound for real χ by applying [10, Proposition 9.4, 9.7 and 9.8], i.e. |Sχ (n, n; q)| ≤
τ(q)(n, q)1/2q1/2. To bound the first term on the right-hand side of (11), we modify
[8, Lemma 12.2 and Lemma 12.3]. Therefore, we set r = 2α and assume that α ≥ 4
to ensure that εr = εa for r = a + b 2β , where N � β = α

2 or α−1
2 , respectively. By

following the argument of Iwaniec very closely, we obtain

|Kk
χ (n, n; 2α)| ≤ 2βM,

where M is the number of solutions modulo 2β of −na2 + Ba + n ≡ 0 mod 2β

for B defined as in [8, Lemma 12.2 and Lemma 12.3]. To bound M , we proceed as
in [10, Lemma 9.6, Proposition 9.7 and Proposition 9.8] obtaining |Kk

χ (n, n; r)| ≤
τ(r)(n, r)1/2r1/2. ��

We split KQ(x) according to whether t |c. By applying Lemma 4 we get, for
quadratic χ , that

|K[t,Q](x)| � x(t, Q)(n, [t, Q])1/2
t Q

τ(t Q)(xn)ε

≤ x(t, Q)(v2, Q/(Q, t))1/2

t1/2Q
τ(t Q)(xn)ε ≤ xv(n, Q)

n1/2Q
τ(t Q)(xn)ε

since (t, Q)2(v2, Q/(Q, t)) divides both Q2 and n2. In particular, one has

∑
Q∈Q

|K[t,Q](x)| � xv(n, N )n−1/2N−1(xnN )ε. (12)

123



192 F. Waibel

For general χ , we get an additional factor of (cχ rad(cχ ))1/4 on the right-hand side.
The remaining part of KQ(x) can be reduced to partial sums of the type

K �
Q(y) =

∑
y<c≤2y
t�c, Q|c

c−1/2Kk
χ (n, n; c)e

(
2νn

c

)

with 4 ≤ y ≤ x . There are O(log(x)) such partial sums. For even t , we trivially
estimate |K[t/2,Q](x)| and assume that K �

Q(y) runs over c with t
2 � c to ensure that

n/(n, r) is not a perfect square. By (10) we conclude that

K �
Q(y) =

∑
r∈R

r−1/2
∑

s(mod r/2)
2�s

ε−k
s fr (2s)

[
(1 + i s)F+

r,s(p) + (1 − i s)F−
r,s(p)

]
, (13)

where R = {r ; N |r |(2nN )∞, t � r} and

F±
r,s(p) =

∑ ∑
y<abr≤2y

(a,b)=1,p|ab

(±nr

ab

)
e

(
2n

(
ar

b
− br

a
+ sab

r
+ ν

abr

))
(14)

with (ab, 2nN ) = 1. We treat F±
r,s(p) according to the values of a and b and split it

into dyadic ranges A < a ≤ 2A and B < b ≤ 2B with y < r AB ≤ 2y and A, B ≥ 1
2

which we denote by F(A, B; p).
For either A or B small, we apply the Weil bound for the Kloosterman sum and

estimate trivially. Following [7, p.396] word by word, we get

F(A, B; p) �
(
1 + n

y

) ∑
B<b≤2B

(b,2nN )=1

∣∣∣∣
∑

A1<a≤A2
(a,b)=1

(±nr

a

)
e

(
2nm

ā

br

) ∣∣∣∣, (15)

with m defined by mpb ≡ rr̄ + 1 + sbb̄(modbr) and A1, A2 such that Apb = A1 <

A2 ≤ 2Apb, where pb := p/(b, p). Set δ1 = n
(n,r) and δ2 = r

(n,r) . At this point, we
cannot proceed as in Iwaniec [7, Section 5] because 8|δ2 is generally not satisfied. To
solve this, we distinguish three cases:

• 2 � δ1. Set �1 = δ1 and �2 = 16δ2.
• ord2(δ1) = 1 or 2. Set �1 = 2−ord2(δ1)δ1 and �2 = 22+ord2(δ1)δ2.
• 8|δ1. Set �1 = δ1 and �2 = δ2.

In each case �1 and �2 satisfy that
(±nr

a

) =
(±�1�2

a

)
, either 8|�1 or 8|�2 and

�1,�2 and b are pairwise coprime. Set 2 n
r = 2 j �1

�2
, where j = 5, j = 3+2 ord2(δ1)

or j = 1 according to the corresponding case. Thus, the innermost sum of (15) is
equal to
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Fourier coefficients of half-integral... 193

∑
a

:=
∑

A1<a≤A2

(±�1�2

a

)
e

(
2 jm

�1ā

�2b

)
.

By applying [7, (3.14)] it follows for D = �1�2b that

∣∣∣∣
∑
a

∣∣∣∣ ≤
∑

1≤|d|≤D/2

1

2|d|
∣∣∣∣

∑
x(modD)

(±�1�2

x

)
e

(
2 jm

�1 x̄

�2b
+ dx

D

) ∣∣∣∣.

The summodulo D can be factored into three sums in the samemanner as in [7, p. 396].
Note that �1 is not a perfect square because there exists an odd prime divisor of t

which, by definition of R, does not divide r . Therefore, x �→
(

�1
x

)
is not the trivial

character. By following Iwaniec step by step and making use of (n, r)−1 ≤ (n, N )−1

since N |r , we get

F(A, B; p) � B3/2
(
1 + n

y

)
(nr)1/2(n, N )−1τ 2(r) log(ny) (16)

and

F(A, B; p) � A3/2
(
1 + n

y

)
(nr)1/2(n, N )−1τ 2(r) log(ny). (17)

If both A and B are large,wemake use of the flexibility gained through the averaging
over the levels. We want to estimate

FP (A, B) =
∑
p∈P

|F(A, B; p)|.

Setting λP := sgnF(A, B; p) we get

FP (A, B) =
∑

A<a≤2A
y<abr≤2y

∑
B<b≤2B
(a,b)=1

∑
P<p≤2P

p|ab

λP

(±nr

ab

)
e

(
2n

(
ar

b
− br

a
+ sab

r
+ ν

abr

))
.

To bound this, we follow [7, Section 6] step by step. First, we split the sum according
to whether p|a or p|b. In each case we interchange the sums, apply Cauchy–Schwarz
to the square and change the sums back. Hence, we have two p-sums. If the summands
of both p-sums coincide, we trivially estimate, otherwise we apply the Weil bound.
Since [7, Lemma 7] does not hold, we cannot use (n, r) ≤ r1/2 for [7, (6.1)]. Instead,
we use (n, N ) ≤ (n, r) ≤ r and (6.3) from Iwaniec changes to

FP (A, B) � yr−1P−1/2 +
(
1 + n

y

)1/2

(s2 − 1, r)1/2τ(r) log y

×
(
y7/8r−5/8P3/8(n, N )−1/4 + (A−1/2 + B−1/2)yr−1

)
. (18)
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194 F. Waibel

In particular, we lose a factor of r−1/4 in the second term within the bracket. To bound
KQ(y), we modify [7, Section 7] accordingly and apply (16) and (17) in case that
either A or B is

≤
(
1 + n

y

)−1/4

n−1/4r−3/4y1/2P−1/2(n, N )1/2,

respectively, and (18) otherwise and obtain
∑
p∈P

|F±
r,s(A, B; p)| � yr−1P−1/2 + (y + n)5/8 r−5/8(n, N )−1/4

×(s2 − 1, r)1/2τ 2(r) (log ny)
(
y1/4P3/8 + n1/8y1/8P1/4

)
.

According to (13), it remains to sum this inequality over s (mod r/2) and r ∈ R. The
more general form of fr (2s, χ) does not affect [7, (7.2) and (7.3)]. Hence,

∑
s(mod r/2)

| fr (2s, χ)|(s2 − 1, r)1/2 � rτ 2(r) and
∑
r∈R

r−1/8τ 4(r) � τ(nN )N−1/8.

Combining this with (12), we conclude, for quadratic χ , that
∑
Q∈Q

|KQ(x)| �
(
xv(n, N )n−1/2N−1 + x P−1/2N−1/2

+ (x + n)5/8
(
x1/4P3/8 + n1/8x1/8P1/4)N−1/8(n, N )−1/4

)
(nxN )ε

(19)

which is an improvement of [7, Theorem 3]. By (8), we infer

d∑
j

|a j (n)|2 � nk/2−1
(

v(n, N )

N
+ P + n1/2

P1/2N 1/2 + n3/8P3/8

N 1/8(n, N )1/4

)
(nN P)ε.

Choosing P = n1/7(n, N )2/7/N 3/7 + (nN )ε yields, for real χ , that

d∑
j

|a j (n)|2 � nk/2−1
(

v(n, N )

N
+ 1 + n3/7

(n, N )1/7N 2/7 + n3/8

N 1/8(n, N )1/4

)
(nN )ε,

while, for an arbitrary character χ , the first term changes to v(n,N )
N (cχ rad(cχ ))1/4.

This concludes the proof for k ≥ 5.
To prove the case k = 3 we follow [3, Sections 3 and 5], but include an

arbitrary nebentypus χ . The map f (z) �→ y3/4 f (z) induces an injective map-
ping S3/2(N , χ) �→ C3/4(N , 3/2, χ) and one has a(n) = (4πn)3/4ρ(n), where
a(n) denote the Fourier coefficients of f and ρ(n) the coefficients, see (6), of the
corresponding Maaß cusp form. Let ui (z) be an orthonormal basis of Maaß cusp
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forms of weight 3/2 with eigenvalues λ j and Fourier coefficients ρ j (n) and let

{ fi j = ∑
n≥1 ai j (n)e(nz)}d j

i=1 be an orthonormal basis of S3/2+2 j (N , χ). Then it
holds, by Proskurin’s variant [14, p. 3888] of the Kuznetsov formula, that

∑
N |c

K 1
χ (n, n; c)

c
ϕ(4πn/c) = 4n

∑
λ j>0

|ρ j (n)|2
cosh(π t j )

ϕ̂(t j )

+
∑
a

∫ ∞
−∞

|φa,n(1/2 + i t))|2
cosh(π t)|�(1/2 + 3/4 + i t |2 ϕ̂(t)dt

+ 4
∑
j≥1

�(3/2 + 2 j)e(3/8 + j/2)ϕ̃(3/2 + 2 j)

(4π)3/2+2 j n1/2+2 j

d j∑
i=1

|ai j (n)|2.

(20)

Here, ϕ(x) is a suitable test function,
∑

a refers to the summation over the non-
equivalent non-singular cusps of �0(N ), t j is defined by s j = 1/2 + i t j and φa,n are
the coefficients of an Eisenstein series (cf. [14, p. 3876]). Similar to the choice in [4,
p. 51], we set ϕ(x) = c0x−7/2 J13/2(x) for c0 = −24e(−3/8)π−2�(9/2)−1 and Jk(z)
to denote the Bessel function of order k. This choice fulfils all requirements for the
Kuznetsov formula and by means of the Weber–Schafheitlin integral [6, (6.574.2)] it
is straightforward to calculate

ϕ̂(t) = t2 + 1/4

cosh(2π t)�(−1/4 + i t)�(−1/4 − i t)� (6 + i t) � (6 − i t)
.

Observe that ϕ̂(t) > 0 for t ∈ R and for t ∈ [−i/4, i/4], the value at i t = 1/4 defined
by

lim
t→±i/4

ϕ̂(t) = 3

64π3/2�(23/4)�(25/4)
.

Thus, we may drop all terms of the first sum on the right-hand side of (20) which
represent eigenvalues distinct to 3/16 as well as the contribution from the continuous
spectrum (the integral over the Eisenstein coefficients). Since the weights of fi j are
greater than or equal to 5/2, we can use our previous results to bound the last term of
(20). As before, we apply Iwaniec’s method of averaging over the levels. If u(z) is a
normalisedMaaß cusp form for�0(N ), then [�0(Q) : �0(N )]−1/2u(z) is a normalised
Maaß cusp form for �0(Q), Q ∈ Q. Hence, by applying the Kuznetsov formula for
every level Q ∈ Q, it follows

n
∑

λ j=3/16

|p j (n)|2 � logP
∑
Q∈Q

∣∣∣∣
∑
Q|c

K 1
χ (n, n, c)

c

( c
n

)7/2
J13/2

(
4πn

c

) ∣∣∣∣

+
(
P + n1/2

P1/2N 1/2 + v(n, N )

N
+ n3/8P3/8

N 1/8(n, N )1/4

)
(nN P)ε.

(21)
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Since 13/2 is half integral and since for x > n

n−7/2
(
x3 J13/2

(
4πn

x

))′
� nx−5/2,

the right-hand side of (21) can be treated exactly as in [7, Section 8] taking into account
(19) and our choice of P . This concludes the proof of Theorem 1.

4 An application

Finally, we give an application of Theorem 1, particularly an improvement of [21,
Theorem 1.2]. For this purpose, let A be a positive, integral, symmetric k × k matrix
with even diagonal elements, let q(x) := 1

2 x
t Ax be the corresponding quadratic form

and let N be the level of A, i.e. the smallest integer such that N A−1 is integral with
even diagonal. This section aims at finding a lower bound for the Fourier coefficients
r(q, n) = #{x ∈ Z

k | q(x) = n} of θ(q, z) to conclude that n is represented by q. By
direct computation, one can show that θ(q, z) ∈ Mk/2(N , χ(−1)kdetA) [19, p. 456].

Two positive quadratic forms are in the same genus if they are equivalent over all
Zp. Define the theta series of the genus θ(gen q, z) = ∑∞

n=0 r(gen q, n)e(nz) by

r(gen q, n) =
∑

q̃∈gen q
w(q̃)r(q̃, n) with w(q̃) =

⎛
⎝ ∑

q̃∈gen q

1

#OZ(q̃)

⎞
⎠

−1
1

#OZ(q̃)
,

(22)

where the summation is taken over a set of representative classes in the genus. Let
S(z) = θ(q, z) − θ(gen q, z). Then S(z) is the orthogonal projection of θ(q, z) onto
the subspace of cusp forms and θ(gen q, z) is an Eisenstein series [17, Korollar 1].
Consequently, write

θ(q, z) = θ(gen q, z) + S(z) =:
∞∑
n=0

r(gen q, n)e(nz) +
∞∑
n=1

a(q, n)e(nz).

Wewould like to treat r(gen q, n) as the main term for r(q, n) and a(q, n) as the error
term. To compute the Eisenstein coefficients r(gen q, n), we use Siegel’s formula [20].
From now on, let k = 3. Then

r(gen q, n) = 2π√
�/8

n1/2
∏
p

rp(q, n), (23)

where � is the determinant of A and rp(q, n) are the p-adic densities defined by

rp(q, n) := lim
ν→∞

1

p2ν
#

{
x ∈ (Z/pν

Z)3 | q(x) ≡ n (mod pν)
}

.

Apart from a finite number of cases, (p, Nn) 	= 1, the densities are easy to compute
[20, Hilfssatz 12]
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rp(q, n) = 1 + χ−2n�

p
, p � nN .

The space of theta functions U poses a problem since their Fourier coefficients grow
like � n1/2 which is roughly the same size as r(gen q, n). Thus, to show that n can
be represented by a quadratic form q using Theorem 1, it is necessary that the n-th
coefficient of the projection of θ(q, z) onto U vanishes.

For a ring R let OR(q) := {S ∈ GL2k(R)|St AS = A} be the finite set of R-
automorphs of q. Two quadratic forms A1, A2 in the same genus with A1 = St A2S for
S ∈ GLk(Z) belong to the same spinor genus, if S ∈ OQ(A2)

⋂
p O

′
Qp

(A2)GLk(Zp),

where O ′
Qp

(A) is the subgroup of p-adic automorphs OQp (A) of determinant and
spinor norm 1 (cf. [13, Section 55]). Define the theta series of the spinor genus
θ(spn q, z) = ∑∞

n=0 r(spn q, n)e(nz) by

r(spn q, n) =
∑

q̃∈spn q
w(q̃)r(q̃, n) with w(q̃) =

⎛
⎝ ∑

q̃∈spn q

1

#OZ(q̃)

⎞
⎠

−1
1

#OZ(q̃)
,

(24)

where the summation is taken over a set of representative classes in the spinor genus
of q. Schulze-Pillot [17] has shown that the orthogonal projection of θ(q, z) onto the
subspace of U⊥ is θ(q, z) − θ(spn q, z). Therefore, write

θ(q, z) = θ(gen q, z) + H(z) + f (z),

with H(z) = θ(spn q, z) − θ(gen q, z) ∈ U and f ∈ U⊥. The contribution from the
Fourier coefficients of f is easy to handle by Theorem 1. If r(gen q, n) = r(spn q, n),
then the n-the Fourier coefficient of H(z) vanishes. This obviously holds when n /∈
{tm2 : 4t |N ,m ∈ N} since the coefficients of the theta functions vanish. According
to the definitions (22) and (24) it follows that r(spn q, n) = r(gen q, n) is satisfied if

r(spn q, n) = r(spn q ′, n)

for all q ′ in the same genus as q. According to Schulze-Pillot [17, Korollar 2.3 (ii)] it
holds for any q, q ′ in the same genus and squarefree t that

r(spn q, tm2) = r(spn q ′, tm2)

if N = 4t t ′ h2 with squarefree t ′ and h|m. In particular, if N/4 is squarefree, one has
θ(gen q, z) = θ(spn q, z).

Proof of Theorem 2 Let θ(q, z) be the theta series of the quadratic form q = x2 +
y2 +6Pz2. Then, θ(q, z) ∈ M3/2(24P, χ) for a quadratic character χ and since 6P is
squarefree, it holds that θ(gen q, z) = θ(spn q, z). Thus, the orthogonal projection of
θ(q, z) onto the subspace of cusp forms is inU⊥. Let {ϕ j (z) = ∑

n≥1 a j (n)e(nz)}dj=1

be an orthonormal basis of U⊥. Then
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r(q, n) = r(gen q, n) +
d∑
j=1

c ja j (n) = r(gen q, n) + O
⎛
⎝

√√√√
d∑
j=1

c2j

√√√√
d∑
j=1

|a j (n)|2
⎞
⎠ .

From
√∑d

j=1 c
2
j = O(P1/4+ε) (cf. [5, Theorem 3]) and Theorem 1, we conclude that

r(q, n) = r(gen q, n) + O
(
v1/2

(
t13/28P3/28 + t7/16P3/16 + t1/4P1/4

))
(Pn)ε.

(25)

To bound r(gen q, n) from below, we apply (23), Siegel’s formula. If p � 6P , it holds
by [20, Hilfssatz 16] that

1 − 1

p
≤ rp(q, n) ≤ 1 + 1

p
.

To treat the remaining densities, r2(n, q), r3(n, q) and rP (n, q), we rely on Hensel’s
lemma (cf. also [9, Section 15]). ��
Lemma 5 Assume that P ∈ Z[x1, . . . , xd ] and α ∈ Z

d satisfy P(α) ≡ 0 mod pk . If
it holds for at least one x j that

∂ f

∂x j
(α) 	= 0 mod pl for some l ≤ k + 1

2
,

then P(x) ≡ 0 mod pk+m has pm(d−1) integer solutions. Each of these solutions β

satisfies that β j ≡ α j mod pk−l+1 and βi ≡ αi mod pk for all i 	= j .

Proof The case d = 1 is proven in [15, p. 48]. Assume j = 1. For each choice
β2, . . . , βd mod pk+m with βi ≡ α1 mod pk , we can apply the one-variable case to
find β1 such that P(β) ≡ 0 mod pk+m . ��

For p = 2, consider the congruence

x2 + y2 + 6Pz2 ≡ n mod 8 (26)

for arbitrary odd n. For each x ≡ 1, 3mod 4 (y ≡ 1, 3mod 4), there are two possible
choices for ymod 8 (x mod 8) and four possibilities for zmod 8 to solve (26). It follows
by Lemma 5 that

r2(n, q) ≥ lim
ν→∞

32 · 22(ν−3)

22ν
= 1

2
.

If p is a prime, thenZ/pZ is a finite field. In a finite field of odd order q, every element
unequal to zero can be expressed as the sum of two squares in q − 1 ways. Hence, for
n /≡ 0 mod P, there exist P2 − P solutions of

x2 + y2 + 6Pz2 ≡ n mod P, (27)
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with (x, y) /≡ 0 mod P . By Lemma 5 we infer r3(n, q) ≥ 2/3 and rP (n, q) ≥ 1− 1
P .

It follows r(gen q, n) � n1/2−ε

P1/2 . Thus, the main term of (25) dominates the error term
as soon as

P ≤ min(v14/17t1/17, v8/11t1/11, v2/3t1/3)1−ε .

If this holds true, it follows that x2+ y2+6Pz2 = n has a solution inZ
3. Furthermore,

we may assume that x, y and z are natural numbers since the number of integer
solutions of x2 + y2 = n is O(nε).

Proof of Theorem 3 We keep the notation from Wooley [21, Section 3] and modify
only the parts concerning the bound of Golubeva’s theorem. The necessary require-
ments to apply Theorem 2, (i) NM12 > p17, (i i) NM6 > p11 and (i i i) N > p3, are
fulfilled provided that (cf. [21, p. 14])

(i) γ0(6/c + 1) − 4/c − ε > 17γ0 − 34/3 + ε,

(ii) γ0(3/c + 1) − 2/c − ε > 11γ0 − 22/3 + ε and
(iii) γ0 − ε > 3γ0 − 2 + ε.

These inequalities yield the following conditions

(i) γ0 <
34c − 12 − 6cε

48c − 18
, (ii) γ0 <

22c − 6 − 6cε

30c − 9
and (iii) γ0 < 1 − 2ε.

Assuming the Riemann hypothesis, Wooley chooses c = 2 + 2ε (cf. [21, p.15]).
With this choice and ε sufficiently small, the conditions are satisfied as long as γ0 <

28/39 = min(28/39, 38/51, 1). Otherwise, without assuming the Riemann hypothe-
sis, the choice is c = 12

5 + 2ε, and it follows γ0 < 58/81 = min(58/81, 26/35, 1).
The rest of the proof can be conducted exactly as in [21, Section 3]. ��
Acknowledgements I would like to express my gratitude to Prof. Blomer for the many useful suggestions
and remarks.
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