
Ramanujan J (2019) 48:131–149
https://doi.org/10.1007/s11139-017-9930-5

Statistics and characterization of matrices by
determinant and trace

Emre Alkan1 · Ekin Sıla Yörük2

Received: 23 May 2017 / Accepted: 1 June 2017 / Published online: 16 August 2017
© Springer Science+Business Media, LLC 2017

Abstract Answering a question of Erdös, Komlós proved in 1968 that almost all
n × n Bernoulli matrices are nonsingular as n → ∞. In this paper, we offer a new
perspective on the question of Erdös by studying n × n matrices with prime number
entries in an almost all sense. Precisely, it is shown that, as x → ∞, the probability
of randomly choosing a nonsingular n × n matrix among all n × n matrices with
prime number entries that are ≤x is 1. If A is a unitary matrix, then it is well known
that |detA| = 1. However, the converse is far from being true. As a remedy of this
defect, we search for necessary and sufficient conditions for being a unitary matrix by
teaming up determinant with trace. In this way, we are led to simple characterizations
of unitary matrices in the set of normal matrices. The question of which nonsingular
commuting complex matrices with real eigenvalues have the same characteristic poly-
nomial is formulated via determinant and trace conditions. Finally, through a study
of eigenvectors, we obtain new characterizations of Hermitian and normal matrices.
Our approach to proving these results benefits from a modular interpretation of non-
singularity and the spectral theorem for normal operators together with equality cases
of classical inequalities such as the arithmetic–geometric mean inequality and the
Cauchy–Schwarz inequality.
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1 Introduction

Let A be a square matrix of size n with complex entries. Two important quantities
that are associated with A are the determinant and trace, denoted as det A and tr(A),
respectively. If λ1, . . . , λn are the eigenvalues of A, then

det A =
∏

i

λi and tr(A) =
∑

i

λi ,

where both of them are symmetric functions of the λi . Despite the well-known fact
that determinant and trace are both invariants under similarity transformations, the
converse almost never holds. One of the motivations of this paper is to repair this
defect for specific classes of matrices and further obtain characterizations of them
in terms of statements involving only determinant and trace. To quote another well-
known fact, note that the vanishing of determinant characterizes the singularity of a
matrix. In this regard, singular matrices are expected to be statistically rare among
all matrices. For this expectation to be meaningful, we need to put constraints on the
entries of the matrices under consideration. A natural and simple setting would be
to focus on n × n matrices with nonnegative integer entries that are ≤ x (here we
are assuming that x ≥ 1). Answering a question of Erdös, Komlós [12,13] proved in
this setting that the probability of randomly choosing a singular matrix tends to 0 as
n → ∞. In particular, for the first interesting case when x = 1, matrices with 0, 1
entries are called Bernoulli matrices. An arithmetic question on unimodular matrices
was nicely treated by Dǎnescu et al. [5]. There are alternative ways to quantify the
rareness of singular matrices. For fixed n, one could as well look at matrices whose
entries are ≤x and belong to a thin subset of positive integers, such as the set of prime
numbers, with the hope of showing that the singular ones among them are still rare
as x → ∞. This would then give a new direction on the question of Erdös. Our main
result below confirms the desired statistical expectation in an almost all sense among
matrices all of whose entries belong to the set of prime numbers. We should mention
that almost all type results are common in number theory. Recall that a property P
holds for almost all positive integers, if

lim
x→∞

P(x)

x
= 1,

whereP(x) is the number of integers that are ≤x and have the property P . A classical
result of Hardy and Ramanujan [10] states that almost all positive integers n have
about log log n prime factors. A celebrated theorem of Erdös and Kac [8] extends this
phenomenon to the values of awide class of arithmetic functions (for a characterization
of additive arithmetic functions with continuous limiting distributions, see [7]). A
special case of their striking discovery shows that the number of prime factors of a
positive integer n behaves like a Gaussian normal distribution with mean and variance
both equal to log log n. We can now state the main result.
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Statistics and characterization of matrices 133

Theorem 1 Asymptotically, almost all n × n matrices with prime number entries are
nonsingular. Precisely, if Mn(x) is the number of nonsingular n × n matrices with
prime number entries that are ≤ x and π(x) is the number of prime numbers that are
≤ x, then

lim
x→∞

Mn(x)

π(x)n2
= 1.

Consequently, as x → ∞, the probability of randomly choosing a nonsingular n × n
matrix among all n × n matrices with prime number entries that are ≤ x is 1.

Some remarks on Theorem 1 are now in order. First by the prime number theorem
(see Chap. 18 of [6])

π(x) ∼ x

log x
∼ li(x) =

∫ x

2

1

log t
dt

as x → ∞. Thus Theorem 1 can be rephrased as

Mn(x) ∼
(

x

log x

)n2

as x → ∞. Recall that a set of positive integers A has asymptotic density 0 if

lim
x→∞

A(x)

x
= 0,

where A(x) is the number of integers in A that are ≤ x . Note that the set of prime
numbers has asymptotic density 0 and more generally, a set with asymptotic density
0 can be viewed as a thin subset of positive integers. It would be an interesting task to
obtain analogs of Theorem 1 for matrices with entries coming from other thin subsets
of integers. It turns out that, by adapting our method of proof of Theorem 1, such a
task can be undertaken if the set of integers, where the entries of the matrices under
consideration belong to, is sufficiently well distributed over arithmetic progressions.
In particular, the prime number theorem for arithmetic progressions (see Chap. 20
of [6]) is needed in the proof of Theorem 1, thereby exploiting the fact that prime
numbers are asymptotically equally distributed among arithmetic progressions which
admit infinitely many of them.

Matrices possessing more structure such as symmetry are ubiquitous throughout
linear algebra (and most of the rest of mathematics as well). These include represen-
tations arising from unitary, Hermitian, skew-Hermitian, and normal operators which
indeed constitute a foundation for the mathematical formulation of quantum mechan-
ics (see Chap. 3 of [9]). As a result of the impact of such operators on applied problems,
alternative characterizations of them were obtained and used (see Chap. 7 of [14]).
Recall that A is real unitary precisely when

AAt = I,
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where At is the transpose of A. An obvious necessary condition for being real unitary
is then

|detA| = 1.

However, this condition is far from being a sufficient condition. An elegant necessary
and sufficient condition can be given by teaming determinant with trace. Although it
may still not be clear which matrix should be associated with the trace, one is able to
infer a slightly stronger statement. For the notation, we let 〈 . , . 〉 be a positive definite
bilinear form (or scalar product) on Rn .

Theorem 2 Let A be a matrix of size n with real entries. Then A is similar (with
respect to an orthonormal basis arising from 〈 . , . 〉) to a block matrix B consisting
of only 2 × 2 and 1 × 1 blocks of the forms

[
cos θ − sin θ

sin θ cos θ

]
, [1], [−1]

on the main diagonal (so that other entries of B are 0) if and only if

|detA| = 1 and tr(AAt ) = n.

Our proof of Theorem 2 rests on the relation between determinant and trace via the
arithmetic–geometric mean inequality,

1

n

n∑

i=1

xi ≥
(

n∏

i=1

xi

) 1
n

for nonnegative real numbers x1, . . . , xn , equality being possible only when all xi are
the same. For a complex unitary matrix A satisfying

AA∗ = I,

where A∗ is the conjugate transpose of A, a similar characterization can be given as a
bonus by making the necessary modifications in Theorem 2. This time we let 〈 . , . 〉
be a positive definite Hermitian form on C

n .

Theorem 3 Let A be a matrix of size n with complex entries. Then A is similar (with
respect to an orthonormal basis arising from 〈 . , . 〉) to a diagonalmatrix B consisting
of entries of the form eiθ on the main diagonal if and only if

|detA| = 1 and tr(AA∗) = n.

The conditions of being Hermitian and normal for a matrix A are given by

A = A∗ and AA∗ = A∗A,
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Statistics and characterization of matrices 135

respectively. Consequently, unitary and Hermitian matrices are normal, though Her-
mitian and normal matrices do not possess group structure, a key property shared by
unitary matrices. Furthermore, unitary matrices are characterized by preserving unit
vectors (see p. 189 of [14]). The following result keeps the essence of Theorems2
and 3 by providing a new characterization of complex unitary matrices when they are
viewed as members of the collection of normal matrices.

Corollary 1 Assume that A is a normal matrix of size n with complex eigenvalues
λ1, . . . , λn. Then A is complex unitary if and only if

|detA| = 1 and
∑

i

|λi | = n.

Indeed it is possible to formulate the unitary condition solely as an equation involv-
ing determinant and trace.

Theorem 4 Let N be a nonsingular complex matrix of size n. Then there exists a
positive number c such that cN is unitary if and only if the equality

tr(NN∗)
n

= |detN | 2n (1)

holds.

Assume for themoment that A and B are similarmatrices. Then B = P−1AP holds
for some nonsingular matrix P . We certainly have then det A = det B, tr(A) = tr(B),
and A, B have the same characteristic polynomial so do the same eigenvalues counting
multiplicity. Again, in general, converses of these implications are not true. A better
measure of similarity might go through the comparison of Jordan normal forms of
A and B (see Chap. 11 of [14]). Observe that the computation of determinant and
trace uses data only from the main diagonal of the Jordan normal form but not from
the actual blocks appearing in the Jordan normal form. Therefore, we cannot hope
to deduce the similarity of matrices in an obvious way from determinant and trace
conditions. Despite this, it is possible to salvage the conclusion that two matrices have
the same eigenvalues counting multiplicity out of a combination of determinant and
trace conditions.

Theorem 5 Let A and B be nonsingular commuting complexmatriceswith real eigen-
values. Then A and B have the same characteristic polynomial if and only if

det A = det B and (tr(AB))2 = tr(A2) tr(B2). (2)

It is interesting to note how the trace condition in (2) mimics the equality case of
the Cauchy–Schwarz inequality. The set of eigenvalues of an operator is called the
spectrum of that operator so that in the case of Theorem 5, A and B would also have
the same spectrum if the hypotheses are satisfied. Let us have a brief digression to
generate plenty of examples of nonsingular commuting matrices with real eigenvalues
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136 E. Alkan, E. S. Yörük

as in Theorem 5. To this end, first start with two Jordan normal forms, say J1 and J2,
subject to the following conditions. If J1 has a block of the form λI + N , where N is
the nilpotent part consisting of 1’s above the main diagonal, then J2 either has a block
of the same form, namely has a block of the form μI + N , or it has a diagonal block
of the form μI having the same size. Note that λI + N commutes with μI + N and
μI . Consequently, assuming also that the corresponding blocks of J1 and J2 appear
at the same places on the main diagonal, we see that J1 J2 = J2 J1. Next take any
nonsingular matrix P . Then let A = P−1 J1P and B = P−1 J2P so that A and B
commute as J1 and J2 commute. Finally, the eigenvalues of A, B are the λ’s and μ’s
so we may choose them to be nonzero real numbers. This guarantees that A and B
are nonsingular as well. Having generated examples, we may assume that A, B are
nonsingular commuting matrices with real eigenvalues satisfying (2). Thus Theorem 5
applies and shows that A and B have the same eigenvalueswith the samemultiplicities.
We finish this digression by a discussion of some extra conditions imposed on A and
B which would force them to be similar. In addition to the above conditions, assume
that the geometric multiplicity of each eigenvalue of A, B is the same. This means
that for each common eigenvalue λ,

dim Ker(A − λI ) = dimKer(B − λI )

holds, where dim Ker(A − λI ) and dim Ker(B − λI ) denote the dimensions of the
kernel of the corresponding operators. Moreover, if (t − λ)m1 and (t − λ)m2 are the
factors, corresponding to λ, in the minimal polynomials of A and B, respectively, then
in either of the cases when

max(m1,m2) ≤ 2

for all λ or

m1 = m2 ≥ m − 3

for all λ, where m is the multiplicity of λ (so that (t − λ)m is the factor corresponding
to λ in the common characteristic polynomial of A, B), one can infer that A, B are
similar. To justify this first assume that max(m1,m2) ≤ 2. Consider the Jordan normal
forms of A and B. All blocks involving λmust have size at most 2 in both of the Jordan
normal forms of A, B. As the geometric multiplicities are the same, the total number
of 1’s appearing in all of the blocks involving λ must be the same (observe that the
total number of 1’s is equal to the multiplicity of λ minus the geometric multiplicity
of λ) in both of the Jordan normal forms of A, B. This means that the number of
2× 2 blocks should be the same in both of the Jordan normal forms of A, B for every
common eigenvalue λ. Therefore, the Jordan normal forms of A, B are similar and it
follows that A, B are similar. For the other case when m1 = m2 ≥ m − 3, if there is
a block of size m − 3 corresponding to λ in both of the Jordan normal forms of A, B,
then the remaining part can decompose as a single 3 × 3 or one 2 × 2 and one 1 × 1
or three 1 × 1. Again the total number of 1’s must be the same, and the blocks in the
Jordan normal forms of A, B are identical except possibly their places on the main

123



Statistics and characterization of matrices 137

diagonal. Thus A and B are forced to be similar. If there is a block of size > m − 3
corresponding to λ in both of the Jordan normal forms of A, B, then it can be shown
as above that A and B are again similar.

The spectral theorem holds for normal matrices (see p. 227 of [14]) which makes
them amenable to diagonalization with respect to an orthonormal basis consisting of
eigenvectors. A characterization of normal operators was defined by Hoffman and
Taussky [11]. In this connection, it is possible to give a simple and elegant treatment
of Hermitian and normal matrices separately by focusing on their eigenvectors. The
case of hermitian matrices is handled in the next theorem.

Theorem 6 Assume that A is a complex matrix with real eigenvalues. Then A is
Hermitian if and only if A and A∗ have the same eigenvectors.

For normal matrices there is an analogous criterion in terms of eigenvectors.

Theorem 7 Let A be a complex matrix. Then A is normal if and only if AA∗ and A∗A
have the same eigenvectors corresponding to every common eigenvalue of AA∗ and
A∗A.

2 A modular interpretation of nonsingularity

Let A = (ai j ) be a given n × n matrix with positive integer entries. For any prime
number p, let

Ap = (ai j )

be the n× n matrix obtained from A by reducing entries of A modulo p. Thus Ap can
be regarded as a matrix over the field

Zp = {0, 1, . . . , p − 1}

of congruence classes modulo p. The following characterization of the nonsingularity
of A will be one of the key ingredients in the proof of Theorem 1.

Theorem 8 (Modular interpretation of nonsingularity) Let A be a matrix of size n
with positive integer entries. Then A is nonsingular if and only if Ap is nonsingular
for some prime number p.

To prove Theorem 8, first let A = (ai j ). Then by the well-known determinant
formula,

det A =
∑

σ∈Sn
(−1)ε(σ )a1,σ (1) . . . an,σ (n),

where σ ranges over all permutations in the symmetric group Sn and ε(σ ) gives the
parity of the permutation which is 0 or 1 according to when σ is an even or odd
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permutation, respectively. Now det A is an integer and if det A ∈ Zp denotes the
reduction of det A modulo p, then we see from the above formula that

det A =
∑

σ∈Sn
(−1)ε(σ )a1,σ (1) . . . an,σ (n) = det Ap

as Ap = (ai j ). If Ap is nonsingular for some prime p, then det Ap �= 0 and this
forces det A �= 0. Therefore, A has to be nonsingular. Conversely, if A is nonsingular,
then det A is a nonzero integer. Let p be a prime number not dividing det A. Then
det A �= 0 in Zp and this forces det Ap �= 0 . Thus Ap is nonsingular for some prime
number p. This completes the verification of Theorem 8.

It is worth remarking that Theorem 8 builds on the simple idea of reading entries
modulo a prime number. Reading entries modulo prime numbers is a fruitful idea
in other areas of mathematics such as the local to global principles in the theory
of Diophantine equations which motivated most of the developments in algebraic
number theory and class field theory (see Chaps. 2, 5, 6 of [15] and first part of [17]
for the Hasse–Minkowski theorem). This idea also led to the theory of supersingular
primes by studying elliptic curves p-adically. For results on the Fourier coefficients
of cusp forms associated with elliptic curves using the distribution of supersingular
primes, see [2,3] which form part of the first author’s doctoral thesis [1] (also see [4]).
Thus, inspired by these applications, there is good motivation to name this section and
Theorem 8 as above.

In conclusion, to show that such a matrix A as in Theorem 8 is nonsingular, it is
enough to find a prime number p and show that Ap is nonsingular over Zp. It makes
sense, of course, to search for the smallest prime number p that does the job. Let us
therefore call the smallest prime number p such that Ap is nonsingular, the complexity
of A. Note that the complexity of the 3 × 3 matrix

A =
⎡

⎣
2 4 6
15 3 12
25 50 101

⎤

⎦

is 5 as A2 and A3 are singular but A5 is not as det A5 = 1 inZ5. It is also clear from the
proof of Theorem 8 that if A is nonsingular, then the complexity of A is the smallest
prime number not dividing det A. Although our modular interpretation of nonsingu-
larity is theoretically interesting, verifying that a given matrix A is nonsingular with
the help of this principle can be arbitrarily difficult. This is due to the fact that the
complexity is unbounded. Indeed the unboundedness even holds for matrices having
prime number entries.

Theorem 9 Let N be a positive integer and n ≥ 2. Then there exist infinitely many
n × n matrices with prime number entries whose complexity are all > N.

Observe that Theorem 9 is not true when n = 1 as the complexity of a 1× 1 matrix
[p], where p is an odd prime, is always 2. We may now give the proof of Theorem 9.
Let pk+1 be the least prime that is > N and put
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Statistics and characterization of matrices 139

P =
k∏

i=1

pi ,

where 2 = p1 < 3 = p2 < · · · < pi < . . . is the sequence of primes in increasing
order. Then consider the progression Pm + 1, where m ranges over positive integers.
By Dirichlet’s theorem, there are infinitely many prime numbers belonging to this
progression. We prove by induction over n ≥ 2 that there exist infinitely many n × n
matrices with prime number entries in the progression Pm + 1 whose complexity is
all > N . For the base case of the induction, let A = (ai j ) be a 2×2 matrix with prime
number entries in the progression Pm + 1. Then note that

Api =
[
1 1
1 1

]

and Api is singular for all 1 ≤ i ≤ k. Moreover, we have det A = a11a22 − a21a12
and keeping a12, a21, a22 fixed, we may vary a11 along the progression Pm + 1 to
guarantee that det A �= 0. Thus for each such choice of a11, the corresponding A is
nonsingular and its complexity is ≥ pk+1 > N . Clearly, there are infinitely many
such A as there are infinitely many choices for a11. This settles the base case. For
the inductive step, let A = (ai j ) be an n × n matrix with prime number entries in
the progression Pm + 1. As above, all entries of Api are 1 and Api is singular for
1 ≤ i ≤ k. Let A11 be the (n − 1) × (n − 1) minor obtained from A by deleting the
first row and the first column of A. By the inductive hypothesis, we may assume that
det A11 �= 0. Again we may keep all ai j fixed when i �= 1, j �= 1, and vary a11 in the
progression Pm + 1. We also have

det A = a11 det A11 +
n∑

j=2

a1 j det A1 j ,

where A1 j is the (n − 1) × (n − 1) minor obtained from A by deleting the first row
and the j th column of A. As det A11 �= 0 and

n∑

j=2

a1 j det A1 j

is fixed, we may vary a11 to guarantee that det A �= 0. Therefore, A is nonsingular
and the complexity of A is ≥ pk+1 > N . Lastly, there exist infinitely many such A
since there are infinitely many choices for a11 as a prime number in the progression
Pm + 1. This completes the induction and the proof of Theorem 9.

3 Proof of Theorem 1

The claim trivially holds when n = 1 so we may assume for the rest of the argument
that n ≥ 2. First note that the number of all n × n matrices with prime number entries
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that are ≤ x is π(x)n
2
. Since Mn(x) ≤ π(x)n

2
, we see that

lim sup
x→∞

Mn(x)

π(x)n2
≤ 1. (3)

Let p be a prime number and let B = (bi j ) be a nonsingular matrix over Zp such
that all entries of B are in {1, . . . , p − 1}. An important step in the proof is to use the
modular interpretation of nonsingularity as in Theorem 8. To this end, consider any
matrix A = (ai j ) with prime number entries that are ≤ x and satisfying Ap = B,
where the matrix Ap is defined as in Sect. 2. As B is assumed to be nonsingular over
Zp, Theorem 8 tells us that A is nonsingular. Clearly, each entry of A is a prime
number ≤ x that lies in a progression with common difference p. Precisely,

ai j ≡ bi j (mod p)

and bi j �= 0 for all i, j . Therefore, by the prime number theorem for arithmetic
progressions (see Chap. 20 of [6]), it follows that each entry of A can be chosen in

(1 + o(1))
π(x)

p − 1

many ways as x → ∞. Consequently, the number of such nonsingular matrices A
corresponding to B, by reducing entries of A modulo p, is

(1 + o(1))

(
π(x)

p − 1

)n2

(4)

as x → ∞. Next let N (p) be the number of nonsingular matrices over Zp with entries
in {1, . . . , p − 1}. As the A’s corresponding to different such B’s have to be different,
we infer from (4) that

Mn(x) ≥ (1 + o(1))

(
π(x)

p − 1

)n2

N (p) (5)

as x → ∞. Now (5) further gives that

lim inf
x→∞

Mn(x)

π(x)n2
≥ N (p)

(p − 1)n2
. (6)

To complete the proof, we need to find a good lower bound for N (p). Note that each
such matrix B as above may be viewed as an invertible linear map belonging to the
general linear group GLn(Zp). Let {v1, . . . , vn} be a basis for Zn

p over Zp. It suffices
to find a good lower bound for the number invertible linear maps fromZ

n
p toZ

n
p, where

the allowed coefficients are in {1, . . . , p − 1}. Let f : Zn
p → Z

n
p be such a linear map.
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Then f is determined uniquely by f (v1), . . . , f (vn). Starting with f (v1), say

f (v1) =
n∑

i=1

xivi

with xi ∈ {1, . . . , p − 1}. Clearly, f (v1) �= 0 and f (v1) can be chosen in (p − 1)n

different ways. In general, for 2 ≤ j ≤ n, f (v j ) cannot be a Zp combination of
f (v1), . . . , f (v j−1). Observe that

∣∣{α1 f (v1) + · · · + α j−1 f (v j−1) : α1, . . . , α j−1 ∈ Zp}
∣∣ = p j−1

as {v1, . . . , v j−1} are already chosen to be linearly independent. Therefore, the number
of choices for f (v j ), so as to make f invertible, is at least

(p − 1)n − p j−1.

Let us remark here that this is far from being an exact count for the number of choices
of f (v j ) since some of the combinations of f (v1), . . . , f (v j−1) in the form

α1 f (v1) + · · · + α j−1 f (v j−1)

with α1, . . . , α j−1 ∈ Zp can be written as a combination of v1, . . . , vn , where some
of the coefficients are 0. It follows that the number of such invertible linear maps is at
least

(p − 1)n
n∏

j=2

(
(p − 1)n − p j−1

)

which amounts to the lower bound

N (p) ≥ (p − 1)n
n∏

j=2

(
(p − 1)n − p j−1

)
. (7)

It is worth pointing out that (7) is nontrivial only when p is large enough in terms of
n. Combining (6) with (7), we deduce that

lim inf
x→∞

Mn(x)

π(x)n2
≥ (p − 1)n−n2

n∏

j=2

(
(p − 1)n − p j−1

)
. (8)

We also have

(p − 1)n−n2
n∏

j=2

(
(p − 1)n − p j−1

)
=

n∏

j=2

⎡

⎢⎣1 − 1

pn− j+1
(
1 − 1

p

)n

⎤

⎥⎦ , (9)
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142 E. Alkan, E. S. Yörük

where the product over j on the right hand side of (9) is nonempty since n ≥ 2 is
assumed. Moreover, n − j + 1 ≥ 1 holds for all 2 ≤ j ≤ n and using the fact that p
can be arbitrarily large, one easily sees that

lim
p→∞

n∏

j=2

⎡

⎢⎣1 − 1

pn− j+1
(
1 − 1

p

)n

⎤

⎥⎦ = 1. (10)

As a result of (8)–(10), we have

lim inf
x→∞

Mn(x)

π(x)n2
= 1 (11)

Finally assembling (3) with (11), one completes the proof of Theorem 1.

4 Proof of Theorem 2

First assume that A is similar to such amatrix B with respect to an orthonormal basis of
R
n . Then there exists a real unitary matrix P satisfying P−1AP = B and P−1 = Pt .

It is easy to see that

det B = ±
k∏

i=1

(cos2 θi + sin2 θi ) = ±1, (12)

for some k ≤ [n/2], where k is the number of 2 × 2 blocks appearing on the main
diagonal of B. Note that det A = det B and |detA| = 1 follows from (12). Moreover,
we have tr(BBt ) = n. Using the facts that P is real unitary and

Pt At (P−1)t = Bt ,

we infer that

P−1AAt P = P−1AAt (P−1)t = P−1APPt At (P−1)t = BBt . (13)

Thus by (13), AAt is similar to BBt and we obtain that tr(AAt ) = tr(BBt ) = n.
This completes the proof of the necessity part of the claim. For the sufficiency part of
the claim, assume that |detA| = 1 and tr(AAt ) = n. Note that AAt is a symmetric
matrix. Let λ be an eigenvalue of AAt . It is well known that eigenvalues of symmetric
matrices are real so that λ is real. Moreover, if v �= 0 is an eigenvector for λ, then
using AAtv = λv, one gets

〈
AAtv, v

〉 = 〈λv, v〉 = λ 〈v, v〉 . (14)

Also 〈
AAtv, v

〉 = 〈
Atv, Atv

〉 ≥ 0 (15)
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Statistics and characterization of matrices 143

holds as 〈 . , . 〉 is positive definite. Clearly, AAt is nonsingular and 〈v, v〉 > 0. Then
comparison of (14) and (15) tells us that all eigenvalues of AAt are positive real
numbers. Let λ1, . . . , λn be these eigenvalues. But we know that

n = tr(AAt ) =
n∑

i=1

λi (16)

and as A is real matrix with |detA| = 1, we also have that

1 = (det A)2 = det AAt =
n∏

i=1

λi . (17)

Combining (16) and (17), one sees that

1

n

n∑

i=1

λi =
(

n∏

i=1

λi

) 1
n

, (18)

where λ1, . . . , λn are positive real numbers. (18) represents the equality case of the
arithmetic–geometric mean inequality and it is well known that this can happen only
when

λ1 = · · · = λn = λ (19)

for some λ > 0. From (17) and (19), one infers that λn = 1 and this forces λ = 1.
As there exists a basis {v1, . . . , vn} of Rn consisting of eigenvectors of AAt (see
Theorem 4.3 on p. 219 of [14]) and all eigenvalues of AAt are 1, AAt fixes all of the
basis elements. This shows that AAt = I . Therefore, A is real unitary and A has to be
similar to the desired block matrix B with respect to an orthonormal basis arising from
〈 . , . 〉 (see Theorem 6.4 on p. 230 of [14]). This completes the proof of Theorem 2.

5 Proof of Theorem 3

For the necessity part of the claim, note that

det B = ei
∑

θk and tr(BB∗) = n, (20)

where eiθk , 1 ≤ k ≤ n are the diagonal entries of B. Moreover, there exists a complex
unitary matrix U such that

U−1AU = B and U−1 = U∗. (21)

First from (20) and (21), |detA| = |detB| = 1 follows. Similarly as in the proof
of Theorem 2, we can show, using (20) and (21), that tr(AA∗) = tr(BB∗) = n.
The sufficiency part of the claim can be shown similarly as in Theorem 2 by noting
that AA∗ is Hermitian and has positive real eigenvalues. Thus the equality case of
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the arithmetic–geometric mean inequality is again applicable. In this way, one may
deduce that A is complex unitary. Finally, using Theorem 6.2 on p. 228 of [14], we
see that A has to be similar to such a matrix B with respect to an orthonormal basis
arising from the hermitian product 〈 . , . 〉. This completes the proof of Theorem 3.

6 Proof of Corollary 1

Assume that A is complex unitary with eigenvalues λ1, . . . , λn . Since det A∗ = det A
(here of course det A is the complex conjugate of det A, unlike its meaning in Sect. 2),
we have |detA| = 1. Moreover, all eigenvalues of A are of the form eiθ for some real
number θ so that

n∑

i=1

|λi | = n

holds. This completes the necessity part of the claim. For the sufficiency part of the
claim, assume that

|detA| = 1 and
n∑

i=1

|λi | = n. (22)

Since A is a normal matrix, by the spectral theorem (see p. 227 of [14]), there exists
a complex unitary matrix U such that

U−1AU = B, (23)

where B is a diagonal matrix consisting of eigenvalues of A on the main diagonal.
From (22), we see that

n∏

i=1

|λi | = |detA| = 1

and consequently that

1

n

n∑

i=1

|λi | = 1 =
(

n∏

i=1

|λi |
) 1

n

. (24)

By the equality case of the arithmetic–geometric mean inequality, (24) implies that
|λi | = 1 for all i . Therefore, the diagonal entries of B are of the form eiθ and B is
complex unitary. As complex unitary matrices form a group under multiplication and
U is complex unitary, one obtains from (23) that A = UBU−1 is complex unitary as
well. This completes the proof of Corollary 1.
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7 Proof of Theorem 4

First assume that cN is unitary for some positive number c. Then

cNcN∗ = c2NN∗ = I (25)

and it follows from (25) that

det NN∗ = 1

c2n
and tr(NN∗) = n

c2
. (26)

But we also have det NN∗ = det Ndet N = |detN |2 so that

|detN | 2n = 1

c2
(27)

follows from (26). Combining (26) and (27), (1) is obtained. Conversely, assume
that (1) holds. Since N is nonsingular, NN∗ is a positive definite Hermitian matrix.
Therefore, by the spectral theorem (see Theorem 5.3 on p. 226 of [14]), NN∗ is
similar to a diagonal matrix consisting of the positive eigenvalues of NN∗ on the
main diagonal. Using this, we see that

|detN |2 = det NN∗ =
n∏

i=1

λi and tr(NN∗) =
n∑

i=1

λi , (28)

where λ1, . . . , λn are the positive eigenvalues of NN∗. As a result of (28), (1) can be
written in the form

1

n

n∑

i=1

λi =
(

n∏

i=1

λi

) 1
n

. (29)

Once again, (29) gives the equality case of the arithmetic–geometric mean inequality
and one concludes that λi = λ > 0 for all i . Finally, NN∗ is similar to the diagonal
matrix λI and we get that

(
1√
λ
N

) (
1√
λ
N∗

)
= I. (30)

Consequently from (30), cN is unitary with c = 1√
λ

> 0 and this completes the proof
of Theorem 4.

8 Proof of Theorem 5

As A and B are commuting complex matrices, we may use a special case of a classical
theorem of Frobenius on the simultaneous triangulation of an arbitrary set of commut-
ing matrices by unitary similarity. For a nice treatment and proof of this result based

123



146 E. Alkan, E. S. Yörük

on representation theory, the reader is referred to a paper of Newman [16]. Precisely,
by Theorem 1 of [16], there exists a unitary matrix S such that

U1 = S∗AS and U2 = S∗BS (31)

are both upper triangular matrices. Therefore, A and B can be simultaneously put into
triangular form with respect to an orthonormal basis of Cn . Using (31), one obtains
that

tr(U1U2) = tr(S∗ASS∗BS) = tr(S∗ABS) = tr(AB). (32)

Again from (31), we also have

tr(U 2
1 ) = tr(S∗A2S) = tr(A2) and tr(U 2

2 ) = tr(S∗B2S) = tr(B2). (33)

Assume now that (2) holds for A and B. Then combining (32) with (33), we see that

(tr(U1U2))
2 = tr(U 2

1 ) tr(U 2
2 ). (34)

Observe that U1 and U2 are upper triangular matrices whose main diagonals consist
of eigenvalues of A and B, respectively. Let λ1, . . . , λn be the eigenvalues of A and
let μ1, . . . , μn be the eigenvalues of B. By assumption, λi and μi are all nonzero real
numbers. Moreover, U1U2 is also an upper triangular matrix whose main diagonal
consists of the numbers λiμi . It follows that

(tr(U1U2))
2 =

(
n∑

i=1

λiμi

)2

. (35)

By similar reasoning, one further infers that

tr(U 2
1 ) =

n∑

i=1

λ2i and tr(U 2
2 ) =

n∑

i=1

μ2
i . (36)

Assembling (34)–(36), we deduce that

(
n∑

i=1

λiμi

)2

=
(

n∑

i=1

λ2i

)(
n∑

i=1

μ2
i

)
. (37)

Clearly, (37) represents the equality case of the Cauchy–Schwarz inequality. Then it
is well known that

μi = cλi (38)

holds for all i , where

c =
(∑n

i=1 μ2
i∑n

i=1 λ2i

) 1
2

> 0. (39)
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From (2), we have
n∏

i=1

λi = det A = det B =
n∏

i=1

μi . (40)

Consequently from (38)–(40) and the fact that A and B are nonsingular, one obtains
cn = 1 and c = 1. Therefore, A and B have the same eigenvalues, counting multi-
plicity, so have the same characteristic polynomial. Conversely, if A and B have the
same characteristic polynomial so have the same eigenvalues, counting multiplicity,
say λ1, . . . , λn , then we have

det A =
n∏

i=1

λi = det B. (41)

Moreover, by (32) and (33),

(tr(AB))2 = (tr(U1U2))
2 =

(
n∑

i=1

λ2i

)2

= tr(U 2
1 ) tr(U 2

2 ) = tr(A2) tr(B2) (42)

holds. From (41) and (42), one completes the proof of Theorem 5.

9 Proof of Theorem 6

The necessity part of the claim is obvious. For the sufficiency part, assume that A and
A∗ have the same eigenvectors. Let us show by induction on the size of the matrices
that A and A∗ are simultaneously diagonalizable. The base case of the induction clearly
holds for 1 × 1 matrices A and A∗. Thus for the inductive step, we may assume that
A and A∗ are n × n matrices with n > 1. Since A is a complex matrix, it has an
eigenvalue, say λ. Then Av1 = λv1 holds for some unit vector v1. Let

W = {cv1 : c ∈ C}

be the complex space spanned by v1. Also let 〈 . , . 〉 be the standard positive definite
Hermitian product on C

n so that for any two v = (a1, . . . , an), w = (b1, . . . , bn) in
C
n , we have

〈v,w〉 =
n∑

i=1

aibi ,

where bi is the complex conjugate of bi . In this setting, one gets by the Gram–Schmidt
orthogonalization process that

W ⊕ W⊥ = C
n, (43)

123



148 E. Alkan, E. S. Yörük

where W⊥ is the orthogonal complement of W in C
n with respect to the standard

Hermitian product. Note that

dimC W⊥ = n − 1 (44)

follows from (43). Let us see thatW⊥ is stable under A. To this end, take anyw ∈ W⊥.
Then 〈cv1, w〉 = 0 for all c ∈ C. As A and A∗ have the same eigenvectors, v1 is an
eigenvector of A∗ and A∗v1 = λ1v1 holds for some eigenvalue λ1 of A∗. Then we
observe that

〈cv1, Aw〉 = 〈
cA∗v1, w

〉 = 〈cλ1v1, w〉 = 0. (45)

Therefore, from (45), Aw ∈ W⊥ follows and W⊥ is stable under A. Similarly, one
can show that W⊥ is also stable under A∗. By (44), the inductive hypothesis holds
for W⊥ and A and A∗ are simultaneously diagonalizable over W⊥. This means that
there exists an orthonormal basis B of W⊥ such that A and A∗ are both diagonal with
respect to B. But then A and A∗ are both diagonal over Cn with respect to B ∪ {v1}.
Next let v be any basis element in B ∪ {v1}. Then note that since all eigenvalues of A
are real,

Av = μ1v and A∗v = μ2v (46)

holds with real μ1. Using (46) and the properties of the Hermitian product, one may
deduce that

μ2 〈v, v〉 = 〈
A∗v, v

〉 = 〈v, Av〉 = μ1 〈v, v〉 = μ1 〈v, v〉 . (47)

Since 〈v, v〉 > 0, we obtain from (46) and (47) that μ1 = μ2 and consequently that

Av = A∗v

for all v ∈ B ∪ {v1}. Thus A = A∗ and A is hermitian. This completes the proof of
Theorem 6.

10 Proof of Theorem 7

The necessity part of the claim is obvious. For the sufficiency part, assume that AA∗
and A∗A have the same eigenvectors corresponding to every common eigenvalue of
AA∗ and A∗A. Note that AA∗ is a Hermitian matrix, so by the spectral theorem (see
Theorem 5.3 on p. 226 of [14]) it is diagonalizable. It follows that there exists a basis
B of Cn consisting of the eigenvectors of AA∗. Let v be any basis element of B. Then
v is an eigenvector of AA∗ so that

AA∗v = λv

for some real number λ. Note that AA∗ and A∗A have the same eigenvalues so that
λ is also an eigenvalue of A∗A. Thus by assumption, v is also an eigenvector of A∗A
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corresponding to the common eigenvalue λ. It follows that

A∗Av = λv = AA∗v.

As v ∈ B is arbitrary, we conclude that AA∗ = A∗A and A is therefore normal. This
completes the proof of Theorem 7.
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