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Abstract In this paper, by the Bernoulli numbers and the exponential complete Bell
polynomials, we establish two general asymptotic expansions on the hyperfactorial
functions []{_, k' and the generalized Glaisher—Kinkelin constants A,, where the
coefficient sequences in the expansions can be determined by recurrences. Moreover,
the explicit expressions of the coefficient sequences are presented and some special
asymptotic expansions are discussed. It can be found that some well-known or recently
published asymptotic expansions on the factorial function n!, the classical hyperfac-
torial function ]_[',Zz 1 k¥, and the classical Glaisher—Kinkelin constant A are special
cases of our results, so that we give a unified approach to dealing with such asymptotic
expansions.
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1 Introduction

In 1933, Bendersky [4] studied the product ]_[Z=1 K~ for g = 0,1,2,..., which
reduces to the classical factorial function n! when ¢ = 0 and the classical hyperfactorial
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function H(n) = [[;_, k* when ¢ = 1. He examined the logarithm of the product
and determined the first five values of the limits

n
— | — L q _
1n(Aq)_n1£rololn(Aq(n))_nlggo{];k Ink Pq(n)}, (1.1)
where
n ndtl 1
Py(n) = 7111” + . <lnn — m)

I’lq jB]+] 1
Inn+(1-4,
qZ(J—I-l)'(CI—J)' ( ’)Z —1+1

By, are the Bernoulli numbers, and §,, ; is the Kronecker delta function defined by
8y,j =0for j #qand §, ; = 1for j = ¢g.In 1995 and 1998, Choudhury [16] and
Adamchik [2] showed independently that the constants A, can be expressed in terms
of the derivatives of the Riemann zeta function ¢ (s)

By +1H,

Ay zexP{qT ¢'(— 6])}

where H,, are the harmonic numbers.
From (1.1), it follows that

n
1
InAg = lim In(Ag(n)) = lim { E Ink — <n + —) Inn +n} ,
n—00 n—00 Pt 2

n 2
. . n 1 n
In Ay =nlingoln(A1(n)) _ngngo{kg_lklnk— ( 5 + = > + 12)1nn+Z}’

which indicate that A9 = /27 and A; is the Glaisher-Kinkelin constant. The
Glaisher—Kinkelin constant A = 1.2824271291 ... is closely related to the Barnes
G-function G(z) by the limit
non2 1 3%, 1
. (Qm)Inz me 4 TH
A; = lim
n— 00 Gn+1)

’

and satisfies many beautiful formulas; see Finch’s book [20, Sect. 2.15].
Moreover, for g = 2, 3, Eq. (1.1) gives

In A = lim In(Az(n))
n—00

n 3 2 3
n n n n n
= i 2 Eihnk——+—+=-)lnn+ — — — 1,
o L_l n <3 2 6) o 9 12
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In A3 = lim In(A3(n))
n—0oo

n 4 3 2 4 2

n n n 1 n n
= i Bink— (= +2+% - Jmn+ = -1,
,,320{; " <4+2+4 120) ST 12]

where Ay = 1.0309167521... and A3 = 0.9795555269. ... According to Finch’s
book [20, Sect. 2.15] and the On-Line Encyclopedia of Integer Sequences (OEIS),
the constants A, should be called the generalized Glaisher—Kinkelin constants or the
Bendersky constants.

The generalized Glaisher—Kinkelin constants have been used in the closed-form
evaluation of some series involving zeta functions and in calculation of some inte-
grals of multiple gamma functions; see Choi and Srivastava’s works [12,14,15,36].
Recently, many researches are devoted to establishing asymptotic expansions on these
constants and the related hyperfactorial functions, and the readers are referred to the
papers [5,7,10,11,13,22,23,26,29,38].

In particular, Chen [5] presented in 2012 the asymptotic expansions of In A (n),
In A>(n), and In A3 (n) by using the Euler—Maclaurin summation formula. For exam-
ple, the expansion of In A (n) is

o0

InAy(n) ~In Ay =Y

k=1

B2 RS
2k(2k + 1)(2k + 2) n2k’

n — OQ.

Substituting the values of B;, and using the expression of In A1 (), the above expansion
can be written as

1l L ¢ P 72002 7 50400% " 1008016
1 + 0] : + (1.2)
- - ), n—> oo .
95048 © 360360010 1872112 !

Mortici [26] established (1.2) and gave a recurrence relation to compute the coeffi-
cients of the series in the formula. Using (1.2), Chen and Lin [10] obtained a general
asymptotic expansion

1
n ) . , [ & v
n n n
[[~AnTtitme s (Y =) . n— oo, (1.3)
n
k=1 k=0

and presented the expression of (¢¢). Wang and Liu [38] gave two general expansions

, TRy
1_[kk’\'A]'I’lTJrerﬁ67T (Zm) ) (1.4)
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2 (e @ o
Ko~ Ay Tt = , 1.5
[T~ TN\ G 4

k=1

as n — 00, and studied systematically the recurrences and the explicit expressions of
(oex) and (¢r). Moreover, Choi [13] presented the expression

n
lnAq(n)=qulnk

”qH qi: 2ﬁ1 +1-2

- (g—Jj+D|n? 7 inn
!

q+ 1 = (2r) e

nd+l
+ JE—

(g +1)?
g+1q, (=D2-1
[+ —5 By, 2r—1 | 2r—1 il
- Z 2! H(q_]+ )Z n
r=1
n
= qu Ink — Uy1(n) Inn + Vyir (), (1.6)
k=1
and gave the general asymptotic expansion
o0
By (2r —gq —2)!
~ —1)4 .
InAg(n) ~In Ay + (—iq! Y Gl EaT T oo 1.7)
r=[LH 141

which reduces to Stirling’s formula of n! when ¢ = 0 and Chen’s results in [5] when
q = 1,2, 3. Further results may be found in Chen [7], Cheng and Chen [11], Lin [22],
Lu and Mortici [23], and Mortici [29].

Inspired by these works, we present in this paper the next two general asymptotic
expansions on the hyperfactorial functions and the generalized Glaisher—Kinkelin
constants

n 0 ‘h 'l
I—Ikkq ~ A, - Va1 g=Var1(n) (Z M) , (1.8)
k=1 = P
n = igih o\
1_[ kkq ~ Aq . an+l(n)e_V‘I+l(n) (Z #) (19)
k b
o = (n+h)

asn — 00, where the polynomials U, 1(n) and V11 (n) are defined in (1.6). We give
recurrences and explicit expressions of the coefficient sequences in the expansions by
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the exponential complete Bell polynomials, and discuss some special cases of these
two expansions.

In particular, when ¢ = 0, our results reduce to the asymptotic expansions of n!,
including as special cases some well-known formulas due to Laplace, Wehmeier, and
Ramanujan, and some recent results due to Batir [3], Chen [6,8,9], Mortici [28,30],
Nemes [31,32], et al. Additionally, when g = 1, our results reduce to the asymptotic
expansions on the classical hyperfactorial function [ [;_, k* and the classical Glaisher—
Kinkelin constant A1, including those presented by Chen and Lin [10] and Wang and
Liu [38].

The paper is organized as follows: Sections 2 and 3 are devoted to the first general
asymptotic expansion (1.8), and Sects. 4 and 5 are devoted to the second one (1.9).

2 The first general asymptotic expansion

Define the exponential complete Bell polynomials Y;, by

n

Xoqm > t
exp me% =ZYn(x1,xz,-..,xn);; 2.1
m=1 : n=0 :

see [18, Sect. 3.3] and [34, Sect. 2.8]. Then Yy = 1 and

n! X1\C1 /X2\€2 Xp\ Cn
Yu(X1, X2, ..oy Xn) = 3 —clch!---c,,!(F) (5) (ﬁ) .

c1+2c+-+ncy=n
(2.2)

According to [34, Eq. (2.44)] (see also [17, Eq. (3.6)] and [35, Theorem 1]), the
polynomials Y,, satisfy the recurrence

n—1 n—1
Yo (X, X2, X)) = Y ; Pai¥iGnmexp, nzlo 23)

j=0

Using the definition and recurrence of the Bell polynomials, the following general
asymptotic expansion can be obtained.

Theorem 2.1 Let h, r be real numbers such that r # 0. Define the sequence (Bi)i>1

by 1
k—i—q)_ Biyq+1
= (=D)r(k — 1)! — . 24
=iy 9) B @9
Then
n > O(k((]'h r) %
KK~ A pUar1 () g =Vas1(n) = 7 2.5)
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as n — 0o, where (ax(q; h, r))k>0 is determined by

k—1

) ) Yk ki (k= 1\ k) .
aolg; h,r) =1, ap(g; h,r) = E—izo(—l) ]<k 3 j)h Taj(q; h,r), k=1,
‘ (2.6)
and (yi)k=o is determined by
— (k-1
Yo =1, yk=2( ; )ﬂk_jyj, k=1 2.7)
=0

Proof Define the falling factorials (x), by (x)o = land (x), = x(x—1) --- (x —n+1)
forn =1, 2, .... The asymptotic expansion (1.7) can be rewritten as

o0

n
1_[ kkq ~ Aq . anH(n)e—VqH(") exp Z %i , n — 00.
Pl = (k+q+ Dgea nt

(2.8)
Then (2.1) and (2.4) give

r
[Tio; K -~ exp i (—1)9rklq! By g1 (1)
Aq . nUgr1(m) g=Vg11(n) = (k+ q+ 1)q+2 k!

=,
_ n
—ep Y B
k=1
o Ye(B1, B, B 1
= Z X n—k, n — o0.
k=0 :
On the other hand, expansion in powers of 1/n yields
i aj(qih.r) _ i aj(qgih.r) i oj(q: h.r) i AV
(—~ (n+ h)J c—~ ni(1+h/n)l 4 nl : i Jnt
j=0 Jj=0 Jj=0 i=0

00 k
(k=1 . 1
=y 1> (—1)k—f<k_ .)hk—fa,-(q;h,r) —-
k=0 0 J n

j=

Thus, it suffices to show that the system

k
YeBi. Bas o B (k=1
. =§o(_l)k J(k—j>hk i)
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has unique solution (ak(q; h, r))r>0. This is established next. The case k = 0 gives
ao(g; h,r) = 1. For k > 1, the system gives

k—1

Ye(Bi, Bas - - -, _ifk =1\ j_;

(g h,r) = ©(B1 ,BIZC' Br) _2 :(—1)k /(k_j>hk /ozj(q;h,r).
! 0

Setting yx = Y (B1, B2, ..., Br) gives recurrence (2.6) and shows that (ax(q; ki, 1))
can be uniquely determined. Finally, (2.3) gives (2.7) and the proof is complete. O

By specifying the parameters g, i, r in Theorem 2.1, many special asymptotic
expansions on [ [;_, kX and A, can be obtained. In particular, when 4 = 0, Theorem
2.1 reduces to the following result.

Theorem 2.2 Let r # 0 be a real number. Then

1
o0

~ v
- (¢;0,7)
kkq ~ A, - Ug+1(n) o—Vg41(n) (073 '
[1 g nrre P : 29)
k=1 k=0
asn — 0o, where (ak(q; 0, r))k=0 is determined by

ap(q; 0,7) =1,

k—1 . —1
(=Dr (k —Jj+ q) Bik—j+q+1
ar(g;0,r) = ——ai(q;0,r), k>1.
k(g 0,7) X ;:0 g K= j+q 1%i(¢:0.7)

The further special cases ¢ = 0 and ¢ = 2 are stated next.

Corollary 2.3 Let r # 0 be a real number. Then

1
n! ~2mn (g)n (Z w> , (2.10)
k=0

as n — 0o, where (2 (0; 0, r))i>0 is determined by

k—1
r Bi—j+1
a0(0;0,7) =1, ak(o;o,r)zE;ﬁaj(o;o,r), k>1. (21D

Corollary 2.4 Let r # 0 be a real number. Then

n n3 le n Yl3 n ° 2. 0 ;
[T6° ~ Az -n5tothe 54t (Z %(2:0.7) g ’”) : 2.12)

k=1
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as n — 0o, where (ax(2; 0, r))i>0 is determined by

a0(2:0,7) =1,
2 i Bi_;
(20,1 = =" Eois @j(2:0,7), k> 1.

kg k—j+Dk—j+2k—j+3)

(2.13)

The recurrences (2.11) and (2.13) determine the coefficients («x(0; 0, r)) and
(ax (25 0, 1)), respectively. For example,

2
r r
@0 0,r) =1, 1(0;0,7) = 17, 2(0;0,7) = 520,
—144 + 52 2(—576 + 5r2
a3(0; 0,,):u, a4(0; o’r):u’
51840 2488320
and
2:0.7) =1, (20, r)=—— (2:0.r) = r’
ao b 9 r - 9 al 9 b r - 3607 a2 9 b r - 2592007
—259200 + 7r2 2(—1036800 + 7r2
a3(2; O,r)=—r( s ), a4(2;0,r) = I )
1959552000 2821754880000

Example 2.1 Setting r = 1 in Corollary 2.3 yields

1 1 139 571 163879
n!~v2nn(%)n<l+—+ — + +)

12n ' 288n2  51840m3  2488320n* ' 209018880n5

as n — oo, which is the famous Laplace formula, and sometimes called Stirling’s
formula (see [19, pp. 2-3] ). Setting r = 2 in Corollary 2.3 gives the Wehmeier
formula

1
nyn 11 31 139 9871 2
I~ /2 <_> 14+ — — _ )
" ™e ( ton T T2 T 6480 15552007 | 653184005 | )

as n — 0o, which was recently rediscovered by Batir [3], Luschny [25], and Mortici
[27]. Setting » = 6 gives the well-known Ramanujan formula

1
o T 1 1 79 g
I~ 2 <_> 14+ — 4+ — — )
" e ( 20 T 82 T 23007 T 192007 T 2688005 T )

as n — oo (see, for example, [21,33]). Batir [3] obtained the case r = 4, Mortici
[28,30] presented the cases r = 8, 10, 12, 14, and Chen and Lin [6,9] gave the cases

111 - _1 —
r_2,4,6,andr_ 1, 2.
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In 2013, Lu and Wang [24] studied the expansion (2.10), but they determined only
the first five terms of the coefficient sequence (c(0; 0, 7)) and did not obtain an
explicit expression nor recurrence relation for it. Chen and Lin [6,9] also presented
(2.10) and established the expression for (ax (0; 0, r)). In 2016, Wang further gave the
recurrence (2.11) for (ax (0; 0, r)), showed a more general expansion, and generalized
Lu, Wang, Chen and Lin’s results (see [37, Theorem 2.1 and Corollary 3.3]).

Example 2.2 Setting r = 1 in Corollary 2.4 yields

w3 n 1 1 259193
kk ~ A *+*+5 —j+ﬁ 1_
1_[ 20 ¢ 360n + 259200n2 + 1959552000n3

1036793 201551328007
— — +--), n— oo
2821754880000n*  5079158784000000n°

Other special cases of Theorems 2.1 and 2.2 and Corollaries 2.3 and 2.4 can be obtained
similarly.

3 Explicit expression of the coefficient sequence in (2.5)

In this section, the method of generating functions is used to present an explicit expres-
sion for the coefficients in the asymptotic expansion (2.5).

Theorem 3.1 The coefficient sequence (o (q; h, r)) in (2.5) is given by the Bell poly-
nomials

1
ar(g; h,r) = —Yk(31 82, ..., 0k),

where

—)rklg! Nk 1 .
5 = kgl Bk+q+1(h)—2( tat )thk+q+1_, k=l
(k+q+ Dg+2 s J

and By (x) are the classical Bernoulli polynomials.

Proof Introduce the notations (Bk)i>1, (Vk)k=0 and (ax(q; h, r))k>0 by
00 £k [ £k 0
fp() = ;ﬁkﬁ, fy(0) = kzoykﬁ, falt) = kzoak(q; h, )tk

The result (1) = fy(t) - f(1) comes from (2.7). Then f, (1) = C -e/8® _ The initial
conditions fy(0) = 1 and fg(0) = O show that C = 1. Therefore f,(t) = exp(fs(?)).
On the other hand, (2.6) gives
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522 W. Wang
00 Vi ook k
f=3 =ZZ(—1>k—f(k_ )hk Tajg; b, )it
k=0 k=0 j=0
= Zaj(q; hyr)t! Z (7)(1101'
j=0 i=0
h t j_ t
_2_:0“’(‘1’ r)(1+ht> _f°‘<1+ht>'
Then
t t
fa(t):fy (m)ZeXP{fﬁ<l_ht>}. (31)

From the definition of (8x) and the identity for Bernoulli polynomials

Bu()=Y (']Z) Bix"k

k=0

(see [1, Chap. 23] and [18, Sect. 1.14]), it follows that

k+q\ " Biig+ ()"
1Yk —
() = v 1) e

(k — D)!Byygi1t* (—k> ;
=(=Dirq! )y —— .| (=ht)!
Z (k+q+1)! ]2=(:) j

= D!Bpygy1 (m—1 —k
J— q m m
= (-1 rq'ZZ anrl APY L

m=1 k=1

> 1 I (m4+qg+1
= (=1)irq! - B Rk
( )rqn;{(m+q+l)q+2,§(k+q+l) ktg+1 }

0 m
= (-Dirg!y —
mX::l (m~+q+ Dgs2
g+1
m+q+1 .
X 9 Buigt1(h) — Z ( ]q )thm+q+1 J
j=0

Define the coefficient of #”* /m! in the last series by 8,,. Then

fa®) =exp( 8mt—m,>,
1 n:.

and the expression of (o) follows from here.
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The special case h = 0 gives

5 (=D%rm!q!

m = —(m+q T 1)q+2 m+q+1-

This produces the next corollary.

Corollary 3.2 The coefficient sequence (ax(q; 0, 1)) in (2.9) has the explicit expres-
sion

((— 1)qrq!)61+62+---+6k

o(q: 0,7) = > PP
1420+ ke =k 2t

Byra ([ Bgrz \©
) <(q +2)q+z> ((q +3)q+2>
y < Bytit1 )C" '
(g+k+ 1Dy

Moreover, when &2 = 0 and ¢ is odd, using By;+; = O0fork = 1,2, ... gives

fa®) = ar(q; 0,r)* =exp ( 8 ﬁ)

|
k=0 m=1 n:

o0
—rq! m
= ex -8B 1t
p[z (m+q+ g " }

m=1

oo
—rq! 2%
= ¢€X —— B t .
P{; Qk+q+ Dy 2k+q+1 }

This shows that in this case fz(¢) is an even function and oyx+1(g; 0,7) = 0 for
k=0,1,2,.... Thus, Theorem 2.2 and Corollary 3.2 produce the following result.

Theorem 3.3 Let g be an odd integer and r # 0 be a real number. Then

. Yk(q; 0,7) '
ke o Ugt1(n) o= Vgi1(n) § : e o7 —
kl_llk Ag - nPart eVt (k_o o ) , n 0.

The sequence (yk(q; 0, r))k=0 satisfies the recurrence

(q;0,r) =1,

k—1

<2k -2j+ CI>1 Bak—2j4q+1
0

r

;01 = —
vk(q; 0, 1) %

~7 A - . 4 / ;01r7 k219
< q % —2j+q 11/ @O
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and has the explicit expression

(—rg)ditdat+dy

di\dy! - - - di!

vi(q;0,7) =
d\+2dy+++kdy=k

» ( Byy3 )d] ( Byys )dz o ( By i2k+1 )dk
(g +3)g+2 (g +5)g+2 (q+2k+1)g12)

Proof Set yx(q; 0,7) = a2 (q; 0, r). Then the theorem follows from the recurrence
and expression of ayx(q; 0, r) as well as the vanishing of By 1. O

The special cases ¢ = 1 and ¢ = 3 in Theorem 3.3 are stated in Corollaries 3.4
and 3.5.

Corollary 3.4 Let r # 0 be a real number. Then

1
r
s

n o

n2ying 1 a2 vi(1;0,7)
| |kk~A nztithme 7 E LA R 3.2
k=1 v ) = o

as n — 0o, where (yx(1; 0, r))k>0 is determined by

(1:0,r) =1,
- Bok—2j42
50,7) = —~ b (1;0,r), k=1 (33
ve(1:0,7) 2ka_(:)(2k—2j+1)(2k—2j+2)yj( okl G

Corollary 3.5 Let r # 0 be a real number. Then

1
1 w3 a2 W2 > s T
l_[k"3 ~ Ay nTHE T me 5t h <Z —yk(3’22’ r)) , (3.4)
k=1 k=0 n
as n — 0o, where (yx(3; 0, r))k>0 is determined by
k—1
3r Bok—2j+4

30, =1, n@GB:0,r)=——

D2 30,0), k> 1.
kj=0(2k—2j+4)4y’( )

(3.5)

Using these recurrences, the coefficients (yx(1; 0, r)) and (yx(3; 0, r)) can be com-
puted efficiently. For example,

(0. =1, y(L0,r) = . p(150,p) = 0T,
720 7257600
(150, ) = r(1555200 — 4320r + 7r?)
T 15676416000 ’
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Some asymptotic expansions on hyperfactorial functions... 525

r(—365783040000 + 5474304001 — 6652807 4 539r3)

1;0,r) =
va(1:0.7) 3476402012160000
and
r r(1512 4+r)
3;07 =19 3901 = —— 3;07 = T oA
n(3:0.7) nG:0.1) = =zm5. 1601 = —5e3500
(127008000 + 498967 + 11r2)
y3(3;0,1r) = — ,
8449588224000
3:0.7) r(35385851289600 + 7585171776r + 129729612 + 143r3)
U, r) = .
v 2214468081745920000
Example 3.1 Setting r = 1 in Corollaries 3.4 and 3.5 gives
n
H"k A -né+%+ﬁe_% - 11433 N 1550887
e 720n2  7257600n* ' 1567641600010
365236274341 N 31170363588856607
3476402012160000n8 ' 162695614169088000000710

and

4

[S]

n
[T ~ As-n'5 45+ - thefitha
k=1
1 1513 127057907
x|1-— + -
5040n2  50803200n*  8449588224000n°
7078687551763 1626209947417109183
442893616349184000n8  55804595659997184000000710 ’

as n — oo. Other special cases can be obtained similarly. Corollary 3.4 and some of
its special cases have been presented in [38, Corollary 2.2 and Example 2.1]. See also
Chen and Lin [10].

4 The second general asymptotic expansion

This section presents another general asymptotic expansion for the hyperfactorial
functions.

Theorem 4.1 Let h,r,s be real numbers such that r # 0. Define the sequence
(wm)mzl by

m—1 . \gtm—k—1, m—k m—k—1
(G2)) r s

Y1 =0, ¥ =m!
" ,; (k+q+ g2

'B
COktatl >0 (@41
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Then

n

< o)\
Hkkq ~ A, Va1 () o=V y1(n) (Z L) , 4.2)
k=0

k
palle (n+h)

asn — 00, where Ugy1(n) and Vyy1(n) are defined in (1.6), (¢r(q: h, 7, 5))k=0 is
determined by

wo(g; h,r,s) =1,

k—1
_ _ k=i (K= i o
mq,h,r,s)—ﬁ—jz_%(—l) f(k_j)h Tpi(gihir ), k=1, (43)

and (zx) k>0 is determined by
k—2 k—1
20 =1, Zk=2( . )Wk_jzj‘, k> 1. (4.4)
— J
j=0
Proof From (2.8) and the definition of (v,,), it follows that
i K SR 3 D% B L
Aq.an+l(")e_ q+1(”) n—+rs P (k+q+1)q+2 nk

oo . 00
J —-1)9q'B 1
—ep | LY (<) s CD B 1
n 4 n/ = (k4 q + g4 nk

j=0
= exp i "f (DT R G By 1 1
m=2 k=1 (k+g+ Dgi2 nm
— n _ k(l//131/f21,'(//k) 1
N R s
m= =

Moreover,

o0

olgih,r.s) * k-1 , 1
k=0 | j=0

Define zx = Yx(¥1, Y2, - . ., ¥x). Using the same procedure as in the proof of Theorem
2.1, it can be verified that the system

k
= Z Dk ’( B )hk_jwj(q;h,r,s)
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has unique solution (¢ (q; h, r, s)). This can be computed by recurrences (4.3) and
4.4). O

In the case h = 0 and s = 0, Theorem 4.1 gives

Theorem 4.2 Let r # 0 be a real number. Then

n s ( ;0,7 0) 'ﬁ
1—[ kk‘i N Aq . anH(n)e—Vqul(n) Z (quy+ s 4.5)
k=1 k=0 !

as n — 0o, where (¢r(q; 0, r, 0))r>0 is determined by

vo(gq;0,r,0) =1,
k=2

(—=14rq! (k= j)Bi—j1q
- 0j(q;0,7,0), k=1
k Z(k—1+q)q+z !

or(q;0,r,0) =
j=0

Proof 1In this case, Z; = klgr(q; 0, r, 0) and

szl _ 0’ &m _ (_l)qrm!q!Bm+q
(m +q)g+2

m>2. (4.6)

By (4.4), the result follows. O
Setting ¢ = 1 and ¢ = 3 in Theorem 4.2 yields the next two corollaries.
Corollary 4.3 Let r # 0 be a real number. Then
. 2 0 2 (S 150,100\
Hkk ~AponTtithe T (Z #1:0.r.0) - r,0) , 4.7
n

k=1 k=0

as n — 0o, where (¢r(1; 0, r, 0))i>0 is determined by

@o(1;0,7,0) =1,
k=2

.
1;0,r,0) = ——
(150,700 = = 3

Bi—j11
k=—j+Dk—-j—=1

0;(1;0,7,0), k>1. (48

Corollary 4.4 Let r # 0 be a real number. Then

n nt w3 n? a4 n? e 3;0,7,0 g
Hkk3 ~ Ay T T me R (Z % ) 4.9)
k=1 k=0
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as n — 0o, where (¢r(3; 0, r, 0))k>0 is determined by

6r <3 (k — j) Bi_j13

3:0,7,0) =1, 3:0,7,0) = —— Y — L2k 300 10), k> 1.
¢0(3;0,7,0) ¢k (3;0,7,0) kg(k_j+3)5<p,< r0), k>
(4.10)

The first few terms of (¢ (1; 0, r, 0)) are

00(1;0,7,0) =1, ¢1(1;0,7,0) =0, @(1:0,7,0) =0, <p3(1;0,r,0)=7r70,

72

1;0,7,00=0, @s(1;0,7,0) = — .
P Pl 1036800

-
— 1:0,7,0) =
5040 ¢e(1;0,1,0)

and the first few terms of (¢x(3; 0, r, 0)) are

(p0(3; 0,}",0):1, (p1(3;05r70)207 (02(3;0,",0)20, (p3(3;0’r’0):_5(;_407
2
’
3;0,r,0) =0, 3;0,r,0) = ——, 3;0,r,0) = ———.
#4(3:0.7.0) ¢5(3:0.17.0) = 330550 #6600 = S5e53200
Example 4.1 In the case r = 1, Corollaries 4.3 and 4.4 produce
“ 2 n? 1 1 1
KK~ A nT it e (1 _
/!:[1 e © + 720n3  5040n° + 1036800n°
n 1 1 2591989 n "
10080n7  3628800n8  24634368000n°
and
" k3 n4+n3+n2 1 n4+;12 1 1 1
Ko~ Ay -nat 2t mwe T2 (1 —
]!:[1 3 ¢ < 5040n3 + 33600n° + 50803200n°
1 1 n 1755250417 n "
6652817 16934400018 = 109844646912000n° ’

as n — oo. Corollary 4.3 and its special cases appear as [38, Corollary 4.2 and
Example 4.1]. See also Chen [7, Remark 2].

5 Explicit expression of the coefficient sequence in (4.2)

Now define

00 k 00 k 00
feO =YW £O=Yar. fo®) =Y euahr ot
k=1 k=0

k=0

@ Springer



Some asymptotic expansions on hyperfactorial functions... 529

As in the discussion above,

1o = 1 (125 ) e 5 (5|

e k+1
Bitqg+1 !
n=(Dirq!> 1 : :
fu® = (=1)rq Pt (k+g+Dgy2 1+rst

which give an explicit expression of (¢ (g; h, r, s)) in terms of the Bell polynomials.
In particular, when 2 = 0 and s = 0,

fwm—Zgok(q 0, 7, 00" = exp{ f (1)} = exp (va )

k=0

where the sequence (Y) is defined in (4.6). Then the following result holds.

Theorem 5.1 The coefficient sequence (pr(q; 0, r, 0)) in (4.5) is

or(q;0,7,0) = _Yk(lﬁl Do i)
Z ((=1)drgtycrtestta

2¢p+3c3+--+ker=k
(Tsm) (@50) (@)
X e ——— - .
(g +2)g+2 (g +3)g+2 (g +K)g42

Moreover, when & = 0, s = 0, and ¢ is even, we have

oles! -+ cp!

fo) = Z(ﬂk(q 0, r, O)t _exp{ q! Z m—-i-qtm}

=0 (m+q)g+2

BZJ+(1 i
=exp {rqg! £
P17 Z @)+ Dara’

In this case f5(¢) is an even function and @2 +1(¢;0,7,0) =0fork = 0,1,2,....
Now, defining wi(q; 0, r, 0) = ¢k (q; 0, r, 0), we obtain the next result.

Theorem 5.2 Let g be an even integer and r # 0 be a real number. Then

1 2. wr(q; 0,7,0) ’

Hkkq N Aq .an+1(n)e—Vq+1(n) <§ ]‘q’+> . n— oo.
n

k=1

k=0

The sequence (wi(q; 0, 1, 0))r>0 satisfies the recurrence
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wo(q;0,r,0) =1,

(k — j)Bok—2j+q
2k —=2j +q)g+2

k—1
!

wr(q:0.r.0) = =E 3" ©j(g:0.1,0), k=1,
j=0

and has the explicit expression

(rq)ditdat+d B,io d
(@ 0.r.0= Y g T

\dr ... dy!
d\+2dr+--+kdy=k dl -d2~ dk. q + 2)q+2
(q + 4)q+2 (q + 2k)q+2 .

The special cases ¢ = 0 and ¢ = 2 in Theorem 5.2 are stated next.

Corollary 5.3 Let r # 0 be a real number. Then

nt~ V2 (2) (Z —wk(o;g; : O)> R 5.1)
k=0

as n — 0o, where (wi(0; 0, r, 0))k>0 is determined by

wO(O; 07 r’ O) - ]!
r AL By
0;0,r,0)=— Y ——= _4:0;0,r,0), k>1. 5.2
@ (0; 0, 7,0) 2k;%_zj_lw,( r0), k= (5.2)

Corollary 5.4 Let r # 0 be a real number. Then

1 3 n2 n . n s 2;0 0 %
]"[kk2 ~ Ay nEtTtEe Tt (Z @k(2,0.1.0) o rO) (5.3)

k=1 k=0
as n — 0o, where (wr(2; 0, r, 0))k>0 is determined by

wp(2;0,r,0) =1,
r Bok—2j+42
o (2;0,7,0) = - > - ®;(2;0,1,0), k=1

k4 Qk=2j+2)(2k=2j+1)(2k=2j 1)

(5.4)

The first few terms of (wy(0; 0, r, 0)) are
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0:0,7,0)=1, 1(0;0,r,0) = — 0.0, 7,0y = (Z4+50)
a)o 9 9 r’ — b a)l 9 9 r? - 12 9 a)z 9 9 r? - 1440 9
288 — 84r + 35r2
03(0;0,r,0) = ¢ e,
362880
—51840 + 60961 — 840r% + 175r3
04(0:0,r,0) = ¢ +00%6r — $30r + I7>r7)
87091200
and the first few terms of (w (2; 0, r, 0)) are
2:0.1.0) =1, ,(2:0,r,0) r (2:0.7.0) = 4O+
;U =1, y U, T, =~ s U, r, = T
@oRe T @1 360" 2 1814400
r(77760 4 720r + 7r?)
2;0,r,0) =— ,
3(2:0.7,0) 1959552000
7 (6531840000 + 25850880 -+ 11088072 + 53973)
w4(2;0,r,0) = .
217275125760000
Example 5.1 Setting r = 1 in Corollary 5.3 gives
N 1 1 239 46409
1~ 2rn (2 (1 -
" T (e) ( 122 T Taa00" T 36288006 8709120018
9113897 695818219549 n
+ - +.) . n—> o0,
11496038400n10 ~ 376610217984000112

which is the Nemes formula [32]. Besides the case r = 1, Nemes gave the case r = ‘5—‘

in [31], and Chen presented the case » = 2 in [8]. In 2016, Wang obtained the general
asymptotic expansion (5.1) and gave the recurrence for the coefficient sequence in
[37, Corollary 3.5].

Example 5.2 Setting r = 1 in Corollary 5.4 yields

- B n 1 247 78487
ka ~Ar -n3tzTtee 9otz (] = _
1!:[1 2 © 360n2 + 1814400n% 19595520001
6557802299 31014318613001 "
— + - , n— 0Q.
217275125760000n8  7263197061120000007 10

Other special cases can be obtained similarly.

6 Conclusions

In this paper, we establish two general asymptotic expansions on the hyperfactorial
functions [];_, k' and the generalized Glaisher—Kinkelin constants A,. From these
two general expansions, we can not only rediscover some asymptotic expansions
that have recently appeared in the literature but also obtain new ones. It would be
interesting to find more properties of the hyperfactorial functions and the generalized
Glaisher—Kinkelin constants by such a unified way.
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