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Abstract In this paper, a further investigation for theApostol–Bernoulli andApostol–
Euler polynomials is performed, and some summation formulae of products of the
Apostol–Bernoulli and Apostol–Euler polynomials are established by applying some
summation transform techniques. Some illustrative special cases as well as immediate
consequences of the main results are also considered.
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1 Introduction

The classical Bernoulli polynomials Bn(x) and Euler polynomials En(x) are usually
defined by means of the following exponential generating functions:

text

et − 1
=

∞∑

n=0

Bn(x)
tn

n! (|t |<2π) and
2ext

et+1
=

∞∑

n=0

En(x)
tn

n! (|t |<π). (1.1)
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448 Y. He

In particular, the rational numbers Bn = Bn(0) and integers En = 2n En(1/2) are
called the classical Bernoulli numbers andEuler numbers, respectively. These numbers
and polynomials appear inmany different areas ofmathematics such as number theory,
combinatorics, special functions, and analysis. Numerous interesting properties for
them can be found in many books; see, for example, [9,34,35,42].

Some analogues of the classical Bernoulli and Euler polynomials are the Apostol–
Bernoulli polynomials Bn(x; λ) and Apostol–Euler polynomials En(x; λ) given by
means of the following exponential generating functions by Luo and Srivastava [27–
29], as follows:

text

λet − 1
=

∞∑

n=0

Bn(x; λ)
tn

n! (|t + log λ| < 2π) (1.2)

and

2ext

λet + 1
=

∞∑

n=0

En(x; λ)
tn

n! (|t + log λ| < π). (1.3)

Moreover, Bn(λ) = Bn(0; λ) and En(λ) = 2nEn(1/2; λ) are called the Apostol–
Bernoulli numbers and Apostol–Euler numbers, respectively. Obviously Bn(x; λ) and
En(x; λ) reduce to Bn(x) and En(x) when λ = 1. It is worth mentioning that the
Apostol–Bernoulli polynomials were firstly introduced by Apostol [4] (see also Sri-
vastava [41] for a systematic study) in order to evaluate the value of the Hurwitz-Lerch
zeta function. Since the definitions of the above Apostol–Bernoulli and Apostol–Euler
polynomials and numbers appeared, some arithmetic properties for them have been
well investigated by many authors. For example, in [40], Srivastava and Todorov
gave the closed formula for the Apostol–Bernoulli polynomials in terms of the Gaus-
sian hypergeometric function and the Stirling numbers of the second kind; see also
[28] for the corresponding closed formula for the Apostol–Euler polynomials. More
recently, Luo [30] obtained some multiplication formulae for the Apostol–Bernoulli
and Apostol–Euler polynomials to generalize some related results on the classical
Bernoulli and Euler polynomials and numbers. Furtherly, Luo [31] considered the
Fourier expansions for the Apostol–Bernoulli and Apostol–Euler polynomials by
applying the Lipschitz summation formula, and derived some explicit formulae at
rational arguments for these polynomials in terms of the Hurwitz zeta function. We
also refer to [6,12,15,23,25,36,38,44] for another elegant results and nice methods
on these type polynomials and numbers.

In [34], Nielsen presented three formulae of products of the classical Bernoulli
and Euler polynomials Bm(x)Bn(x), Em(x)En(x), and Bm(x)En(x) for non-negative
integers m, n. After that, Carlitz [7] rediscovered the expression of Bm(x)Bn(x), by
virtue of which he established a reciprocity formula for Rademacher’s Dedekind sums
in [8]; see also [26] for another application to deal with the discrete mean value of
products of two Dirichlet L-functions at integral arguments. Recently, by establishing
three formulae associated with the Nielsen’s formulae on the classical Bernoulli and
Euler polynomials, He and Zhang [18] reobtained the extensions of the famous Miki’s
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andWoodcock’s identities on the classical Bernoulli numbers due to Pan and Sun [37].
We also mention [19–22,43] for further discoveries of the Nielsen’s formula on the
classical Bernoulli polynomials following the work of Agoh and Dilcher [2,3] on the
classical Bernoulli numbers.

In the present paper, we shall be concerned with some summation formulae of
products of the Apostol–Bernoulli and Apostol–Euler polynomials. The idea stems
from the expressions of some formulae of products of the Apostol–Bernoulli and
Apostol–Euler polynomials. Bymaking use of some summation transform techniques,
we establish some summation formulae of products of the Apostol–Bernoulli and
Apostol–Euler polynomials, by virtue of which some known results related to the
famous Miki’s and Matiyasevich’s identities on the classical Bernoulli numbers are
deduced as easy consequences.

2 The statement of results

For convenience, in this section, we always denote by δ1,λ the Kronecker symbol given
by δ1,λ = 0 or 1 according to λ �= 1 or λ = 1, and denote by Hn the harmonic number
given by Hn = 1 + 1

2 + · · · + 1
n for positive integer n.

2.1 Extensions of Miki’s identity

Theorem 2.1 Let n be a positive integer with n ≥ 2. Then

n−1∑

k=1

Bk(x; λ)Bn−k(y;μ)

k(n − k)

−
n∑

k=1

(
n − 1

k − 1

)Bk(x − y; λ)Bn−k(y; λμ) + Bk(y − x;μ)Bn−k(x; λμ)

k2

= Hn−1
(
δ1,μBn(x; λμ) + δ1,λBn(y; λμ)

)

n
+ Bn(x; λμ) − Bn(y; λμ)

n(x − y)
. (2.1)

Proof We recall the formula of products of the Apostol–Bernoulli polynomials stated
in [19,20,43], as follows:

Bm(x; λ)Bn(y;μ) = n
m∑

k=0

(
m

k

)
(−1)m−kBm−k

(
y − x; 1

λ

)Bn+k(y; λμ)

n + k

+m
n∑

k=0

(
n

k

)
Bn−k(y − x;μ)

Bm+k(x; λμ)

m + k

+ δ1,λμ

(−1)m−1m! · n!
(m + n)! Bm+n

(
y − x; 1

λ

)
, (2.2)
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where m, n are positive integers. Since the Apostol–Bernoulli polynomials obey the
symmetric distribution λBn(1−x; λ) = (−1)nBn(x; 1/λ) and the difference equation
λBn(x + 1; λ) − Bn(x; λ) = nxn−1 for non-negative integer n (see, e.g., [27]), then
for non-negative integer n,

(−1)nBn

(
x; 1

λ

)
= λBn(1 − x; λ) = Bn(−x; λ) + n(−x)n−1. (2.3)

We now multiply 1/mn in both sides of (2.2). With the help of (2.3) and m−k
m

(m
k

) =(m−1
k

)
for positive integer m and non-negative integer k, we obtain

Bm(x; λ)Bn(y;μ)

mn
= 1

m

m∑

k=0

(
m

k

)
Bk(x − y; λ)

Bm+n−k(y; λμ)

m + n − k

+1

n

n∑

k=0

(
n

k

)
Bk(y − x;μ)

Bm+n−k(x; λμ)

m + n − k

+
m−1∑

k=0

(
m − 1

k

)
(x − y)k

Bm+n−1−k(y; λμ)

m + n − 1 − k

+(−1)m−1δ1,λμ

(m − 1)! · (n − 1)!
(m + n)! Bm+n

(
y − x; 1

λ

)
. (2.4)

If we substitute l form and n−l for n with 1 ≤ l ≤ n−1 and thenmake the summation
operation

∑n−1
l=1 in both sides of (2.4), we discover

n−1∑

l=1

Bl(x; λ)Bn−l(y;μ)

l(n − l)
=

n−1∑

l=1

1

l

l∑

k=0

(
l

k

)
Bk(x − y; λ)

Bn−k(y; λμ)

n − k

+
n−1∑

l=1

1

l

l∑

k=0

(
l

k

)
Bk(y − x;μ)

Bn−k(x; λμ)

n − k

+
n−1∑

l=1

l−1∑

k=0

(
l − 1

k

)
(x − y)k

Bn−1−k(y; λμ)

n − 1 − k

+ δ1,λμBn(y − x; 1
λ

)

n−1∑

l=1

(−1)l−1 (l − 1)! · (n − 1 − l)!
n! .

(2.5)

Notice that for complex number x and non-negative integer n, (see, e.g., [17, Eq.
(2.1)])

n∑

k=0

(−1)k(x
k

) = x + 1

x + 2

{
1 + (−1)n

(x+1
n+1

)

}
, (2.6)
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which means for positive integer n ≥ 2,

n−1∑

l=1

(−1)l−1 (l − 1)! · (n − 1 − l)!
n! = 1

n(n − 1)

n−2∑

l=0

(−1)l
(n−2

l

) = 1 + (−1)n

n2
. (2.7)

Since B0(x; λ) = 1 when λ = 1 and B0(x; λ) = 0 when λ �= 1 (see, e.g., [27]), then
B0(x; λ) can be rewritten as B0(x; λ) = δ1,λ. Hence, applying (2.7) to (2.5) gives

n−1∑

l=1

Bl(x; λ)Bn−l(y;μ)

l(n − l)
=

n−1∑

l=1

1

l

l∑

k=1

(
l

k

)
Bk(x − y; λ)

Bn−k(y; λμ)

n − k

+
n−1∑

l=1

1

l

l∑

k=1

(
l

k

)
Bk(y − x;μ)

Bn−k(x; λμ)

n − k

+
n−1∑

l=1

l−1∑

k=0

(
l − 1

k

)
(x − y)k

Bn−1−k(y; λμ)

n − 1 − k

+Hn−1
(
δ1,μBn(x; λμ) + δ1,λBn(y; λμ)

)

n

+
δ1,λμBn(y − x; 1

λ
)
(
1 + (−1)n

)

n2
. (2.8)

It is clear that for positive integers k, l, n, (see, e.g., [10])

1

l

(
l

k

)
= 1

k

(
l − 1

k − 1

)
and

(
n

k

)
=

n∑

l=k

(
l − 1

k − 1

)
, (2.9)

from which and changing the order of the summations in right-hand side of (2.8) it
follows that

n−1∑

k=1

Bk(x; λ)Bn−k(y;μ)

k(n − k)

=
n−1∑

k=1

(
n − 1

k

)Bk(x − y; λ)Bn−k(y; λμ) + Bk(y − x;μ)Bn−k(x; λμ)

k(n − k)

+
n−2∑

k=0

(
n − 1

k + 1

)
(x − y)k

Bn−1−k(y; λμ)

n − 1 − k

+Hn−1
(
δ1,μBn(x; λμ) + δ1,λBn(y; λμ)

)

n

+δ1,λμBn(y − x; 1
λ
)
(
1 + (−1)n

)

n2
. (2.10)
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If we apply the combinatorial relations:

1

n − k

(
n − 1

k

)
= 1

k

(
n − 1

k − 1

)
and

1

n − 1 − k

(
n − 1

k + 1

)
= 1

n

(
n

k + 1

)
(2.11)

to the first summation and the second one in the right-hand side of (2.10), respectively,
we get

n−1∑

k=1

Bk(x; λ)Bn−k(y;μ)

k(n − k)

=
n−1∑

k=1

(
n − 1

k − 1

)Bk(x − y; λ)Bn−k(y; λμ) + Bk(y − x;μ)Bn−k(x; λμ)

k2

+ 1

n(x − y)

n−1∑

k=1

(
n

k

)
(x − y)kBn−k(y; λμ)

+Hn−1
(
δ1,μBn(x; λμ) + δ1,λBn(y; λμ)

)

n

+δ1,λμBn(y − x; 1
λ
)
(
1 + (−1)n

)

n2
. (2.12)

Since theApostol–Bernoulli polynomials satisfy the addition theorem (see, e.g., [27]):

Bn(x + y; λ) =
n∑

k=0

(
n

k

)
xkBn−k(y; λ) (n ≥ 0), (2.13)

so by B0(x; λ) = δ1,λ we have

n−1∑

k=1

(
n

k

)
(x − y)kBn−k(y; λμ) = Bn(x; λμ) − Bn(y; λμ) − δ1,λμ(x − y)n . (2.14)

Thus, by applying (2.3) and (2.14) to (2.12), we complete the proof Theorem 2.1. ��
Corollary 2.2 Let n be a positive integer with n ≥ 2. Then

n−1∑

k=1

Bk(x)Bn−k(y)

k(n − k)
−

n∑

k=1

(
n − 1

k − 1

)
Bk(x − y)Bn−k(y) + Bk(y − x)Bn−k(x)

k2

= Hn−1
(
Bn(x) + Bn(y)

)

n
+ Bn(x) − Bn(y)

n(x − y)
. (2.15)

Proof By setting λ = μ = 1 in Theorem 2.1, the desired result follows immediately.
��
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The above Corollary 2.2 was firstly established by Pan and Sun [37] using the finite
difference calculus and differentiation, and reobtained by He and Zhang [18].

Example 2.3 Since B1 = −1/2 and B2n+1 = 0 for positive integer n (see, e.g., [1])
then the case x = y and λ = μ = 1 in (2.12) gives

n−1∑

k=1

Bk(x)Bn−k(x)

k(n − k)
− 2

n∑

k=2

(
n − 1

k − 1

)
Bk Bn−k(x)

k2
= 2Hn−1

Bn(x)

n
(n ≥ 2),

(2.16)

which appears in [37] and can be regarded as an equivalent version of the following
Gessel’s result (2.18) on the classical Bernoulli polynomials.

Example 2.4 Taking x = y and λ = μ in (2.10) and then applying the second com-
binatorial relation of (2.11) arises

n−1∑

k=1

Bk(x; λ)Bn−k(x; λ)

k(n − k)
= 2

n

n−1∑

k=1

(
n

k

)
Bk(x; λ2)

Bn−k(λ)

n − k
+ Bn−1(x; λ2)

+2δ1,λHn−1Bn(x; λ2)

n

+δ1,λ2Bn(
1
λ
)
(
1 + (−1)n

)

n2
(n ≥ 2). (2.17)

Example 2.5 Since B2n+1 = 0 for positive integer n, then the case λ = 1 in (2.17)
yields

n

2

(
−Bn−1(x) +

n−1∑

k=1

Bk(x)Bn−k(x)

k(n − k)

)
−

n−1∑

k=0

(
n

k

)
Bk(x)

Bn−k

n − k

= Hn−1Bn(x) (n ≥ 2), (2.18)

which is due to Gessel [16] and was reobtained by some authors; see, for example,
[5,11,24].

Remark 2.6 It is worth mentioning that the case x = 0 and x = 1/2 in (2.18) gives
the famous Miki’s identity (see, e.g., [13,32,33,39]):

n−2∑

k=2

Bk Bn−k

k(n − k)
−

n−2∑

k=2

(
n

k

)
Bk Bn−k

k(n − k)
= 2Hn

Bn

n
(n ≥ 4), (2.19)
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454 Y. He

and Faber–Pandharipande–Zagier’s identity (see, e.g., [14,37]):

n

2

n−2∑

k=2

B̃k B̃n−k

k(n − k)
−

n∑

k=2

(
n

k

)
Bk

k
B̃n−k = Hn−1 B̃n

(
n ≥ 4, B̃k = Bk

(1
2

)
= (21−k − 1)Bk

)
, (2.20)

respectively.

2.2 Extensions of Matiyasevich’s identity

Theorem 2.7 Let n be a positive integer with n ≥ 2. Then

n−1∑

k=1

Bk(x; λ)Bn−k(y;μ)

=
n∑

k=0

(
n + 1

k + 1

)Bk(x − y; λ)Bn−k(y; λμ) + Bk(y − x;μ)Bn−k(x; λμ)

k + 2

+ Bn+1(x; λμ) + Bn+1(y; λμ)

(x − y)2
− 2

n + 2
· Bn+2(x; λμ) − Bn+2(y; λμ)

(x − y)3

− δ1,λBn(y; λμ) − δ1,μBn(x; λμ). (2.21)

Proof By substituting l for m and n − l for n with 1 ≤ l ≤ n − 1 and then making
the summation operation

∑n−1
l=1 in both sides of (2.2), we obtain

n−1∑

l=1

Bl(x; λ)Bn−l(y;μ) =
n−1∑

l=1

(n − l)
l∑

k=0

(
l

k

)
Bk(x − y; λ)

Bn−k(y; λμ)

n − k

+
n−1∑

l=1

(n − l)
l∑

k=0

(
l

k

)
Bk(y − x;μ)

Bn−k(x; λμ)

n − k

+
n−1∑

l=1

l(n − l)
l−1∑

k=0

(
l − 1

k

)
(x − y)k

Bn−1−k(y; λμ)

n − 1 − k

−δ1,λμBn(y − x; 1
λ

)

n−1∑

l=1

(−1)l(n
l

) . (2.22)

SinceB0(x; λ) = δ1,λ and l
(l−1

k

) = (k+1)
( l
k+1

)
for positive integer l and non-negative

integer k, so by (2.7) we can rewrite (2.22) as
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n−1∑

l=1

Bl(x; λ)Bn−l(y;μ)

=
n−1∑

l=0

(n − l)
l∑

k=0

(
l

k

)
Bk(x − y; λ)

Bn−k(y; λμ)

n − k
− δ1,λBn(y; λμ)

+
n−1∑

l=0

(n − l)
l∑

k=0

(
l

k

)
Bk(y − x;μ)

Bn−k(x; λμ)

n − k
− δ1,μBn(x; λμ)

+
n−1∑

l=1

(n − l)
l−1∑

k=0

(
l

k + 1

)
(k + 1)(x − y)k

Bn−1−k(y; λμ)

n − 1 − k

+δ1,λμ

(
1 + (−1)n

)Bn(y − x; 1
λ
)

n + 2
. (2.23)

Note that for non-negative integers n, r, s, (see, e.g., [17, Eq. (3.3)])

n−s∑

k=r

(
k

r

)(
n − k

s

)
=

(
n + 1

r + s + 1

)
. (2.24)

Hence, by taking s = 1 in (2.24), we get that for positive integer n and non-negative
integer k,

n−1∑

l=k

n − l

n − k

(
l

k

)
= 1

k + 2

(
n + 1

k + 1

)
. (2.25)

We now change the order of the summations in the right-hand side of (2.23). In light
of (2.25), we obtain

n−1∑

k=1

Bk(x; λ)Bn−k(y;μ)

=
n−1∑

k=0

(
n + 1

k + 1

)Bk(x − y; λ)Bn−k(y; λμ) + Bk(y − x;μ)Bn−k(x; λμ)

k + 2

+
n−2∑

k=0

(
n+1

k+2

)
k+1

k+3
(x − y)kBn−1−k(y; λμ)+δ1,λμ

(
1+(−1)n

)Bn(y − x; 1
λ
)

n + 2

− δ1,λBn(y; λμ) − δ1,μBn(x; λμ). (2.26)
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456 Y. He

Observe that

n−2∑

k=0

(
n + 1

k + 2

)
k + 1

k + 3
(x − y)kBn−1−k(y; λμ)

= 1

(x − y)2

n∑

k=2

(
n + 1

k

)
(x − y)kBn+1−k(y; λμ)

− 2

(n + 2)(x − y)3

n+1∑

k=3

(
n + 2

k

)
(x − y)kBn+2−k(y; λμ). (2.27)

It is easily seen from (2.13) and B0(x; λ) = δ1,λ that

1

(x − y)2

n∑

k=2

(
n + 1

k

)
(x − y)kBn+1−k(y; λμ)

= Bn+1(x; λμ) − Bn+1(y; λμ)

(x − y)2
− (n + 1)Bn(y; λμ)

x − y
− δ1,λμ(x − y)n−1,

(2.28)

and

2

(n + 2)(x − y)3

n+1∑

k=3

(
n + 2

k

)
(x − y)kBn+2−k(y; λμ)

= 2

n + 2
· Bn+2(x; λμ) − Bn+2(y; λμ)

(x − y)3
− 2Bn+1(y; λμ)

(x − y)2

− (n + 1)Bn(y; λμ)

x − y
− 2δ1,λμ(x − y)n−1

n + 2
. (2.29)

It follows from (2.27), (2.28) and (2.29) that

n−2∑

k=0

(
n + 1

k + 2

)
k + 1

k + 3
(x − y)kBn−1−k(y; λμ)

= Bn+1(x; λμ) + Bn+1(y; λμ)

(x − y)2
− 2

n + 2
· Bn+2(x; λμ) − Bn+2(y; λμ)

(x − y)3

−δ1,λμn(x − y)n−1

n + 2
. (2.30)

Thus, in view of (2.26) and (2.30), the desired result follows by applying (2.3). ��
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Corollary 2.8 (Pan and Sun [37]) Let n be a positive integer. Then

n∑

k=0

Bk(x)Bn−k(y)

=
n∑

k=0

(
n + 1

k + 1

)
Bk(x − y)Bn−k(y) + Bk(y − x)Bn−k(x)

k + 2
+ Bn+1(x) + Bn+1(y)

(x − y)2

− 2

n + 2
· Bn+2(x) − Bn+2(y)

(x − y)3
. (2.31)

Proof Setting λ = μ = 1 in Theorem 2.7 gives the desired result. ��

Example 2.9 By taking x = y and λ = μ in (2.26), we get

n−1∑

k=1

Bk(x; λ)Bn−k(x; λ) = 2
n−1∑

k=0

(
n+1

k+1

)Bk(λ)Bn−k(x; λ2)

k+2
+ n(n + 1)

6
Bn−1(x; λ2)

+ δ1,λ2
(
1 + (−1)n

)Bn(
1
λ
)

n + 2
− δ1,λ2Bn(x; λ2) (n ≥ 2).

(2.32)

Example 2.10 Since B0 = 1, B1 = −1/2 and B2n+1 = 0 for positive integer n, then
the case λ = 1 in (2.32) arises that for positive integer n ≥ 2, (see, e.g., [37])

n∑

k=0

Bk(x)Bn−k(x) − 2
n∑

k=2

(
n + 1

k + 1

)
Bk Bn−k(x)

k + 2
= (n + 1)Bn(x). (2.33)

Remark 2.11 It is worth noticing that the case x = 0 in (2.33) gives that for positive
integer n ≥ 4,

(n + 2)
n−2∑

k=2

Bk Bn−k − 2
n−2∑

k=2

(
n + 2

k

)
Bk Bn−k = n(n + 1)Bn, (2.34)

which was firstly discovered by Matiyasevich [32] using the softwareMathematica.
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2.3 Analogues of Matiyasevich’s identity

Theorem 2.12 Let n be a non-negative integer. Then

n∑

k=0

Ek(x; λ)En−k(y;μ)

= −2
n+1∑

k=0

(
n + 1

k

)Ek(x − y; λ)Bn+1−k(y; λμ) + Ek(y − x;μ)Bn+1−k(x; λμ)

k + 1

+ 4

n + 2
· Bn+2(x; λμ) − Bn+2(y; λμ)

x − y
. (2.35)

Proof Since the Apostol–Euler polynomials satisfy the symmetric distribution
λEn(1 − x; λ) = (−1)nEn(x; 1/λ) and the difference equation λEn(x + 1; λ) +
En(x; λ) = 2xn for non-negative integer n (see, e.g., [28]), then for non-negative
integer n,

(−1)nEn
(
x; 1

λ

)
= λEn(1 − x; λ) = 2(−x)n − En(−x; λ). (2.36)

Hence, by applying (2.36) to the following formula of mixed products of the Apostol–
Bernoulli and Apostol–Euler polynomials stated in [19,20,43],

Em(x; λ)En(y;μ) = 2
m∑

k=0

(
m

k

)
(−1)m−kEm−k

(
y − x; 1

λ

)Bn+1+k(y; λμ)

n + 1 + k

− 2
n∑

k=0

(
n

k

)
En−k(y − x;μ)

Bm+1+k(x; λμ)

m + 1 + k

+ 2δ1,λμ

(−1)m−1m! · n!
(m + n + 1)! Em+n+1

(
y − x; 1

λ

)
(m, n ≥ 0),

(2.37)

we get that for non-negative integers m, n,

Em(x; λ)En(y;μ) = 4
m∑

k=0

(
m

k

)
(x − y)k

Bm+n+1−k(y; λμ)

m + n + 1 − k

− 2
m∑

k=0

(
m

k

)
Ek(x − y; λ)

Bm+n+1−k(y; λμ)

m + n + 1 − k

− 2
n∑

k=0

(
n

k

)
Ek(y − x;μ)

Bm+n+1−k(x; λμ)

m + n + 1 − k

+ 2δ1,λμ

(−1)m−1m! · n!
(m + n + 1)! Em+n+1(y − x; 1

λ
). (2.38)
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If we replacem by l and n by n− l with 0 ≤ l ≤ n and make the summation operation∑n
l=0 in both sides of (2.38), we discover

n∑

l=0

El(x; λ)En−l(y;μ) = 4
n∑

l=0

l∑

k=0

(
l

k

)
(x − y)k

Bn+1−k(y; λμ)

n + 1 − k

−2
n∑

l=0

l∑

k=0

(
l

k

)
Ek(x − y; λ)

Bn+1−k(y; λμ)

n + 1 − k

−2
n∑

l=0

l∑

k=0

(
l

k

)
Ek(y − x;μ)

Bn+1−k(x; λμ)

n + 1 − k

−2δ1,λμ

En+1(y − x; 1
λ
)

n + 1

n∑

l=0

(−1)l(n
l

) . (2.39)

By changing the order of the summations in the right-hand side of (2.39) and then
applying the second formula of (2.9) and the first one of (2.11), in light of (2.6), we
obtain

n∑

k=0

Ek(x; λ)En−k(y;μ)

= 4

n + 2

n∑

k=0

(
n + 2

k + 1

)
(x − y)kBn+1−k(y; λμ)

−2
n∑

k=0

(
n + 1

k

)Ek(x − y; λ)Bn+1−k(y; λμ) + Ek(y − x;μ)Bn+1−k(x; λμ)

k + 1

−2δ1,λμ

(
1 + (−1)n

)En+1(y − x; 1
λ
)

n + 2
. (2.40)

It is easily seen that the formula (2.13) implies

n∑

k=0

(
n + 2

k + 1

)
(x − y)kBn+1−k(y; λμ)

= Bn+2(x; λμ) − Bn+2(y; λμ)

x − y
− δ1,λμ(x − y)n+1. (2.41)

So from (2.36), (2.40), and (2.41), the desired result follows immediately. ��
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Corollary 2.13 (Pan and Sun [37]) Let n be a non-negative integer. Then

n∑

l=0

El(x)En−l(y)=−2
n+1∑

k=0

(
n + 1

k

)
Ek(x − y)Bn+1−k(y)+Ek(y − x)Bn+1−k(x)

k+1

+ 4

n + 2
· Bn+2(x) − Bn+2(y)

x − y
. (2.42)

Proof Setting λ = μ = 1 in Theorem 2.12 gives the desired result. ��

Example 2.14 By taking x = y and λ = μ in (2.40), we get

n∑

k=0

Ek(x; λ)En−k(x; λ) = 4Bn+1(x; λ2) − 4
n∑

k=0

(
n + 1

k

)Ek(0; λ)Bn+1−k(x; λ2)

k + 1

−2δ1,λ2

(
1 + (−1)n

)En+1(0; 1
λ
)

n + 2
(n ≥ 0). (2.43)

Example 2.15 Since B0(x) = E0(x) = 1 and En(0) = (2 − 2n+2)Bn+1/(n + 1) for
non-negative integer n (see, e.g., [1]), so by taking λ = 1 in (2.43), in view of the first
formula of (2.9), we obtain that for non-negative integer n,

n∑

k=0

Ek(x)En−k(x) = 8

n + 2

n+2∑

k=2

(
n + 2

k

)
(2k − 1)Bk

k
Bn+2−k(x) (2.44)

= − 4

n + 2

n∑

k=0

(
n + 2

k

)
En+1−k(0)Bk(x). (2.45)

Remark 2.16 The identity (2.44) was discovered by Pan and Sun [37], and the identity
(2.45) was also stated in [24] (but note a misprint: En+1−k should be En+1−k(0)).

Theorem 2.17 Let n be a positive integer. Then

n−1∑

l=0

El(x; λ)Bn−l(y;μ) = 1

2

n∑

k=1

(
n + 1

k + 1

)(
2Bk(y − x;μ)En−k(x; λμ)

− Ek−1(x − y; λ)En−k(y; λμ)
)

+ En+1(x; λμ) − En+1(y; λμ)

(x − y)2

+δ1,μnEn(x; λμ) − (n + 1)En(y; λμ)

x − y
. (2.46)
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Proof By applying (2.36) to another formula of mixed products of the Apostol–
Bernoulli and Apostol–Euler polynomials stated in [19,20,43], namely

Em−1(x; λ)Bn(y;μ)

= n

2

m−1∑

k=0

(
m − 1

k

)
(−1)m−1−kEm−1−k(y − x; 1

λ
)En−1+k(y; λμ)

+
n∑

k=0

(
n

k

)
Bn−k(y − x;μ)Em−1+k(x; λμ) (m, n ≥ 1), (2.47)

we obtain that for positive integers m, n,

Em−1(x; λ)Bn(y;μ) = n
m−1∑

k=0

(
m − 1

k

)
(x − y)kEm+n−2−k(y; λμ)

−n

2

m−1∑

k=0

(
m − 1

k

)
Ek(x − y; λ)Em+n−2−k(y; λμ)

+
n∑

k=0

(
n

k

)
Bk(y − x;μ)Em+n−1−k(x; λμ). (2.48)

If we substitute m for l and n for n + 1− l and make the summation operation
∑n

l=1
in both sides of (2.48), we discover

n−1∑

l=0

El(x; λ)Bn−l(y;μ)

=
n∑

l=1

(n + 1 − l)
l∑

k=1

(
l − 1

k − 1

)
(x − y)k−1En−k(y; λμ)

− 1

2

n∑

l=1

(n + 1 − l)
l∑

k=1

(
l − 1

k − 1

)
Ek−1(x − y; λ)En−k(y; λμ)

+
n∑

l=0

l∑

k=0

(
l

k

)
Bk(y − x;μ)En−k(x; λμ) − δ1,μEn(x; λμ). (2.49)

Taking s = 1 and substituting r −1 for r in (2.24) gives that for positive integers n, k,

n∑

l=k

(
l − 1

k − 1

)
(n + 1 − l) =

(
n + 1

k + 1

)
. (2.50)
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By changing the order of the summations in the right-hand side of (2.49) and then
applying the second formula of (2.9) and (2.50), we get

n−1∑

l=0

El(x; λ)Bn−l(y;μ) =
n∑

k=1

(
n + 1

k + 1

)
(x − y)k−1En−k(y; λμ)

+ 1

2

n∑

k=1

(
n + 1

k + 1

)(
2Bk(y − x;μ)En−k(x; λμ)

− Ek−1(x − y; λ)En−k(y; λμ)
)+δ1,μnEn(x; λμ).

(2.51)

Since the Apostol–Euler polynomials satisfy the addition theorem (see, e.g., [27]):

En(x + y; λ) =
n∑

k=0

(
n

k

)
xkEn−k(y; λ) (n ≥ 0), (2.52)

then

n∑

k=1

(
n + 1

k + 1

)
(x − y)k−1En−k(y; λμ) = En+1(x; λμ) − En+1(y; λμ)

(x − y)2

− (n + 1)En(y; λμ)

x − y
. (2.53)

Thus, by combining (2.51) and (2.53), we complete the proof of Theorem 2.17. ��
Corollary 2.18 (Pan and Sun [37]) Let n be a positive integer. Then

n∑

k=0

Ek(x)Bn−k(y) = 1

2

n∑

k=1

(
n + 1

k + 1

)(
2Bk(y − x)En−k(x) − Ek−1(x − y)En−k(y)

)

+ En+1(x) − En+1(y)

(x − y)2
− (n + 1)

(
En(y)

x − y
− En(x)

)
. (2.54)

Proof Taking λ = μ = 1 in Theorem 2.17 gives the desired result. ��
Example 2.19 Since En(0) = (2− 2n+2)Bn+1/(n+ 1) for non-negative integer n, so
by taking x = y and λ = μ = 1 in (2.51), we obtain that for positive integer n ≥ 2,
(see, e.g., [37])

n∑

k=0

Ek(x)Bn−k(x) =
n∑

k=2

(
n + 1

k + 1

)
(2k + k − 1)Bk

k
En−k(x) + (n + 1)En(x).

(2.55)
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