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Abstract The upper bound and the lower bound of the average number of divisors
of Euler Phi function and Carmichael Lambda function were obtained by Luca and
Pomerance (see Publ Math Debr 70(1-2):125-148, 2007). We improve the lower
bound and provide a heuristic argument which suggests that the upper bound given by
Luca and Pomerance (Publ Math Debr 70(1-2):125-148, 2007) is indeed close to the
truth.
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1 Introduction

Let n > 1 be an integer. Denote by ¢(n) and A(n) the Euler Phi function and the
Carmichael Lambda function, which output the order and the exponent of the group
(Z/nZ)y*, respectively. We use p(or p;) and g (or g;) to denote the prime divisors of
n and ¢ (n), respectively. Then it is clear that A(n)|¢ (n) and the set of prime divisors
q of ¢ (n) and that of A(n) are identical. Let n = pf‘ .- py" be a prime factorization
of n. Then we can compute ¢ (n) and A(n) as follows:

o) =[[#(p{). and A(n) = lem (A(p{). ... A(p{)).
i=1
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where ¢ (p;’) = pfi_l(pi —DandA(p{") = ¢(p{")if p > 20r p; =2ande; = 1,2,
and A(2¢) =2 2ife > 3.

From the work of Hardy and Ramanujan [4], it is well known that the normal order
of t(n) is (log n)log2+o) On the other hand, the average order )1_( > <y T(n)isknown
to be log x + O(1) which is somewhat larger than the normal order. For 7(A(n)) and
7(¢(n)), the normal orders of these follow from [2] that they are 2(5+o(1)(loglogn)?
On the contrary, the work of Luca and Pomerance [5] showed that their average order

is significantly larger than the normal order. Define F(x) = exp (, / k)lgol% ). In [5,
Theorem 1,2], they proved that

F(x)b1+0(1) < %ZI(A(H)) < ézr(d)(n)) < F(x)b2+o(l)

n<x n<x

as x — oo, where b| = %e‘y/z and by = 24/2¢7 /2,

In this paper, we are able to raise the constant b so that it is almost by, differing only
by a factor +/2. Here, we take advantage of the inequalities of Bombieri—Vinogradov
type regarding primes in arithmetic progression (see [1, Theorem 9], also [3, Theorem
2.1]). In this paper, we apply the following version which can be obtained from [3,

Theorem 2.1]: For (a, n) = 1, we write E(x; n,a) := n(x;n, a) — ggig.LetO <A<

1/10. Let R < x*. For some B = B(A) > 0, M =log® x,and Q0 = x/M,

Z Z E(x; qr,a)| <a xlog™* x.

r<R g=< 0
— - r
(r,a)=1 (q.0)=1

In fact, [3, Theorem 2.1] builds on [1, Theorem 9] and obtains a more accurate
estimate, but we only need the above form for our purpose. Note that one of the
important differences between [1, Theorem 9] and [3, Theorem 2.1] is the presence
of % in the inner sum. This will be essential in the proof of our lemmas (see Lemmas
2.2 and 2.3).

It is interesting to note that one of these improvements is related to a Poisson
distribution that we can obtain from prime numbers. Another point of improvement
comes from the idea in the proof of Gauss’ Circle Problem.

Theorem 1.1 As x — 0o, we have

’;xf(qﬁ(n)) > ;T(Mn)) > xexp <2€g,/ lolgol%(l +0(1))> :

Itis clear from A(n)|¢(n) that 3, _ T(A(n)) < Y, _, T(¢(n)). A natural question
to ask is how large is the latter compared to the former. Luca and Pomerance proved
in [5, Theorem 2] that
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1 1
— TG =o (r;;g 3 r(qs(n))) :

n<x n<y

Moreover, they mentioned that a stronger statement

1 1
— 2 TGm) =0 (; > r(¢(n>))

n=<x n<x

is probably true, but they did not have the proof. Here, we prove that this statement
is indeed true. As in the proof of [5, Theorem 2], we take advantage of the fact that
prime 2 appears rarely in the factorization of A(n) than in the factorization of ¢ (n).

Theorem 1.2 As x — oo, we have

Doty =o (Z r(¢><n)>) :

n<x n<x

Finally, we provide a heuristic argument suggesting that the constant in the upper
bound is indeed optimal. Here, we try to extend the method in the proof of Theorem
1.1 by devising a binomial distribution model. However, we were unable to prove it.
The main difficulty is due to the short range of u (u < logAl x) in the lemmas (see
Lemmas 2.1, 2.3 and Corollaries 2.1, 2.2).

Conjecture 1.1 As x — oo, we have

3 t(um) = xexp (2J§e—5 | logx . 0(1))> .
= loglog x

Throughout this paper, x is a positive real number, n, k are positive integers, and p, g
are prime numbers. We use Landau symbols O and o. Also, we write f(x) =< g(x) for
positive functions f and g, if f(x) = O(g(x)) and g(x) = O(f(x)). We will also use
Vinogradov symbols < and >>. We write the iterated logarithms as log, x = loglog x
and log; x = logloglog x. The notations (a, b) and [a, b] mean the greatest common
divisor and the least common multiple of @ and b, respectively. We write P, = [ | p<z P-
We also use the following restricted divisor functions:

) =[]t wwm:= [T tp*). ad /o) =[] (.

Pelin pélin pelin
P>z i<p=w P=z

Moreover, for n > 1, denote by p(n) the smallest prime factor of n.

2 Lemmas

The following lemma is [5, Lemma 3] with a slightly relaxed z, and it is essential
toward proving the theorem. This is stated and proved with the Chebyshev functions
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V(x) =), Am) and ¥ (x;q,a) == D, ey mod 4 A(n) in [6]. Here, we use
the prime counting functions 7 (x) := Z[,Sx land 7 (x; q,a) := Zpr, p=amod g |
instead. We are allowed to do these replacements by applying the partial summation.

Lemma 2.1 Let0 < A < 1]—0 Assume that z < Mlogx. Then, for any A > 0, there is
B = B(A) > 0 such that, for M = logB xand Q =

E)=Y u Y (n(x nl) - %) <O

rIP; n=Q .
rin

Let0) < A < %. Assume that u is a positive integer with p(u) > z, u < (log x)41,
and t(u) < Ay. Then, for any A > 0, there is B = B(A, A1) > 0 such, that for
M:longanszﬁ,

(x) X
E:(x):=Y u@) )y (n(x [, ], 1) = S ])) Caar e @

r|P; n<Q
rin

Proof of (1) For (a,n) = 1, we write E(x;n,a) := n(x;n,a) — gg; If r| P;, we

have by the Prime Number Theorem r < R := P, = exp(z + 0(2)) < x* with
0 < A’ < 1/10. By partial summation and diadically applying [3, Theorem 2.1], we
have, for B = B(A) > 0, M =1log® x,and Q = x/M,

X
Yo Y. Exigra)| <an oah 1 3)
=R | 020 og” x
o=l a1
Taking a = 1 and |u(r)| < 1, (1) follows. O

Proof of (2) Letd < x€ so that dR < ¥ with0 < A < 1/10. By (3), there exists
B = B(A) > 0 such that we have, for M = log? x and Q = x/M,

YD EGidgr.ny) = > |> E(xigr. )

r<R q<Q r<dR q<Q
-r r=0 mod d r

< Z ZE(x qr, 1) <<AA “4)

r<dR q<Q
By (u,r) = 1, we have [u, n] = [u, qr] = rlu, q] = ruq/(u, q). We partition the set

of g < £ asJ,, Ad. where g € Aqif andonly if (u,q) =d.Let Bo g ={g < 2
g = 0 mod d}. By inclusion—exclusion, we have, for any d|u,
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ZE('VM] ) Z/L(S) Z (.ruq l).

q€Aq sy q€BQ ds

It is clear that

Z E(x;%,l): Z E(x;qr, 1).

g€BQ as quu“%m
. !/ .
Sincer < R:= P, < x* with A/ < 11—0, % < Qlog"‘l x,and us < logz"‘l x < x€,

we have, by (4),

X
Dol 2 EGian D <aan
log™ x

r<R qEB§,M

with a suitable choice of B = B(A, Ay). Then

LI E( ) =D ke 3 E(a )

r<R |geAy r<R _3|” q€B ds

SPHNDD E(x;%’l)
s|4% r=R |q€Bgas ¢
X

u
< T (—) —_—.
A’Al’)‘ d IOgAx

Thus, summing over d|u, we have

Sou) Y EGilugrl b = 33 |3 E(x=h)

r|P; q<Q dlu r<R |qeAy

<<A,A1,

X
* log# x
Thus, we have the result (2). O

The following is [5, Lemma 5] with a slightly relaxed z.

Lemma 2.2 Let0 < A < % and 1 < z < Alogx. Let c; = e~ 7. Then we have

R.(x) :=Zrz(p—1>=cllo);z+0(10;Z), ®)

p=x
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1
and, for1 <z < %,
(p—1) log x (logx)
S, (x) = =c + 0 . 6
2(x) E » llogz o 2 (6)

p=x

Proof of (5) Take A = 2 and the corresponding B(A) and M in Lemma 2.1(1). Then
by inclusion—exclusion,

R.(x) = Y mxid.1)

deD,(x)
= > md,D+Y u@) Y wigr 1) =Ri+ Ry, say.
deD (%) r|P; <4<y

By [5, Lemma 4] and Lemma 2.1(1),

7(x)
Ri= ) ¢(2)+Zu(r)q; E(igr.1)
=M

deD;(37) r| P

w0 lem) o (o)
= C .
llogz log? 7 log? x

By divisor-switching technique and Brun—-Titchmarsh inequality as in [6], we have

) X xlogzlog M X
R Y Y mirk, DY Y. I <

1 2,
rIP, k<M rIP, k<M 0gx log”z

Therefore, (5) follows. O

Proof of (6) By partial summation,

S.(x) = th(t) . /2 R;f)dt.

We split the integral at z = Alogt¢. Then, by (4),

R, (¢ * t t dr 1 1
/ Zi%z;:f (q +0< 2))—2=c1°gx+0(i2x>.
z<ilogr I et/ logz logcz/)) t logz log® 7

On the other hand, by the trivial bound R, (¢) < ¢,

/A
R, (1) e dr
/ S=di <</ 1— <Lz
z>rlogr I 2 t

Since z log? z < log x, (6) follows. O
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The average number of divisors of the Euler function 161

The following is [5, Lemma 6] with a wider range of z. This relaxes the rather
severe restriction z < —Vloﬁgx.
log3 x

Lemma 2.3 Let 1| < u < x be any positive integer. Then

L B T .
Ru.(x): = ; w(p-1 < o S (x) :
p=1 mod u
_ ¥ mpoD W -
et p o)
p=1 mod u

and ¢ (u) can be replaced by u if p(u) > z and t(u) < Ajg.
Assume that u is a positive integer with p(u) > z, u < (logx)4, and (1) < Aj.
Then, for z < Alogx,

Ruz(0) = 2D R (1) (1 ‘o (L» , ®)
u log z
and, for 7 < ﬁfgg%’;,
Sus(0) = 2 (1) (1 10 ( : )) )
u logz

Proof of (7) This is a uniform version of [8, Lemma 3.7]. We apply Dirichlet’s hyper-
bola method as it was done in [8, Lemma 3.7]. First, we see that

> tp-D

p=x
p=1 mod u

p—1 _
> r< - )t(u)§2t(u) > miku, ).

P=x X
p=I1 mod u kfﬁ

Ry 7 (x)

IA

IA

Since the sum is zero for x < u, we may assume that x > u. By Brun-Titchmarsh
inequality,

2x 4x
w(x; ku, 1) < = X
¢ (ku)log (£) ~ ¢ (k)log &

Thus, summing over k gives

8x = u2(d)
w(x; ku, 1) < .
kuﬁ ¢<u>;d¢(d>
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162 S. Kim

Therefore, we have the result. The estimate for S, ; follows from partial summation.
We remark that, for u with p(u) > z,

ug(d) 1\! <r(u)> 1
- 1-=) =140 ,
saay = 11 ( p) ) sw

plu,ptd
-1
1
-3 Heo ()
u z
plu
Therefore, ¢ (1) can be replaced by u if p(u) > z and t(u) < Aj. O

Proof of (8) We begin with

Ri:(x)= Y  m(x:lu,dl 1),

deD.(x)

Let A > 0 be a positive number such that = L - < % 1ogx2 ~ and B(A) and M be the
corresponding parameters depending on A in Lemma 2.1(2). By inclusion—exclusion,

Y oaiudll) = Y w@ilu.dl )

deD;(x) deD,(3)
+> ) Y mxilu.grl.l) =R+ Ry, say.
r\PZ ﬁ<q§f

By Lemma 2.1(2), we have

7 (x)
Ri= 3 o d])+Zu(r)ZE(x [, gr]. 1)

deD;(55) r|P; 9=
(x) (‘L’(M) X >
> +0 — .
ded (i) & ([u, d]) u log”x

The first sum is treated as follows:

() ()N, ()
T TR o
2 pmd) = 2 ey TO|IT® 2

deD-(37) dieD;(27) uM(dd)n<‘ ¢ (udy)
pldi)>z
Z Jr()c)Ngzl < ()t(u)logu)
dieD. () pludn ¢ (u)logz
N(X)Ndl (T(M) X )
= +o (221 ),
aed (g PN u log’z
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where Ny, = |{d € D;(35) : [u,d] = ud,}|. Since Ny, < t(u) and ¢(ud)) >
¢ (u)$(d1), by [5, Lemma 4],

7 (x)Ng, T(u) by X
2 Sud) — o) <“ logz ¢ <log2z))‘

dleDz(ﬁ)

Thus, we have the upper bound

7 (X) Ny, T(u) X X
2 bud) ~ u (Cllogz+0(1og2z>>'

d|eDz(ﬁ)

On the other hand, Ny, = ©(u) if (u,d;) = 1. Then, we may apply [5, Lemma 4]
since P(u) < logAl x, and we obtain

7T (x) Ny, - T(u) Z 7(x) < X )
Z SdN = + 0 5
dleDz(ﬁ) ¢(ud1) u dl(eDdzgﬁ) ¢(d]) log z
u,dy)=

2r(u)qb(u) (c] X +0< x >>
u u log z log” z

Thus, we have the lower bound

T (x)Ng, T(u) X X
Z ¢ (udy) = u (Cllogz + O <log2z>> '

di GDZ(ﬁ)

T(u) X X
Ri=——(ci—+ 0 5 .
u logz log” z

By divisor-switching technique and Brun—Titchmarsh inequality as in [6], we have

Ry K ZZZ Z n(x;%,l)

PIP: dlu s X <q<t
dsl|q

<Y D3> m(xirusq, 1)

P dlu |G gom <4<y

< ZZZ Z w(x; rusk, 1)

r|P; dlu sy deTM

This shows that

X xlogzlogulog M T(u) x
< ZZZ Z ¢ (rusk)log x <) ¢ (u) log x < u log’z

r|P; dlu S\% deTM
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164 S. Kim

This completes the proof of (8). O
Proof of (9) We use (7) and (8) and apply partial summation as in (6). O

The following is used with inequality in [5, Lemma 7]. Here, we obtain an equality
that will be used frequently in this paper.

Lemma24 Let 0 < A < %. Fix a > 1 and an integer 0 < B < oo. We use

z = Alogx for the formula for Rp and z = ll(j)gng; for the formula for Sp. Let 1,(x) =
2

[z, z%]. Define

Up = {u:u is a positive square-free integer consisted

of exactly B prime divisors in 1,(x)}.

Then we have

= Y Ruzlo) = mog“) 208D R x )(1+ 0 (i))
logz

uellp

and

B
= 3 s = HE s (140 (1))
logz

uelp

Proof We apply Lemma 2.3 with u € Up. Note that u € Up satisfies the conditions
for u in Lemma 2.3(8), (9). Then

T(u) 1
Y R =3 —=R) (1 +0 (10g ))

ueldp uellp

B
1 2
=zl X

B! (paa(x) p)
B-2
+0 h R()<1+0< ! ))
| 2 X
(B - 2) PE H(Jc) pela(x) log z

B
: o) o (3)|rw(1+0(52))
=|— — x
|
B! pe](x)p lOgZ

_ 28 B 1
(loglogz —loglogz+0< )) Rz(x)(l—i-O( >>
B log log z
2loga)®
= B koo (140 (12 )

The result for Sp can be obtained similarly. O

S
hSHE )
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Although we relaxed z < I()lgég; toz < 11(;):2’;, the range is still not enough for
2 2

. . 1 .
further use. We will see how this range can be relaxed to logZ x < z < log# x in
Lemma 2.5. A probability mass function of a Poisson distribution comes up as certain
densities.

Lemma 2.5 Let 0 < A < 11—0. Fix a > 1 and an integer 0 < B < oo. We use

log x ’ .
=y for the formula for Sp. Let 1,(x) =

z = Alogx for the formula for Ry and z =
(z, 2%]. Define

1

ram =[] ©(0*). weam) =pln : pe L),

Pelin
p€la(x)
and
(p— 1)
Ry = Z . (p—1), Sp:= Z = -
P=x P=x p
w, .a(p—1)=B w, .a(p—1)=B

Then, as x — 00, we have

,  (Qloga)® ,  Qloga)®
Ry = WRZ(X)U +o(1)), Sz = WSZ(X)(I + o(1)), (10)
and we have
Rea(x) = éRz(x)a +o(1)), Sa(x) = ész(x)a +o(1)), (1)

Proof of (10) We remark that by (7), (8), and (9), the contribution of primes p such that
p — lis divisible by a square of a prime ¢ > z is negligible. In fact, those contributions
to R (x) and S;(x) are O(R;(x)/z) and O(S;(x)/z), respectively. Thus, we assume
that p — 1 is not divisible by square of any prime g > z. By Lemma 2.4 and inclusion—
exclusion principle,

B+1 B+2 B+3
R%=RB—< | )RB+1+< ) >R3+2—< 3 >R3+3+—~-~-

Moreover, for any k > 1,
2k—1 . 2k .
(Bt (Bt
Z(—l)f( j >R3+st;gsZ<—1)f< ; )RB+,-.
j=0

j=0
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Then dividing by R, (x) gives

2k—1

J

By Lemma 2.4, we have

2k—1

(210ga) 1
2 (0 (52)

] loga)B

Rl (210ga)B J(Zloga) 1
=R - Z( . ( o <1ogz)>'

Taking x — o0, we have

2k—1

B
—(210ga) Z( 1/ == (210g Y < lim inf

R, @ log a)B & (2log a)
< limsu B 1y —=—
x—>oop R (x) - Z( ) J

Letting k — o0, we obtain

Ry  (2loga)®
lim
x—>00 R,(x)  Bla?

The result for S can be obtained similarly.

Z( 1)/ (B +J) Rpyj < RE? < i(_l)j(B +]) RB-H"
J S R:(x) T Ry(x) — =0 ) R:(x%)

m}

Proof of (11) As in the proof of (10), we assume that p — 1 is not divisible by square
of any prime ¢ > z. Note that 7,(p — 1) = 1,e(p — )77 ;a(p — 1). Let 0 < B < o0
be a fixed integer. If w, ,«(p — 1) = B then 7, .a(p — 1) = 28. Then we have, by

(10),
(p—1)
Y. wmlp-D= ) 5
P=x p=<x
w, .a(p—1)=B w, .a(p—1)=B
R, (loga)®?
_ _B _
Then, by Lemma 2.4,
Rz" (x) (log a) 1 1
= 1 — —1
Z ( RZ(X) ‘ 2/ Z Tz(p )
J<B j=B pP=x

w, a(p—1)=j
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Jj<B p=x
w, .a(p—1)=B

-y a"g") (1+o() + 0

2BR ()
oy 2R()

(IOga)
=Y 1+ (1))+0(23R( ) .(p—1)

-3 (k’g“) (I+0()+ 0

j<B

(210ga)B 1
S (o))

&) are

R()

(loga)/ (loga)®
Z jla? +0( B! )

J=B

Thus, both hm 1nf (x) and lim sup
X—>

and the constant implied in O does not depend on B. Therefore, letting B — oo, we
obtain

. Rea(x) 1
lim = —.
x—00 R.(x) a

The result for S;« (x) can be obtained similarly. O

Lemma 2.5 allows us to have an extended range of z, and the same method applied
to Ry ;(x); we can also extend the range of z for R, ;(x) and S, ;(x).

Corollary 2.1 Fixany A > 1. Let log% x < z < log? x. Then, as x — oo, we have

R,(x) —01

(1 o(1)), S:(x) —61

(1 +o(1)). (12)

Assume that u is a positive integer with p(u) > z, u < (logx)Al, and T(u) < Aj.
Then, as x — 00, we have

Ry (x) = QR () +o(1)), Su-(x) = QS(X)(lJrO(l)) (13)

We apply Corollary 2.1 to obtain the following uniform distribution result:

-1
Corollary 2.2 Let2 <v <xandr := (v% logv) . Suppose also thatr > log_% X,

O0<a<pB<landB —a>r. Then, forz < logzxr,
logs x”
T —1 1
Z L=(,3—oz)sz(x)(1+0(—)>. (14)
p log z

~logp
log,\ ﬂ
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1
Forloga x <z < logA x, we have, as x — 00,

(p—1
> % = (B—)S.(¥) (1 +0(1)). ()

log p
o= log x <B

Assume that u is a positive integer with p(u) > z, u < (logx)4, and T(u) < Aj.
log x”
log3 x"’

Then we have, for z <

(p—1 1
> —T(pp s )Qszm(uo(@)), (16)

logp
as Tog x <B

p=1 mod u

1
and, forloga x < z < logA x, we have, as x — 00,

(p—1
> D (- s (o), (an

log p
a< Tog x <B

p=1 mod u

Proof By Lemma 2.2(5) and partial summation, we have, for 8 —a > r,

xB
Z T (p — 1) R, (t)| / Rzgt)dt
p x* t

a<1°é’p<ﬂ
log x 1 1
=ci(Bp—a)— |1+ 0 +0|— |-
log z logz log~ z

log x
Clearly, r logx > 1. Thus, the second O-term can be included in the first O-term.
Then (14) follows.
1 1
Since r logx > log5 x, therange log# x < z < log” x can be obtained from taking

ng . We have by (12), as x — oo,

B
Z -1 R (¢ R (¢
'L’z(p )= zt()|§5+/ ig)dt
xot

10gP <B P

log X

powers of

I |
— (B —a) 22X 1+ 0(1) +o <—> .
log z logz

Also, by rlog x > 1, the second o-term can be included in the first o-term. Therefore,

(15) follows. Similarly, (16) follows from Lemma 2.3 (8) and (17) follows from (13).
O
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We use pi1, p2, ..., py to denote prime numbers. We define the following multiple
sums for2 < v < x:

T —_ 1 T f— 1 e T — 1
Toz(x) = Z =(P1 )T (P2 — ) 2(Pv )’
p1p2-pu<x pPip2--- Py
and, foru = (uy, ..., uy) with 1 <u; <x,
T — Dt —1D---T -1
Tyvz(x) = Z 2(p1 — Dz(p2 ...) - (Po ).
P1p2-Py=X pip2--Pv

Vi, pi=1 mod u;

Define Ty, := {(t1, ..., 1) : Vi, t; € [0,1], t; +--- + 1, < 1}. We adopt the idea
from Gauss’ Circle Problem. Recall that r = (v% log v)~!. Consider a covering of T,
by v-cubes of side length r of the form:

Let sy, ..., s, be nonnegative integers and let

le,...,sv ={(t,.... )Y, rsi < <r(si + D}

Let M, be the set of those v-cubes lying completely inside T,. Then the sum ¥, ;(x)
is over the primes satisfying

1 1
(—ngl s —ngv) e T,.
log x log x

Instead of the whole T, we consider the contribution of the sum over primes satisfying

<1og P log py

g e ey ) eUMUv
log x log x

which come from the v-cubes lying completely inside T,. We define

T —Dr -1t —1
Gv,z(x) — Z 2(p1 )T (P2 ) 2(Pv )’
log py log py P1p2:c P
( Togx > Togx )GUM”
and similarly, foru = (uy, - -+, uy) with 1 <u; < x,
T - Dr —1--- —1
Guna(x) = Z (p1 — Dr(pp— 1) - t(py )’
log py log py Pip2=--Pv
( logx > Tog x )EUMU
Vi, pi=1 mod u;
Letv = Lc ll;’gi );J for some positive constant ¢ to be determined. Then v satisfies

the conditions in Corollary 2.2. Then we have:
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Lemma 2.6 Let log% x < z < log# x. Then, as x — 0o,

1
Gy (x) = JSZ(X)U(I +o(1))". (18)
Foru= (uj,uz, 1,..., 1) withl <u; <x,
T(u1)T(u2) x
Guvz —Guz 1 B 19
20 S gy S 1OE {19

where 0 < k < 2 is the number of u;’s that are not 1.
Assume that each u;, i = 1,2, is a positive integer with p(u;) > z, u; < (log x)4
and t(u;) < Ay. Then, as x — o0, we have

Su,v,:(¥) = WGU,Z@) (I +o(1)). (20)

Proof of (18) It is clear that

.....

We have vol(T,) = X, vol(By,...0) = r¥, and vol (1 — ry/0)T,) = & (1 —ry/v)".

.....

-1
Also, recall that r := (v% logv) .Then

v
1 1
! (1 - vlogv)

(v% logv)~?

1
<M, < —Y—ru.
(v2logv)~?

On the other hand, by Corollary 2.2 (15), the contribution of each v-cube [o, B1] X
<o X [ay, Bu] € [0, 177 of side length 7 to the sum is

Z T(p1 — Dtz(p2 =D - t(py — D
pPip2-- Py

log p;
Vi, 0 <ol <,

log x
v
= (H(ﬂi - ai)) S:(x)" (1 + o(1))"
i=1
= r’S;(x)"(1 +o(1))".
Combining this with the bounds for | M, |, we obtain the result. O

Proof of (19), (20) Let v and r be as defined in Corollary 2.2. We write (15) and (17)
in the form of

(p—1
> D (w00 (1 fupo) ey

log p
= logx <ﬂ
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and ( 1 (u)
T (p — T
) pT - a)TuSz(x) (1+ 8o p(x)). (22)

log p
as logx <ﬂ

p=1 mod u

We note that there is a function f(x) = o(1) such that uniformly, for0 <o < g <1
and 8 —a >,

max (| fa,s (1, 18a,8 (X)) = f(x).

Then we can write

(p—1
5 % = -0 500 (14 gap(0)

log p
o= Tog x <p

p=1 mod u

M (p—1) (1 + ga,ﬂ(x))
u af%qﬁ p I+ fop(x)

_M (p—1
=— > 1+ 0.

log p
o= logx <ﬂ

Consider any v-cube [aq, B1] X -+ X [ay, By] € [0, 1]V of side length r. Then, by the
above observation,

Z . (p1 — Dr(po— D 1z(py — 1)
1Py
Vi»aiillrfgljf <Bi P Py
pi=1 mod u; for i=1, 2
T(u)t(u T —Dr -1t —1
_ (u1)T(u2) Z 2(P1 )T (P2 ) 2(Pv )(1 —|—0(f(x)))2.
uiup P1p2---Pv

log p;
Vi o <el<p;

This proves (20). For the proof of (19), we use instead

Z T (p—1 _ Ry (1) |xﬂ +/X’3 R”’Z(t)dt

t o £2
aslizg 7
p=1 mod u
< 2 (8- wytogx + 01) < 2 (8 — )10
— o X _— —_ X
o) ¢ ) ¢
T(u) T(u) w(p—1)
L —B—w)S; I _ e | ,
< ¢(u)(/3 a)S.(x)logz < o) Z T ogz
aflogx<
which follows from Lemma 2.3(7). O
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We impose some restrictions on the primes pq, ..., py:

R1. p1, ..., py are distinct.
R2. For each i, ¢> t pi — 1 for any prime ¢ > z.

R3. g% ¢(p1--- py) for any prime g > z°.

log x
v=|c
log, x

for some positive constant ¢ to be determined. Let &, Z(l)(x) be the contribution of
primes to G, ;(x) not satisfying R1. Note that if R1 is not satisfied, then some primes
among p1, ..., py are repeated. Then, by Lemma 2.6(18),

2
&,V < (;) ( 3 T(pp—z“) S02.:(x)

Z<p<x

Recall that we chose

210g3 zv(v—1)
< SZ(X)Z
v*log’ 7

<L

Gv,z(x)

log? z

< Gy (x) K

—_— 6 .
zlogzx e v,2(%)

Let G, .@(x) be the contribution of primes to G, ;(x) not satisfying R2. Note that
if R2 is not satisfied, then ¢2|p; — 1 for some primes p; and ¢ > z. Let 2 =
(g%, 1,...,1). Suppose that ¢?| p; — 1 for some p; and ¢ > z>. Then the contribution
of those primes to 60,2(2) (x) is, by (19),

< Z <11)> 6uqz,v,z(x)
2

9>z

v
G, ()1
< qu g7 O logz

v v
<Y 3Gulogz € 56y (0).

q>z*

Suppose that ¢%|p; — 1 for some p; and z < ¢ < z2. Then we have, by (20),

v v v
< Z (1)6uqz,v,z(x) < Z q_26v,z(x) < @Gv,z(xl
7<q<z? 7<q<z?
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Thus, we have

v
Gy () €« ——6, . (x).
zlogz

Let GU,ZG) (x) be the contribution of primes to S, ,(x) satisfying R1 and R2, but
not satisfying R3. Note that if R1, R2 are satisfied and R3 is not satisfied, then there
are at least two distinct primes p;, p; such that g|p; — 1 and g|p; — 1. Letu, 4 :=
(g,q,1,...,1). Suppose first that this happens with g > z*. Then, by (19), the
contribution is

v v? v2logz
<Y (Z)Guq,q,v,zm <Y Wev,z(x)log% < Zf Sy, (x).
q>z*

g>z*

Suppose that this happens with z> < g < z*. Then, by (20), the contribution is

2 2
v v v

< Y (2)6uq.q,v,z<x> < Y 56,0 Piogz O

2<g=z* 2<g=<z*
Thus, we have
3 v?
6,V (0) € 5—6,..(x).

z*logz

We write &, Z(O) (x) to denote the contribution of those primes to G, ;(x) satisfying
all three restrictions R1, R2, and R3. By the above estimates, we have

G, 0 =6, (x) -6, YVx) -6, P - 6,.%%x)

log3 z v v?
=6v,z(x)<1+0( g >+0< )+0(2 ))
Z zlogz z-logz
Therefore,

3 2
6,. V) =6, (x) (1 +0 (bg—z> +o0 ( Y ) o0 < o~ )) . (23)
Z zlogz z*logz

3 Proof of Theorem 1.1

We set

log x
— = = = 1
v = v(x) \f og XJ, z = z(x) := /logx,

2
y = exp (J@)
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with a positive constant ¢ to be determined.
Consider a subset Q. (x) of primes defined by

Q0=0.x):={p:p=<x,q*tp—1 forany prime g > z}.
We define N, M by

N = N,y(x) := {n < x : n issquare-free, pln = p € Q, w(n) = v},

M=M,x):={n<x:neN, ¢>t¢) forany prime ¢ > z°}.

We write

4 )" "
Vam@) = ) @ AOR | EXCES

neM pln
We also write
t/(n) , Tz//z (n)
Wpa = Z pat Wi = Z —
neM neM

By (23), the contribution of those primes satisfying R1, R2, and R3 to &, ;(x),
which we wrote as &, Z(O) (x) satisfies

1 3 2
G,.: O () = 6, (x) (1 +0 ( o8 Z) + 0( 0 >+ 0 (2”—>>
z zlogz z*logz
1
~s.w (1401 ).
log, x

Then, by Lemma 2.6(18) and Stirling’s formula,

1 1 se\2v [ logx’
Wat = =6, 00 = = (5) 7 (eres ) (4o’
v! v \v log z

Thus,

log x

(2c 4+ clogec; —2cloge + clog2 + 0(1))) .
log, x

Wa > exp (

Maximizing 2¢ + clogc; — 2clogc + clog?2 by the first derivative, we have ¢ =
V2¢77/? and hence

1
W > exp (2«/§e—5 | 28X 4 0(1))) .
log, x
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For W/’M, we have, by (23), the contribution of those primes satisfying R1, R2, and
R3t0 G, 2(x),say & © (x) satisfies

v,z?

, log’ z v v?
02 (x) ,,,ZZ(X)< + ( 2 )+ (zlogz) + (z“ogz))
1
= 1+0 .
GU’ZZ(X)< * (logzx))

Then by Lemma 2.6(18) and Stirling’s formula, as x — oo,

1 , 1 se\2v logx \"
w’ (0" -
M= U!GU,ZZ ()C) = ; (;) (Cl 10gz2> (1 + 0(1))”

Thus,

Wi > ex log ¥
M P log, x

(2c 4+ clogc; — 2clogce + 0(1))) .

Maximizing 2¢ + clogc; — 2clog ¢ by the first derivative, we have ¢ = ¢~7/2, and
hence, as x — o0,

log x

Wi > exp (2{3_g (1+ 0(1))) )

log, x

Therefore, we have just proved the lower bounds of the following:

Theorem 3.1 For z = /logx, as x — 09,

Z,ﬁ(n)tz—") — exp (2«/5(3—5 [logx o(1))> 24)
e n log, x

2 Tz//z(n) _v | logx
Zu (n) =exp|2e 2 (I+o(1)]. (25)

and

o n log, x

Note that the upper bounds follow from Rankin’s method as in [5, Theorem 1].
We proceed the similar argument as in [5]. Let M = M, (x) be as above with the
choice ¢ = e~ 7/2. Now, for n € M, we have

(@) =7, 2(p(M)T2 (P () = T2(d (1)) = T3 (),

(A1) = 7, 2 (M) T2 (A(n)) = T2 (M) = T (n).
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Then, as x — o0,

, _v | logx
Vpmx) = Wy >exp|2e 2 [——(1+0o(1)].
log, x

The argument proceeds as in [5]. Let M’ be defined by

x
M = {np ‘neMy(xy "), pisaprime, p < —} )
n

For those n’ = np € M’, we have

T(A(np)) = T(A(n)) = - (A(n)),

and a given n’ € M’ has at most v + 1 decompositions of the form n’ = np with
neM,xy), p< o

Since n < xy~! forn € M,(xy~!), the number of p in p < %

£ is
n

X X
x (—) > .
n nlogx

Note that log y = /log x = o(log x). This gives

1 _v | logx
Vmxy ) > exp|2e 2 (14+o0(1)) ).
log, x

Then
;r(x(n» > n;/ru(n)) > VM<xy*1)vlogx
> x exp (2e—5 logx | 0(1))> .
08y X

This completes the proof of Theorem 1.1.

Remarks 1. In the proof of Theorem 1.1, we dropped 7, .2(¢(n)). This is where
aprime z < g < 72 can divide multiple p; — 1 fori = 1,2,---, v, and that
is the main difficulty in obtaining more precise formulas for ), <x (¢ (n)) and

2on<x T((M).

2. We will see a heuristic argument suggesting that, as x — oo,

3 t(um) = xexp (2«/§e—5 | logx |\ 0(1))) ,
et log, x
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3 (@) = xexp <2f2e‘5,/ logx ) 4 o(l))) .
o log, x

However, we have

and hence

Yty =o (Zr(qs(n))) :

n=<x n<x

We will prove this in the following section. The prime 2 plays a crucial role in the
proof of Theorem 1.2.

4 Proof of Theorem 1.2

We put k and w as in [5]:

k=|Alog, x|, w= {Vlong.

log% X

Here, A is a positive constant to be determined. Also, define &1 (x), £ (x), and E3(x)
in the same way:

E1(x) := {n < x : 2K|n or there is a prime p|n with p = 1 mod 2},

E(x)={n<x:00) <wv},
and
&x) :={n <x}—(E1x)U&EX)).

We need the following lemma.

Lemma 4.1 Forany?2 <y < x, we have

t(¢p(n))  log’x
> < == T@m).

<X n n<x
n<y <

Proof As in the proof of [5, Theorem 1], we use the square-free kernel k = k(n) (if

a prime p divides n, then p|k, and k is a square-free positive integer which divides n)
and the factorization n = mk to rewrite the sum as
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T(¢p(n)) 2 T(m)T (¢ (k))
Z—n <> urk) Y —

nf% ksi mgk);
2 T(@k) 5
k 1
<<k§u (k) ——log’x
<%

Note that we have uniformly w(n) < log x. Find v such that

k
Z 2(k) T(¢>( )
kg%
w((k)=v

is maximal. Then we have

) 2(k)f(¢>( ) <logx Y z(k)t(qﬁ(k))

k<’; kSA
w(k)“:u

We adopt an idea from the proof of Theorem 1.1. Let M = M, (xy~!) be the set of
square-free numbers k < xy~! with w (k) = v. Define

M = {kp ke My(xy™"), pisaprime, p < %} )
For those n’ = kp € M’ with k € M, we have

(¢ (kp)) = T(@(k)),

and any given n’ € M’ has at most v + 1 decompositions of the form n’ = kp with
ke M, p< ’Ec
Since the number of p satisfying p < ¢ is

X X
i (E) > klogx’
it follows that
k
Yrpmy = Y @ > Y u (k)r«p( ) x

n=<x neM'’ ksx v logx
w(k)':u

Since v < log x, we have

k 2
> w0 ™ LS g,

k<X n=<x

w(k)=v
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This gives
( (k)) log” x
R ¢ e ==Y @),
kf% n=<x
Then the result follows. O

For n € &1 (x), we have, by Lemmas 2.3 and 4.1,

($(n)
2tk =x Y — =

ne&(x) ne€i(x)
7(25) T(p(m)) t(p—1) (¢ (m))
=X 2k Z m e Z: p Z m
TS p=1pr;§d 2k "=y
< log’ x 4C) log x Z T(¢(n))
¢ (2F) =

< 10g6x Af;zx Z (@(n)).

n<x
If we take Alog2 > 7, then we obtain
>ty =o (Zr(¢(n))) :
ne&(x) n<x

For n € & (x), we use the square-free kernel k = k(n) and the factorization n = mk
as before,

Yooty = > tdm)

ne&(x) ne&(x)
< Yo R Y tmT@ k)
S
< Y A log )T ()
w50
L xwlogx (Z M)
pP=x p

3 © log x
< x(logx)2(Clogx)” <« xexp|2——— ).
log, x
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Thus, by Theorem 1.1,

D thmy=o <Zr(¢<n))) :

ne&(x) n=<x

For n € & (x), we follow the method of [5]. We have

T o Vlogx
t(A(m) ~ k7 logdx’

Then

log% X log%x
n;@mm)) < Vlogx ne%)f(«b(n)) < mgz@m)).

Therefore, putting these together, we have

loggx
g (M (n) < Toss ; T(p(n)),

and Theorem 1.2 follows.

5 Heuristics

Recall that 7;(A(n)) = 7, 2(A(n))7,2(A(n)). Let M be the set defined in Sect. 3
with the choice of v = |v/2e77/2 /&%J. As in Sect. 3, we have 7,2(A(n)) =
rz”z (n) for n € M. It is important to note that g> { p; — 1 for any primes
piln and ¢ > z. Also, we have ¢> t ¢(n) for g > z2. Thus, it is enough to

focus on the sum Vo (x). If we could prove that Vaq(x) = >, g @ >
exp (2\/56_% lloog%(l + 0(1))), then the same argument as in Theorem 1.1 would

allow anx T(A(n)) > xexp (2\/§e’% 10ﬁ(l + 0(1))). We need the contribution

log, x
of 7, 2(A(n)) overn € M. Let G, ;(x) be the sum defined in Sect. 2, and define

Z T, 2(em(pr — L pp—1,..., py = 1))

Hy (x) =
" T 2(p— D 2(p2— D1, 2(py— 1)

log pj log py
( Togx * "’ logx eUM,

o z(p1 — Dr(pp— 1) - t(py — 1)
pP1p2--- Py
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We have also defined in Sect. 2 that, foru = (uy, ..., uy,) with 1 < u; < x,
T - Dt -7 —1
Gu,v,z(x) — Z 2(P1 )T (p2 ) 2 (Dv )
P1p2---Pv

log p) log py
( Togx * " logx cUM,

Vi, pi=1 mod u;
We need to extend Lemma 2.6 to cover all components of u.

Lemma 5.1 Letlog% X < zflogA x. Then, foru = (U1, ua, ..., uy) with 1 <u; <x,

T(u)T(2) - - - (uy)

Sy ()1 1))*1og* 7, 26
PGB -y SO o) log 2 (26)

Gu,v,z(x) <

where 0 < k < v is the number of u;’s that are not 1.
Assume that each u;, 1 < i < v, is either 1 or a positive integer with p(u;) > z,
u; < (logx)A, and t(u;) < Ay. Then

Sup(r) = DT T o (4 4ok, @7

ULUD -+ - Uy

where 0 < k < v is the number of u;’s that are not 1.

The same proof as in Lemma 2.6 applies with the need of considering all components
of u.

Fix a prime z < g < 72. Consider the number X, of primes py, ..., py such that
q divides p; — 1. By Lemma 5.1, it is natural to model X, by a binomial distribution
with parameters v and %. In fact, Lemma 5.1 implies that

Lemma 5.2 Forany (0 <k <wv, as x — o0,

1
Gv,z(x)
T (p1 — Drz(p2 =D ---t(py — D
X
Z P1p2 - Pv

P(X, =k) =

(10g pL logpy )€UMU

Jogx > logx

Exactly k primes p; satisfy q|p; —1

()G)(-2) avoor
= - l—-- (1 +o(1))".
k) \q q

Here, the functions implied in 1 4+ o(1) only depend on x and do not depend on k.

Denote by A, the contribution of a power of ¢ in

7"z,zz(lcm(l’l —Lpp—1,...,pp— 1)
T opi— D, 2(pp— Dt 2(py— D)
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Similarly, denote by Ay, ... 4; the contribution of powers of g1, - - - , ¢; in the above.
Let
. T(p1 — Dz(p2— 1) - w(py — 1)
B, , = .
pPip2--- Py
We can combine the contributions of finite number of primes g1, ..., g; in (z, z2]. For

these multiple primes, Lemma 5.2 becomes:

Lemma 5.3 Forany0 < kj,...,k; <v, asx — oo,

P(Xg =ki,....Xq, =kj)
1 Z (p1— Drz(p2— D t(py — 1)
Sy 2 (x) pip2-- Py

(logm logpy )eUMU

Tog x Tog x

Foreachs=1,...,j,
exactlyks primespisatisfyqs|pi—1

ks v—kj
() (E) (-5) aveor

s<j
Here, the functions implied in 1 + o(1) only depend on j, x and they do not depend
on kg.

This shows that the random variables X, behave similar as independent binomial
distributions. For z < g < 72, we have Ay = 2% fork > 1,and A; = 1 fork = 0.
Thus, the contribution of this prime g is

E[A,] = (2 (1 - l) - (1 - 3) ) (1+o0(1)".
q q

For distinct primes g1, ..., g; in (z, zz], the contribution of these primes is
1\" 23\"
E[Aq1 ,,,,, q_f] = l_[ <2 <1 - _) — <1 — —) ) (1 + 0(1))U,
s<j qs qs

where the function implied in 1 4 o(1) only depends on j, x.
Then, we conjecture that the contribution of all primes in z < g < 72 will be

Conjecture 5.1 As x — oo, we have

o= J] (2(1 - 1) - (1 - 427) )Gv,zu)(l +o(1))".
2

q
7<q=<z

It is clear that
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Thus, we have, as x — 00,

G 3-(-2)) -0

z<q=<z?

Therefore, we obtain the following heuristic result according to Conjecture 5.1.

Conjecture 5.2 As x — 00, we have
Uy 2 (x) = &y (X)(1 +0(1))".

Then Conjecture 1.1 follows from Lemma 2.6.

Remarks We were unable to prove Conjecture 1.1. The main difficulty is due to the

short range of u in Corollary 2.1. Because of the range of u#, we could not extend

Lemma 5.3 to all primes in z < g < z°.
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