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Abstract We present several inequalities for the Ramanujan generalized modular
equation function μa(r) = πF(a, 1 − a; 1; 1 − r2)/ [2 sin(πa)F(a, 1 − a; 1; r2)]
with a ∈ (0, 1/2] and r ∈ (0, 1), and provide an infinite product formula for μ1/4(r),
where F(a, b; c; x) = 2F1(a, b; c; x) is the Gaussian hypergeometric function.
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1 Introduction

For real numbers a, b, and c with c �= 0,−1,−2, . . . , the Gaussian hypergeometric
function is defined by
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F(a, b; c; x) = 2F1(a, b; c; x) =
∞∑

n=0

(a, n)(b, n)

(c, n)

xn

n! (|x | < 1), (1.1)

where (a, 0) = 1 for a �= 0, and (a, n) denotes the shifted factorial function

(a, n) = a(a + 1)(a + 2)(a + 3) · · · (a + n − 1)

for n = 1, 2, . . . . F(a, b; c; x) is said to be zero-balanced if c = a + b. Recently,
the Gaussian hypergeometric function F(a, b; c; x) has attracted the attention of
many researchers. In particular, many remarkable inequalities and properties for
F(a, b; c; x) can be found in the literature [2–4,6,7,15,18,21,22,28].

The well-known quadratic transformation formula [15, (15.8.15), (15.8.21)] for the
Gaussian hypergeometric function is given by

F

(
1

4
,
3

4
; 1; 1 −

(
1 − r

1 + 3r

)2
)

= √
1 + 3r F

(
1

4
,
3

4
; 1; r2

)
, (1.2)

namely,

F

(
1

4
,
3

4
; 1;

(
1 − r

1 + 3r

)2
)

=
√
1 + 3r

2
F

(
1

4
,
3

4
; 1; 1 − r2

)
. (1.3)

Let a ∈ (0, 1/2], r ∈ (0, 1) and p > 0. Then the Ramanujan generalized modular
equation with signature 1/a and degree p is given by

F(a, 1 − a; 1; 1 − s2)

F(a, 1 − a; 1; s2) = p
F(a, 1 − a; 1; 1 − r2)

F(a, 1 − a; 1; r2) . (1.4)

Making use of the decreasing homeomorphism μa : (0, 1) → (0,∞) defined by

μa(r) = π

2 sin(πa)

F(a, 1 − a; 1; 1 − r2)

F(a, 1 − a; 1; r2) , (1.5)

(1.4) can be rewritten as

μa(s) = pμa(r). (1.6)

The solution of (1.6) is given by

s ≡ ϕK (a, r) = μa
−1(μa(r)/K ), K = 1/p. (1.7)

We call the functionμa(r) defined by (1.5) the Ramanujan generalized modular equa-
tion function and ϕK (a, r) defined by (1.7) the solution of the Ramanujan generalized
modular equation with signature 1/a and degree 1/K .
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The Ramanujan generalized modular equation (1.4) has been developed by leading
mathematicians for over a century. The classical case a = 1/2 was firstly studied
by Jacobi in the nineteenth century. In the early 20th century, the Indian mathe-
matical genius Ramanujan studied extensively the Gaussian hypergeometric function
F(a, b; c; x) and the Ramanujan generalized modular equation (1.4). Numerous alge-
braic identities for the solution s for some rational values of a were listed in his
unpublished notebooks, but with no original proofs (see [7]). Later, Borwein and
Borwein [11,12], Venkatachaliengar [23], and Berndt [5–8] et al. made great con-
tribution to the subject. In particular, in 1995, Berndt et al. published an important
paper [9] in which they studied the case p a prime. For several rational values, such as
a = 1/3, 1/4, 1/6, and integers p (e.g. p = 2, 3, 5, 7, 11, . . .) they were able to give
proofs for numerous algebraic identities stated by Ramanujan. After the publication of
[9], many remarkable results for the Ramanujan generalized modular equations have
been established (see [13,14,19–22,24,29]).

Let μ(r) and ϕK (r) be, respectively, the plane Grötzsch ring function and the
Hersch–Pfluger distortion function in geometric function theory, that is, μ(r) is the
conformal modulus of the ring consisting of the unit disk slit along the real axis
from 0 to r , and ϕK (r)(K ≥ 1) gives the maximum distortion of the class of K -
quasiconformal mappings of the unit disk into itself with the origin fixed. Then
we clearly see that μ1/2(r) = μ(r) and ϕK (1/2, r) = ϕK (r). Therefore, μa(r)
and ϕK (a, r) are respectively the generalized Grötzsch ring function and general-
ized Hersch–Pfluger distortion function, and they have been explored by Anderson,
Vuorinen and Qiu et al. in [1,3,10,16,17,25,26,30,31].

In what follows, we denote r ′ = √
1 − r2 for r ∈ (0, 1),

μ∗(r) = μ1/4(r) = π√
2

F(1/4, 3/4; 1; 1 − r2)

F(1/4, 3/4; 1; r2) ,

ϕ∗
K (r) = μ∗−1

(μ∗(r)/K ).

Note that

ϕ∗
K (r) = ϕ∗

1/K
−1

(r)

for all r ∈ (0, 1) and K > 0.
From (1.2), (1.3), (1.5) and (1.7) one has

μa(r)μa(r
′) = π2

4 sin2(πa)
, (1.8)

[ϕK (a, r)]2 + [ϕ1/K (a, r ′)]2 = 1, (1.9)

μ∗(r)μ∗
(

1 − r

1 + 3r

)
= π2, (1.10)

μ∗(r) = 2μ∗
(√

8r(1 + r)

1 + 3r

)
, μ∗(r) = 1

2
μ∗

(
1 − r ′

1 + 3r ′

)
, (1.11)
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ϕ∗
2 (r) =

√
8r(1 + r)

1 + 3r
, ϕ∗

1/2(r) = 1 − r ′

1 + 3r ′ . (1.12)

The main purpose of this paper is to present the inequalities for the function μa(r)
and give an infinite product formula for μ1/4(r) = μ∗(r). Our main results are the
following Theorems 1.1 and 1.2.

Theorem 1.1 Let a ∈ (0, 1/2], R(a) be defined by (2.2) and M∗ = M∗(a) =
min{M, 2} with

M = M(a) =
[
1 + 2 sin (πa)

π
(R(a) − log 64)

]2
.

Then the following statements are true:

(1) The function r �→ g(r) defined by

g(r) = 2μa

(√
8r(1 + r)

1 + 3r

)
− μa(r)

is strictly decreasing from (0, 1) onto (0, R(a)/2 − 3 log 2) if a ∈ (0, 1/4) and
strictly increasing from (0, 1) onto (R(a)/2 − 3 log 2, 0) if a ∈ (1/4, 1/2], and
g(r) = 0 if a = 1/4. Moreover, the inequalities

μa(r) < 2μa

(√
8r(1 + r)

1 + 3r

)
< min

{
μa(r) + R(a)/2 − 3 log 2, M∗μa(r)

}

(1.13)

hold for all a ∈ (0, 1/4) and r ∈ (0, 1), and the inequalities

max {μa(r) + R(a)/2 − 3 log 2, Mμa(r)} < 2μa

(√
8r(1 + r)

1 + 3r

)
< μa(r)

(1.14)

hold for all a ∈ (1/4, 1/2) and r ∈ (0, 1).
(2) The function r �→ f (r) defined by

f (r) = μa

(
1 − r

1 + 3r

)
− 2μa(r

′)

is strictly decreasing from (0, 1) onto (3 log 2 − R(a)/2, 0) if a ∈ (0, 1/4) and
strictly increasing from (0, 1) onto (0, 3 log 2 − R(a)/2) if a ∈ (1/4, 1/2], and
f (r) = 0 if a = 1/4. Moreover, the inequalities
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max

{
π2

2 sin2(πa)
− (R(a)/2 − 3 log 2)μa(r),

1

M∗
π2

2 sin2(πa)

}

≤ μa(r)μa

(
1 − r

1 + 3r

)
≤ π2

2 sin2(πa)
(1.15)

hold for all a ∈ (0, 1/4] and r ∈ (0, 1), and the inequalities

π2

2 sin2(πa)
≤ μa(r)μa

(
1 − r

1 + 3r

)

≤ min

{
π2

2 sin2(πa)
+ (3 log 2 − R(a)/2)μa(r),

1

M

π2

2 sin2(πa)

}

(1.16)

hold for all a ∈ [1/4, 1/2] and r ∈ (0, 1).
Equality is reached in each inequality of (1.15) and (1.16) if and only if a = 1/4.

Theorem 1.2 Let a ∈ (0, 1/2], r ∈ (0, 1), r0 = r ′ = √
1 − r2, r1 = ϕ∗

2 (r
′) =√

8r ′(1 + r ′)/(1 + 3r ′), r2 = ϕ∗
2 (r1) = √

8r1(1 + r1)/(1 + 3r1) = ϕ∗
4 (r

′) and

rn = ϕ∗
2 (rn−1) =

√
8rn−1(1 + rn−1)

1 + 3rn−1
= ϕ∗

2n (r
′). (1.17)

Then the inequalities

∞∏

n=0

[(1 + rn)(1 + 3rn)]
2−n−1 ≤ exp[μa(r) + log r ]

≤ 1

8
exp (R(a)/2)

∞∏

n=0

[(1 + rn)(1 + 3rn)]
2−n−1

(1.18)

are valid for a ∈ (0, 1/4], and the reversed inequalities of (1.18)

1

8
exp (R(a)/2)

∞∏

n=0

[(1 + rn)(1 + 3rn)]
2−n−1 ≤ exp[μa(r) + log r ]

≤
∞∏

n=0

[(1 + rn)(1 + 3rn)]
2−n−1

(1.19)

take place for a ∈ [1/4, 1/2]. Moreover, each equality in (1.18) and (1.19) is reached
if and only if a = 1/4. In particular, for all r ∈ (0, 1) one has

exp(μ∗(r) + log r) = exp(μ1/4(r) + log r) =
∞∏

n=0

[(1 + rn)(1 + 3rn)]
2−n−1

,

(1.20)
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namely,

μ∗(r) + log r = μ1/4(r) + log r =
∞∑

n=0

1

2n+1 log [(1 + rn)(1 + 3rn)] . (1.21)

By Theorem 1.2, we get Corollary 1.3 immediately.

Corollary 1.3 Let r ∈ (0, 1), then

μ∗(r) ≤ μ∗
a(r) ≤ μ∗(r) + 1

2
[R(a) − log 64] (1.22)

if a ∈ (0, 1/4], and

μ∗(r) + 1

2
[R(a) − log 64] ≤ μ∗

a(r) ≤ μ∗(r) (1.23)

if a ∈ [1/4, 1/2], each equality in (1.22) or (1.23) is reached if and only if a = 1/4.

2 Proofs of Theorems 1.1 and 1.2

In order to prove our main results, we introduce some basic knowledge and lemmas
at first. For x, y > 0, the gamma function �(x), the psi function �(x), and the beta
function B(x, y) are defined by

�(x) =
∫ ∞

0
e−t t x−1dt, �(x) = �′(x)

�(x)
, B(x, y) = �(x)�(y)

�(x + y)
, (2.1)

respectively (see [28]). If x is not an integer, then the gamma function has the so-called
reflection property [28, p.239]

�(x)�(1 − x) = π

sin (πx)
= B(x, 1 − x).

We also need the function

R(a) = −2γ − �(a) − �(1 − a), R (1/4) = log 64, R (1/2) = log 16,(2.2)

where γ is the Euler–Mascheroni constant defined by

γ = lim
n→∞

(
n∑

k=1

1

k
− log n

)
= 0.577215 . . . .

From [17, Lemma 2.14(2)], we know that the function a �→ R(a) is strictly decreas-
ing on ∈ (0, 1/2]. Thus R(a) > log 64 for a ∈ (0, 1/4), and R(a) < log 64 for
a ∈ (1/4, 1/2].
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The Ramanujan generalized modular equation function μa(r) satisfies the deriva-
tive formula (see [17, (2.11)], or [6, p. 86, Corollary])

dμa(r)

dr
= − 1

rr ′2F(a, 1 − a; 1; r2)2 . (2.3)

Lemma 2.1 [3, Theorem5.5(2)]The function r �→ μa(r)+log r is strictly decreasing
from (0, 1) onto (0, R(a)/2).

Lemma 2.2 [27, Theorem 2.4] The inequalities

0 ≤ √
1 + 3r F(a, 1 − a; 1; r2) − F

(
a, 1 − a; 1; 8r(1 + r)

(1 + 3r)2

)
(2.4)

≤ sin(πa)[R(a) − log 64]
π

hold for a ∈ (0, 1/4] and r ∈ (0, 1), and the inequalities

0 ≤ F

(
a, 1 − a; 1; 8r(1 + r)

(1 + 3r)2

)
− √

1 + 3r F(a, 1 − a; 1; r2) (2.5)

≤ sin(πa)[log 64 − R(a)]
π

take place for a ∈ [1/4, 1/2] and r ∈ (0, 1). Each inequality in (2.4) and (2.5)
becomes equality if and only if a = 1/4.

Proof of Theorem 1.1 For part (1), if a = 1/4, then g(r) = 0 by (1.11). Let x =√
8r(1 + r)/(1 + 3r), then x ′ = (1 − r)/(1 + 3r) and

dx

dr
= 4(1 − r)

(1 + 3r)2
√
8r(1 + r)

= x ′

4x
(1 + 3x ′)2. (2.6)

It follows from μa(1−) = 0 and Lemma 2.1 that

lim
r→1− g(r) = 0, (2.7)

lim
r→0+ g(r) = lim

r→0+
[
2μa(x) + 2 log x − (μa(r) + log r) + log r − 2 log x

]

= R(a) − R(a)

2
− log 8

= R(a)

2
− 3 log 2. (2.8)
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By (2.3) and (2.6), differentiating g yields

g′(r) = − 2

xx ′2F(a, 1 − a; 1; x2)2 · x ′

4x
(1 + 3x ′)2 + 1

rr ′2F(a, 1 − a; 1; r2)2

= − (1 + 3x ′)2

2x ′x2F(a, 1 − a; 1; x2)2 + 1

rr ′2F(a, 1 − a; 1; r2)2
= 1

rr ′2F(a, 1 − a; 1; r2)2F(a, 1 − a; 1; x2)2
×

[
F(a, 1 − a; 1; x2)2 − (1 + 3r)F(a, 1 − a; 1; r2)2

]
. (2.9)

From Lemma 2.2 and (2.9), we know that g is strictly decreasing if a ∈ (0, 1/4)
and strictly increasing if a ∈ (1/4, 1/2], while the range of g can be obtained by (2.7)
and (2.8). Therefore, we get the first inequality and the first upper bound in (1.13)
together with the first lower bound and the second inequality in (1.14).

Next, we prove the other inequalities in (1.13) and (1.14). If a ∈ (0, 1/4] (a ∈
[1/4, 1/2]), then the inequality

F(a, 1 − a; 1;
(

1 − r

1 + 3r

)2

) ≤ (≥)

√
1 + 3r

2

[
F(a, 1 − a; 1; 1 − r2) + sin(πa)(R(a) − log 64)

π

]
(2.10)

holds for all r ∈ (0, 1) by changing r to (1− r)/(1+ 3r) in (2.4) and (2.5). Note that

1 + sin(πa)(R(a) − log 64)

π
≥ 1 + 1

π

[
R

(
1

2

)
− log 64

]
= 1 + 1

π
log

1

4
= 0.5587 . . . (2.11)

for a ∈ (0, 1/2].
Making use of Lemma 2.2, (2.10) and (2.11) one has

2μa

(√
8r(1 + r)

1 + 3r

) /
μa(r) = 2

F(a, 1 − a; 1; r2)
F(a, 1 − a; 1; 1 − r2)

F
(
a, 1 − a; 1; ( 1−r

1+3r )
2
)

F
(
a, 1 − a; 1; 8r(1+r)

(1+3r)2

)

≤ (≥)

√
1+3r F(a, 1−a; 1; r2)
F(a, 1−a; 1; 1−r2)

F(a, 1−a; 1; 1−r2)+sin(πa)(R(a)−log 64)/π

F
(
a, 1 − a; 1; 8r(1+r)

(1+3r)2
)

≤ (≥)

[
1 + sin(πa)(R(a) − log 64)

πF(a, 1 − a; 1; 1 − r2)

] ⎡

⎣1 + sin(πa)(R(a) − log 64)

πF
(
a, 1 − a; 1; 8r(1+r)

(1+3r)2

)

⎤

⎦

≤ (≥)

[
1 + sin(πa)(R(a) − log 64)

π

]2
(2.12)
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for a ∈ (0, 1/4] (a ∈ [1/4, 1/2]). Equality holds in each of above inequalities if and
only if a = 1/4. On the other hand, since x > r , it follows from the monotonicity of
μa(r) with respect to r ∈ (0, 1) that μa(x) < μa(r). Hence, the remaining bounds in
(1.13) and (1.14) follow.

For part (2), let t = (1 − r)/(1 + 3r). Then r ′ = √
8t (1 + t)/(1 + 3t) and

f (r) = −g(t). So that the assertion about f follows from part (1).
Equations (1.8), (1.13), and (1.14) imply that

μa(r)μa

(
1 − r

1 + 3r

)
= 2π2

4sin2(πa)
· μa(t)

2μa

(√
8t (1+t)
1+3t

) ≥ 1

M∗

[
π2

2sin2(πa)

]
(2.13)

for all a ∈ (0, 1/4] and r ∈ (0, 1), and the inequality

μa(r)μa

(
1 − r

1 + 3r

)
≤ 1

M

[
π2

2sin2(πa)

]
(2.14)

holds for a ∈ [1/4, 1/2] and r ∈ (0, 1), with equality of (2.13) or (2.14) if and only
if a = 1/4.

It follows from f (r) ≤ (≥)0 for a ∈ (0, 1/4] (a ∈ [1/4, 1/2)) andμa[(1−r)/(1+
3r)] ≤ (≥)2μa(r ′) that

μa(r)μa

(
1 − r

1 + 3r

)
≤ (≥)2μa(r)μa(r

′) = π2

2 sin2(πa)
(2.15)

for a ∈ (0, 1/4] (a ∈ [1/4, 1/2)).
Therefore, inequalities (1.15) and (1.16) follow from (2.13)–(2.15) together with

the monotonicity of f . 
�
Proof of Theorem 1.2 From r0 = r ′, r1 = ϕ∗

2 (r0) = √
8r ′(1 + r ′)/(1 + 3r ′), and

r2 = ϕ∗
2 (r1) = ϕ∗

4 (r
′), we clearly see that r ′ = ϕ∗

1/2(r1) = (1 − r ′
1)/(1 + 3r ′

1),
r ′
1 = (1 − r ′)/(1 + 3r ′) = ϕ∗

1/2(r), and r = ϕ∗
2 (r

′
1).

Let a ∈ (0, 1/2] and r ∈ (0, 1), h(r) = μa(r) + log r , g(r) be defined as in
Theorem 1.1 and ζ(r) be defined by

ζ(r) = μa(r) + 1

2
log

(
1 − r ′

1 + 3r ′

)
(2.16)

= μa(r) + log r − 1

2
log [(1 + r0)(1 + 3r0)] .

Then one has

ζ(r) = μa(r) + 1

2
log r ′

1 = 1

2
[μa(r

′
1) + log r ′

1 + 2μa(r) − μa(r
′
1)]

= 1

2
[h(r ′

1) + g(r ′
1)],
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198 M.-K. Wang et al.

that is

h(r) − 1

2
log[(1 + r0)(1 + 3r0)] = 1

2
[h(r ′

1) + g(r ′
1)]. (2.17)

Similarly, putting r1 = ϕ∗
2 (r0), we get

h(r ′
1) − 1

2
log[(1 + r1)(1 + 3r1)] = 1

2
[h(r ′

2) + g(r ′
2)], (2.18)

and hence, by (2.17) and (2.18)

h(r) − 1

2
log[(1 + r0)(1 + 3r0)] − 1

4
log[(1 + r1)(1 + 3r1)]

= 1

2
g(r ′

1) + 1

4
g(r ′

2) + 1

4
h(r ′

2).

Generally, assume that

h(r) −
n−1∑

k=0

1

2k+1 log[(1 + rk)(1 + 3rk)] =
n∑

k=1

1

2k
g(r ′

k) + 1

2n
h(r ′

n) (2.19)

for n ∈ N and n ≥ 2. Let rn = ϕ∗
2 (rn−1) = ϕ∗

2n (r
′) in (2.17), then

h(r ′
n) − 1

2
log[(1 + rn)(1 + 3rn)] = 1

2
[h(r ′

n+1) + g(r ′
n+1)],

and from (2.19) we get

h(r) −
n∑

k=0

1

2k+1 log[(1 + rk)(1 + 3rk)] =
n+1∑

k=1

1

2k
g(r ′

k) + 1

2n+1 h(r ′
n+1). (2.20)

Hence, by induction, Eq. (2.20) holds for all n ∈ N, a ∈ (0, 1/2], and r ∈ (0, 1).
Next, we divide the proof into two cases.
Case A a ∈ (0, 1/4]. Then by Lemma 2.1, Theorem 1.1, and (2.20) we have

0 ≤ h(r) −
n∑

k=0

1

2k+1 log[(1 + rk)(1 + 3rk)]

≤
n+1∑

k=1

1

2k

[
R(a)

2
− 3 log 2

]
+ 1

2n+1

R(a)

2

= 1

2
[R(a) − log 64] + 3 log 2

2n+1 .
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Letting n → ∞, we get

∞∑

k=0

1

2k+1 log[(1 + rk)(1 + 3rk)] ≤ h(r)

≤
∞∑

k=0

1

2k+1 log[(1 + rk)(1 + 3rk)] + 1

2
[R(a) − log 64]. (2.21)

The double inequality (1.18) follows from (2.21).
Case B a ∈ [1/4, 1/2]. It follows from (2.20), Lemma 2.1, and Theorem 1.1(1)

that

n+1∑

k=1

1

2k

[
R(a)

2
− 3 log 2

]
≤ h(r) −

n∑

k=0

1

2k+1 log[(1 + rk)(1 + 3rk)] ≤ 1

2n+1

R(a)

2
.

Letting n → ∞, we get

∞∑

k=0

1

2k+1 log[(1 + rk)(1 + 3rk)] + 1

2
[R(a) − log 64] ≤ h(r)

≤
∞∑

k=0

1

2k+1 log[(1 + rk)(1 + 3rk)]. (2.22)

The double inequality (1.19) follows from (2.22), and the remaining conclusions
are clear. 
�
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