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Abstract We study the Dyson rank function N (r, 3; n), the number of partitions of n
with rank ≡ r (mod 3). We investigate the convexity of these functions. We extend
N (r, 3; n) multiplicatively to the set of partitions, and we determine the maximum
value when taken over all partitions of size n.
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1 Introduction

For n ∈ N, a partition of a nonnegative integer n is a finite sequence of nonincreasing
natural numbers λ := (λ1, λ2, . . . , λk), where λ1 + λ2 + · · · + λk = n. As usual, let
p(n) denote the number of partitions of n. The study of partitions dates back to the
eighteenth century, appearing in the work of Euler. Among the most famous properties
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818 E. Hou, M. Jagadeesan

of partitions are the following congruences, proved by Srinivasa Ramanujan in 1919
[8]:

p(5n + 4) ≡ 0 (mod 5),

p(7n + 5) ≡ 0 (mod 7),

p(11n + 6) ≡ 0 (mod 11).

In the 1940s, Freeman Dyson aimed to find a combinatorial explanation for these
congruences. He sought a combinatorial statistic that divides the partitions of 5n + 4
(resp. 7n + 5, 11n + 6) into 5 (resp. 7, 11) groups of equal size. He found the rank
statistic [6].

The rank of a partition λ := (λ1, λ2, . . . , λk) is λ1−k: that is, the size of the largest
part minus the number of parts. Let N (m, n) be the number of partitions of n with
Dyson rank m. The generating function of N (m, n) is the following:

R(w; q) := 1 +
∞∑

n=1

∞∑

m=−∞
N (m, n)wmqn = 1 +

∞∑

n=1

qn
2

(wq; q)n(w−1q; q)n
, (1.1)

where (a; q)n := (1 − a)(1 − aq) · · · (1 − aqn−1). Understanding Ramanujan’s
congruences using Dyson’s rank requires the following variant. Let N (r, t; n) be the
number of partitions of nwith rank≡ r (mod t). Using this notion,Dyson conjectured
(and Atkin and Swinnerton-Dyer later proved [2]) that for each m, we have

N (m, 5; 5n + 4) = 1

5
p(5n + 4),

N (m, 7; 7n + 5) = 1

7
p(7n + 5).

This confirms that the rank statistic provides a combinatorial proof1 of Ramanujan’s
congruences modulo 5 and 7. Ramanujan, in a joint work with Hardy, also proved the
following asymptotic formula [1]:

p(n) ∼ 1

4n
√
3
eπ

√
2n
3 . (1.2)

Using a refinement of this asymptotic due to Lehmer [7], Bessenrodt and Ono [3]
recently proved that the partition function satisfies the following convexity property.
If a, b are integers with a, b > 1 and a + b > 9, then

p(a)p(b) > p(a + b).

1 Dyson’s rank does not explain Ramanujan’s congruence modulo 11.
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Dyson’s partition ranks and their multiplicative extensions 819

In view of this, it is natural to ask whether Dyson’s rank functions N (r, t; n) also
satisfy convexity. We prove this for each r = 0, 1, 2 and t = 3 for all but a finite
number of a and b.

Theorem 1.1 If r = 0 (resp. r = 1, 2), then

N (r, 3; a)N (r, 3; b) > N (r, 3; a + b)

for all a, b ≥ 12 (resp. 11, 11).

Remark Notice that this bound is sharp for r = 0 (resp. 1, 2) for a, b = 11 (resp. 10,
10). Namely, we have that

N (0, 3; 11)N (0, 3; 11) = 16 · 16 < 340 = N (0, 3; 22),
N (1, 3; 10)N (1, 3; 10) = 13 · 13 < 211 = N (1, 3; 20),
N (2, 3; 10)N (2, 3; 10) = 13 · 13 < 211 = N (2, 3; 20).

Bessenrodt andOno [3] used their convexity result to study themultiplicative extension
of the partition function defined by

p(λ) :=
k∏

j=1

p(λ j ), (1.3)

where λ = (λ1, λ2, . . . , λk) is a partition. For example, if λ = (5, 3, 2), then p(λ) =
p(5)p(3)p(2) = 42. They then studied the maximum of this function on P(n), the
set of all partitions of n. The maximal value is defined as

max p(n) := max(p(λ) : λ ∈ P(n)).

Their main result was a closed formula for max p(n), and they also fully characterized
all partitions λ ∈ P(n) that achieve this maximum. We carry out a similar analysis for
the functions N (r, t; n) in the case of t = 3. We extend each N (r, 3; n) to partitions
by

N (r, 3; λ) :=
k∏

j=1

N (r, 3; λ j ). (1.4)

We determine the maximum of each function on P(n), where the maximal value is
defined as

maxN(r, 3; n) := max(N (r, 3; λ) : λ ∈ P(n)). (1.5)

We also fully characterize all λ ∈ P(n) that achieve each maximum.
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820 E. Hou, M. Jagadeesan

Theorem 1.2 Assume the notation above. Then the following are true:

(1) If n ≥ 33, then we have that

maxN(0, 3; n) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

7
n
7 n ≡ 0 (mod 7)

372 · 16 · 7 n−36
7 n ≡ 1 (mod 7)

37 · 16 · 7 n−23
7 n ≡ 2 (mod 7)

16 · 7 n−10
7 n ≡ 3 (mod 7)

373 · 7 n−39
7 n ≡ 4 (mod 7)

372 · 7 n−26
7 n ≡ 5 (mod 7)

37 · 7 n−13
7 n ≡ 6 (mod 7),

and it is achieved at the unique partitions

(7, 7, . . . , 7) when n ≡ 0 (mod 7)

(13, 13, 10, 7, . . . , 7) when n ≡ 1 (mod 7)

(13, 10, 7, . . . , 7) when n ≡ 2 (mod 7)

(10, 7, . . . , 7) when n ≡ 3 (mod 7)

(13, 13, 13, 7, . . . , 7) when n ≡ 4 (mod 7)

(13, 13, 7, . . . , 7) when n ≡ 5 (mod 7)

(13, 7, . . . , 7) when n ≡ 6 (mod 7).

(2) If n ≥ 22, then we have that

maxN(1, 3; n) = maxN(2, 3; n)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

46
n
14 when n ≡ 0 (mod 14)

59 · 46 n−15
14 when n ≡ 1 (mod 14)

592 · 46 n−30
14 when n ≡ 2 (mod 14)

101 · 46 n−17
14 when n ≡ 3 (mod 14)

101 · 59 · 46 n−32
14 when n ≡ 4 (mod 14)

203 · 46 n−33
14 when n ≡ 5 (mod 14)

26 · 202 · 46 n−34
14 when n ≡ 6 (mod 14)

262 · 20 · 46 n−35
14 when n ≡ 7 (mod 14)

202 · 46 n−22
14 when n ≡ 8 (mod 14)

26 · 20 · 46 n−23
14 when n ≡ 9 (mod 14)

262 · 46 n−24
14 when n ≡ 10 (mod 14)

20 · 46 n−11
14 when n ≡ 11 (mod 14)

26 · 46 n−12
14 when n ≡ 12 (mod 14)

59 · 26 · 46 n−27
14 when n ≡ 13 (mod 14),
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Dyson’s partition ranks and their multiplicative extensions 821

and it is achieved at the unique partitions

(14, 14, . . . , 14) when n ≡ 0 (mod 14)

(15, 14, . . . , 14) when n ≡ 1 (mod 14)

(15, 15, 14, . . . , 14) when n ≡ 2 (mod 14)

(17, 14, . . . , 14) when n ≡ 3 (mod 14)

(17, 15, 14, . . . , 14) when n ≡ 4 (mod 14)

(11, 11, 11, 14, . . . , 14) when n ≡ 5 (mod 14)

(12, 11, 11, 14, . . . , 14) when n ≡ 6 (mod 14)

(12, 12, 11, 14, . . . , 14) when n ≡ 7 (mod 14)

(11, 11, 14, . . . , 14) when n ≡ 8 (mod 14)

(12, 11, 14, . . . , 14) when n ≡ 9 (mod 14)

(12, 12, 14, . . . , 14) when n ≡ 10 (mod 14)

(11, 14, . . . , 14) when n ≡ 11 (mod 14)

(12, 14, . . . , 14) when n ≡ 12 (mod 14)

(15, 12, 14, . . . , 14) when n ≡ 13 (mod 14).

In Sect. 2, we prove Theorem 1.1 by finding explicit upper and lower bounds for
N (r, 3; n) using the work of Lehmer [7] and Bringmann [4]. In Sect. 3, we prove The-
orem 1.2 by applying the convexity property together with combinatorial arguments.
In Sect. 4, we discuss potential extensions of our results to other values of t .

2 Proof of Theorem 1.1

Theorem 1.1 states that

N (r, 3; a)N (r, 3; b) > N (r, 3; a + b) (2.1)

for r = 0 (resp. 1, 2) for a, b ≥ 12 (resp. 11, 11). Essentially, this implies the convexity
of Dyson’s rank functions N (r, 3; n). We prove (2.1) for a, b ≥ 500 by finding a lower
bound for N (r, 3; a)N (r, 3; b) and an upper bound for N (r, 3; a + b). We verify the
remaining cases using a computer program.

2.1 Preliminaries for the Proof of Theorem 1.1

In order to obtain bounds for N (r, 3; n), we use methods in analytic number theory.
We use analytic estimates due to Lehmer and Bringmann in order to study and bound
N (r, 3; n).

For p(n), we use the explicit bounds provided by Lehmer [3].
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822 E. Hou, M. Jagadeesan

Theorem 2.1 (Lehmer) If n is a positive integer and μ = μ(n) := π
6

√
24n − 1, then

p(n) =
√
12

24n − 1

[(
1 − 1

μ

)
eμ +

(
1 + 1

μ

)
e−μ

]
+ E(n), (2.2)

where we have that

|E(n)| <
π2

√
3

[
1

μ3 sinh(μ) + 1

6
− 1

μ2

]
. (2.3)

Now, by using the Lehmer bound, Bessenrodt and Ono [3] obtained bounds pL(n)

and pU (n) on p(n) that satisfy

pL(n) < p(n) < pU (n), (2.4)

where pL(n) and pU (n) are defined as follows:

pL(n) :=
√
3

12n

(
1 − 1√

n

)
eμ,

pU (n) :=
√
3

12n

(
1 + 1√

n

)
eμ.

Bringmann estimates and obtains asymptotics for R(ζ ac ; q) for positive integers

a < c in the case that c is odd and where ζ ac := e
2π ia
c . She uses the following notation:

R(ζ ac ; q) =: 1 +
∞∑

n=1

A
(a
c
; n

)
qn . (2.5)

Here, we recall a precise version of her result in the special case that a = 1 and
c = 3. We use the following notation:

Ẽ1(n) := 12

(24n − 1)1/2

√
n
3∑

k=2

k
1
2 · sinh

( π

18k

√
24n − 1

)
,

Ẽ2(n) := 0.12 · e2π+ π
24√

3

√
n
3∑

k=1

k− 1
2 ,

Ẽ3(n) := 1.412
√
3 · e2π

∑

1≤k≤√
n,3 	|k

k− 1
2 ,

Ẽ4(n) := 2
√
3e2π+ π

12 · n−1/2
∑

1≤k≤
√
n
3

k
1
2 ,
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Dyson’s partition ranks and their multiplicative extensions 823

Ẽ5(n) := 8π · e2π+ π
24 · n−3/4

∑

1≤k≤
√
n
3

k,

Ẽ6(n) := 2
1
4 · (e + e−1) · e2π

· n−1/4
∑

1≤k≤√
n

1

k

k∑

v=1

(
min

({
v

k
− 1

6k
+ 1

3

}
,

{
v

k
− 1

6k
− 1

3

}))−1

.

Bringmann proves the following result regarding the main term M(n) and bound on
the error term ER (see pp. 18–19 of [4]):

Theorem 2.2 (Bringmann) For n ∈ N, let M(n) be

M(n) := −8 sin
(

π
18 − 2nπ

3

)
sinh

(
π
18

√
24n − 1

)
√
24n − 1

.

Then we have that

A

(
1

3
; n

)
= M(n) + ER(n),

where

ER(n) :=
6∑

i=1

Ei (n),

and each Ei (n) is bounded as follows:

|Ei (n)| ≤ Ẽi (n).

Remark One can find explicit definitions of E1(n), . . . , E6(n) scattered throughout
[4].

2.2 Explicit bounds for error terms

In order to prove Theorem 1.1, we must effectively bound each of the error terms
Ẽ1(n), . . . , Ẽ6(n). First, we obtain L(n), a lower bound for M(n), andU (n), an upper
bound for M(n) by using the fact that for any integer n, | sin π

18 | ≤ | sin ( π
18 − 2nπ

3 )| ≤
1. Thus, we have that the following is true:

L(n) :=
∣∣∣∣∣
8 sin

(
π
18

)
sinh

(
π
18

√
24n − 1

)
√
24n − 1

∣∣∣∣∣≤|M(n)|≤
∣∣∣∣∣
8 sinh

(
π
18

√
24n − 1

)
√
24n − 1

∣∣∣∣∣ =: U (n).

In Sects. 2.2.1–2.2.6, we prove the following bounds for each Ẽi (n):
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824 E. Hou, M. Jagadeesan

Table 1 Explicit bounds for
error term ratios

i ci

1 0.0065

2 0.00019

3 0.0098

4 0.0071

5 0.0072

6 0.54

Proposition 2.3 For i = 1, 2, . . . , 6 and for n ≥ 500, we have that

Ẽi (n)

L(n)
< ci ,

where all ci are listed in Table 1.

Using Proposition 2.3, we obtain the following bound for ER(n):

Corollary 2.4 Assume the notation above. Then for n ≥ 500, the following is true:

|ER(n)| ≤ 0.58L(n).

Proof This follows from adding the bounds for each Ẽi (n) in Proposition 2.3 and
applying Theorem 2.2. 
�

2.2.1 Effective bounds for error Ẽ1(n)

We prove Proposition 2.3 for i = 1. We approximate the finite sum in Ẽ1(n) by the
number of terms multiplied by the summand evaluated at k = 2 (since this is the
largest summand). For n ≥ 500, we then have that

Ẽ1(n) ≤
√
n

3

(
12

(24n − 1)1/2
2

1
2 · sinh

( π

36

√
24n − 1

))
.

Now, we consider the ratio of our bound of Ẽ1(n) to L(n). We have that

Ẽ1(n)

L(n)
≤

√
n
3

(
12

(24n−1)1/2
2

1
2 · sinh (

π
36

√
24n − 1

))

L(n)

=
√
n sinh

(
π
36

√
24n − 1

)
√
2 sin

(
π
18

)
sinh

(
π
18

√
24n − 1

) =: F1(n).

It is easy to check that F1(n) is a decreasing function of n for n ≥ 500. This means
that

Ẽ1(n) ≤ F1(500)L(n) ≤ 0.0065L(n).
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Dyson’s partition ranks and their multiplicative extensions 825

2.2.2 Effective bounds for error Ẽ2(n)

We prove Proposition 2.3 for i = 2. We find an upper bound for Ẽ2(n). Using this
upper bound, for n ≥ 500,

√
n
3∑

k=1

k− 1
2 ≤

∫ √
n
3

0
k− 1

2 dk.

For n ≥ 500, we have that

Ẽ2(n) ≤ 0.12 · e2π+ π
24√

3

∫ √
n
3

0
k− 1

2 dk

≤ 0.08 · e2π+ π
24 n

1
4 .

Now, we consider the ratio of our bound of Ẽ2(n) to L(n). We have that

Ẽ2(n)

L(n)
≤ 0.08 · e2π+ π

24 n
1
4

L(n)
= 0.01e2π+ π

24 n
1
4
√
24n − 1

sin
(

π
18

)
sinh

(
π
18

√
24n − 1

) =: F2(n).

It is easy to check that F2(n) is a decreasing function of n for n ≥ 500. This means
that

Ẽ2(n) ≤ F2(500)L(n) ≤ 0.0019L(n).

2.2.3 Effective bounds for error Ẽ3(n)

We prove Proposition 2.3 for i = 3. We estimate Ẽ3(n) by using our method from
Sect. 2.2.2. For n ≥ 500, we have that

Ẽ3(n) ≤ 1.412
√
3 · e2π

∫ √
n

0
k− 1

2 dk ≤ 2.824
√
3 · e2πn 1

4 .

Now, we consider the ratio of our bound of Ẽ3(n) to L(n). We have that

Ẽ3(n)

L(n)
≤ 2.824

√
3 · e2πn 1

4

L(n)
≤ 2.824

√
3 · e2πn 1

4
√
24n − 1

8 sin
(

π
18

)
sinh

(
π
18

√
24n − 1

) =: F3(n).

It is easy to check that F3(n) is a decreasing function of n for n ≥ 500. This means
that

Ẽ3(n) ≤ F3(500)L(n) ≤ 0.0098L(n).

123



826 E. Hou, M. Jagadeesan

2.2.4 Effective bounds for error Ẽ4(n)

We prove Proposition 2.3 for i = 4. We find an upper bound for Ẽ4(n). Using this
upper bound, for n ≥ 500, we have that

√
n
3∑

k=1

k
1
2 ≤

∫ √
n
2

0
k

1
2 dk.

For n ≥ 500, we have that

Ẽ4(n) ≤ 2
√
3e2π+ π

12 · n−1/2
∫ √

n
2

0
k

1
2 dk ≤

√
6

3
e2π+ π

12 · n 1
4 .

Now, we consider the ratio of our bound of Ẽ4(n) to L(n). We have that

Ẽ4(n)

L(n)
≤

√
6
3 e2π+ π

12 · n 1
4

L(n)
≤

√
6e2π+ π

12 · n 1
4
√
24n − 1

24 sin
(

π
18

)
sinh

(
π
18

√
24n − 1

) =: F4(n).

It is easy to check that F4(n) is a decreasing function of n for n ≥ 500. This means
that

Ẽ4(n) ≤ F4(500)L(n) ≤ 0.0071L(n).

2.2.5 Effective bounds for error Ẽ5(n)

We prove Proposition 2.3 for i = 5. We find an upper bound for Ẽ5(n) by using the
methods from Sect. 2.2.4. For n ≥ 500, we have that

Ẽ5(n) ≤ 8π · e2π+ π
24 · n−3/4

∫ √
n
2

0
kdk ≤ π · e2π+ π

24 · n 1
4 .

Now, we consider the ratio of our bound of Ẽ5(n) to L(n). We have that

Ẽ5(n)

L(n)
≤ π · e2π+ π

24 · n 1
4

L(n)
≤ π · e2π+ π

24 · n 1
4
√
24n − 1

8 sin
(

π
18

)
sinh

(
π
18

√
24n − 1

) =: F5(n).

It is easy to check that F5(n) is a decreasing function of n for n ≥ 500. This means
that

Ẽ5(n) ≤ F5(500)L(n) ≤ 0.0072L(n).
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Dyson’s partition ranks and their multiplicative extensions 827

2.2.6 Effective bounds for error Ẽ6(n)

We prove Proposition 2.3 for i = 6. First, we notice that
(
min

({
v
k − 1

6k + 1
3

}
,

{
v
k − 1

6k − 1
3

}))−1 ≤ 6k. We estimate the sum with the methods from Sects. 2.2.4
and 2.2.5 For n ≥ 500, we have that

Ẽ6(n) ≤ 2
1
4 · (

e + e−1) · e2π · n−1/4
∫ √

n+1

1
6kdk

≤ 2
1
4 · (

e + e−1) · e2π · 3
(
n

3
4 + 2n

1
4

)
.

Now, we consider the ratio of our bound of Ẽ6(n) to L(n). We have that

Ẽ6(n)

L(n)
≤

2
1
4 · (

e + e−1
) · e2π · 3

(
n

3
4 + 2n

1
4

)

L(n)

≤ 2
1
4 · (

e + e−1
) · e2π · 3(n 3

4 + 2n
1
4 )

√
24n − 1

8 sin
(

π
18

)
sinh

(
π
18

√
24n − 1

) =: F6(n).

It is easy to check that F6(n) is a decreasing function of n for n ≥ 500. This implies
that

Ẽ6(n) ≤ F6(500)L(n) ≤ 0.54L(n).

2.3 Proof of Theorem 1.1

In order to prove convexity for N (r, 3; n), we first write N (r, 3; n) in terms of p(n)

and A
( 1
3 ; n

)
. We have the following generating function of N (r, t; n) for all t , where

we use the special case that t = 3:

Proposition 2.5 For nonnegative integers r and t, we have that

1 +
∞∑

n=1

N (r, t; n)qn = 1 + 1

t

⎡

⎣
∞∑

n=1

p(n)qn +
t−1∑

j=1

ζ
−r j
t R(ζ

j
t ; q)

⎤

⎦ ,

where ζt := e2π i/t .

Proof For r and t as defined above, we have that

1 + 1

t

⎡

⎣
t−1∑

j=0

ζ
−r j
t R(ζ

j
t ; q)

⎤

⎦ = 1 + 1

t

t−1∑

j=0

∞∑

n=0

∞∑

m=−∞
N (m, n)ζ

−r j
t ζ

mj
t qn

= 1 + 1

t

∞∑

n=0

∞∑

m=−∞

t−1∑

j=0

N (m, n)ζ
(m−r) j
t qn .
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828 E. Hou, M. Jagadeesan

Notice that for each m 	≡ r (mod t), because the sum is over the complete set of t th
roots of unity, the coefficient of qn vanishes. For each m ≡ r (mod t), the coefficient
of qn is equal to N (m, n). Hence, we obtain the desired result. 
�

We can now determine an explicit bound for N (r, 3; n):

Proposition 2.6 For r defined as above and n ≥ 500, we have the following bound
for N (r, 3; n):

1

3

(
pL(n) − 2

∣∣∣∣A
(
1

3
; n

)∣∣∣∣

)
≤ |N (r; 3, n)| ≤ 1

3

(
pU (n) + 2

∣∣∣∣A
(
1

3
; n

)∣∣∣∣

)
.

Proof First, we have that A
( 1
3 ; n

) = A
( 2
3 ; n

)
by the symmetry of the third roots of

unity. This fact, together with Proposition 2.5, yields the following:

1

3

(
p(n) − 2

∣∣∣∣A
(
1

3
; n

)∣∣∣∣

)
≤ |N (r; 3, n)| ≤ 1

3

(
p(n) + 2

∣∣∣∣A
(
1

3
; n

)∣∣∣∣

)
.

Now, we apply (2.4) to obtain the desired result. 
�

We use Corollary 2.4 together with Proposition 2.6 to obtain the following upper
and lower bounds for N (r, 3; n):

Proposition 2.7 Assume the notation above. Then for n ≥ 500, the following is true:

1

3
(1 − 0.01)pL(n) < N (r, t; n) <

1

3
(1 + 0.01)pU (n).

Proof By Corollary 2.4, we have that

∣∣∣∣A
(
j

3
; n

)∣∣∣∣ ≤ 1.58U (n).

It is easy to check that

U (n)

pL(n)
= 2

√
3 sinh

(
π
18

√
24n − 1

)

3n
√
24n − 1e

π
√
24n−1
6

(
1 − 1√

n

)

is a decreasing function in n for n ≥ 500. As a result, we obtain the following:

∣∣∣∣A
(
j

3
; n

)∣∣∣∣ ≤ 1.58U (500)

pL(500)
pL(n) < 0.005pL(n).

We apply this to Proposition 2.6 to obtain the desired result. 
�
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We now use Proposition 2.7 together with an argument similar to that of Bessenrodt
and Ono (see pp. 2–3 of [3]) to prove Theorem 1.1 for a, b ≥ 500. We first define the
following notation:

Sx (λ) :=
(
1 + 1√

x+λx

)

(
1 − 1√

x

)(
1 − 1√

λx

) ,

Tx (λ) := π

6

(√
24x − 1 + √

24λx − 1 − √
24(x + λx) − 1

)
.

We use the following Lemma in our proof:

Lemma 2.8 Assume the notation above. Suppose that for a fixed 0 < c < 1 and for
any nonnegative integers t and n, we have that

1

t
(1 − c)pL(n) < N (r, t; n) <

1

t
(1 + c)pU (n).

Then we have that

N (r, t; a)N (r, t; b) > N (r, t; a + b)

for all a, b ≥ x, where x is the minimum value satisfying

Tx (1) > log

(
4x

√
3t

1 + c

(1 − c)2

)
+ log(Sx (1)).

Proof We may assume that 1 < a ≤ b for convenience, so we will let b = λa. These
inequalities give us

N (r, t; a)N (r, t; λa) >
1

48λa2
· 1

t3
(1 − c)2

(
1 − 1√

a

)(
1 − 1√

λa

)
eμ(a)+μ(λa),

N (r, t; a + λa) <

√
3

12(a + λa)

(
1 + 1√

a + λa

)
eμ(a+λa) 1

t
(1 + c).

For all but finitely many cases, it suffices to find conditions on a > 1 and λ ≥ 1 for
which

1

48λa2
· 1
t2

(1 − c)2
(
1 − 1√

a

)(
1 − 1√

λa

)
eμ(a)+μ(λa)

>

√
3

12(a + λa)

(
1 + 1√

a + λa

)
eμ(a+λa) 1

t
(1 + c).

We have that λ
λ+1 ≤ 1, so it suffices to consider when

eμ(a)+μ(λa)−μ(a+λa) > 4a
√
3t

1 + c

(1 − c)2
Sa(λ).
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By taking the natural log, we obtain the inequality

Ta(λ) > log

(
4a

√
3t

1 + c

(1 − c)2

)
+ log(Sa(λ)).

Simple calculations reveal that Sa(λ) is decreasing for λ ≥ 1, while Ta(λ) is increasing
in λ ≥ 1. Therefore, we consider

Ta(λ) ≥ Ta(1) > log

(
4a

√
3t

1 + c

(1 − c)2

)
+ log(Sa(1))

≥ log

(
4a

√
3t

1 + c

(1 − c)2

)
+ log(Sa(λ)).


�
It can be verified that

Tx (1) > log

(
12x

√
3

1 + 0.01

(1 − 0.01)2

)
+ log(Sx (1))

for x ≥ 500. This means that

N (r, 3; a)N (r, 3; b) > N (r, 3; a + b) (2.6)

for a, b ≥ 500. We used Sage to confirm (2.6) for 500 ≥ max(a, b) ≥ 12 (resp. 11,
11) for r = 0 (resp. r = 1, 2). This proves Theorem 1.1.

3 Proof of Theorem 1.2

In this section, we prove Theorem 1.2.We compute the maximum of the multiplicative
extension N (r, 3; λ) over all partitions of n. In addition, we identify the partitions
that attain these values. These results are deduced from Theorem 1.1. Since there
are 3 residue classes modulo 3 and we have that2 N (1, 3; n) = N (2, 3; n), we split
our computation into two cases: r = 0 and r = 1, 2. In Sect. 3.1, we compute
maxN(0, 3; n). In Sect. 3.2, we compute maxN(1, 3; n).

3.1 Proof of Theorem 1.2 for r = 0

In Sect. 3.1.1, we prove some combinatorial properties of N (0, 3; λ) resulting from
Theorem 1.1 and the values of N (0, 3; n) for small n. In Sect. 3.1.2, we use these
properties to deduce Theorem 1.2 for r = 0.

2 This follows immediately from considering conjugations of Ferrers diagrams.
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Dyson’s partition ranks and their multiplicative extensions 831

Table 2 Maximal value
partitions λ

n N (0, 3; n) maxN(0, 3; n) λ

1 1 1 (1)

2 0 1 (1, 1)

3 1 1 (3), (1, 1, 1)

4 3 3 (4)

5 1 3 (4, 1)

6 3 3 (6), (4, 1, 1)

7 7 7 (7)

8 6 9 (4, 4)

9 10 10 (9)

10 16 16 (10)

11 16 21 (7, 4)

12 25 27 (4, 4, 4)

13 37 37 (13)

14 45 49 (7, 7)

15 58 63 (7, 4, 4)

16 81 81 (16), (4, 4, 4, 4)

17 95 112 (10, 7)

18 127 147 (7, 7, 4)

19 168 189 (7, 4, 4, 4)

20 205 259 (13, 7)

21 264 343 (7, 7, 7)

22 340 441 (7, 7, 4, 4)

23 413 592 (13, 10)

24 523 784 (10, 7, 7)

25 660 1029 (7, 7, 7, 4)

26 806 1369 (13, 13)

27 1002 1813 (13, 7, 7)

28 1248 2401 (7, 7, 7, 7)

29 1513 3087 (7, 7, 7, 4, 4)

30 1866 4144 (13, 10, 7)

31 2292 5488 (10, 7, 7, 7)

32 2775 7203 (7, 7, 7, 7, 4)

3.1.1 Some combinatorics for r = 0

We require the values of N (0, 3; n) for n ≤ 32. These values are given in the first two
columns of Table 2, which were computed using Sage. We prove the correctness of
the values in the last two columns over the course of this section.

Throughout this section, let λ be a partition (λ1, λ2, . . .) ∈ P(n) such that
N (0, 3; λ) is maximal. First, we bound the size of λ1.
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Proposition 3.1 Assume the notation and hypotheses above. Then the following is
true:

λ1 ≤ 23.

Proof Suppose that λ has a part k ≥ 24. Then by Theorem 1.1, replacing k with the
parts � k

2
 and � k
2� would yield a partition μ such that N (0, 3;μ) > N (0, 3; λ). This

is a contradiction since N (0, 3; λ) is maximal. 
�
For i > 0, let mi be the multiplicity of the part i in λ. We bound each mi for i 	= 7.

Proposition 3.2 Assume the notation and hypotheses above. Then the following are
true:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

mi = 0 i = 2, 5, 8, 11, 12, 14, 15, i ≥ 17

mi ≤ 1 i = 3, 6, 9, 10, 16

mi ≤ 3 i = 1, 13

mi ≤ 4 i = 4.

Proof If i ≥ 24, then this follows from Proposition 3.1. If i ≤ 23 and i 	=
1, 3, 4, 6, 7, 9, 10, 13, 16, then replacing i with the representation of i in the Table 2
would yield a partition μ with N (0, 3;μ) > N (0, 3; λ), so mi = 0. For the remain-
ing i , notice that the following replacements yield partitions μ with N (0, 3;μ) >

N (0, 3; λ):

(1, 1, 1, 1) → (4); (3, 3) → (6); (4, 4, 4, 4, 4) → (13, 7); (6, 6) → (4, 4, 4);
(9, 9) → (7, 7, 4); (10, 10) → (13, 7); (13, 13, 13, 13) → (10, 7, 7, 7, 7, 7, 7).


�
Now, we present an improved bound for mi for i = 3, 6, 16.

Proposition 3.3 Assume the notation and hypotheses above. Then the following is
true:

m3 = m6 = m16 = 0

unless λ = (3), (6), or (16).

Proof If ma ≥ 1 for some a, by Proposition 3.2, we know that a = 3, 4, 6, 7, 9, 10,
13, 16 and that mi ≤ 1 for i = 3, 6, 16.

Suppose thatm3 = 1 (resp.m6 = 1,m16 = 1). Then it can be verified that replacing
(a, 3) (resp. (a, 6), (a, 16)) with the representation of a + 3 (resp. a + 6, a + 16) in
Table 2 will produce a partition μ with N (0, 3;μ) > N (0, 3; λ). 
�

We now impose restrictions on the pairs of distinct integers a, b 	= 7 that can
simultaneously be present in λ.
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Proposition 3.4 Assume the notation and hypotheses above. If ma = 1 and mb = 1
where a > b and a, b 	= 7, then the following is true:

(a, b) = (4, 1), (13, 10).

Proof By Propositions 3.2 and 3.3, we know that a, b ∈ {1, 4, 9, 10, 13}. It can be
verified that replacing a and b with the representation of a + b in Table 2 will yield a
partition μ with N (0, 3;μ) > N (0, 3; λ) if (a, b) 	= (4, 1), (13, 10). 
�

We now determine restrictions on the sets of natural numbers a1, a2, . . . , al 	= 7
that can simultaneously be present in λ.

Proposition 3.5 Assume the notation and hypotheses above. Suppose that λ contains
a1 ≥ a2 ≥ · · · ≥ al such that a1, a2, . . . , al 	= 7. Then λ is one of the following:

(a1, a2, . . . al) = (1), (1, 1), (1, 1, 1), (3),

(4), (4, 1), (4, 1, 1), (4, 4), (4, 4, 4), (4, 4, 4, 4),

(6), (10), (13), (13, 10), (13, 13), (13, 13, 10), (13, 13, 13), (16).

Proof By Propositions 3.2, 3.3, and 3.4, we know that (a1, . . . al) is either one of the
above partitions, or it is one of the following (which we will rule out):

(a1, . . . al) = (4, 1, 1, 1), (4, 4, 1), (4, 4, 1, 1), (4, 4, 1, 1, 1), (4, 4, 4, 1),

(4, 4, 4, 1, 1), (4, 4, 4, 4, 1), (4, 4, 4, 4, 1, 1), (4, 4, 4, 4, 1, 1, 1),

(13, 13, 13, 10).

Let at be
∑l

j=1 a j . Suppose that (a1, . . . al) 	= (4, 1, 1), (4, 4, 4), (4, 4, 4, 4),
(13, 13, 10), (13, 13, 13). If at > 32, then it can be verified that replacing (a1, . . . al)
with the representation of at in Theorem 1.2 will yield a partitionμwith N (0, 3;μ) >

N (0, 3; λ). Ifat ≤ 32, then replacing (a1, . . . al)with the representationofat inTable 2
will yield a partition μ with N (0, 3;μ) > N (0, 3; λ). 
�

Now, we will characterize the finitely many partitions λ that contain a 1 or a 4.

Proposition 3.6 Assume the notation above. Suppose m1 ≥ 1 or m4 ≥ 1. Then λ is
one of the following partitions:

(1), (1, 1), (1, 1, 1), (4), (4, 1), (4, 1, 1), (4, 4), (4, 4, 4),

(4, 4, 4, 4), (7, 4), (7, 7, 4), (7, 4, 4, 4), (7, 7, 7, 7, 4).

Proof Suppose thatm1 ≥ 1 orm4 ≥ 1. Consider the partition λ2 obtained by deleting
any parts of size 7 from λ. Then by Proposition 3.5, we know that

λ2 = (4, 1, 1), (4, 4, 4), (4, 4, 4, 4).
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Now, we add back in the parts of size 7. Notice that the following operations will
produce a partition μ with N (0, 3;μ) > N (0, 3; λ):

(7, 1) → (4, 4); (7, 7, 4, 4, 4) → (13, 13);
(7, 7, 7, 7, 4, 4) → (13, 13, 10); (7, 7, 7, 7, 7, 4) → (13, 13, 13).

This proves the desired statement. 
�

We first consider the case where n ≤ 32 and prove the third and fourth columns of
Table 2.

Proof of Table 2. Consider the partition λ2 obtained by deleting any parts with size 7
from λ. From Proposition 3.5 and Proposition 3.6, we can obtain all possible partitions
λ2. It can be verified that appending parts of size 7 to these λ2 yields exactly the
partitions in Table 2. It can be verified that in the case where multiple partitions λ of n
remain, we have that the values N (0, 3; λ) are all equal. The values of maxN(0, 3; n)

can be deduced from this and the first two columns of Table 2. 
�

We now suppose that n ≥ 33. we further limit the sets of natural numbers
a1, a2, . . . , al 	= 7 that can simultaneously be present in λ.

Proposition 3.7 Assume the notation and hypotheses above. For n ≥ 33, suppose
that λ contains a1 ≥ a2 ≥ . . . ≥ al such that a1, a2, . . . , al 	= 7. Then (a1, a2, . . . al)
is one of the following:

(a1, a2, . . . al) = (10), (13), (13, 10), (13, 13), (13, 13, 10), (13, 13, 13).

Proof By Proposition 3.6, we have that m1 = 0 and m4 = 0. Hence, the desired
statement follows from Proposition 3.5. 
�

3.1.2 Proof of Theorem 1.2 for r = 0

Wenowuse Proposition 3.7 to deduceTheorem1.2.Assume the notation in Sect. 3.1.1.

Proof of Theorem 1.2 for r = 0. Consider the partition λ2 obtained by deleting any
parts with size 7 from λ. Then by Proposition 3.5, we know that

λ2 = (10), (13), (13, 10), (13, 13), (13, 13, 10), (13, 13, 13).

These partitions cover all the classes modulo 7 of n except for n ≡ 0 (mod 7) exactly
once. If n 	≡ 0 (mod 7), then appending parts of size 7 to these partitions covers
each n exactly once and yields the partitions λ in Theorem 1.2. If n ≡ 0 (mod 7),
we can deduce that λ = (7, 7, 7, . . . , 7) as stated in Theorem 1.2. The values for
maxN(0, 3; n) can be deduced from this and the first two columns of Table 2. 
�
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Table 3 Maximal value
partitions λ

n N (1, 3; n) maxN(1, 3; n) λ

1 0 0 (1)

2 1 1 (2)

3 1 1 (3)

4 1 1 (4), (2, 2)

5 3 3 (5)

6 4 4 (6)

7 4 4 (7)

8 8 8 (8)

9 10 10 (9)

10 13 13 (10)

11 20 20 (11)

12 26 26 (12)

13 32 32 (13)

14 46 46 (14)

15 59 59 (15)

16 75 75 (16)

17 101 101 (17)

18 129 129 (18)

19 161 161 (19)

20 211 211 (20)

21 264 264 (21)

3.2 Proof of Theorem 1.2 for r = 1, 2

Weprove Theorem 1.2 for r = 1, 2 at the same time, since N (1, 3; n) = N (2, 3; n). In
Sect. 3.1.1, we study the combinatorial properties of N (r, 3; λ) for r = 1, 2 resulting
from Theorem 1.1 and the values of N (r, 3; n) for r = 1, 2 for small n. In Sect. 3.1.2,
we use these properties to deduce Theorem 1.2 for r = 1, 2.

3.2.1 Some combinatorics for r = 1, 2

For simplicity of notation, we write our propositions in terms of N (1, 3; n) to denote
the shared value N (r, 3; n) for r = 1, 2. In our combinatorial arguments, we require
the values of N (1, 3; n) for n ≤ 21. These values are given in the first two columns
of Table 3, which were computed using Sage. We prove the correctness of the values
in the last two columns over the course of this section.

Let λ be (λ1, λ2, . . .) ∈ P(n) such that N (1, 3; λ) is maximal. First, we bound the
size of λ1.

Proposition 3.8 Assume the notation and hypotheses above. Then the following is
true:

λ1 ≤ 21.
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Proof Suppose that λ has a part k ≥ 22. Then by Theorem 1.1, replacing k with the
parts � k

2
 and � k
2� would yield a partition μ such that N (1, 3;μ) > N (1, 3; λ). This

is a contradiction since N (1, 3; λ) is maximal. 
�
For i > 0, letmi be the multiplicity of the part i in λ.We bound eachmi for i 	= 14.

Proposition 3.9 Assume the notation and hypotheses above. Then the following are
true:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

mi = 0 i ≥ 22

mi ≤ 1 1 ≤ i ≤ 22 such that i 	= 2, 11, 12, 14, 15

mi ≤ 2 i = 2, 12, 15

mi ≤ 3 i = 11

Proof For i ≥ 22, this follows from Proposition 3.8.
Suppose that mi ≥ 2 for 1 ≤ a ≤ 21, i 	= 2, 11, 12, 14, 15. If 2i ≥ 22 (resp.

2i < 22), it can be verified that replacing the parts i and i with the representation
of 2i in Theorem 1.2 (resp. Table 3) would yield a partition μ with N (1, 3;μ) >

N (1, 3; λ). For i = 2, 11, 12, 15, note that the following operations yield partitions μ

with N (1, 3;μ) > N (1, 3; λ):

(2, 2, 2) → (6); (11, 11, 11, 11) → (15, 15, 14);
(12, 12, 12) → (14, 11, 11); (15, 15, 15) → (12, 11, 11, 11).


�
Proposition 3.10 Assume the notation and hypotheses above. If λ contains a part of
size 2, then

λ = (2), (2, 2).

Proof Suppose that λ contains a part of size 2. For i 	= 2, if i + 2 ≥ 22 (resp. < 22),
then replacing i and 2 with the representation of i + 2 in Theorem 1.2 (resp. Table 3)
will yield a partitionμwith N (1, 3;μ) > N (1, 3; λ). This means λmust contain only
parts of size 2. By Proposition 3.9, we have that m2 ≤ 2. 
�

We now impose restrictions on the pairs of distinct integers a, b 	= 14 that can
simultaneously be present in λ.

Proposition 3.11 Assume the notation and hypotheses above. If ma = 1 and mb = 1
where a > b and a, b 	= 2, 14, then the following is true:

(a, b) = (12, 11), (15, 12), (17, 15).

Proof By Proposition 3.8, we know that a, b ≤ 21. If (a, b) 	= (12, 11), (15, 12),
(17, 15), it can be verified that replacing a and b with the representation of a + b in
Table 2 will yield a partition μ with N (1, 3;μ) > N (1, 3; λ). 
�
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We now impose restrictions on the sets of integers a1, a2, . . . , al 	= 14 that can
simultaneously be present in λ.

Proposition 3.12 Assume the notation and hypotheses above. Suppose that λ contains
a1 ≥ a2 ≥ . . . ≥ al such that a1, a2, . . . , al 	= 14. Then (a1, a2, . . . al) is one of the
following:

(a1, a2, . . . al) = (i)(for 1 ≤ i ≤ 21), (2, 2), (11, 11), (11, 11, 11), (12, 11),

(12, 11, 11), (12, 12), (12, 12, 11), (15, 12), (15, 15), (17, 15).

Proof By Propositions 3.9, 3.10, and 3.11, we know that (a1, a2, . . . , al) is either one
of the above partitions or is one of the following (which we will rule out):

(a1, a2, . . . , al) = (12, 11, 11, 11), (12, 12, 11, 11), (12, 12, 11, 11, 11),

(15, 12, 12), (15, 15, 12), (15, 15, 12, 12), (17, 15, 15).

Let at = ∑l
j=1 a j . Suppose that (a1, a2, . . . al) is not one of the sets in the state-

ment. It can be verified that replacing (a1, a2, . . . al) with the representation of at in
Theorem 1.2 will produce a partition μ with N (1, 3;μ) > N (1, 3; λ). 
�

We first consider the case where n ≤ 21 and prove the third and fourth columns of
Table 3.

Proof of Table 3. Consider the partition λ2 obtained by deleting any parts with size
14 from λ. From Proposition 3.12, we can obtain all possible partitions λ2. It can be
verified that appending parts of size 14 to these λ2 yields exactly the partitions in
Table 3. It can be verified that in the case where multiple partitions λ of n remain,
we have that the values N (1, 3; λ) are all equal. The values of maxN(1, 3; n) can be
deduced from this and the first two columns of Table 3. 
�

We now suppose that n ≥ 22. we further limit the sets of integers a1, a2, . . . , al 	=
14 that can simultaneously be present in λ.

Proposition 3.13 Assume the notation and hypotheses above. For n ≥ 22, suppose
that λ contains a1 ≥ a2 ≥ · · · ≥ al such that a1, a2, . . . , al 	= 14. Then the following
is true:

(a1, a2, . . . al) = (11), (11, 11), (11, 11, 11), (12), (12, 11), (12, 11, 11), (12, 12),

(12, 12, 11), (15), (15, 12), (15, 15), (17), (17, 15).

Proof The desired statement follows from Proposition 3.10 and Proposition 3.12. 
�

3.2.2 Proof of Theorem 1.2 for r = 1, 2

We now use Proposition 3.13 to deduce Theorem 1.2 for r = 1, 2 using the fact that
N (1, 3; n) = N (2, 3; n). Assume the notation in Sect. 3.2.1.
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Proof of Theorem 1.2. for r = 1, 2 Since N (1, 3; n) is always equal to N (2, 3; n), we
know that maxN(1, 3; n) and maxN(2, 3; n) are equal and are achieved at the same
partitions. Consider the partition λ2 obtained by deleting any parts with size 14 from
λ. Then by Proposition 3.5, we know that

λ2 = (11), (11, 11), (11, 11, 11), (12), (12, 11), (12, 11, 11),

(12, 12), (12, 12, 11), (15), (15, 12), (15, 15), (17), (17, 15).

These partitions cover all the classes modulo 14 of n except for n ≡ 0 (mod 14)
exactly once. If n 	≡ 0 (mod 14), then appending parts of size 14 to these partitions
covers each n exactly once and yields the partitions λ in Theorem 1.2. If n ≡ 0
(mod 14), we can deduce that λ = (14, 14, . . . , 14) as stated in Theorem 1.2. The
values for maxN(1, 3; n) and maxN(2, 3; n) can be deduced from this fact and the
first two columns of Table 3. 
�

4 Discussion

For general t , it is difficult to obtain effective asymptotics and effective bounds on
error terms for N (r, t; n). In particular, the exact formulas for t = 2 as an infinite
series were not known until a recent work by Bringmann and Ono [5]. Using these
bounds, we believe that similar methods can be used to prove the following convexity
result.

Conjecture 4.1 If t = 2 and r = 0 (resp. r = 1), then we have that

N (r, 2; a)N (r, 2; b) > N (r, 2; a + b)

for all a, b ≥ 11 (resp. 12).

This convexity result would imply the following description of maxN(r, 2; n):

Conjecture 4.2 Assume the notation above. Then the following are true.

(1) If n ≥ 6, then we have that

maxN(0, 2; n) =

⎧
⎪⎨

⎪⎩

3
n
3 n ≡ 0 (mod 3)

11 · 3 n−7
3 n ≡ 1 (mod 3)

5 · 3 n−5
3 n ≡ 2 (mod 3),

and it is achieved at the unique partitions

(3, 3, . . . , 3) when n ≡ 0 (mod 3)

(7, 3, . . . , 3) when n ≡ 1 (mod 3)

(5, 3, . . . , 3) when n ≡ 2 (mod 3).
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(2) If n ≥ 8, then we have that

maxN(1, 2; n) =
{
2

n
2 n ≡ 0 (mod 2)

12 · 2 n−9
2 n ≡ 1 (mod 2),

and it is achieved at the following classes of partitions

(2, 2, . . . , 2) when n ≡ 0 (mod 2)

(9, 2, . . . , 2) when n ≡ 1 (mod 2).

up to any number of the following substitutions: (2, 2) → (4) and (2, 2, 2) → (6).

Example For n = 8, we would have that maxN(1, 2; 8) = 16 is achieved at the
partitions (6, 2), (4, 4), (4, 2, 2), and (2, 2, 2, 2).

We believe that a similar convexity result holds for all r, t for sufficiently large a and
b.

Conjecture 4.3 If 0 ≤ r < t and t ≥ 2, then

N (r, t; a)N (r, t; b) > N (r, t; a + b)

for sufficiently large a and b.
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